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Abstract. In a seminal work, Boneh, Sahai and Waters (BSW, for short) [TCC’11] showed that
for functional encryption the indistinguishability notion of security (IND-Security) is weaker than
simulation-based security (SIM-Security), and that SIM-Security is in general impossible to achieve.
This has opened up the door to a plethora of papers showing feasibility and new impossibility results.
Nevertheless, the quest for better definitions that (1) overcome the limitations of IND-Security and
(2) the known impossibility results, is still open.
In this work, we explore the benefits and the limits of using efficient rewinding black-box simulators
to argue security. To do so, we introduce a new simulation-based security definition, that we call
rewinding simulation-based security (RSIM-Security), that is weaker than the previous ones but it
is still sufficiently strong to not meet pathological schemes as it is the case for IND-Security (that is
implied by the RSIM). This is achieved by retaining a strong simulation-based flavour but adding
more rewinding power to the simulator having care to guarantee that it can not learn more than
what the adversary would learn in any run of the experiment. What we found is that for RSIM the
BSW impossibility result does not hold and that IND-Security is equivalent to RSIM-Security for
Attribute-Based Encryption in the standard model. Nevertheless, we prove that there is a setting
where rewinding simulators are of no help. The adversary can put in place a strategy that forces
the simulator to rewind continuously.
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1 Introduction

Functional encryption (FE, for short) is a sophisticated type of encryption that was first proposed by
Sahai and Waters in 2005 [36] and formalized by Boneh, Sahai and Waters in 2011, [14]. Roughly speaking,
in a functional encryption system, a decryption key allows a user to learn a function of the encrypted
data. More specifically, in a functional encryption scheme for functionality F : K ×X → Σ, defined over
key space K, message space X and output space Σ, for every key k ∈ K, the owner of the master secret
key Msk associated with master public key Mpk can generate a secret key Skk that allows the computation
of F (k, x) from a ciphertext of x computed under master public key Mpk. In other words, a functional
encryption scheme generalizes classical encryption schemes where the secret key allows to compute the
entire plaintext. In recent breakthroughs, functional encryption schemes for general functionalities have
been constructed by [27, 19, 16, 6].

A notable subclass of functional encryption is that of predicate encryption (PE, for short) which are
defined for functionalities whose message space X consists of two subspaces I and M called respectively
index space and payload space. In this case, the functionality F is defined in terms of a polynomial-time
predicate P : K × I → {0, 1} as follows: F (k, (ind,m)) = m if P (k, ind) = 1, ⊥ otherwise, where k ∈ K,
ind ∈ I and m ∈ M . Those schemes are also called predicate encryption with private-index. Examples
of such schemes are Anonymous Identity-Based Encryption (AIBE, for short) [13, 21], Inner-Product
Encryption [15, 32–34] among others. On the other hand, when the index ind is easily readable from the
ciphertext those schemes are called predicate encryption with public-index (PIPE, for short). Also for this
specific subclass, the literature provides lots of constructions such that Identity-Based Encryption (IBE,
for short) [37, 13, 17], Attribute-Based Encryption (ABE, for short) [36, 30, 20, 29], Functional Encryption
for Regular Languages [38], among others.

A general study of the security of functional encryption did not appear initially. Instead, progressively
more expressive forms of FE were constructed in a series of works that adopted indistinguishability-based
(IND) notions of security, which requires that it is infeasible to distinguish encryption of any two messages
without getting a secret key that decrypts the ciphertexts to distinct values. Only recently, papers studying
simulation-based (SIM) notions of security for functional encryption were proposed by Boneh, Sahai, and
Waters [14] and O’Neill [35] who explored security definitions for functional encryption that arise from
the simulation paradigm [25, 26, 23]. The aim of these simulation-based definitions was to capture the
most basic intuition about security for FE, namely that getting the secret key Skk corresponding to the
key k ∈ K should only reveal F (k, x) when given an encryption of x.

Previous Works. Results about functional encryption now live in a high-dimensional space, where there
are many parameters and several results ruling out or constructing schemes for certain parameters. Before
presenting these results, to make things clear, following [18] notation, we define (q1, `, q2)-atk-Security,
where q1 = q1(λ), ` = `(λ), q2 = q2(λ) are either polynomials in the security parameter λ that are fixed a
priori or equal to the formal variable poly, and atk ∈ {IND,SIM}, as follows. Specifically, atk-Security holds
for adversaries A that issues at most q1 non-adaptive key-generation queries, output challenge message
vectors of length at most `, and furthermore issues at most q2 adaptive key-generation queries, and in
the case that a parameter equals the formal variable poly it is meant that there is no fixed bound (the
only bound is the running time of the adversary that is polynomial). Thus, for example, if q1 and ` are
polynomials then (q1, `, poly)-SIM-Security means that the adversary in the SIM-Security definition makes
a q1(λ)-bounded number of non-adaptive key-generation queries but an unbounded (i.e., bounded only
by its running time) number of adaptive key-generation queries, and outputs a `(λ)-bounded challenge
message vector, where λ is the security parameter. If the parameters are not specified we intend them
set to poly. (IND-Security is defined in Section 2, Definition 3. As reference for SIM-Security, we take
the definitions of [18] and [14].) We will also consider in our work the selective security model which is a
weaker security model (see, e.g., [12, 30, 4]) in which the adversary must commit to its challenge messages
before seeing the public parameters. Then, we will use the notation sel-atk to mean atk-Security in the
selective model.

In the seminal work of Boneh, Sahai and Waters [14], it was shown that for FE, unlike classi-
cal encryption, IND-Security is weaker than SIM-Security. Indeed, the authors show a clearly inse-
cure FE scheme that is provably IND-Secure. Moreover, in the same work Boneh et al. show that



(0, poly, 2)-SIM-Security is impossible to achieve even for a simple functionality like IBE in the non-
programmable oracle model, but prove, in the random oracle model, that (poly, poly, poly)-IND-Security
implies (poly, poly, poly)-SIM-Security for predicate encryption with public-index, and there exists an
AIBE scheme that is (poly, poly, poly)-SIM-Secure.

At the same time, O’Neill [35] does similar considerations and shows that for pre-image sampleable
functionalities, (poly, poly, 0)-IND-Security is equivalent to (poly, poly, 0)-SIM-Secure. Barbosa and Farshim [8]
extended O’Neill’s equivalence between indistinguishability and semantic security to the adaptive setting
by restricting the adversary to issue adaptive key-generation queries for keys that are constant over the
support of the message distribution. We will not consider any of such restrictions but we stress that our
positive results are for a model that does not share these limitations.

Later, Bellare and O’Neill [11] showed that the impossibility result of [14] also extends to the standard
model assuming the existence of collision resistant hash functions. Furthermore, they introduce new
definitions to the aim of overcoming the impossibility results. Specifically, they define a new notion
equivalent of IND-Security and thus incurring the same deficiency, and a new simulation-based definition
for which a proof of security was only shown for functionalities with key space of polynomial size (and so
not including basic functionalities like IBE). Recently, Iovino and Żebrowski [31] proved positive results
for Simulation-based Security in the Random Oracle model.

In 2012, Gorbunov et al. [27] presented a construction of FE for general circuits that is (q1, poly, 0)-
SIM-Secure. Following, Agrawal et al. [5] proved an impossibility result showing that it is impossible
to achieve (poly, 1, 0)-SIM-Security. Their result does not hold in the selective security model1 and for
public-index functionalities.

Furthermore, in the same paper, the authors prove that (poly, 1, poly)-IND-Security implies (poly, poly, poly)-
IND-Security, and propose a simulation-based notion of security that considers computational unbounded
simulator as a way to overcome current impossibility results, leaving many open problems about this
definition. In 2013, Goldwasser et al. [24] presented an FE for general circuits with succinct ciphertexts
(meaning that the size of the ciphertext does grow only with the respect of the depth of the circuits to
be evaluated) provable (q1, poly, 0)-SIM-secure.

Later, De Caro et al. [18] presented a general compiler to transform any (q1, `, poly)-IND-Secure FE
scheme for circuits into one that is (q1, `, poly)-SIM-Secure matching the known impossibility results.
Finally, in recent breakthroughs, Gorbunov et al. and Garg et al. [29, 20] proposed (poly, poly, poly)-IND-
Secure constructions for predicate encryption with public-index for general circuits, and [19, 6, 16] pro-
posed the first candidate constructions for a (poly, poly, poly)-IND-Secure2 functional encryption scheme
for general circuits from indistinguishable obfuscation and extractable obfuscation.

Concurrently and independently from our work, Agrawal et al. [2]3 studied new definitions for func-
tional encryption. Although part of their work focuses on function privacy (another property not addressed
in our work), one of the definitions it contains, therein called RELAX-AD-SIM, is similar in spirit to ours.
Loosely speaking, in RELAX-AD-SIM, the simulator is allowed to run in unbounded time and make more
queries than the adversary but in a controlled way. See the rest of the paper for a deeper discussion and
comparison.

Our Work: Rewinding Simulators. Given the current state of the affair in functional encryption, as shown
in the previous section, the reader can be then tempted to ask why a new definition should be considered
in this already messy scenario. We believe then the quest for a reasonable simulation-based security
definition is still open and that connections with secure computation and zero-knowledge are relevant to
better understand, then clarify, what is happening in functional encryption.

For instance, in the context of secure computation, Backes et al. in [7] present a protocol that can be
proven secure using a rewinding simulator and that is not secure for any non-rewinding simulator. More-

1 [5] shows that their impossibility result holds in a variant of the selective security model, called by [18] fully
non-adaptive model, where the adversary makes simultaneous key-generation and challenge message queries
before seeing the public parameters.

2 Precisely, the functional encryption scheme of [19] only achieves (poly, poly, poly)-sel-IND-Security but later [16]
and [6] provided schemes that avoid the selective security model.

3 Note that we do not refer to their latest eprint revision but at the specific version posted on 6 March 2014 that
has been updated after and in the subsequent revisions represents an extended abstract of the paper appeared
in [3].



over they show that stand-alone security (where rewinding simulators are allowed) do not coincide with
the notion of security under concurrent composition whose security guarantees are relevant in practice.

With the above in mind, in this paper, we explore the benefits and the limits of using efficient
rewinding black-box simulators to argue security for functional encryption as a way to overcome the
known impossibility results.

Specifically, so far, all the known simulation-based security definitions for functional encryption share
a common characteristic. They all constraint the simulator to learn exactly what the adversary learns in
a single run of the experiment. This is enforced by requiring straight-line simulators and/or by having
the challenger of the experiment tracing the queries issued by the adversary and reporting them in the
output distribution of the experiment. This is true also for the BSW definition which nevertheless allows
the simulator to rewind the adversary to reconstruct its view.

We, then, allow the simulator to learn not only what the adversary learns in a single run of the
experiment but also what can be extracted by rewinding the adversary multiple times under the condition
that: (1) the simulator must be efficient, (2) the simulator can not learn more than what the adversary
would learn in any run of the experiment. All that is needed is for the simulator to present to the
distinguisher, at the end of the interaction, a complete view of the adversary that is indistinguishable
from the view the adversary produces in a single run of the experiment.

In particular, by rewinding, we mean that the simulator runs parts of the adversary during the sim-
ulation and produces a fragment of the conversation that has some desired property with a certain
probability. For some functionalities, if the simulator fails then it possibly gains some additional infor-
mation on the challenge messages useful to produce a successful simulation and then can rewind the
adversary based on this new information.

Does the rewinding simulator learn too much information? A matter of concern regarding rewinding
strategies could be that the simulator is leaking too much information. If the simulator could rewind
the adversary to its liking, we would have the undesired situation that insecure schemes could be secure.
Therefore, we have to constrain the power of the simulator: it must learn information but in a controlled
way. We make this as follows. The simulator can rewind based on the adversary’s queries. If those
queries allow the adversary to learn information on the challenge messages, then the simulator learns this
information by rewinding too. Otherwise, the simulator can simulate the view for the adversary easily,
without learning much information.

We control the power of the simulator by allowing it to ask only queries that the adversary would ask
during a valid run of the experiment. More concretely, consider the different constraints on the simulator
in BSW and in our definition. In BSW, the simulator is given direct access to the functionality oracle
and so to make the definition not trivial the list of the queries is put in the transcript (otherwise the
simulator could just query the functionality oracle on the identity function to get the challenge message
and simulate perfectly any scheme even insecure ones).

Instead, in our definition, when the adversary makes a query k, the simulator is invoked with the
value F (k, x), where x is the challenge message, but the simulator can not ever ask a query for a key k
that the adversary would not ask in a run of the game. Is this sufficient? As sanity check, we show that,
although the simulator has this extra power, the new definition still implies IND-Security. Nevertheless, it
seems to not suffer from the problems of IND-Security (such as the existence of clearly insecure schemes
that satisfy such definition).

In an independent and concurrent work, Agrawal et al. [2] formulated a new definition called RELAX-
AD-SIM to the scope of bypassing the impossibility results for previous SIM-Security and of not being
vulnerable to the weakness of IND-Security. Interestingly, both our definition and RELAX-AD-SIM share
the same intuition and spirit. In RELAX-AD-SIM, the simulator can learn more information than the
adversary but this leak is controlled in the following way (this is an oversimplification for the scope of
our presentation, see their paper for details). Fix a value ε and consider the set of queries Qε that the
adversary would ask with probability greater than ε. Then, the simulator of RELAX-AD-SIM can ask any
query in Qε. Moreover, their simulator is allowed to run in time inversely proportional to 1/ε and it is
only required that the distinguisher can not have distinguishing advantage (between the real and ideal
world) greater than ε.

The reader may notice that this mechanism of giving extra power to the simulator in a constrained
way is similar to ours. In fact, if our efficient simulator can learn some extra query by means of rewinding



then it means that the adversary is likely to ask such query, and their simulator could make the same
query as well.

Efficient simulation with non-negligible distinguishing advantage. A technical difference between our work
and Agrawal et al. [2] is that Agrawal et al. allows the simulator to run in time polynomial in 1/ε and
thus it would run in super-polynomial time when ε is smaller than the inverse of any polynomial, whereas
we stick to efficient simulation and impose a distinguishing advantage at most inverse of any polynomial.
We remark that both works do not allow simulators that work for all ε. Notwithstanding, in our work
efficient simulation is sufficient to bypass the impossibility result of BSW.

Our Results and Roadmap. In Section 2 we present our notation and general definitions for FE. In
Section 3, we put forth a weaker notion of simulation-based security that we call rewinding simulation-
based security (RSIM, for short), that lies between SIM-Security and IND-Security. Our definition is a
weakening of previous definitions proposed in literature (see [18]).

For completeness, in Section 4 we review the insufficiency of IND-Security as shown by [14].
In Section 5, we show that in the standard model for efficient rewinding black-box simulators, (poly, poly, poly)-

IND-Security implies (poly, poly, poly)-RSIM-Security, for predicate encryption with public-index. This es-
tablishes an equivalence between (poly, poly, poly)-IND-Security and (poly, poly, poly)-RSIM-Security for
predicate encryption with public-index. We can also show that in this case composition holds, meaning
that single-message security implies many-massage security which is relevant in real scenarios.

To complete our analysis, we seek for settings where rewinding simulators are of no help. Thus,
we answer the question of whether RSIM-Security with negligible advantage is achievable for general
functionalities in the negative.

Specifically, in Section 6, we establish a lower bound showing that (0, poly, 1)-RSIM-Security with
negligible advantage can not be achieved for general functionalities.4 No lower bounds were known in this
setting. Our result, as that of [14, 11], is a trade-off.

It shows that RSIM-Security requires long secret keys, meaning that the total number of bits in
messages securely encrypted must be bounded by the length of a secret key.

In Appendix C we also show positive results for RSIM-Security for some classes (not all) of Pred-
icate Encryption with Private-Index, in particular in Theorem 10 we establish equivalence between
(poly, poly, poly)-IND-Security and (poly, poly, poly)-RSIM-Security for the functionality Inner-Product
over Z2.

2 Definitions

Notation. A negligible function neg(λ) is a function that is smaller than the inverse of any polynomial in
λ. If x1 and x2 are binary strings, we denote by x1||x2 or (x1, x2) their concatenation. If X and Y are
two ensembles of random variables indexed by the security parameter λ, we say that X ≈ε Y if no PPT
distinguisher can distinguish them with advantage greater than ε(λ). We denote by [n] the set {1, . . . , n}.
If x is a binary string we denote by |x| the bit length of x, we denote by xi the i-th bit of x, 1 ≤ i ≤ |x|.
PPT is a shorthand for Probabilistic Polynomial-Time. We denote by A(x; r) the execution of a PPT
algorithm A with input x and randomness r. Sometimes we simply write A(x) instead of A(x; r) when it
is clear from the context. If B is an algorithm and A is an algorithm with access to an oracle then AB(·)
denotes the execution of A with oracle access to B(·).

Following Boneh et al. [14], we start by defining the notion of functionality and then that of functional
encryption scheme FE for functionality F .

Definition 1 [Functionality] A functionality F defined over (K,X) is a function F : K ×X → Σ ∪ {⊥}
where K is the key space, X is the message space and Σ is the output space and ⊥ is a special string not
contained in Σ. Notice that the functionality is undefined for when either the key is not in the key space
or the message is not in the message space. Furthermore we require that there are efficient procedures to
check membership of a string in the message space and key space and to sample from these spaces.

4 Precisely, we show a stronger result that (0, poly, 1)-RSIM-Security with negligible advantage is not achievable in
the standard model in the auxiliary input setting (see Section 3). The auxiliary input setting has been already
used by [11] in the same context.



Definition 2 [Functional Encryption Scheme] A functional encryption (FE) scheme FE for functionality
F is a tuple FE = (Setup,KeyGen,Enc,Dec) of 4 algorithms:

1. Setup(1λ) outputs public and master secret keys (Mpk,Msk) for security parameter λ.
2. KeyGen(Msk, k), on input a master secret key Msk and key k ∈ K outputs secret key Skk.
3. Enc(Mpk, x), on input public key Mpk and message x ∈ X outputs ciphertext Ct;
4. Dec(Mpk,Ct,Skk) outputs y ∈ Σ ∪ {⊥}.

In addition we make the following correctness requirement: for all (Mpk,Msk)← Setup(1λ, 1n), all k ∈ Kn

and m ∈Mn, for Sk← KeyGen(Msk, k) and Ct← Enc(Mpk,m), we have that Dec(Mpk,Ct,Sk) = F (k,m)
whenever F (k,m) 6= ⊥5, except with negligible probability.

The empty key. For any functionality, we also assume that the key space contains a special empty key
ε such that F (ε, x) gives the length of x and (depending on the functionality) some intentionally leaked
information on x that can be easily extracted from an encryption of x. When x = (x1, . . . , x`) is a vector
of messages, for any k ∈ K∪{ε}, we denote by F (k,x) the vector of evaluations (F (k, x1), . . . , F (k, x`)).

Secret-key length. We say that a functional encryption scheme FE = (Setup,KeyGen,Enc,Dec) has secret-
key length kl(·) if |Sk| ≤ kl(λ) for all k ∈ Kλ, X ∈ Xλ, all (Mpk,Msk) ← Setup(1λ), and all Sk ←
KeyGen(Msk, k). Note that every FE scheme must have some polynomial kl(·) secret-key length in order
to be efficient.

Indistinguishability-based Security. The indistinguishability-based notion of security for functional en-
cryption scheme FE = (Setup,KeyGen,Enc,Dec) for functionality F defined over (K,X) is formalized by
means of the following game INDFE

A between an adversary A = (A0,A1) and a challenger C.

1. C generates (Mpk,Msk)← Setup(1λ) and runs A0 on input Mpk;
2. A0, during its computation, issues q1 non-adaptive key-generation queries. C on input key k ∈ K

computes Sk = KeyGen(Msk, k) and sends it to A0. When A0 stops, it outputs two challenge messages
vectors, of length `, x0,x1 ∈ X` and its internal state st.

3. C picks b ∈ {0, 1} at random, and, for i ∈ `, computes the challenge ciphertexts Cti = Enc(Mpk, xb[i]).
Then C sends (Cti)i∈[`] to A1 that resumes its computation from st.

4. A1, during its computation, issues q2 adaptive key-generation queries. C on input key k ∈ K computes
Sk = KeyGen(Msk, k) and sends it to A1.

5. When A1 stops, it outputs b′.
6. Output: if b = b′, F (ε,x0) = F (ε,x1), and F (k,x0) = F (k,x1) for each k for which A has issued a

key-generation query, then output 1 else output 0.

The advantage of adversary A is: AdvFE,IND
A (1λ) = Prob[INDFE

A (1λ) = 1]− 1/2

Definition 3 We say that FE is (q1, `, q2)-indistinguishably secure ((q1, `, q2)-IND-Secure, for short) where
q1 = q1(λ), ` = `(λ), q2 = q2(λ) are polynomials in the security parameter λ that are fixed a priori, if all
probabilistic polynomial-time adversaries A issuing at most q1 non-adaptive key queries, q2 adaptive key
queries and output challenge message vectors of length and most `, have at most negligible advantage in
the above game. (Notice that, if q1 (resp. q2) is equal to poly, then the interpretation is that there is no
bound on the number of non-adaptive (resp. adaptive) key-generation queries and if ` = poly there is no
bound on the length of the challenge message vector).

Predicate Encryption (PE, for short). Those schemes are defined for functionalities whose message space
X consists of two sub-spaces I and M called respectively index space and payload space. In this case,
the functionality F is defined in terms of a polynomial-time predicate P : K × I → {0, 1} as follows:
F (k, (ind,m)) = m if P (k, ind) = 1, ⊥ otherwise, where k ∈ K, ind ∈ I and m ∈ M . In particular, for
the ε key, we have F (ε, (ind,m)) = (|ind|, |m|). As for general functionalities, a predicate P can be a
family of predicates and in this case the functionality F defined in terms of P is a family of functions.
Indistinguishable Security for PE is defined analogously to Definition 3.

5 See [11, 1] for a discussion about this condition.



Anonymous IBE (AIBE, for short). Let the key space Kn = {0, 1}n, index space In = {0, 1}n and payload
spaceMn = {0, 1}n the payload space for n ∈ N. The predicate family IBE = {IBEn : Kn×In → {0, 1}}n∈N
is defined so that for any k ∈ Kn, ind ∈ In, IBE(k, ind) = 1 if and only if k = ind. We call a predicate
encryption scheme (with private-index) for this predicate Anonymous IBE.

Predicate Encryption with Public-Index (a.k.a. ABE) (PIPE, for short). In this type of FE the empty key
ε explicitly reveals the index ind, namely F (ε, (ind,m)) = (ind, |m|). Indistinguishable security is defined
again analogously to Definition 3, with the main difference being in the adversary’s challenge, namely it
consists of two payloads m0,m1 and an index ind. An example of PIPE is Identity-based Encryption.

An example of PIPE is IBE that is identical to AIBE except that the ”identity is in clear”.

3 Rewinding Simulation-based Security

In this section, we present our rewinding simulation-based security definition.

Definition 4 [Rewinding Simulation-based Security] Let q1 = q1(λ), ` = `(λ), q2 = q2(λ) be specific
polynomials in the security parameter λ that are fixed a priori or be equal to the formal variable poly.

A functional encryption scheme FE = (Setup,KeyGen,Enc,Dec) for functionality F defined over (K,X)
is (q1, `, q2)-rewinding simulation-secure ((q1, `, q2)-RSIM-Secure, for short), if for any polynomial ν(λ)
there exists a PPT simulator algorithm Sim = (Sim0,Sim1) such that for all PPT adversary algorithms
A = (A0,A1), issuing at most q1 non-adaptive key-generation queries, q2 adaptive key-generation queries
and output challenge message vector of length and most `, no PPT distinguisher can distinguish the
outputs of the following two experiments RealExpFE,A and IdealExpFE,A with advantage greater than
1/ν(λ).

(Note that, if q1 (resp. q2) is set to poly, then the interpretation is that there is no bound on the
number of non-adaptive (resp. adaptive) key-generation queries and if ` = poly there is no bound on the
length of the challenge message vector).

RealExpFE,A(1λ)

(Mpk,Msk)← Setup(1λ);

(x, st)← AKeyGen(Msk,·)
0 (Mpk);

(Cti ← Enc(Mpk, x[i]))i∈`;

α← AKeyGen(Msk,·)
1 (Mpk, (Cti), st);

Output: (Mpk,x, α)

IdealExpFE,ASim (1λ)

(Mpk,Msk)← Setup(1λ);

(x, st)← AKeyGen(Msk,·)
0 (Mpk);

Let Q = (ki, Skki , F (ki,x))i∈[q1].

α← Sim
AO

1 (Mpk,·,st)
0 (Mpk,Msk,Q, F (ε,x));

Output: (Mpk,x, α)

Here, the (ki ∈ K)i∈[q1]’s are the q1 keys for which A0 has issued a non-adaptive key-generation query
to its key-generation oracle. In the ideal experiment A1 is provided with a special oracle O for adaptive
key-generation queries. The oracle O takes in input a key k ∈ K and answers the query in the following
way. The oracle invokes the simulator Sim1 on input (k, F (k,x)). Sim1 outputs a secret key for k that
the oracle returns to A1. We require the simulator Sim = (Sim0,Sim1) to be stateful and allow Sim0 and
Sim1 to communicate by means of a shared memory. We remark that each time Sim0 runs the adversary
A1 on some input (Cti), A1 is executed with input (Mpk, (Cti), st) and fresh randomness.



RSIM-Security with negligible advantage. With the obvious meaning, we say that FE is RSIM-Secure with
negligible advantage if in the above definition the two experiments are computationally indistinguishable,
i.e. whether the function ν(λ) is negligible. Moreover, the definition could be generalized making it
parameterized by a generic function ν(λ), but for our scopes this is not possible.6 In fact, we focus on
efficient simulation, and for this reason the function ν(λ) can not be set to a negligible function (see
the paragraph ’The actual simulation’ in theorem for an explanation). Instead, if the function ν(λ) is
the inverse of an arbitrary polynomial, we can achieve efficient simulation. As said in the introduction,
simulators with non-negligible advantage are also used in [2].

Auxiliary Inputs. Our definition can be extended naturally to the auxiliary input setting, as in Bellare
and O’Neill [11]. An auxiliary input generator algorithm Z outputs z which is given to the adversary
and simulator, and included in the output distribution of security game. Notice that, the simulator is
not allowed to pick z. As in [11], the auxiliary input setting will be used in our impossibility result in
Section 6, where z will contain a key for a collision-resistant hash function.

Selective Security. The selective security model is a weaker model in which the adversary must commit to
its challenge messages before seeing the public parameters. In particular, for RSIM, in the ideal experiment
the simulator will simulate also the answers to the non-adaptive key queries. Due to space constraints, we
defer the selective RSIM-Security definition to the full version of this work at the IACR eprint archive.

Relations among Definitions. Our RSIM definition stands in between SIM and IND security. Specifically,
it is easy to see that SIM implies RSIM because the RSIM simulator simply runs the SIM simulator.
Moreover, we show in Appendix A that RSIM-Security implies IND-Security.

Composition. Despite the fact that the RSIM simulator can rewind the adversary A1 to reconstruct its
view (this in general is problematic for composition), we can show that for the class of functionalities
for which we prove the equivalence between (poly, poly, poly)-IND-Security and (poly, poly, poly)-RSIM-
Security, single-message RSIM-Security implies multiple-message RSIM-Security, namely (poly, 1, poly)-
RSIM-Security implies (poly, poly, poly)-RSIM-Security. This is because, (poly, 1, poly)-RSIM-Security im-
plies (poly, 1, poly)-IND-Security (by Theorem 7 in Appendix A) and (poly, 1, poly)-IND-Security implies
(poly, poly, poly)-IND-Security (this was shown by [28]).

Relations with BSW [14] First of all, in BSW the simulator is allowed to pick its own simulated public-key
and non-adaptive secret keys, whereas in our definition this information is generated honestly. Notice that
the main aim of BSW was to prove impossibility results and such results are stronger if they hold with
respect to more powerful simulators (i.e., simulators that can also simulate the public- and secret- keys).
On the other hand, we are mainly interested to prove positive results and so our choice of the definition
(i.e. the fact that the public- and non-adaptive secret- keys are generated honestly) makes our results
stronger.

To clarify the difference with the [14] definition, we recall the [14, 11]’s impossibility result and show
why it does not hold for RSIM.

Specifically, consider the following adversary A = (A0,A1) for the IBE functionality. A0 returns as
challenge messages the vector ((0, ri))i∈[`], where ` = kl(λ) + λ, kl is a polynomial bounding the length
of secret keys, 0 is the identity and ri is a random bit for each i ∈ [`].

Then, A1 invokes its key-generation oracle on input identity w = CRHF(Mpk||Ct1|| · · · ||Ct`) for some
collision-resistant hash function CRHF, and then asks to see a secret key for identity 0. The output of A1

is the transcript of its entire computation including its inputs. Thus, the strategy of the above adversary
forces the simulator to commit to the challenge ciphertexts he has generated (through the query on
identity w) before seeing the evaluation of IBE functionalities on the key for identity 0 and so learning
the bit ri’s.

Then, the challenge ciphertexts can not be reprogrammed and by choosing the number of encrypted
bits to be larger than the length of the secret key the simulator is forced to achieve an information
theoretic compression of random bits which is in turn impossible. Notice that, even though the simulator

6 Precisely, it would be possible at the cost of non-efficient simulation.



in BSW definition is formally allowed to rewind the adversary, the same simulator is not allowed to learn
more information than what is learnt by the adversary in a single run of experiment.

This, in turn, means that the only way for the simulator to reconstruct the view of the adversary
is to break the collision resistant hash function. The strategy of this adversary is clearly not successful
with the respect to RSIM because an RSIM simulator once obtained the ri’s can simply generates new
ciphertexts encrypting them and rewind the adversary. In the new run, the RSIM simulator can answer
all the key-generation queries by simply generating honest secret keys.

Observe that the BSW definition forbids this kind of simulation since: (1) the simulator is given
direct access to the functionality oracle and (2) the key-generation queries issued by the simulator are
given as input to the distinguisher. So according to the BSW definition, the distinguisher would see 4
key-generation queries, and thus it could tell apart the real experiment where the adversary always asks
2 secret keys from the ideal experiment.

The same holds for the [8] definition. On the other hand, in RSIM the distinguisher would only see
the last transcript. The definitions of [5, 18] also forbid this kind of simulation since their simulator is
straight-line.

4 Insufficiency of Indistinguishable-Based Security for PE

In this section, we review the insufficiency of IND-Security shown by [14]. Precisely, we show that the
equivalence between indistinguishable-based security and simulation-based security in the standard model
for public-index predicate encryption is the best one can hope for.

Namely, we will show a complex predicate for which is possible to construct a private-index predicate
encryption scheme that is IND-Secure, but it is clearly insecure in practice. For completeness, we slightly
adapt the example of [14] extend it to a PE scheme (with private-index) that also encrypts a payload
message. Specifically, let π be a one-way permutation and consider the predicate P defined as follows:
P (k, ind) = 1 if k = π(ind), 0 otherwise. Now, consider the following implementation based on an Anony-
mous IBE scheme AIBE. The ciphertext for the pair (ind,m) is an AIBE’s ciphertext for identity π(ind)
and payload m||ind, namely AIBE.Enc(AIBE.Mpk, π(ind),m||ind). and a secret key for k is an AIBE’s secret
key for identity k, namely AIBE.KeyGen(AIBE.Msk, k).

Clearly, given ciphertext for pair (ind,m) and secret key for k such that π(ind) = k reveal more
information than need about the index ind.

Nevertheless, the new scheme can be proved IND-Secure. In fact, according to the constraints of the
IND-Security, for challenge indices ind0, ind1, P (k, ind0) = P (k, ind1) = 1 if and only if π(ind0) = k
and π(ind1) = k but this happens if and only if ind0 = ind1. Thus, the adversary can only issue secret
key queries for k such that P (k, ind0) = P (k, ind1) = 0. Under this constraint it is easy to reduce the
IND-Security of the new scheme to that of the AIBE scheme. On the other hand, the new scheme is not
SIM-Secure (with the respect to any simulation-based security definition for FE known in the literature).
Specifically, consider an adversary for the SIM-Security that chooses as challenge a pair (ind,m) for
random index ind and random message m, and then asks the secret key for k = π(ind), decrypts the
challenge ciphertext using this secret key and outputs a transcript of its computation. The simulator has
to generate an indistinguishable transcript only given as input F (ε, (ind,m)) = (|ind|, |m|), k = π(ind),
the secret for k and the evaluation of the functionality on the challenge message, that in this case is just
m being π(ind) = k. Since ind is chosen at random and independently from the view of the simulator, the
probability of successful simulation reduces to inverting π.

5 An Equivalence for Public-Index Schemes

In this section, we show that for public-index schemes IND-Security is equivalent to RSIM-Security. In
Appendix A, we have already shown that RSIM-Security implies IND-Security, therefore, the main theorem
of this section is the following.

Theorem 5 Let PIPE be an (poly, poly, poly)-IND-Secure PE scheme with public-index for predicate
P : K × I → {0, 1}. Then, PIPE is (poly, poly, poly)-RSIM-Secure as well.



Overview. To give some intuitions on the proof strategy, let us start by considering a weak adversary
that issues only key-generation queries for keys that can not be used to decrypt any of the challenge
ciphertexts. In such a case, the simulator will generates challenge ciphertexts for random payloads and
for the indices that the simulator gets in input (recall that we are considering public-index functionalities).

It is clear that under the IND-Security of the PIPE scheme the adversary can not notice any difference
given the fact that all the requested secret keys can not decrypt any of the challenge ciphertexts. Now,
let consider an adversary that issue, after having seen the challenge ciphertexts, a key-generation query
for a key that decrypts one of the these challenge ciphertexts, let say Cti (Notice that up to this moment
the simulation is perfect under the IND-Security of the PIPE scheme).

Because the challenge ciphertexts were made for random payloads, the output of the Dec algorithm
will be different from what the adversary expects, meaning that the simulation of current run is not
successful. But now notice that the simulator learns the payload corresponding to Cti, mi. Then, the
simulator can executes a new run of the adversary generating Cti for the correct payload. Notice that,
from now, no key-generation query for a key that decrypts Cti will not cause a rewind anymore.

Remark. The above is an oversimplified sketch. In fact, if the simulator follows this strategy it produces
a biased output. Anyway, henceforth, we prefer to first present the simplified simulation and then explain
why is biased and finally we proceed to fix it. We think that presenting the security reductions in this
way helps the reader in understating the need of all the details. We will follow this approach for the rest
of the work.

We prove Theorem 5 in Appendix B. In Appendix C.1 we also extend such theorem to the case of
Anonymous IBE.

6 Impossibility of RSIM for FE for General Circuits

In this section, we show that RSIM-Security with negligible advantage can not be achieved in the adaptive
setting for general circuits.

Theorem 6 Assuming the existence of collision resistance hash functions and pseudo-random functions,
there exists a family of circuits for which there are no functional encryption schemes that are (0, poly, 1)-
RSIM-Secure with negligible advantage in the auxiliary input setting (for the standard model).

Overview. To prove the theorem, it is enough to present an adversary whose strategy is such that
at any run the simulator is forced to rewind, meaning that the information gathered in any run are
useless to successfully simulate any other run. To force the rewind, our adversary will use a [14, 11]-like
strategy. Namely, our adversary will first force the simulator to commit to the challenge ciphertexts he
has generated by using a collision resistant hash function. Then, our adversary will request to see a secret
key that extracts from the challenge ciphertexts a (pseudo-)random string whose length is much larger
then the length of the secret key itself. Because it is information-theoretical impossible to compress such
(pseudo-)random string in the space provided by the secret key, the simulator will rewind hoping to use
the information gathered so far to successfully simulate the next run.

Now notice that in the [14, 11]’s impossibility results for the IBE functionality, only the first run can not
be successfully simulated. In fact, in the the same run the simulator learns the challenge messages, which
remains the same in all the runs, and can successfully simulate the next run. Thus, the IBE functionality
is of limited use. Therefore, we have to consider a functionality that let the adversary extracts a pseudo-
random string from the challenge ciphertexts, this is to invoke the information-theoretical argument that
will force the simulator to rewind, and at the same time makes this string useless to simulate the next run,
meaning that the output of the functionality crucially depends on the challenge ciphertexts generated by
the simulator. Here is where the pseudo-random functions come in.

In more details, we consider an adversary that issues a suitable number of challenge messages, let us
say kl(λ) +λ, where kl(·) is the polynomial bounding the length of the secret keys, of the type (s||ri)i∈[`]
where s will be the seed of the pseudo-random function and ri a random value that will be part of the
input on which the pseudo-random function will be evaluated. Then the adversary, on input Mpk and
the ciphertexts (Cti)i∈[`] for the challenge messages, issues a single adaptive key-generation query to its



oracle for the circuit CPRF,w that computes the pseudo-random function on input seed s and value r||w,
where w = CRHF(Mpk||Ct1|| · · · ||Ct`) is hardwired in CPRF,w and is used to commit the simulator to the
ciphertexts it has generated. Crucial is the fact that the output of CPRF,w on the challenge messages
depends on the Cti’s.

Proof. Le FE be a (0, 1, poly)-RSIM-Secure with negligible advantage functional encryption scheme for
circuits with secret-key length kl(·). Let PRF = {PRFλ : {0, 1}λ × {0, 1}2·m(λ) → {0, 1}}λ∈N a circuit
family of pseudo-random functions. Let CRHF be the collision resistance hash function with range m(λ)
whose key hk has been chosen by the auxiliary input generator. We omit hk in the notation just for the
sake of simplicity.

For ease of presentation, henceforth, we simply talk about RSIM-Security without specifying that it is
with respect with negligible advantage. Consider the following adversary A = (A0,A1) and distinguisher
D in the (0, 1, poly)-RSIM security experiment. Specifically, A works as follows:
– A0 returns ` = kl(λ) + λ challenge messages of the form (s||ri) for random s ∈ {0, 1}λ and ri ∈
{0, 1}m(λ).

– A1, on input Mpk, (Cti)i∈[`] and st, sets w = CRHF(Mpk||Ct1|| · · · ||Ct`) and invokes the key-

generation oracle on input the circuit CPRF,w(s, r) := PRF(s, r||w) , and obtains secret key Sk for
it. Finally, A1 outputs α = ((Cti)i∈[`], w,Sk).

Instead, the distinguisher D does the following:
– D, on input Mpk, the challenge messages (s||ri)i∈[`] and α, interprets α as α = ((Cti)i∈[`], w,Sk) and

checks that (1) w is equal to CRHF(Mpk||Ct1|| · · · ||Ct`), and (2) Dec(Mpk,Cti,Sk) = PRF(s, ri||w) for
each i ∈ [`]. D returns 1 if all the checks passed, 0 otherwise.

Because we assumed FE to be (0, 1, poly)-RSIM-Secure, it means there exists a simulator Sim = (Sim0,Sim1)
that generates a view indistinguishable to that of A when it plays in the real game. Given this simulator,
we now construct an adversary A against the security of the pseudo-random function. Specifically, A on
input the security parameter 1λ and given access to oracle O does the following:

AO(1λ):

1. A invokes the setup algorithm of FE to gen-
erate master public and secret key. Namely,
(Mpk,Msk)← Setup(1λ).

2. Let ` = kl(λ) + λ. Then A chooses random ri ∈
{0, 1}m(λ) for i ∈ [`], as A0 does.

3. A runs Sim0 on input
(Mpk,Msk,Q, (F (ε, (s||ri)))i∈[`]), where Q
is empty because A0 does not issue any
key-generation query. When A1 invokes its
key-generation oracle on input circuit CPRF,w, A
invokes Sim1 on input CPRF,w and (O(ri||w))i∈[`]
as input.
At some point Sim0 returns α.

4. Finally, A does the same checks as D. Namely, A
interprets α as α = ((Cti)i∈[`], w,Sk) and checks
that
(a) w is equal to CRHF(Mpk||Ct1|| · · · ||Ct`), and
(b) Dec(Mpk,Cti,Sk) = O(ri||w) for each i ∈ [`].
A returns 1 if all the checks passed, 0 otherwise.

Now observe that, D outputs 1 with overwhelming probability when given the output of adversary A
in the (0, 1, poly)-RSIM real experiment. Moreover, by the (0, 1, poly)-RSIM-Security of FE, D also output
1 with overwhelming probability when given the output of the simulator Sim. Then, if O is the pseudo-
random oracle for random seed s, A perfectly simulates the output of Sim in the (0, 1, poly)-RSIM ideal
experiment and thus A gives in output 1 with high probability.

Suppose now that O is a truly random oracle. Let α = ((Cti)i∈[`], w,Sk) be the output of Sim during
the execution of A (see point (3) in the description of A). We distinguish two mutually exclusive cases.



1. A1 has never ever issued a key-generation query for circuit CPRF,w. In this case the probability that
A outputs 1 is negligible since the output of the simulator is independent from O(ri||w) for each
i ∈ [`] and these values are random being O a truly random oracle.

2. A1 invoked its key-generation oracle on input the circuit CPRF,w at least one time. First, notice that
A implements the interface between A1 and Sim. Precisely, when Sim0 invokes its oracle on some
input, then A invokes A1 on the same input. Then, when A1 issues a key-generation query for a
circuit CPRF,w, A sees the value w and answers such query as described above.
Let p(λ) be the running time of Sim. Therefore, the execution of Sim can be divided in at most
p(λ) runs, where for j = 1, . . . , p(λ), in the j-th run Sim0 invokes its oracle on input (Ctji )i∈[`] that

corresponds to a key-generation query for circuit CPRF,wj , where wj = CRHF(Mpk||Ctj1|| . . . ||Ct
j
`).

Now notice that there exists some index k ≤ p(λ) such that w = wk and k is the first index for which
w = wk. From this fact and from the fact that A checks whether w = CRHF(Mpk||Ct1|| . . . ||Ct`), it
follows that with all but negligible probability (Cti) = (Ctki ). Indeed, suppose towards a contradiction
that with non-negligible probability q it holds that (Cti) 6= (Ctki ). Then, A1 and Sim can be used to
build an adversary B for CRHF as follows. B on input the security parameter 1λ and the hash key hk
does the following:

B(hk):
(a) B invokes the setup algorithm of FE to gen-

erate master public and secret key, namely
(Mpk,Msk)← Setup(1λ), Then, B initializes a
list L to empty and set a global index j to zero.
The list L is used by B to trace the invocations
to A1 made by Sim0.

(b) Let ` = kl(λ) + λ. Then B chooses random ri ∈
{0, 1}m(λ) for i ∈ [`], as A0 does.

(c) B runs Sim0 on input
(Mpk,Msk,Q, (F (ε, (s||ri)))i∈[`]), where Q
is empty because A0 does not issue any key-
generation query. When A1 is invoked on input
ciphertexts (Ctji )i∈[`] then B put an entry in the
list L corresponding to(

(Ctji )i∈[`], wj = CRHF(Mpk||Ctj1|| . . . ||Ct
j
`)
)
,

and increment the global index j by one. Then,
when A1 invokes its key-generation oracle on in-
put circuit CPRF,wj , B invokes Sim1 on input
CPRF,wj and (PRF(s, ri||wj))i∈[`] as input.
At some point Sim0 returns α.

(d) At this point, B interprets α as α = ((Cti)i∈[`],
w,Sk) and looks up in the list L for the first
index k such that wk = w. If B does not find
this index it aborts, otherwise B returns the
pair ((Mpk||Ctk1 || . . . ||Ct

k
` ), (Mpk||Ct1|| . . . ||Ct`))

as its collision.

It is easy to see that the probability that B finds a collision is exactly q.
Finally, notice that, when Sim0 invokes A0, its view is independent from the values O(ri||w)’s. This is
because, being O a truly random oracle, for any j < k, wj 6= wk = w and thus the values O(ri||wj)’s
are randomly and independently chosen from the values O(ri||w)’s. Thus, the tuple of ciphertexts
(Cti)i∈[`] is independent from the tuple (O(ri||w))i∈[`]: we call this Fact 1.
We now bound the probability of the following event E which is defined to be the event that for any
i ∈ [`], Dec(Mpk,Cti,Sk) = O(ri||w), where the probability is taken over the random choices of A
(and thus of A1 and Sim) and of the oracle O. In what follows we define Y to be the event that



∀i ∈ [`] Dec(Mpk,Cti,Sk) = O(ri||w) and we call fact 2 the fact that O is an oracle implementing a
truly random function.

Pr [E ] ≤ Pr [ ∃ Sk : |Sk| = kl(λ) and Y ]

≤
∑

Sk∈{0,1}kl(λ)
Pr [Y ] (by the union bound)

≤
∑

Sk∈{0,1}kl(λ)
2−` (by Fact 1 and 2)

≤ 2kl(λ)−` = 2−λ (since ` = kl(λ) + λ).

Then, it follows that when O is a truly random oracle, the probability that AO outputs 1 is negligible
in the security parameter. Therefore, AO can tell apart a pseudorandom oracle from a truly random
oracle with non-negligible probability. This concludes the proof.
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A RSIM-Security =⇒ IND-Security

Theorem 7 Let FE be a functional encryption scheme that is RSIM-Secure, then FE is IND-Secure as
well.

Proof. Suppose towards a contradiction that there exists an adversary A = (A0,A1) that breaks the
IND-Security of FE. Consider the following adversary Bb = (Bb0,Bb1), for b ∈ {0, 1}, and distinguisher D,
for the RSIM-Security of FE.

– Bb0, on input master public key Mpk and hav-
ing oracle access to the key-generation oracle,
invokes A0 on input Mpk and emulates A0’s key-
generation oracle by using its own oracle.
When A0 stops, it outputs two challenge mes-
sages vectors, of length `, x0,x1 ∈ X` and its
internal state st.
hen, Bb0 outputs (xb, st

′ = (st, b,x1−b)).

– Bb1, on input master public key Mpk, challenge ci-
phertexts (Cti)i∈[`] and state st′ = (st, b,x1−b)
and having oracle access to the key-generation
oracle, invokes A1 on input the challenge ci-
phertexts and state st and emulates A1’s key-
generation oracle by using its own oracle.
At some point A1 stops giving in output a bit
b′. Then, B1 outputs (b′, b,x1−b,Q) as its own
output, where Q = (ki) is the list of keys for
which A has issued a key-generation query.



D(Mpk,x, α):

– D interprets α as α = (b′, b,x1−b,Q) and re-
turns 1 if b = b′ and for any k ∈ Q F (k,x) =
F (k,x1−b), 0 otherwise.

Let INDFE,b
A be an experiment identical to the IND-Security experiment except that the challenger

always encrypts challenge vector xb (instead of choosing one of the two challenges at random). Then, it
holds that for any function ε(λ) that is inverse of a polynomial:

INDFE,0
A = RealExpFE,B

0

≈ε IdealExpFE,B
0

Sim = IdealExpFE,B
1

Sim ,

and

IdealExpFE,B
1

Sim ≈ε RealExpFE,B
1

Sim = INDFE,1
A ,

where, more specifically:

1. INDFE,0
A = RealExpFE,B

0

(i.e., the probability that A wins in experiment INDFE,0
A equals the probability that

D outputs 1 on input the output of RealExpFE,B
0

) holds by definition of B0 and D.
2. RealExpFE,B

0

≈ε IdealExpFE,B
0

Sim . This holds by the RSIM-Security of FE.
3. IdealExpFE,B

0

Sim = IdealExpFE,B
1

Sim holds because if A breaks the IND-Security of FE, then with all but negligible
probability, the queries issued by A (and thus by B) are such that F (k,x0) = F (k,x1) for any key k for which
A has issued a key-generation query.

4. IdealExpFE,B
1

Sim ≈ε RealExpFE,B
1

Sim holds again by the RSIM-Security of FE.
5. Finally, RealExpFE,B

1

Sim = INDFE,1
A (i.e., the probability that A wins in experiment INDFE,1

A equals the probability

that D outputs 1 on input the output of RealExpFE,B
1

) holds by definition of B1 and D.

But, if for any ε, INDFE,0
A ≈ε INDFE,1

A , then A does not break the IND-Security of FE, a contradiction.

B Proof of Theorem 5

Proof. (Simplified simulation.) As explained before, for purposes of exposition, we first present a
simplified simulation strategy in which the ouput of the simulator is “biased“ (i.e., it has different dis-
tribution than the output of the adversary in the real experiment) and then we illustrate how to remove
such restriction.

Our simulator Sim = (Sim0,Sim1) works as follows. Sim0 takes in input the master public and secret
key, the list Q = (ki,Skki , F (ki,x))i∈[q1], and the intentionally leaked information about the challenge
messages7 F (ε,x) = (indj , |mj |)j∈[`]. Then, for each i ∈ [q1], Sim0 checks whether P (ki, indj) = 1 for
some j ∈ [`]. If it is the case, then Sim0 learns mj . Furthermore, let X the tuple of messages (indices
with the relative payloads) learnt by Sim0. Then, for each pair in X , Sim0 generates a normal ciphertext
by invoking the encryption algorithm. For all the other indices for which Sim0 was not able to learn the
corresponding payload, Sim0 generates ciphertexts for those indices having a random payload. Let x? be
the resulting message vector that the simulator used to produce the challenge ciphertexts.

Then, Sim0 executes A1 on input the so generated challenge ciphertexts. When A1 invokes its key-
generation oracle on input key k, Sim1 is asked to generate a corresponding secret key given k and F (k,x).
Now we have two cases:

1. P (k, indj) = 1 for some j ∈ [`]: Then, Sim learns mj . If mj was already known by Sim, it means that
the corresponding challenge ciphertext was well formed when Sim0 invoked A1. Then Sim1 generates
the secret key for k (using the master secret key) and the simulation continues. On the other hand, if
Sim0 didn’t know mj then the ciphertext corresponding to indj was for a random message. Therefore,
Sim0 must halt A1 and rewinds it. Sim0 adds (indj ,mj) to X (and thus updates x?) and with this
new knowledge Sim0 rewinds A1 on input the encryption of the new ciphertexts (i.e., the encryption
of the new x?). The above reasoning easily extends to the case that P (k, indj) = 1 for more than one
j.

7 Recall that x is a vector of challenge messages in which, for j ∈ [`], the j-th component consists of a pair
(indj ,mj), where indj is the “index“ and mj is the “payload“.



2. P (k, indj) = 0 for all j ∈ [`]: In this case, a secret key for k can not be used to decrypt any of the
challenge ciphertexts. Then, Sim1 generates the secret key for k (using the master secret key) and
the simulation continues.

If at some point the adversary halts giving some output the simulator outputs what the adversary
outputs. This conclude the description of the simulator Sim.

It remains to show that the simulated challenge ciphertexts does not changeA1’s behavior significantly.
We call a key-generation query good if the simulator can answer such query without rewinding the
adversary according to the previous rules. We call a completed execution of the adversary between two
rewinds of the adversary a run. First, notice that the number of runs, meaning the number of times the
simulator rewinds, is upper-bounded by the number of challenge messages ` that is polynomial in the
security parameter. In fact, each time that a query is not good and the simulator needs to rewind then
the simulator learn a new pair (indj ,mj), for some j ∈ [`] and the same query will never cause a rewind
anymore. In the last run, that in which all the key-generation queries are good, the view of the adversary
is indistinguishable from that in the real game. This follows from the IND-Security of PIPE. In fact, the
evaluations of the secret keys on the challenge ciphertexts in the real experiment give the same values
than the evaluation of the simulated secret keys on the simulated ciphertexts in the ideal experiment
since the secret keys are generated honestly. Therefore, the IND-Security guarantees that in this case the
view in the real experiment is indistinguishable from that in the ideal experiment.

The actual simulation. The previous simulation incurs the following problem: the output of the simulator
could be biased. Consider for example an adversary that with probability 1/3 does not ask any query
and with probability 2/3 asks a query that triggers a rewind, and outputs its computation. In the real
experiment the transcript contains zero queries with probability 1/3 whereas the output of the ideal
experiment contains zero queries with probability much larger than 1/3.8. Above, we have shown that
the last transcript of the simulator would be indistinguishable from the transcript of the adversary in the
real experiment but this final output could be biased and corresponds to different runs of the adversary.
Thus, we need the following smarter strategy. First, recall that by standard use of Chernoff’s bound we
can estimate a (β, γ)-approximation of a random variable, where the estimate is β-close with probability
1−γ. Moreover, this can be made by sampling the random variable a number of times that is polynomial
in 1/β and logarithmic in 1/γ. Let µ be some fixed negligible function and ν be the the distinguishing
advantage we wish to achieve (see Definition 3). Let i = 0 to `, the simulator makes the following.
Consider the experiment Xi in which the simulator executes the adversary in a run where the information
it learnt consists of the pairs (indj ,mj) for j = 1, . . . , i, and we assume that for i = 0 the simulator starts
the run with random pairs. The run is executed as described in the simplified simulation, where if the
adversary triggers a rewind then the simulator outputs a dummy value, otherwise the simulator outputs
what the adversary outputs.
We denote by pi the probability that in experimentXi the adversary triggers a rewind. Setting ν′ = ν1/2/`,
the simulator computes a (ν′, δ)-estimate p̃i for pi for some negligible function δ (the reason for setting
ν′ to such value will be clear at the end of the analysis). If the estimate p̃i ≤ µ, then the simulator
executes the adversary in experiment Xi and if the adversary terminates without triggering a rewind, the
simulator outputs what the adversary outputs, otherwise the simulator outputs a dummy value. Instead,
if the estimate is greater than µ, then simulator increments i and proceeds to next step.
Let us compute the advantage of a PPT distinguisher in telling apart the real from the ideal experiment.
By assumption on the estimate and by construction of the simulator, the output of the simulator is the
output of the adversary in experiment X1 with probability at most w1 = (1−δ)(µ+ν′) and is the output
of the adversary in experiment X2 with probability at most a2(1 − δ)(µ + ν′), where a2 = 1 − q1 < 1,
and so forth. Therefore, the output of the simulator is the output of the adversary in experiment Xi with
probability at most (1− δ)(µ+ ν′).
If the output of the simulator equals the output of the adversary in experiment Xi, then the distinguishing
advantage is at most ν′ up to some negligible factor. Indeed, if the adversary does not trigger a rewind
the two experiment are computationally indistinguishable by the IND-Security and in experiment Xi the
adversary triggers a rewind with probability at most µ + ν′ and µ is negligible. By definition of ν′, it
follows that the overall advantage is at most `ν′2 = ν up to a negligible factor.

8 A similar problem arises in the context of rewinding simulators for constant-round zero-knowledge as in [22]



C Positive Results for PE with Private-Index

In this section we go further showing equivalences for PE with private-index for several functionalities
including Anonymous IBE, inner-product over Z2, monotone conjunctive Boolean formulae, and the
existence of RSIM-Secure schemes for all classes of NC0 circuits.

As before, because in Appendix A, we show that RSIM-Security implies IND-Security, to establish
the equivalence for the functionalities we study, it is enough to prove the other direction, namely that
IND-Security implies RSIM-Security.

Abstracting the properties needed by the simulator. A closer look at the proof of theorem 5 hints some
abstract properties that a predicate has to satisfy in order for the simulator to be able to produce an
indistinguishable view. We identify the following two properties.

The execution of the simulator is divided in runs. At run j, the simulator invokes the adversary on
input a ciphertext for message xj , whereas the adversary chose x, and keeps the invariant that xj gives
the same results than x respect to the queries asked by the adversary until that run.

At some point the adversary asks a query k for which F (k, x) 6= F (k, xj) 6= ⊥ thus the simulator is
not able to answer the query in this run. But if the functionality has the property (1) that it is easy to
pre-sample a new value xj+1 that satisfies all queries including the new one, the simulator can rewind
the adversary this time on input an encryption of value xj+1.

This is still not sufficient since there is no bound on the maximum number of rewinds needed by the
simulator so we have to require the property (2) to force the simulation progresses towards a maximum.

To give a clear example, consider how a simulator could work for Anonymous IBE. Suppose that the
adversary chooses as challenge identity crypto and the simulator chooses aaaaa as simulated identity for
the ciphertext the simulator will pass to the adversary. Then, the adversary issues a query for identity
bbbbb and the simulator learns that the predicate is not satisfied against, so the query gives the same
evaluation on both the challenge identity and the simulated identity. This is coherent with the query, so
the simulator can continue the simulation.

Now, suppose that the adversary issues the query for identity crypto. Then, the simulated identity
is no more compatible with the new query and the simulator has to rewind the adversary but, since the
simulator has learnt the challenge identity crypto and the corresponding payload exactly, in the next run
the simulator is able to finish the simulation perfectly. This simulation strategy is simplified, and as we
explained in Section 5 the simulator also need to guarantee that the output is not biased. In Section C.2,
we show how to implement a more complicated strategy for the predicate inner-product over Z2.

C.1 Equivalence for Anonymous IBE

The following theorem is an extension of Theorem 5.

Theorem 8 Let AIBE be an Anonymous IBE scheme (poly, poly, poly)-IND-Secure. Then, AIBE is (poly, poly, poly)-
RSIM-Secure as well.

Intuition. Notice that, in an Anonymous IBE scheme the ciphertext does not leak the identity for which
it has been generated and thus the special key ε does not provide this information as for a public-index
scheme. Despite this, when the adversary issues a key-generation query for a key k such that F (k, x) 6=⊥,
then the simulator learns that x is a message for index (or identity for the case of AIBE) k and payload
F (k, x). Thus, the simulator rewinds the adversary on input a freshly generated ciphertext for that pair
and can safely generate an honest secret key for k upon request.

Another important difference with the proof of Theorem 5 is that the simulator could be forced to
rewind without gaining any new knowledge and this could result in a never ending simulation. This
happens for example in the following case: Let x a challenge message chosen by the adversary and let
x? the message chosen by the simulator to simulate the ciphertext for x. Then, if the adversary issues a
key-generation query for key k such that F (k, x) =⊥ but F (k, x?) 6=⊥, then the simulator is forced to
rewind without gaining any new knowledge and this could happen indefinitely. But, the IND-Security of
AIBE scheme guarantees that such situation can happen only with negligible probability, and thus the
simulator can just abort in such cases.



Proof. (Simplified simulation.) Our simulator Sim = (Sim0,Sim1) works as follows. Sim0 takes in
input the master public and secret key, the list Q = (ki,Skki , F (ki,x))i∈[q1], and the intentionally leaked
information about the challenge messages F (ε,x) = (|indj |, |mj |)j∈[`]. Then, for each i ∈ [q1], Sim0 checks
whatever F (ki, xj) 6=⊥ for some j ∈ [`]. If it is the case, then Sim0 learns that message xj is for identity
indj = ki and payload mj = F (ki, xj).

Let X the set of tuple of the following form (j, indj ,mj) learnt by Sim0. Then, for each pair in X ,
Sim0 generates a normal ciphertext for message x?j = (ind?j ,m

?
j ), with ind?j = indj and m?

j = mj , by
invoking the encryption algorithm. For all the other positions k for which Sim0 was not able to learn the
corresponding index and payload, Sim0 generate a ciphertext for random x?k = (ind?k,m

?
k).

Then, Sim0 executes A1 on input the challenge ciphertexts (Ct?j )j∈[`], where Ct?j is for message x?j =
(ind?j ,m

?
j ) as described above. When A1 invokes its key-generation oracle on input key k, Sim1 is asked

to generate a corresponding secret key given k and F (k,x). Now we have the following cases:

1. If for each j ∈ [`] such that F (k, xj) 6=⊥, (j, k, F (k, xj)) ∈ X : Then we have two sub-cases:
(a) If there exists and index j ∈ [`] such that F (k, xj) =⊥ but F (k, x?j ) 6=⊥ then Sim0 aborts.
(b) Otherwise, Sim1 honestly generates a secret key Skk for key k. Notice that it holds that F (k, x?j ) =

F (k, xj) for all j ∈ [`].
2. If there exists an index j ∈ [`] such that F (k, xj) 6=⊥ but (j, k, F (k, xj)) /∈ X : Then F (k, x?j ) 6=
F (k, xj) with high probability. Thus Sim0 adds (j, k, F (k, xj)) to X and rewinds A1 on freshly gen-
erated ciphertexts based on the information Sim0 has collected in X so far.

3. If for all j ∈ [`], F (k, xj) =⊥: Then we have two sub-cases:
(a) If there exists and index j ∈ [`] such that F (k, xj) =⊥ but F (k, x?j ) 6=⊥ then Sim0 aborts.
(b) Otherwise, Sim1 honestly generates a secret key Skk for key k. Notice that it holds that F (k, x?j ) =

F (k, xj) =⊥ for all j ∈ [`].

If after a query the simulator has got to rewind the adversary, we say that such query triggered a rewind.
If at some point the adversary halts giving some output, then the simulator outputs what the adversary
outputs. This conclude the description of the simulator Sim.

Let us first bound the probability that the simulator aborts during its simulation, this happens in cases
1.(a) or 3.(a). Let us focus on case 1.(a), the other one is symmetric. Notice that when case 1.(a) happens
then F (k, xj) =⊥ but F (k, x?j ) 6=⊥, meaning that indj 6= k and ind?j = k, and that all the previous key-
generation queries are good, meaning that no rewind has been triggered. Therefore, if this event happens
with non-negligible probability, A can be used to build another adversary B that distinguishes between
the encryption of xj and x?j with the same probability, thus contradicting the IND-Security of the scheme.
Precisely, B simulates the view to A as described before (i.e., simulating the interface with the simulator)
and returns as its challenges two messages with indices ind0 = indj and ind1 = ind?j , where the two indices
are as before. Then, B runs A on some ciphertext that is identical to that described before except that
Ct?j is set to the challenge ciphertext received from the challenger of the IND-Security game. If at some
point A asks a query for identity ind?j , then B outputs 1 as its guess, otherwise B outputs 0 as its guess.
Notice that if the challenge ciphertext for B is for the challenge message with identity ind1 = ind?j , B
perfectly simulated the view of A when interacting with the above simulator, and thus, by hypothesis on
the non-negligible probability of occurrence of the case 1.(a), B outputs 1 with non-negligible probability.
On the other hand, if the challenge ciphertext is for the challenge message with identity ind0 = indj ,
then the view of A is completely independent from ind?j , so the probability that A asks a query for such
identity is negligible and thus B outputs 0 with overwhelming probability.

Finally, notice that the number of runs, meaning the number of times the simulator makes a rewind
(a rewind happens when case 2. occurs), is upper-bounded by the number of challenge messages ` that
is polynomial in the security parameter. In fact, every time that a query is not good and the simulator
needs to rewind the adversary, the simulator learns a new pair (indj ,mj), for some j ∈ [`], and the same
query will never cause a rewind anymore. In the last run, that in which all the key-generation queries
are good, the view of the adversary is indistinguishable from that in the real game. This follows from
the IND-Security of AIBE by noting that the evaluations of the secret keys on the challenge ciphertexts
in the real experiment give the same values than the evaluation of the simulated secret keys on the
simulated ciphertexts in the ideal experiment since the secret keys are generated honestly. Therefore, the
IND-Security guarantees that in this case the view in the real experiment is indistinguishable from that
in the ideal experiment.



Non-biased simulation. We stress that this is a simplified simulation and the simulator also needs
to guarantee that the output is not biased. This can be made as explained in the security reduction of
theorem 5.

C.2 Equivalence for Inner-Product over Z2

The functionality inner-product over Z2 (IP, for short)9 is defined in the following way. It is a family of
predicates with key space Kn and index space In consisting of binary strings of length n, and for any
k ∈ Kn, x ∈ In the predicate IP(k, x) = 1 if and only if

∑
i∈[n] ki · xi = 0 mod 2.

Henceforth, we assume that the reader is familiar with the notion of pre-image samplability introduced
by O’Neill [35].

In our positive results for IP over Z2 we use the following theorem.

Theorem 9 [35] The functionality IP over Z2 is pre-image samplable.

Theorem 10 If a predicate encryption scheme PE for IP is (poly, poly, poly)-IND-Secure then PE is
(poly, poly, poly)-RSIM-Secure as well.

Proof. (Simplified simulation.) The proof follows the lines of the Theorem 5. For simplicity we assume
that the adversary outputs a challenge message with the payload set to 1, i.e., the functionality returns
values in {0, 1}, but this can be easily generalized by handling the payload as in the proof of theorem 5.

Let x = (x1, . . . , x`) ∈ {0, 1}n·` be the challenge index 10 output by the adversary A0 and let (wi)
q1
i=1

be the queries asked by A0 (i.e. the queries asked before seeing the challenge ciphertexts).

As usual we divide the execution of the simulator in runs and in any run the simulator keeps an index
x0 = (x01, . . . , x

0
`) ∈ {0, 1}n·` that uses to encrypt the simulated ciphertext given to the adversary in that

run.

Let Yi be a matrix in {0, 1}(q1+i−i)×n where the rows y1, . . . , yq1+i−1 of Yi are such that the first q1
rows y1, . . . , yq1 consist of the vectors w1, . . . , wq1 (i.e., y1 = w1, . . . , yq1 = wq1) and for each j = 1, . . . , i−1
the row yq1+j of Yi corresponds to the last query asked by A1 in run j (as it will be clear soon, in any
run i, if the last query asked by the adversary in such run will trigger a rewind, then only such query is
put in the matrix, and not any other previous query asked by the adversary in run i).

Furthermore, for any i ≥ 1 and any j ∈ [`], let bi,j ∈ {0, 1}q1+i−1 be the column vector such that
bi,j [k] = IP(yk, xj), k = 1, . . . , q1 + i−1. During the course of the simulation, the simulator will guarantee
the following invariant: at the beginning of any run i ≥ 1, for any j ∈ [`], Yi · x0j = bi,j .

In the first run the simulator runs the adversary with input a ciphertext that encrypts an index
x0 = (x01, . . . , x

0
`) ∈ {0, 1}n·` such that for any j ∈ [`], Y1 · x0j = b1,j . The simulator can efficiently find

such vector by using the PS of IP guaranteed by Theorem 9. When in a run i ≥ 1 the adversary makes a
query for a vector y ∈ {0, 1}n we distinguish two mutually exclusive cases. executed).

1. The vector y is a linear combination of the rows of Yi. Then, by the invariant property it follows that
for any j ∈ [`], IP(y, xj) = IP(y, x0j ), and the simulator continues the simulation answering the query
as usual (i.e., by giving to the adversary A1 the secret key for y generated honestly).

2. The vector y is not a linear combination of the rows of Yi. Then, the simulator could not be able to
answer this query. In this case, we say that the query triggered a rewind and the simulator rewinds
the adversary A1 as follows. The simulator updates Yi+1 by adding the new row y to Yi and uses
the PS of IP guaranteed by Theorem 9 to efficiently find a new vector x′ = (x′1, . . . , x

′
`) ∈ {0, 1}n·`

such that for any j ∈ [`], Yi+1 · x′j = bi+1,j (i.e., the PS algorithm is invoked independently for each
equation Yi+1 · x′j = bi+1,j). Finally, the simulator rewinds the adversary by invoking it with input

the encryption of x′ and updates x0 setting it to x′. Notice that at the beginning of run i + 1 the
invariant is still satisfied.

9 We remark that our inner-product is defined over Z2 so the predicate is different from that of [32].
10 The challenge index output by the adversary consists of a tuple (x1, . . . , x`) of vectors where each element
xi ∈ {0, 1}n for i = 1, . . . , `. For simplicity, henceforth we interpret such challenges as vectors in {0, 1}n·`.



At the end of the last run, the simulator outputs what the adversary outputs. It is easy to see that
the simulator executes at most n runs since in any run i > 2 the rank Yi is greater than the rank of Yi−1
and for any i ≥ 1 the rank of Yi is at most n.

Finally, notice that at the beginning of the last run the invariant guarantees that for any query y
asked by A0 and for any j ∈ [`] IP(y, xj) = IP(y, x0j ). Furthermore, since in the last run no query has
triggered a rewind, then any query asked by A1 in the last run still satisfies this property. Therefore, by
the IND-Security of the scheme, it follows that the output of the simulator is indistinguishable from that
of the adversary in the real game.

Non-biased simulation. We stress that this is a simplified simulation and the simulator also needs
to guarantee that the output is not biased. This can be made as explained in the security reduction of
theorem 5.

RSIM-Security for NC0 circuits. Recall that NC0 is the class of all family of Boolean circuits of polynomial
size and constant depth with AND, OR, and NOT gates of fan-in at most 2. It is a known fact that circuits
in NC0 with n-bits input and one-bit output can be expressed as multivariate polynomials p(x1, . . . , xn)
over Z2 of constant degree.

Furthermore, you can encode such polynomials as vectors in Znm2 for some constant m and evaluate
them at any point using the inner-product predicate. Therefore, it is easy to see that the previous proof
implies naturally the existence of a RSIM-Secure FE scheme for any family of circuits in NC0 but we omit
the details.

Theorem 11 If there exists predicate encryption scheme for IP that is (poly, poly, poly)-IND-Secure then
there exists a predicate encryption scheme PE for any family of circuits in NC0 that is (poly, poly, poly)-
RSIM-Secure.

Despite their weakness, NC0 circuits can be employed for many practical applications (see [9]).

C.3 Equivalence for Monotone Conjunctive Boolean Formulae

The functionality Monotone Conjunctive Boolean Formulae (MCF, for short) is defined in the following
way. It is a family of predicates with key space Kn consisting of monotone (i.e., without negated variables)
conjunctive Boolean formulae over n variables (i.e., a subset of indices in [n]) and index space In consisting
of assignments to n Boolean variables (i.e., binary strings of length n), and for any φ ∈ Kn, x ∈ In the
predicate MCF(φ, x) = 1 if and only if the assignment x satisfies the formula φ. If a formula φ ⊆ [n]
contains the index i, we say that φ has the i-th formal variable set.

The reader may have noticed that PE for MCF is a special case of PE for the family of all conjunctive
Boolean formulae introduced by [15]. Though the monotonicity weakens the power of the primitive, it has
still interesting applications like PE for subset queries as shown by [15]. We point out that the monotonic-
ity is fundamental to implement our rewinding strategy. In fact, (under some complexity assumption) the
functionality that computes the family of all conjunctive Boolean formulae is not PS11, so it is not clear
whether an equivalence between (poly, poly, poly)-IND-Security and (poly, poly, poly)-RSIM-Security can
be established for this primitive. On the other hand, weakening the functionality allowing only monotone
formulae, we are able to prove the following theorem.

Theorem 12 If a predicate encryption scheme PE for MCF is (poly, poly, poly)-IND-Secure then PE is
(poly, poly, poly)-RSIM-Secure as well.

Proof Sketch. (Simplified simulation.) The proof follows the lines of the previous equivalence
theorems and is only sketched outlining the differences. Let x = (x1, . . . , x`) be the challenge index (i.e.,
assignment) vector chosen by the adversary A0 that the simulator does not know.

The simulator can easily sample an index vector x0 = (x01, . . . , x
0
`) such that for any i ∈ [`], x0i

satisfies the equations: MCF(φ, x0i ) = MCF(φ, xi) for any query φ asked by A0 before seeing the challenge
ciphertexts.

11 The authors of [18] proved this fact that will appear in the full version of their paper.



This can be done by the simulator in the following way just having the evaluations of the assignments
on the formulae. In full generality, fix an arbitrary set of formulae A = {φi}i∈[q] and their evaluations
over some (hidden) assignment x = (x1, . . . , x`). For any j ∈ [`] and any position k ∈ [n], the simulator
sets the k-th bit of x0j to be 1 or 0 according to the following rules.

If there exists some φ ∈ A that has the k-th formal variable set and xj satisfies φ (the simulator has
this information because it knows the evaluation of φ on xj), then the k-th bit of x0j is set to 1, otherwise
(i.e., whether either the k-th formal variable of φ is not set or xj does not satisfy φ) it is set to 0.

It is easy to see that x0 satisfies the previous equations with respect to the set of formulae A and thus
is a valid pre-image of x. As usual, we divide the execution of the simulation in runs.

During the course of the simulation, the simulator will guarantee the invariant that at the beginning
of any run, the index vector x0 satisfies all equations with respect to the (hidden) vector x and to all
queries asked by the adversary. If a new query does not satisfy such equations, then the simulator has to
find a new pre-image that satisfies all the equations including the new one.

This is done as before by pre-sampling according to the above rules. Notice that once a bit in some
index x0j is set to 1, it is not longer changed. Thus, it follows that the number of runs is upper bounded
by the bit length of x. Therefore, if PE is IND-Secure, the simulator can conclude the simulation and
produce an output indistinguishable from that of the adversary as desired.

Non-biased simulation. We stress that this is a simplified simulation and the simulator also needs
to guarantee that the output is not biased. This can be made as explained in the security reduction of
Theorem 5. 2

C.4 Predicates with Polynomial Size Key Space

Boneh et al. [14] (see also [15]) presented a generic construction for functional encryption for any func-
tionality F where the key space K has polynomial size that can be proven (poly, poly, poly)-IND-Secure
in the standard model and a modification that can be proven (poly, poly, poly)-SIM-Secure in the random
oracle model.

Bellare and O’Neill [11] proved the (poly, poly, poly)-SIM-Security of their scheme assuming that the
underlying PKE scheme is secure against key-revealing selective opening attack (SOA-K) [10]. On the
other hand we prove that the construction is (poly, poly, poly)-RSIM-Secure assuming only IND-CPA PKE
that is a weaker assumption than SOA-K PKE needed in [11].

The construction of Boneh et al. is the following. Let s = |K| − 1 and K = (k0 = ε, k1, . . . , ks).
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The brute force functional encryption scheme realizing F uses a semantically secure public-key en-
cryption scheme E = (KeyGen,Enc,Dec) and works as follows:

1. Setup(1λ): for i = 1, . . . , s, run (E .pki, E .ski) ← E .KeyGen(1λ) and output Mpk = (E .pk1, . . . , E .pks)
and Msk = (E .sk1, . . . , E .sks).

2. KeyGen(Msk, ki): output ski := E .ski.
3. Enc(Msk, x): output Ct := (F (ε, x), E .Enc(E .pk1, F (k1, x)), . . . , E .Enc(E .pks, F (ks, x))).
4. Dec(ski,Ct): output Ct[0] if ski = ε, and output E .Dec(E .ski,Ct[i]) otherwise.

Theorem 13 Let FE be the above (poly, poly, poly)-IND-Secure functional encryption scheme for the
functionality F . Then, FE is (poly, poly, poly)-RSIM-Secure as well.

Proof Sketch. (Simplified simulation.) The security reduction uses the same ideas of those in the
Sections 5 and C. Roughly, the strategy of the simulator is the following. Again, we divide the execution
of the simulator in runs.

Let (x1, . . . , x`) be the vector of challenge messages chosen by the adversary and unknown to the
simulator. At the beginning of the first run, the simulator executes the adversary on input ciphertexts
(Ct1, . . . ,Ct`) that encrypt dummy values.

Recall that for any i ∈ [`], Cti[j] is supposed to encrypt F (kj , xi). When the adversary issue a
key-generation query kj , the simulator learns (F (kj , x1), . . . , F (kj , x`)). Then, the simulator rewinds the
adversary executing it with input a new tuple of ciphertexts (Ct′1, . . . ,Ct

′
n) where for each i ∈ [`], j =

1, . . . , s, Ct′i[j] encrypts F (kj , xi).

12 For sake of simplicity we implicitly assume that the functionality is not parameterized by the security parameter
but this can be generalized easily.



After at most s+ 1 runs, the simulated ciphertext encrypts the same values as in the real game, and
the simulator terminates returning the output of the adversary. This concludes the proof.

Non-biased simulation. We stress that this is a simplified simulation and the simulator also needs
to guarantee that the output is not biased. This can be made as explained in the security reduction of
Theorem 5. 2

FE with multi-bit output. Notice that a predicate encryption scheme for predicate P implies a predicate
encryption scheme for the same predicate where the payload is fixed to 1 (meaning that the predicate
is satisfied). This in turn implies a functional encryption for the functionality P (where the evaluation
algorithm of the FE scheme runs the evaluation algorithm of the PE scheme and outputs 0 if the PE
scheme returns ⊥ and 1 otherwise).

Finally, the latter implies a functional encryption scheme for the class of circuits with multi-bit output
that extends P in the obvious way. These implications preserve the (poly, poly, poly)-RSIM- Security.


