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Abstract—This paper aims at a realistic evaluation of Rayleigh-
product multiple-input multiple-output (MIMO) systems. Specif-
ically, by considering the residual transceiver hardware impair-
ments into account, we derive the ergodic channel capacity of a
MIMO system with optimal receivers in the case of insufficient
scattering. Actually, motivated by the increasing interest for
massive MIMO systems, we investigate the impact of transceiver
hardware imperfections in systems with both finite (conventional)
and large number of antennas under rank deficient channel
matrix conditions by varying the severity of hardware quality.
Among the interesting outcomes, we emphasize that the residual
hardware transceiver impairments result to a saturation of the
ergodic channel capacity within the high signal-to-noise ratio
(SNR) regime. Furthermore, we observe that the higher the
“richness” of the scattering environment, the higher the ergodic
channel capacity till it gets saturated.

I. INTRODUCTION

Remarkable benefits coming from the employment of
multiple-input multiple-output (MIMO) systems such as in-
creased spectral efficiency has attracted great scientific inter-
est in academia [1]. Moreover, its establishment has been
grounded by means of industrial applications and wireless
communication standards including IEEE 802.11n (Wi-Fi),
IEEE 802.11ac (Wi-Fi), HSPA+ (3G), WiMAX, and Long
Term Evolution systems.
Altough most works assume “rich” scattering conditions,

described by a full rank matrix, certain environments result to
a rank deficient matrix due to insufficient scattering [2]. This
phenomenon is known as double scattering effect [2], [3], and
it has been experimentally validated in [4]. Especially, when
the antenna elements and the scatterers are sufficiently sepa-
rated, the mathematical description is given by the Rayleigh-
product model [5]–[7].
In this context, the corresponding literature is based on the

strong unrealistic assumption of ideal transceiver hardware.
Towards a practical investigation of wireless communication
systems, the residual additive transceiver hardware impair-
ments are going to be addressed in this work. These impair-
ments denote the aggregate effect from many impairments and
are modelled as independent and additive distortion Gaussian
noise at both sides of the system. Basically, they arise after
the application of inadequate compensation algorithms due
to imperfect parameters estimation caused by the randomness

and the time variation of the hardware characteristics and by
inaccurate models because of unsophisticated compensation
algorithms with limited precision [8], [9].
Recently, several studies have investigated the effects of

additive transceiver hardware impairments in several types
of channels and systems such as Rayleigh, Rician fading
channels and relay systems [8]–[12]. In this direction, we
focus not only on conventional MIMO systems, but also on the
promising massive MIMO technology for the fifth generation
(5G) systems [13], [14]. Actually, it becomes more crucial
to investigate the impact of additive transceiver hardware
impairments in the large number of antennas regime, since
massive MIMO is attractive if its implementation takes place
with low-cost hardware, which is more prone to hardware
impairments [15]–[17].
To the best of our knowledge, there appears no investigation

of the effects of residual transceiver impairments in the case of
Rayleigh-product channels. Hence, we extend the work of [15]
dealing with Rayleigh MIMO systems to Rayleigh-product
MIMO channels by introducing the residual hardware impair-
ments. Moreover, we analyze the impact of these impairments
on both finite and large MIMO systems, where the numbers
of antennas and scatterers tend to infinity, but with a given
ratio. Especially, we derive a closed-form expression for the
ergodic capacity, when the number of antennas is finite, and we
verify the theoretical results by using simulations. Furthermore,
we investigate how the number of scatterers interact with the
quality of hardware.
The remainder of this paper is organized as follows: Sec-

tion II presents the system and signal models for Rayleigh-
product channels in the case of both ideal and impaired
hardware cases. In Section III, we provide a study of the sum-
rates for the aforementioned channels with optimal receivers,
when the number of antennas is finite. Section IV presents
the investigation of Rayleigh-product MIMO channels in the
presence of hardware impairments in the large system limit. In
Section V, numerical results illustrate the impact residual hard-
ware impairments in finite and asymptotically large numbers
of antennas regimes. Finally, concluding remarks are given in
Section VI.
Notation: Vectors and matrices are denoted by boldface

lower and upper case symbols. The transpose, Hermitian
transpose, and trace operators are represented by (·)T, (·)H,
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and tr(·), respectively. The expectation operator and the
determinant of a matrix are denoted by E [·] and det(·),
respectively. The notations CM and CM×N refer to complex
M -dimensional vectors andM×N matrices, respectively. The
diag{·} operator generates a diagonal matrix from a given
vector. Finally, b ∼ CN (0,Σ) denotes a circularly symmetric
complex Gaussian with zero-mean and covariance matrix Σ,
while (·)+ signifies the positive part of its argument.

II. SYSTEM MODEL
Consider a flat-fading point-to-point MIMO channel with

M and N transmit and receive antennas, respectively. The
received signal is described by

y = Hx+ z, (1)

where x ∈ CM×1 denotes the zero-mean transmit Gaussian
vector with covariance matrix E [xxH] = Q = ρ

M IM , and
z ∼ CN (0, IN ) is the AWGN noise vector at the receiver. Fo-
cusing on Rayleigh-product MIMO channels, H ∈ CN×M ∼
CN (0, IN ⊗ IM ) is described as

H =
1√
K

H1H2, (2)

where H1 ∈ CN×K ∼ CN (0, IN ⊗ IK) and H2 ∈ CK×M ∼
CN (0, IK ⊗ IM ) are random matrices with K quantifying
the number of scatterers in the propagation environment [5].
The physical representation of this channel model includes flat-
fading under the presence of a certain number of independent
scatterers.
Despite that hardware impairments are inevitable, their

impact on Rayleigh-product MIMO channels has not been
studied in the literature. This unrealistic assumption leads to
misleading calculations with deceiving results. Actually, both
the transmitter and the receiver are affected by certain in-
evitable additive impairments such as I/Q imbalance and high
power amplifier (HPA) non-linearities [8]. Although mitigation
schemes at both the transmitter and the receiver are included
during the design and implementation, residual impairments,
modelled as additive distortion noises, are unavoidable [8], [9].
As a direct effect, hardware transmit impairments induce a
mismatch between the intended signal and what is actually
transmitted during the transmit processing. Similarly, a distor-
tion of the received signal at the receiver side is produced due
to imperfect receiver hardware.
Incorporating the residual additive transceiver impairments

to (1), the mathematical characterization of a more practical
channel model is given by

y = H(x+ ηt) + ηr + z, (3)

where the additive terms ηt and ηr denote the distortion noises
coming from the residual impairments in the M antennas
transmitter and N antennas receiver, respectively. Based on a
general approach, validated by measurement results, the trans-
mitter and receiver distortion noises are Gaussian distributed
with their average power being proportional to the average
signal power [9]. More concretely, the distortion noises are
modelled as

ηt ∼ CN (0, δ2t diag (q1, . . . , qM )) (4)
ηr ∼ CN (0, δ2r tr (Q) IN ), (5)

where δ2t and δ2r are proportionality parameters characterizing
the severity of the residual impairments at the transmitter and
the receiver. Given that the covariance matrix Q equals to
ρ
M IM , the additive transceiver impairments are written as

ηt ∼ CN (0, δ2t
ρ

M
IM ), (6)

ηr ∼ CN (0, δ2r ρIN ). (7)

In practical applications such as long term evolution (LTE),
the values of δt, δr range in the interval [0.08, 0.175] [18, Sec.
14.3.4].

III. FINITE ANALYSIS
This section presents the ergodic channel capacity of

Rayleigh-product MIMO channels with optimal linear re-
ceivers by including the residual transceiver hardware impair-
ments, when the number of antennas is finite. Specifically,
in the case of Gaussian additive impairments, the following
proposition allows us to express the ergodic capacity, when
optimal receivers are employed.
Proposition 1: The ergodic channel capacity of a practical

Rayleigh-product MIMO channel with optimal linear receivers,
but with residual transceiver impairments under the constraint
tr(Q) ≤ ρ is described by

Copt (ρ,M,N,K, δt, δr) = E

[
log2 det

(
IN +

ρ

M
HHHΦ−1

)]
,

(8)

where Φ= ρ
KM δ2tH1H2H

H

2H
H

1+
(
ρδ2r + 1

)
IN .

Proof: It can be observed that (3) is an instance of
the standard MIMO channel given by (2) for any channel
realizations H1,H2 and transmit signal covariance matrix Q,
being a scaled identity matrix, but with a different noise
covariance given by

Φ =
δ2t
K

H1H2diag (q1, . . . , qM )HH

2H
H

1

+
(
δ2r trQ+ 1

)
IN . (9)

Subsequently, the ergodic capacity is written as

Copt (ρ,M,N,K)= max
Q:trQ≤ρ

E
[
log2det

(
IN+HQHHΦ−1

)]
.

Taking into account for the sufficiency and optimality of the
input signal x, since it is Gaussian distributed with covariance
matrix Q = ρ

M IM [1], the proof is concluded.
In what follows, we refer to p = max(M,N), q =

min(M,N), t = max(q,K), s = min(K,M,N), m =
median (K,M,N), and δ̃2t = 1 + δ2t for notational conve-
nience.
The following theorem presents the ergodic capacity of

Rayleigh-product channels with optimal receivers in the pres-
ence of additive Gaussian hardware impairments in closed
form, which is one of the main contributions of this paper.
Theorem 1: The ergodic capacity of practical Rayleigh-

product MIMO channels with optimal receivers in the finite
number of antennas regime, accounting for residual additive
Gaussian hardware transceiver impairments, is given by

Copt(ρ,M,N,K)=A(C1(ρ,M,N,K)−C2(ρ,M,N,K)), (10)
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where

A =
K
ln 2

s∑
i=1

s∑
j=1

Gi,j

Γ (p− s+ j)
(11)

with

K =

(
s∏

i=1

Γ (s− i+ 1)Γ (t− i+ 1)

)−1

, (12)

and Gi,j is the (i, j)th cofactor of a s × s matrix G whose
(u, v)th entry is

[G]u,v = Γ (t− s+ u+ v − 1) .

The terms, represented by Ci for i = 1, 2, are given by

Ci (ρ,M,N,K) = G 1,4
4,2

(
zi
∣∣ a1,a2,1,1

1,0

)
, (13)

where z1 =
ρ

KM
δ̃2t

ρδ2r +1
, z2 =

ρ

KM
δ2t

ρδ2r +1
, a1 = s+ 2− i − j − t, and

a2 = s + 1 − p − j. Note that Γ (z) =
∫∞

0
tz−1e−tdt and

Gm,n
p,q

(
x
∣∣ α1,...,αp

β1...,βq

)
are the Gamma function [19, Eq. 8.310]

and the Meijer’s G-function [19, Eq. 9.301], respectively.
Proof: See Appendix B.

IV. ASYMPTOTIC ANALYSIS
In this section, we investigate the effects of transceiver hard-

ware impairments on the ergodic channel capacity of Rayleigh-
product MIMO channels when the system dimensions tend
asymptotically to infinity. Having in mind that free probability
(FP) analysis and deterministic equivalent analysis require a
polynomial solution and solutions of fixed-point equations,
herein, we employ the FP method, in order to shed light on the
large number of antennas regime. Although the results are tight
approximations, becoming exact as the system dimensions
become large, numerical results presented later in Section V
and the existing literature show that they are valid even for a
finite system size [11], [12], [20].
In the large system limit, we can obtain the corresponding

asymptotic limit of the capacity per receive antenna while
keeping the system dimensions in terms of their ratios fixed,
i.e., β and γ are kept fixed. Hence, we write (8) as

C̃opt(ρ,β,γ,δt,δr)=C̃opt
1 (ρ,β,γ,δt,δr)−C̃opt

2 (ρ,β,γ,δt,δr), (14)

where C̃opt
i for i = 1, 2 is given by

C̃opt
i =

1

N
lim

K,M,N→∞
E[log2 det(IK+fiH2H

H

2H
H

1H1)]

=
K

N
lim

K,M,N→∞
E

⎡
⎣ 1

K

K∑
j=1

log2

(
1+fiKλj

(
1

K
K

))⎤⎦
→γ

∫ ∞

0

log2(1+fiKx) f∞
K

K

(x) dx, (15)

whereλj

(
1
KK

)
is the jth ordered eigenvalue of matrix 1

KK,
and f∞

1
K

K
denotes the asymptotic eigenvalue probability den-

sity function (a.e.p.d.f.) of 1
KK.

The following variable definitions allow us to simplify the
analysis. Specifically, we denote

Ñ1 = HH

1H1 (16)
Ñ2 = H2H

H

2 (17)
K = Ñ2Ñ1. (18)

Theorem 2: The ergodic capacity of Rayleigh-product
MIMO channels for optimal receivers in the presence of
additive Gaussian transceiver impairments, when the number
of transmit and receive antennas (M and N ) as well as the
number of scatterers K tend to infinity with given ratios
β = M

K and γ = K
N , is given by

Copt (ρ, β, γ, δt, δr)→γ

∫ ∞

0

log2

(
1+f1Kx

1+f2Kx

)
f∞

K

K

(x)dx, (19)

where the a.e.p.d.f. of K
K f∞

K

K

is obtained by determining the
imaginary part of its Stieltjes transform S for real arguments.
The derivation of K

K f∞
K

K

is provided in Appendix C.

V. NUMERICAL RESULTS
In this section, we verify the theoretical analysis carried out

in previous sections and illustrate the impact of impairments
on the ergodic capacity of Rayleigh-product MIMO channels
with optimal linear receivers.

A. Finite Analysis
Herein, we present numerical results corresponding to the

analysis presented in Section III.
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Fig. 1. Per-antenna ergodic capacity of Rayleigh-product MIMO channels
with optimal receivers for different levels of impairment severity at the
transmitter and receiver (K = 3, M = 4, N = 5).

Fig. 1 presents the per-antenna ergodic capacity of Rayleigh-
product channels with optimal receivers considering K = 3,
M = 4, N = 5. Both theoretical and simulated results are
presented for the cases with and without residual transceiver
hardware impairments. The theoretical curve for the case
without impairments was obtained by following the analysis
considered in [7]. Whereas, the theoretical curves for the
practical case with hardware impairments were obtained by
means of Theorem 1. Furthermore, the simulated curves were
obtained by averaging the corresponding capacities over 103
random instances of H1 and H2.
It can be noted from Fig. 1 that the proposed capacity ex-

pression matches well with the Monte Carlo (MC) simulation
for arbitrary finite values of K , M , and N . Most importantly,
we note that in the absence of residual hardware impairments,
i.e., δt = 0, δr = 0, the per-antenna ergodic capacity increases
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monotonically with the increase in the value of ρ. On the
contrary, in the presence of residual hardware impairments,
the ergodic capacity first increases with the increase in the
value of ρ and then gets saturated after a certain value of ρ.
Besides, the capacity gap in the presence of impairments as
compared to the case without impairments (ideal hardware)
increases with the increase in the value of ρ. Furthermore,
another important observation from Fig. 1 is that the per-
antenna ergodic capacity decreases with the increase in the
severity of the residual hardware impairments. In particular,
the lower the quality of transceiver hardware (higher severity),
the earlier the saturation point appears.
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Fig. 2. Per-antenna ergodic capacity of Rayleigh-product MIMO channels
versus the number of scatterers with optimal linear receivers (ρ = 20 dB,
M = 4, N = 5).

Furthermore, Fig. 1 also demonstrates the impact of differ-
ent levels of impairments at the transmitter and receiver sides.
In order to evaluate the effect of impairments present in one
side (transmit/receive), the impairment value on the other side
(receive/transmit) is set to be zero. It can be observed that at
higher signal-to-noise ratio (SNR) values, the effect of δr is
more severe than that of δt, and this severity increases as the
value of the corresponding impairment increases.
In order to illustrate the effect of the number of scatterers,

we plot the per-antenna ergodic capacity versus K in Fig. 2
considering ρ = 20 dB, M = 4, N = 5. It can be noted
that the per-antenna ergodic capacity first increases with the
value of K and then tends to saturate after its certain value.
Furthermore, the per-antenna capacity versusK decreases with
the increase in the severity of the impairments. In other words,
as the richness of scattering increases, the capacity for a certain
quality of hardware increases and finally saturates. Also, the
saturation with the variation in K occurs earlier for the higher
value of impairments.

B. Asymptotic Analysis
In order to validate our asymptotic analysis of the ergodic

capacity of Rayleigh-product MIMO channels with optimal
linear receivers presented in Section IV, we plot the a.e.p.d.f.
of K in Fig.3, where the histogram represents the p.d.f. of
the matrix K calculated numerically based on MC simulation.
Furthermore, the solid line depicts the a.e.p.d.f. obtained by
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Fig. 3. A.e.p.d.f. of K in the case of Rayleigh-product MIMO channels
(ρ = 20 dB, K = 100, M = 300, N = 200, δt = δr = 0.15).
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Fig. 4. Per-antenna ergodic capacity of Rayleigh-product MIMO channels
versus ρ in the large system regime (K = 100, M = 300, N = 200).

solving the polymonial (35) regarding the Stieltjes transform
of the corresponding a.e.p.d.f., and then applying Lemma 3. A
perfect agreement between the results obtained from theoreti-
cal analysis and MC simulation has been obtained as reflected
in Fig. 3.
In Fig. 4, we plot the theoretical and simulated per-antenna

ergodic capacities versus ρ considering K = 100, M = 300,
and N = 200. Both the cases with and without impairments
are presented. From the figure, it can be observed that theoreti-
cal and simulated capacity curves for both the considered cases
match perfectly. Furthermore, as expected, the per-antenna
capacity increases with the increase in the value of ρ in the
absence of impairments, i.e., δt = δr = 0. However, as in the
finite case, the per-antenna capacity saturates after a certain
value of ρ in the presence of impairments.
Fig. 5 depicts the per-antenna capacity of Rayleigh-product

MIMO channels versus β and γ by considering K = 10, ρ =
20 dB, δt = 0.15, δr = 0.15. It can be noted that the per-
antenna capacity increases with the increase in the values of
β and γ. Another important observation is that the rate of
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Fig. 5. Per-antenna ergodic capacity of Rayleigh-product MIMO channels
versus β and γ in the large system regime (K = 10, ρ = 20 dB, δt = 0.15,
δr = 0.15).

capacity increase with respect to β is much steeper than the
capacity variation with γ.

VI. CONCLUSIONS
This paper delved into the impact of residual transceiver

hardware impairments on the performance of double Rayleigh
MIMO channels. Analytical results regarding the ergodic
capacity in the presence of residual transceiver impairments
with optimal linear receivers were obtained. In particular, we
investigated both conventional and large number of antennas
regimes. Moreover, we characterized how the richness of
the propagation environment affects the system performance,
when the inevitable residual hardware impairments are taken
into consideration. Most importantly, we shed light on the im-
pact of hardware quality in rank-deficient channel conditions.

APPENDIX A
USEFUL LEMMAS

Herein, given the eigenvalue probability distribution func-
tion fX(x) of a matrix X, we provide useful definitions
and lemmas that are considered during our analysis. In the
following definitions, δ is a nonnegative real number.
Definition 1 (η-transform [21, Definition 2.11]): The η-

transform of a positive semidefinite matrix X is defined as

ηX (δ) =

∫ ∞

0

1

1 + δx
fX(x)dx. (20)

Definition 2: [S-transform [21, Definition 2.15]] The S-
transform of a positive semidefinite matrix X is defined as

ΣX(x) = −x+ 1

x
η−1
X (x+ 1). (21)

Definition 3 (The Marčenko-Pastur law density function
[22]): Given a Gaussian K × M channel matrix H ∼
CN (0, IK), the a.e.p.d.f. of 1

KHHH converges almost surely
(a.s.) to the non-random limiting eigenvalue distribution of the
Marčenko-Pastur law given by

f∞
1
K

HHH(x) = (1− β)
+
(x) +

√
(x− a)+ (b− x)+

2πx
, (22)

where a = (1 − √
β)2, b = (1 +

√
β)2, β = M

K , and δ (x) is
Dirac’s delta function.
Lemma 1 ( [21, Eqs. 2.87, 2.88]): The S-transform of the

matrix 1
KHHH is expressed as

Σ 1
K

HHH (x, β) =
1

1 + βx
, (23)

while the S-transform of the matrix 1
KHHH is obtained as

Σ 1
K

HHH (x, β) =
1

β + x
. (24)

Lemma 2 ( [21, Eq. 2.48]): The Stieltjes-transform of
a positive semidefinite matrix X can be derived by its η-
transform according to

SX(x) = −ηX(−1/x)

x
. (25)

Lemma 3 ( [21, Eq. 2.45]): The a.e.p.d.f. of X is obtained
by the imaginary part of the Stieltjes transform S for real
arguments as

f∞
X (x) = lim

y→0+

1

π
I {SX(x+ jy)} . (26)

APPENDIX B
PROOF OF THEOREM 1

Proof: Having the channel H given by (2), we denote

W =
1

K

⎧⎪⎨
⎪⎩
HH

2H
H

1H1H2 if s = M

HH

1H1H2H
H

2 if s = K

H1H2H
H

2H
H

1 if s = N.

(27)

Next, we write (8) in terms of the eigenvalues of W by em-
ploying Corollary 2 in [23] providing the PDF of an unordered
eigenvalue p (λ) of the matrixHH

2H
H

1H1H2. Specifically, p (λ)
is given by

p (λ)=2K
s∑

i=1

s∑
j=1

λ
p+2j+t+i−2s−3

2 Kt−p+i−1

(
2
√
λ
)
Gi,j

sΓ (p− s+ j)
, (28)

where K is given by (12), and Kv (x) is the modified Bessel
function of the second kind [19, eq. 8.432.1]. Writing (8) in
terms of its eigenvalues, we have

Copt(ρ,M,N,K,δt,δr)=s

∫ ∞

0

log2

(
1+

ρ
KM λ

ρδ2t λ
KM +ρδ2r+ 1

)
p(λ)dλ

= s

∫ ∞

0

log2

((
1 + δ2t

) ρλ

KM
+ ρδ2r + 1

)
p (λ) dλ

− s

∫ ∞

0

log2

( ρ

KM
δ2tλ+ ρδ2r + 1

)
p (λ) dλ. (29)

Substituting (28) into (29) and making use of [19, eq. 7.821.3]
after expressing the logarithm in terms of a Meijer G-function
according to ln(1 + x) = G 1,2

2,2

(
ax

∣∣ 1,1
0,0

)
[24, eq. 8.4.6.5], the

proof is concluded.
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APPENDIX C
PROOF OF THEOREM 2

The focal point is to obtain indirectly the a.e.p.d.f. of K/K
by means of Lemma 3 that includes its Stieltjes transform
SK/K . In other words, we focus on the derivation of the Stielt-
jes transform of K/K . Specifically, SK/K can be obtained by
means of its η-transform after using Lemma 2. In fact, this
lemma allows us to write

xη−1

K/K

(−xSK/K (x)
)
+ 1 = 0. (30)

The following proposition provides η−1

K/K (x).
Proposition 2: The inverse η-transform of K/K is given by

η−1

K/K(x) = − x− 1

x (β + x− 1) (γ (x− 1) + 1)
. (31)

Proof: Application of the S-transform to (18) and use of
the principle of free convolution leads to η−1

K/K(x) as

ΣK/K(x)=Σ
Ñ2/K

(x)ΣM̃/K(x)⇐⇒ (32)(
−x+1

x

)
η−1

K/K(x+1)=
1

(β + x) (γx+ 1)
,

where in (32), we have used Definition 2 and Lemma 1. Herein,
we note that Σ

Ñ2/K
(x) and Σ

Ñ1/K
(x) are given by (23)

and (24) as

Σ
Ñ2/K

(x) =
1

γx+ 1
(33)

and

Σ
Ñ1/K

(x) =
1

β + x
. (34)

Moreover, it is worthwhile to mention that in (32), we have
taken into account the asymptotic freeness between the deter-
ministic matrix with bounded eigenvalues Ñ2 and the unitarily
invariant matrix Ñ1. By setting y = x + 1, i.e., making a
change of variables, we lead to (31).
After using (30) and Proposition 2, we lead to the following
qubic polynomial after tedious algebraic manipulations

x2γS3
K/K − (βγ − 2γ + 1)xS2

K/K

− (βγ − β − γ + x+ 1)SK/K − 1 = 0. (35)

This polynomial provides SK/K , and thus, f∞
K

K

(x) by means
of Lemma 3, which is the desired result.
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