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ABSTRACT 

Cyclic loading on civil structures can lead to a reduction of strength of the used materials. A 

literature study showed that, in contrast to steel structures and material engineering, there are 

no design codes or standards for fatigue of foundations and the surrounding ground masses in 

terms of shear strength reduction. Scientific efforts to study the fatigue behaviour of 

geomaterials are mainly focused on strain accumulation, while the reduction of shear strength 

of geomaterials has not been fully investigated. It has to be mentioned that a number of 

laboratory investigation have been done and some models have been already proposed for 

strain accumulation and pore pressure increase which can lead to liquefaction. 

 

Laboratory triaxial tests have been performed in order to evaluate the fatigue of soils and 

rocks by comparing the shear strength parameters obtained in cyclic triaxial tests with the 

static one. Correlations of fatigue with both, the number of cycles and cyclic stress ratio have 

been given. In order to apply cyclic movements in a triaxial apparatus, a machine setup and 

configuration was made. A special program was written in LabVIEW to control the applied 

stresses and the speed of loading, which allowed simulating the natural loading frequencies. 

Matlab scripts were also written to reduce the time required for the data processing.  

 

Both cohesive and cohesionless geomaterials were tested: artificial gypsum and mortar as 

cohesive geomaterials, and sedimentary limestone, and different sands, as cohesionless and 

low-cohesive natural materials. The artificial gypsum, mortar and natural limestone exhibit 

mostly brittle behaviour, where the crumbled limestone and other sand typical ductile one. All 

the sands as well as the crumbled limestone were slightly densified before testing therefore; 

they can be treated as dense sands. The UCS for the crumbled limestone is 0.17 MPa and 

standard error of estimate σest = 0.021 MPa, where for mortar UCS = 9.11 MPa with σest = 

0.18 MPa and for gypsum UCS = 6.02 MPa with standard deviation = 0.53. 

 

All triaxial tests were conducted on dry samples in the natural state, without presence of 

water (no pore pressure). The range of the confining pressure was between 0 MPa and 0.5 

MPa. The cyclic tests carried out were typical multiple loading tests with constant 

displacement ratio up to a certain stress level. The frequency was kept low to allow for 

precise application of cyclic load and accurate readings. What is more, the frequency of the 

cyclic loading corresponds to the natural loading of waves and winds. The number of applied 

cycles was from few cycles up to few hundred thousand (max number of applied cycles was 

370 000).  

 

Due to the complex behaviour of materials and high scatter of the results, many tests were 

required. Two different strategies were used to investigate fatigue of geomaterials:  

1) the remaining shear strength curve; after a given number of cycles, a final single load 

test was done until failure in order to measure the remaining shear strength of the 

sample. 

2) the typical S-N curve (Wöhler curves); there is simply a constant loading until failure. 
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The remaining shear strength (or strength reduction) curve has been compared with the 

standard S-N curve, and is found to be very similar because the cyclic stress ratio has little 

influence. The cyclic loading on geomaterials, being an assemblage of different sizes and 

shapes of grains with voids etc., showed different types of effects. Cohesionless materials 

show a shear strength increase during the cyclic loading, while cohesive ones show a shear 

strength decrease. For the cohesive materials the assumption was made that the friction angle 

remains constant; so, the fatigue of geomaterials can be seen as a reduction of the cohesion. 

In this way, the fatigue of a cohesive geomaterial can be described by a remaining cohesion.  

 

The imperfections in the artificial gypsum have a significant impact on the results of the 

(especially cyclic) strength tests. Therefore another man made materials was used – a mixture 

of sand and cement (mortar). As the first static test results were very promising, mortar was 

used in further tests. The cyclic tests, however, presented similar, high scatter of results as for 

artificial gypsum. An unexpected observation for both materials was a lack of dependency of 

the remaining shear strength on the cyclic stress ratio. 

 

The strain-stress relationship in cyclic loading shows that the fatigue life of the geomaterials 

can be divided into three stages, just as for creep. The last phase with a fast increase in plastic 

strains could be an indicator of an incoming failure. The accumulation of strains and increase 

of internal energy could be good indicators too, but no strong correlation, has been found. 

Similar to the shear strength, the stiffness changes during cyclic loading; for cohesive 

materials the stiffness increase, while for cohesionless it decreases. This could help to predict 

the remaining shear strength of a geomaterial by using a non-destructive method. 

 

Keywords: Geomaterials, Cyclic loading, Fatigue, Cyclically loaded foundations, Shear 

strength reduction, Cohesion reduction, Life prediction of geomaterials in cyclic loading.
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1. GEOTECHNICAL STRUCTURES UNDER CYCLIC 

LOADING 

 Introduction 1.1.

The life span of many structures such as wind turbines, high-speed trains or bridges etc., 

strongly depends on the foundation and its surrounding ground. The analysis of these 

structures requires careful planning and good evaluation of the aging process. The impact of 

the natural forces, both constant and variable, must be taken into account to describe the 

strength and stability of the whole construction over the entire life time. The variable forces, 

due to the quite regular, fairly rhythmic nature, are known as cyclic loading, and can 

significantly reduce the strength. This aspect of ground strength weakening caused by cyclic 

loading is an important factor in foundation design.  

 

The role of foundations, which consists of both the ground and foundation, is to transfer the 

static, live and cyclic forces to deeper layers. Within time, these forces can not only damage 

the foundations, but probably also the surrounding soil or rock.  

 

The main areas in geotechnical engineering, where foundations and surrounded rock and soil 

masses are subjected to cyclic loading, are (see Figure 1.1): 

- offshore structures subjected to waves, and/or ice, 

- foundations of structure subjected to wind load,  

- foundations of structure in seismic regions, 

- foundations of road, railway and tunnel, airport, subjected to traffic loading, 

- water table changes (sluices, embankments, dams, storage pounds),  

- industrial cyclic loading, under crane rails, and large machines foundations,  

- foundations of storage facilities such as grain silos, oil tanks, 

- emptying and refilling underground caverns and storage facilities (water or air under 

high pressure, as well as nuclear waste disposal), 

- mining operations (excavation, cutting, blasting). 

 

One of the most noticeable examples of structures, for which cyclic loads have a very high 

value compared to the static loads, are wind farm towers and offshore oil platforms (Figure 

1.2). The wind farms can be placed on both land and an offshore site. In both cases the soil 

masses will be cyclically loaded with high cyclic forces caused by the wind. For an offshore 

windmill and oil platform there are additionally tidal water movements, sudden wind gusts, 
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and/or ice floating on the see surface. These forces can cause structural micro damages in 

both, the construction and the foundation. After accumulation of thousands of these 

microcracks the structure may fail; this is known as a fatigue. A proper design and evaluation 

method already exists for structural failure, like fatigue of a tower such as the international 

standard IEC 61400-1 (2005-2008), but this does not exist yet for geotechnical failure. To 

ensure safety and stability of wind farms and other structures subjected to cyclic loading, a 

proper design tool for cyclic behaviour and fatigue must be proposed. 

 
Figure 1.1. Common situations in which soils experience significant cyclic loading 

 
Figure 1.2. Cyclically loaded foundations of wind mill and offshore oil platform  

Bridge

Seismic loadLoad wind
Silos

Machine loadingJetty for shipsVibratory loading

Traffic loading

Offshore oil platformWind mill tower
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 Goals of this work 1.2.

The aim of this research is to investigate the remaining shear strength after a number of cyclic 

loads, to improve fatigue life prediction for geomaterials subjected to cyclic loading and to 

propose a simple design tool which could be incorporated into geotechnical guidelines and 

standards. This also means that by decreasing the uncertainties in fatigue calculations for 

geomaterials, the safety factors, that deal with the uncertainties, can be decreased which 

reduces the total cost of a foundation or/and extend the life of already built foundation. 

 

In order to describe the loss of strength due to cyclic loading and to determine the design 

values of the soil strength parameters, strength tests and a proper constitutive soil model must 

be obtained. Such a model should predict the loss of strength in number of cycles under 

cyclic loading including a probability analysis in case a correct evaluation of the remaining 

shear strength and fatigue life is required. This model should be able to describe the fatigue 

behaviour of all geomaterials including rocks and soils. 

 

There is unfortunately no model which characterises the fatigue of geomaterials and not 

enough available laboratory data to study the behaviour of geomaterials for fatigue in terms 

of shear strength (models for sand and clay for e.g. earthquakes, however, have been already 

proposed). The reason for such a limited experimental data is simple: the creation of such of 

data base is very expensive in terms of both testing time and actual financial cost. Therefore, 

the proposed model should be simple to use and its parameters easy to obtain from laboratory 

tests.  

 

Other main objectives of the thesis are: 

- To gain a better understating of behaviour of geomaterials under cyclic loading, 

- To describe the reduction of the shear strength parameters c and ϕ due to cyclic 

loading, 

- To produce a simple and easily parameterised shear strength model, which can be 

used in geotechnical design standards for cyclic loading, 

- To predict the remaining shear strength based on only a few cyclic and static strength 

tests if possible, 

- To predict the fatigue life of a material in cyclic loading, 

- To investigate which factors affect shear strength reduction of geomaterials, 

- To check if other parameters of geomaterials (e.g. stiffness, density etc.) are correlated 

to fatigue, because this could improve the prediction of the loss of strength.  

 Investigation method 1.3.

Natural and manmade materials influenced by cyclic loading, lose in each cycle a part of 

their strength and can fail prematurely after a certain number of cycles. Probably the same 

mechanism can be found in geomaterials as well. The only available models that exist in 

geotechnical engineering for cyclic loads focus on other aspects: the stress-strain behaviour 

of a soil, the increase in pore water pressure and shaft friction reduction. So far, a limited 
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amount of scientific research was done by others in order to investigate the soil and rock 

shear strength reduction in cyclic loading. One of the methods for predicting shear fatigue of 

geomaterials is to use available classical theoretical models, which are based on metal 

fatigue. 

 

The classical fatigue analysis (e.g. of metals) uses the Palmgren-Miner rule, S-N curves and 

constant fatigue life diagram (Goodman diagram). A similar approach will be applied here, 

however, some modification are introduced into the standard methodology, in order to give 

more proper description of fatigue for geomaterials. 

 

A remaining shear strength curve will be proposed and compared with the standard S-N 

curve. Both curves are similar and can give detailed description of fatigue of materials. The 

question is if the fatigue life and strength be predicted with reasonable effort and cost. The 

investigation of remaining shear strength curve application could help answer these 

questions. 

 

The laboratory tests are standard static triaxial tests. To be able to conduct cyclic triaxial 

tests, a special LabVIEW program was written. This program allows to control and to apply 

cyclic loading on geomaterials and to acquire all necessary data. After conducting the triaxial 

tests, the shear strength parameters based on the Mohr-Coulomb failure criterion obtained 

from the cyclic tests will be compared with the ones from the static tests. Correlations 

between them will be investigated and a mathematical description of the remaining shear 

strength will be given. The impact of other parameter (cyclic stress ratio, impact of confining 

pressure, etc.) will also be investigated. 

 Thesis organisation 1.4.

This thesis is composed of 10 chapters. The second chapter is an introduction into to cyclic 

loading on foundations. In the third chapter a description of fatigue is presented. In chapter 4 

a model describing the remaining shear strength of geomaterials is proposed. In chapters 5 to 

7 laboratory tests and their results are presented. Chapter 8 give remarks to the tests results as 

well as a comparison between the S-N curve and the proposed remaining shear strength 

curve. Final conclusions and recommendations are given in chapter 9.
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2. CYCLICALLY LOADED FOUNDATIONS & 

GEOMATERIALS 

 Cyclically loaded foundations 2.1.

Foundations are a very important part of a building, assuring stability of the whole structure 

by supporting the weight and transmitting the static and cyclic loads to underlying soils and 

rocks. The static (also sometimes denoted as a monotonic) and cyclic loads from buildings or 

other structures are first transmitted into their foundations to be later dispersed in the 

surrounding rock and soil masses. Therefore the way how the loads are transferred from the 

foundations into the soil and rock masses is very important for the stability of the structure.  

 

The decision which type of foundation can be used is based on a number of factors: 

- depth (to prevent frost damage), 

- bearing capacity (the foundation must be safe against a bearing capacity failure), 

- settlement (the foundation must not settle to an extent that it damages the structure), 

- type of material used for the foundation (wood, steel, concrete), 

- level of ground water table, 

- loads (seismic forces, environmental forces). 

 

Usually foundations are divided in two main categories: 1) shallow foundations and 2) deep 

foundations (Figure 2.1). In the next two subchapters a bearing capacity for shallow and deep 

foundations will be shortly described. 

 
Figure 2.1. Generalised cyclic forces and cyclic moments on shallow and deep foundation  
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2.1.1. Shallow foundations subjected to cyclic loading 

Shallow foundations (spread footing, strip footing, slab-on-grade footings, etc.) are 

foundation, which spread loads at shallow depths. When the loads are small and the ground 

conditions are good enough, shallow foundations are in most cases more appropriate and 

much cheaper than deep foundation; therefore shallow foundations rarely are carrying high 

cyclic loads. 

 

Bearing capacity of shallow foundations  

The parameter which is used for the design of foundations is the bearing capacity. The 

bearing capacity is the intensity of pressure transmitted by foundation at which the supporting 

ground is expected to fail.  

 

The bearing capacity formulation for shallow foundation was introduced by Prandtl (1920) 

and Reissner (1924) for the simplest case, a strip of infinite length, on weightless soil: 

  𝑝 = 𝑐𝑁𝑐 + 𝑞𝑁𝑞 2-1 

where p is the ultimate bearing capacity, q is a side load, and c is the cohesion. Nc and Nq, are 

the dimensionless bearing capacity factors depending on the internal friction angle ϕ. 

 

Prandtl’s formula has been extended by e.g. Keverling Buisman (1940), Terzaghi (1943), 

Caquot & Kérisel (1953) and Brinch Hansen (1970) with a term for the soil self-weight Nϒ. 

The formula for the remaining bearing capacity coefficient is written in the form given by 

Terzaghi (1943): 

  𝑝 = 𝑐𝑁𝑐 + 𝑞𝑁𝑞 +
1

2
𝛾𝐵𝑁𝛾  2-2 

where B is the total width of the loaded strip; γ is the volumetric weight of the soil. The Nγ 

also depends on the internal friction angle ϕ. Formula in Eq. (2-2) is for a strip footing, and 

when it is used to calculate the bearing capacity of square or rectangular footings, shape 

factors sc, sq, sγ must be used as in Eq. (2-3): 

  𝑝 = 𝑠𝑐𝑐𝑁𝑐 + 𝑠𝑞𝑞𝑁𝑞 + 𝑠𝛾

1

2
𝛾𝐵𝑁𝛾  2-3 

The Equation (2-3) can be extended with coefficients ic iq, iγ which are the correction factors 

for a possible inclination of the load (so called inclination factors). The inclination factors 

were proposed first by Meyerhof (1953) and (1963) he gave the formula with both shape and 

inclination factors: 

  𝑝 = 𝑖𝑐𝑠𝑐𝑐𝑁𝑐 + 𝑖𝑞𝑠𝑞𝑞𝑁𝑞 + 𝑖𝛾𝑠𝛾

1

2
𝛾𝐵𝑁𝛾 2-4 

The two most commonly cited proposals for the shape factors are those given by Meyerhof 

(1963) and De Beer (1970). These proposals, however, show large discrepancies. Zhu & 

Michalowski (2005) examined the shape factors and proposed new values for factor sγ based 

on finite element analysis. The new proposal depends on the internal friction angle ϕ, and it 
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yields values lower than those suggested by Meyerhof but larger than those suggested by de 

Beer. Zhu & Michalowski concluded that proposals of Meyerhof and De Beer for factors sc 

and sq are conservative estimates, and they are acceptable in design.  

 

In Eurocode 7 (2007) no detailed description of cyclic loading is given and it suggests only: 

“very cautious design values for the material properties should be used”. Some description of 

foundation subjected to an earthquake is given in Eurocode 8 (2004). Eurocode 8 suggests 

giving attention to sensitive clays which may suffer shear strength reduction, and to 

cohesionless materials which are susceptible to dynamic pore pressure build-up under cyclic 

loading during an earthquake. 

 

The subject of fatigue also receives attention in other areas like: Eurocode 1 (2003) for 

actions on structures, Eurocode 3 (2006) for steel structures and Eurocode 9 (2011) for 

aluminium structures. Eurocode 7 (2007) gives a list of actions and design situations which 

shall be taken into account. The list of design situations describes dynamic loads (e.g. traffic 

loads; movements and accelerations caused by earthquakes, explosions, vibrations and 

dynamic loads) but it does not include cyclic loads caused by e.g. wave and wind cyclic 

actions.  

 

Settlements of shallow foundations  

Cyclic stresses on shallow foundations usually are much lower than the stresses which could 

cause a ground failure due to loss of strength (ultimate limit state according Eurocode 7). The 

accumulated strains (Figure 2.2), however, can exceed the serviceability criteria (qa), which 

should be prevented. Thus, the concern of the researchers is mainly focused on the 

accumulation of settlements, especially of cohesionless geomaterials. 

 
Figure 2.2. Settlements related to applied pressure (qa is a applied pressure for maximum allowable 

settlement, qs applied pressure, and qul is an ultimate applied pressure) 

For static loading the allowable settlement is typically solved using empirical or semi-

empirical approaches (Poulos, Carter, & Small, 2001). A range of mathematical models, 
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based on plasticity theory to estimate the strains changes in static loading, already exists e.g. 

Byrne et al. (2002). These concepts have their roots in the work of Roscoe & Schofield 

(1957), further extended for clay (Martin C. , 1994) and for dense sand (Cassidy, 1999). The 

models describing the strain changes for dense sand have been given by e.g.: Butterfield & 

Gottardi (1994), Collins & Houlsby (1997), for overconsolidated clays by e.g. Martin & 

Houlsby (2001) and for loose carbonate sands by Byrne & Houslby (2001). 

 

Some work has been done to investigate cyclic loading on shallow foundation e.g. Byrne 

(2000), Byrne et al. (2002), Byrne & Houlsby (2002) and Houlsby et al. (2005). Some 

analytical models were proposed for displacement accumulation of cyclically loaded shallow 

foundations. They are based mainly on: multiple yield surface theory (Houlsby, 1999), 

hypoplasticity theory (Salciarini & Tamagnini, 2009), contact interface model (Gajan & 

Kutter, 2009) or empirically derived properties (Bye, Erbrich, Rognlien, & Tjelta, 1995). 

These models, however, may not be transferable to other sites or conditions and usually 

require many parameters to be specified.  

2.1.2. Deep foundations subjected to cyclic loading 

The most common type of deep foundation is a pile foundation. Pile foundations are basically 

used to transfer the load of a structure down through the upper weak soil layer to a stronger 

layer below. Pile foundations are then used when the expected settlement is excessive to 

prevent ground surface damage of the structure, or to prevent a bearing capacity failure.  

 

Historically, the first piles were made from wood, later steel. Reinforced concrete, and pre-

tensioned concrete piles became widespread in last century as these new technologies and 

higher buildings were developed. The recent most challenging area of pile foundation 

research is piles subjected to high cyclic loads in the offshore oil and wind energy industry. 

 

For a structure which is subjected to cyclic loading, especially for offshore structures, usually 

a deep foundation is required to be able to transmit high cyclic stresses and moments deep in 

to the ground. The two most common methods to describe the safety of pile foundations are 

the Limit State Design (LSD) and the Allowable Stress Design (ASD). 

 

Bearing capacity of pile foundations - base resistance Rb and shaft resistance Rs 

The ultimate bearing capacity of a compression pile can be given as a sum of the base 

resistance Rb, and the shaft resistance Rs: 

  𝑅𝑐;𝑘 = 𝑅𝑏;𝑘 + 𝑅𝑠;𝑘 2-5 

The base resistance Rb is based on the general equation for the bearing capacity given by e.g. 

Brinch Hansen (1970), Prandtl (1920) and Meyerhof (1963), and it may be written as: 

  𝑅𝑏 = (𝑐𝑁𝑐 + 𝑞𝑁𝑞 +
1

2
𝛾𝑑𝑁𝛾) 𝐴𝑏 2-6 
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where d is the diameter of the shaft at base level, q is overburden pressure at the base level, 

Ab base area of pile, c – cohesion of soil, γ – effective unit weight of soil, Nc, Nq, Nγ are bear-

ing capacity factors which take into account the shape factor. Because the piles foundations 

are deep and the diameter d of a pile is relatively small, the term ½γdNγ becomes insignificant 

and it may be dropped. One of the proposed method of determining the bearing capacity fac-

tors Nc and Nq as a function of ϕ was given by Meyerhof (1976).  

 

The formula for the ultimate skin resistance of a single pile in cohesionless soil is given as: 

  𝑅𝑠 = 𝐴𝑠𝑞0𝐾𝑠 𝑡𝑎𝑛 𝛿 2-7 

where As is surface area of the embedded length of the pile, q0 is the average effective over-

burden pressure over the embedded depth of the pile, Ks is the average lateral earth pressure 

coefficient and δ refers to the angle of the wall friction. Broms (1966) has related the values 

of Ks and δ to the effective friction angle ϕ of cohesionless soils.  

 

Other methods which can be used to derive the skin friction and base resistance based on 

CPT sounding were summarised by e.g. Niazi & Mayne (2013). These methods can be divid-

ed for direct methods (mainly for onshore foundations); and rational method (offshore foun-

dations). The rational methods can also be divided for: alpha approach (total stress): API 

RP2A-WSD (2007); and beta approach (effective stress): NGI (2005), ICP (2005), UWA 

(2005), Fugro (2004).  

 

Limit State Design 

In Europe, the main guideline in geotechnical engineering is Eurocode 7 (2007), and it is 

based on the limit state design method (LSD). Eurocode 7 defines failure of a foundation as a 

state in which the foundation reaches any of its limit states, like bearing failure, sliding, 

overturning, tilting, pile pull-out, large settlements or displacements.  

 

The ultimate resistance of a pile foundation is given in Eurocode 7 (2007) as: 

  𝑅𝑐;𝑘 = 𝑚𝑖𝑛 {
(𝑅𝑐;𝑚)

𝑚𝑒𝑎𝑛

𝜉1
;
(𝑅𝑐;𝑚)

𝑚𝑖𝑛

𝜉2
} 2-8 

where ξ1 and ξ2 are correlation factors related to the number of piles tested and are applied to 

the mean (Rc;m)mean and the lowest (Rc;m)min of Rc;m respectively. 

 

The characteristic compressive resistance of the ground, Rc;k, may be derived from the 

characteristic values of the base resistance, Rb;k, and of the shaft resistance, Rs;k, such that: 

  𝑅𝑐;𝑘 = 𝑅𝑏;𝑘 + 𝑅𝑠;𝑘 2-9 

These components can be derived directly from static load test results, or estimated on the 

basis of the test results or dynamic load tests. The design resistance, Rc;d shall be derived 

from: 
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  𝑅𝑐;𝑑 = 𝑅𝑐;𝑘/𝛾𝑡 2-10 

or 

  𝑅𝑐;𝑑 = 𝑅𝑏;𝑘/𝛾𝑏 + 𝑅𝑠;𝑘/𝛾𝑠 2-11 

where the partial factors, γ, are given by Eurocode 7 (2007) or may be specified by a National 

Annex of the Eurocode.  

 

Allowable Stress Design 

According to the allowable stress design method (ASD, also denoted as a working stress 

design WSD or Permissible stress design PSD) the allowable load on piles is governed by the 

tolerable settlement at the working load. The working load for all pile types in all types of 

soil may be taken as equal to the sum of the base resistance Rb and ultimate friction load or 

skin friction Rs divided by a suitable total factor of safety which in most cases is equal n = 

2.5 (Murthy, 2002) (this value should ensure acceptable settlements), so the working load Ra 

can be written as: 

  𝑅𝑎 =
𝑅𝑏 + 𝑅𝑠

2.5
 2-12 

In the case where values of Rb and Rs can be obtained independently the formula is given as: 

  𝑅𝑎 =
𝑅𝑏

3
+

𝑅𝑠

1.5
 2-13 

A smaller value of 2.7 or 2.8 is taken as a design working load (Murthy, 2002).  

 

API RP2A-WSD (2007) suggests using the following factors of safety for the specific failure 

modes: Failure Mode: bearing failure 2.0, and sliding failure 1.5. These safety factor values 

should be used after cyclic loading effects have been taken into account. 

 

Cyclically loaded piles 

For cyclically loaded pile foundations, Eurocode 7 (2007) has the same scarce description as 

for shallow foundations. Other standards e.g. DIN 1054:2005-01 (2005) also do not propose 

for calculations of bearing capacity of cyclically loaded piles. Some updated information 

about cyclic loading was given by Appendix D.2. Later DIN 1054:2010 gave a formulation 

for pulsating and/or variable loads on cyclic axially loaded piles, including safety factors. In 

DIN 1054:2010-12 a reference is made to the recommendations of the special working group 

on piles EA-Pfähle (2012), where chapter 13 refers to cyclic loading. API RP2A-WSD (2007) 

mentioned a several analytical models (discrete and continuum) which describes the cyclic 

axial response of piles. The guideline DNV-OS-J101 (2013), states that the non-linear re-

sponse of soil shall be accounted for, including the effects of cyclic loading. The recommen-

dations given in the guideline BSH (2007) for wind mill foundations are based mainly on 

published studies and results by Schwarz (2002), Mittag & Richter (2005), and Kempfert 

(2009). 
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To predict the pile static load displacement behaviour a range of methods has been 

developed. To the most common methods belongs: 

- elasticity method e.g. Poulos & Davis (1974), Randolph & Wroth (1978) for soft 

clays, non-linear elastic methods e.g. Coyle & Reese (1966) for clays, 

- limit state method e.g. Eurocodes, 

- finite element methods, 

- subgrade reaction method - known as the p-y method e.g. Reese et al. (1974) and 

O’Neil & Murchinson (1983) for sands. 

 

Many authors have proposed various types of design graphs for displacements caused by cy-

clic loading, they all took the cyclic shear stress into account e.g.; Andersen & Lauritzsen 

(1988) for overconsolidated Drammen clay, Yoshida et al. (1994) for medium to dense satu-

rated sand, Jardine & Standing (2000) for dense and very dense sand, Randolph (2009) for 

medium dense sand and normally consolidated and light overconsolidated Drammen clay, 

Randolph & Gouvernec (2011), Mao (2000), Shajarati et al. (2012) for , Andersen (2009) for 

sand, clay and silt, Andersen et al. (2013). Some of them gave diagrams including combina-

tions of pore pressure, average and cyclic load ratio e.g. Nielsen et al. (2012) for a very dense 

sand (relative density 80%) or liquefaction e.g. Ibsen (1999). A simple scheme for including 

cyclic load amplitudes was proposed by e.g. Tsuha et al. (2012) for sand with relative density 

72%. Matlock et al., (1978), PMB Engineering, (1988) Grashuis et al., (1990) and Rajashree 

& Sundaravadivelu (1996) for soft clay, developed equations which model the stiffness 

and/or remaining strength of soil-pile load-transfer curves. Numerical analysis on effects of 

cyclic loading was run by e.g. Boulon et al. (1980), Vahdatirad et al. (2012). One of the last 

big projects for cyclically loaded pile design standardisation SOLCYP (2013) resulted in a 

list of publications summarising studies of forty years of practice in design of offshore struc-

ture subjected to cyclic loading.  

 

Cyclically loaded piles in clay 

Usually piles are founded in cohesionless soils, and piles only pass through cohesive soils. 

Because of that, there is a lack of available data results for piles founded in clay even for 

static loading. Randolph et al. (1979) investigated the behaviour of driven piles in 

overconsolidated clay. He found that under static conditions the bearing capacity increased. 

Kraft et al. (1981), conducted tests in which the combined effects of one-way cycling and 

rapid loading rate in clay resulted in a load capacity which exceed the static value by up to 

20%. Karlsrud et al. (2014), confirmed by tests on piles in sand (loose and medium dense) 

and clay (normally and overconsolidated) that the axial bearing capacity of driven tubular 

steel piles increase in time and repeated load testing to failure of the same pile can give both a 

lower and a higher capacity than for first time testing. Liu & Huang (2013) proposed a 

modified undrained elastic-plastic model considering the cyclic degradation of clay soil. 
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Skin friction degradation in sand 

Degradation of the bearing capacity at the pile shaft in sand due to cyclic loading was de-

scribed e.g. by Jardine & Chow (1996), in dense sand - White & Lehane (2004), Kirsch & 

Richter (2010), dense sand - Jardine & Standing, (2012). Schwarz (2002), for medium dense 

sand and Gavin et al. (2015) for medium dense and dense sand, stated that for cyclic loading 

in sand above a certain combinations of cyclic loads no pile capacity reduction is to be ex-

pected. Randolph et al. (1994), proposed a reduction in lateral stress toward active earth pres-

sure conditions in proportion to pile diameter and empirical degradation factor for pile in me-

dium to dense sand. 

 

Horizontal loading 

The behaviour of piles under cyclic horizontal loading in sand was subject of research of 

Gudehus & Hettler (1981), Poulos et al. (2001), Rücker (2007), Peralta & Achmus (2010) for 

dry sand, LeBlanc et al. (2010) for drained loose and dense sand and Rimoy et al. (2013) for 

a dense sand, etc. Cyclic shakedown, described in book e.g. Yu (2006), of piles subjected to 

lateral loading was studied by e.g. Swane & Poulos (1985) in stiff clay, Levy et al. (2009) in 

normally consolidated clay. Methods for laterally loaded piles were also proposed by Long & 

Vanneste (1994) for different sand densities, Grabe & Dührk (2008) and Achmus (2008) in 

medium dense sand. 

 

Field and laboratory tests 

Experiments involving field-scale instrumented piles carried out by e.g. Van Weele (1979), 

Lehane (1992) in loose to medium dense sand, Chow (1997) in dense sand, Jardine (1998) in 

very dense sand, Jardine & Standing (2012) in dense Dunkerque marine sand, Puech et al. 

(2013) have successfully reduced the level of uncertainties associated with the prediction of 

the axial capacity of piles in dense sand. This led to the development of improved approaches 

such as those proposed by Lehane & Jardine (1994), Randolph et al. (1994) for medium and 

dense sands, Poulos (1987) for medium dense sand and soft and stiff clays. Additionally, cen-

trifuge tests e.g. Garnier (2013) can also be conducted to investigate pile head displacements, 

bending moments and soil reaction in dry sand and overconsolidated clay due to lateral cyclic 

loads. Kempfert et al. (2010) conducted cyclic tests on a small-scale model pile tests in medi-

um dense dry sand and found that the pile and soil behaviour depends mainly on the mode of 

the cyclic load. Puech (2013) for dense sand and stiff overconsolidated clay and Poulos 

(1982) for medium sand and remoulded clay investigated the significance of group effects. 

Bjerrum (1973) and Bea et al. (1980) confirmed that the rate has a significant effect on the 

pile capacity in clays and the more rapid the cycling loading rate, the greater the pile capacity 

is.  

 

Two way cyclic loading 

Holmquist & Matlock (1976), and Steenfelt et al. (1981), stated that two–way cyclic loading 

in normally consolidated clays results in a much higher reduction in pile capacity than the 

one way. Matlock & Foo (1979) developed a reduction model in which cyclic reduction of 
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stiff clay only occurs if plastic reversal of strain occurs. Poulos (1981) presented model tests, 

which revealed that one–way cyclic loading will also cause a reduction in skin friction. He 

concluded that result tests of Ireland (1957) on piles driven into fine sand suggested that the 

average skin friction for tensile loading is equal to that for compressional loading, but data 

summarised by Sowa (1970) for loose and medium sand and clay and Downs & Chieruzzi 

(1966) indicated considerable variations in average skin friction between different tests. A 

verification method of the side friction on the piles under cyclic loading was suggested by 

Begemann (1969). 

 Cyclically loaded geomaterials 2.2.

The cyclic loads and moments transferred from the foundations to the surrounding 

geomaterials can cause several effects on the geomaterials. These effects of the cyclic loading 

on the geomaterials can be described by different physical phenomena, such as: 

- Cyclic strain accumulation 

- Liquefaction 

- Stiffness reduction 

- Crack propagation 

- Particle breaking 

- Compaction of granular materials 

- Shear strength reduction 

These phenomena are different for different types of geomaterials (Table 2-1). By measuring 

the changes of these phenomena it is possible to evaluate the material damage in number of 

cycles. 

Table 2-1. Cyclic loading effects on sand and rock 

Damage measurement Sand Rock 

Shear Strength reduction Not fully investigated Not fully investigated 

Settlements Large Small 

Water pore pressure Liquefaction None or negligible 

Stiffness changes Increase or decrease Significant decrease 

Cracks and microcracks Already crushed, eventually 

crush of the grains 

Cracks and microcraks development 

like for other brittle materials 

2.2.1. Cyclic strain accumulation 

The accumulation of strains in cyclic loading can cause large and/or uneven settlements 

(Ibsen & Liingaard, 2005). Eurocode 7 (2007) defines deformations equals to 10% of the pile 

diameter as the failure criterion excessive settlements of pile foundations, and settlements 

equal to s =50 mm as failure criterion for spread foundations. 

 

The stress-strain behaviour (Figure 2.3) of geomaterials has been investigated by many 

researchers, to mention a few of them: Matlock et al. (1978), Poulos (1979), O’Reilly (1991), 

Ibsen (1999) for very dense sand, Niemunis et al. (2005), (2006) for dense sand and Andersen 

et al. (2013). Masing (1926) is one of the first, who described the one-dimensional non-linear 
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cyclic strain development. The existence of the fatigue strain limit has been proved for and 

brittle rocks, Haimson & Kim (1972) and Brown & Hudson (1974). The impact of soil 

composition (type of soil, grain size) initial state (void ratio), structure, loading conditions, 

and stress history can significantly affect the irreversible stress-strain relationship Poulos & 

Jansen (1989). 

 

 

 

 

  

 

 

 

 

 

Figure 2.3. Strain accumulation in cyclic loading 

Stress-strain models 

Several mathematical models are used to predict the stress-strain response of soils. The two 

main approaches are based on: 

- The elasticity theory: undrained models of soils were described by e.g. Muir Wood 

(1991) and the drained models by e.g. Kramer (1996), 

- The plasticity theory – different plasticity theories have been proposed: bounding 

surface plasticity e.g. Dafalias & Herrmann (1982), Bardet (1986), kinematic 

hardening models e.g. Iwan (1967), isotropic hardening models e.g. Mróz (1967), 

bubble model e.g. Al-Tabbaa & Wood (1989), generalised plasticity models e.g. 

Zienkiewicz & Mróz (1984), etc. Models which are accounting for the pore water 

pressure increase was given by e.g. Finn et al. (1977) and Pyke (1979). 

 

Some other stress-strain relationship models proposed in literature are: 

- Simple formulas for estimating cumulative plastic strains e.g. Dingqing & Selig 

(1994), 

- Viscoelastic models & viscoplastic models e.g. Pecker (2007), Zambelli et al. (2004) 

and O’Reilly & Brown (1991), 

- Cyclic damage models, 

- Fatigue contour diagram model given by e.g. Andersen (2009), Yoshida et al. (1994), 

- Degradation index model given by Idriss et al. (1978) further developed by e.g. 

Allotey & El Naggar (2008), Yasuhara et al. (1997), Matasovic & Vucetic (1995), 

- Cyclic fatigue model propsed by Ibsen (1999), 

- Extended cam clay model for cyclic loading by e.g. Carter 1982, Pender 1982, 

- CASM model (which based on the critical state theory) was extended for cyclic 

loading Yu et al. (2007). 
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The above mentioned models are able to describe the accumulation of displacements and to 

simulate stress-strain during with loading-unloading, but they also have a lot of limitations. 

The main limitations of these models are the small range of validity and need for many 

parameters. Some of the models are not correct for higher number of cycles (Wichtmann & 

Triantafyllidis, 2012), do not consider the effect of the confining stress or cannot be applied 

for all geomaterials such as model given by Niemunis et al. (2005). Most of the numerical 

models are very time-demanding and the available stress-strains models also do not take into 

account the reduction of the soil strength parameters c and ϕ.  

2.2.2. Liquefaction 

Soil liquefaction is a very important phenomenon in which the strength and stiffness of a soil 

is reduced by earthquake shaking or other rapid cyclic loading. Liquefaction mainly occurs in 

saturated undrained cohesionless soils (Duncan & Wright, 2005). Thus the methods applied 

in the liquefaction, would not be useful in e.g. drained case. In the case of cohesive 

sediments, the term cyclic softening is used (Idriss & Boulanger, 2008). The liquefaction 

mechanism is already considered in many standards especially in areas where earthquake 

induced cyclic loading may occur e.g. ASTM D6066 (2011), EN1998-5:2004 Eurocode 8 

(2004) and Japan Road Association (2002). 

 

Soil liquefaction has been observed many times during large earthquakes. Prior to an 

earthquake, the water pressure is relatively low. However, earthquake shaking can cause the 

water pressure to increase to the point where the soil particles can easily move with respect to 

each other. During earthquake, there is not enough time for the water in the pores of the soil 

to be dissipated. Instead, the water is "trapped" and prevents the soil particles from moving 

closer together. This is accompanied by an increase in pore water pressure which reduces the 

contact forces between the individual soil particles. The accumulation of pore pressure 

(Figure 2.4) is caused by continues rearrangements of the particles after each cycle of 

loading. The soil can become a grain suspension and loses its solid state - it starts to behave 

like a fluid. Loss of a solid state inevitable leads to soil strength and stiffness decrease and 

reduces the ability of a soil to support foundations for buildings, bridges, an off-shore wind 

power turbine, or costal piers (Figure 2.5 and Figure 2.6). 

 
Figure 2.4. Effect of repeated loading on undrained strength of very loose saturated sand 
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Figure 2.5. Liquefaction induced by earthquake 

(Kobe 1995) 

Figure 2.6. Liquefaction induced by earthquake 

(Venezuela 1967) 

Many liquefaction models have already been proposed by Seed & Lee (1966), Lee & Albesia 

(1974), Martin et al. (1975), DeAlba et al. (1976), Seed et al. (1976), Finn (1988), Sawicki 

(1987) and others. A damage extension (Van Eekelen, 1977) of the cam clay model to 

consider pore pressure increase in cyclic loading was given by Van Eekelen & Potts (1978). 

Cyclic mobility (or cyclic ratcheting), which is a type of liquefaction triggered by cyclic 

loading, was described by e.g. Casagrande (1971), Castro (1975) and Castro & Poulos 

(1977). Laboratory tests by Kitamura & Hidaka (1988), Tavakoli et al. (2008), Erken & Ulker 

(2006); field investigations by Poulos (1982); and numerical analysis Jostad et al. (2015), 

have been conducted to investigate the cyclic behaviour of saturated soils. 

2.2.3. Stiffness reduction in cyclic loading 

The cyclic loading can lead to stiffness reduction of soils (Kramer, 1996); (Ishihara, 1996) 

and rocks (Bagde & Petroš, 2011). The stiffness of a soil is governed by the density, 

described by the shakedown theory (Yu, 2006). The stiffness reduction of rocks can be 

associated with a loss of strength caused by a loss of bonds in shear or axial stresses. In 

general, stiffness reduction in fatigue follows the pattern shown in Figure 2.7 consisting of 

three stages. At the beginning and near the end of fatigue life, the stiffness reduction is rapid 

Brown (1974), Galjaard et al. (1996), but for most of the fatigue life, the stiffness reduction is 

gradual and linear to the fatigue life. 

 
Figure 2.7. Typical stiffness reduction 

S
ti

ff
n
es

s

Phase III

(rapid degradation)

Phase I

(rapid degradation)

N

Phase II

(linear degradation)



CYCLICALLY LOADED FOUNDATIONS & GEOMATERIALS 

 

25 

 

The stiffness reduction can be presented in a similar way for the S-N curve and the fatigue 

failure is occurring when the stiffness has degraded to a critical level (Hahn & Kim, 1976), 

(O'Brien & Reifsnider, 1981). 

2.2.4. Crack propagation 

The micromechanical approach of fatigue, stems from fracture mechanics which concerns 

with the development and propagation of a crack caused by cyclic loading (Figure 2.8 and 

Figure 2.9). The crack initiates from small flaws or discontinuities which are present 

internally or on the surface of body. At these flaws stresses are very high due to stress 

concentration and under cyclic loadings these flaws can grow due to plastic deformations, 

even if the applied normal stresses are lower than the maximum strength. When the crack 

length becomes large enough, the undamaged part of a structure cannot sustain the applied 

load. This results in a very rapid crack growth followed by an abrupt failure of the material.  

 

To describe the crack propagation, several different formulations reference for a variety of 

materials and processes have been proposed. To the main formulations belong: elastic–brittle, 

brittle, creep, fatigue and creep-fatigue, etc. These formulations have widened the application 

range of the continuum damage theory also to non-metallic materials. Still, the crack growth 

implementation for fatigue by micromechanical modelling is a very challenging task for 

engineers. Especially the fatigue life estimation based on the crack growth is very 

complicated. 

 
Figure 2.8. Fatigue failure of jointed rocks (Brown & Hudson, 1974) 
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Figure 2.9. β = 30° inclined notch and newly formed crack patterns on CCNBD specimens tested 

under diametral compressive cyclic loading (Erarslan & Williams, 2012b) 

In material science, Griffith (1921) and (1924) published first a relation between fracture 

strength and crack size. He formulated a fracture theory based on the principles of energy 

balance which stems from the first law of thermodynamics. He postulated that when the 

strain energy is sufficient enough to overcome the surface energy of the material the flaw 

becomes unstable and fracture propagation occurs. Other descriptions were given among 

others by Paris et al. (1961), Manson et al. (1961), Freudenthal & Heller (1959), Haibach 

(1970), Corten & Dolan (1956), Shanley (1953) and Cornelissen & Reinhardt (1984). 

 

The most common way of describing the crack propagation in material science and fracture 

mechanics was given by Paris (1961). The Paris law relates the stress intensity factor to crack 

growth under a fatigue stress and is given as: 

  
𝑑𝑎

𝑑𝑁
= 𝐶∆𝐾𝑚 2-14 

where, a is the crack length and N is the number of load cycles. The expression da/dN is 

known as the crack growth rate in mm per cycle. The C and m are empirically determined 

materials constants and ΔK is the range of the stress intensity factor, i.e. the difference 

between the stress intensity factor at maximum and minimum loading. The constant C has 

dimension of mm/(cycle∙MPa∙mm
0.5

) and the m is dimensionless. The ΔK can be calculated 

from: 

  𝛥𝐾 = 𝐾𝑚𝑎𝑥 − 𝐾𝑚𝑖𝑛 2-15 

where Kmax is the maximum stress intensity factor (MPa∙mm
0.5

) and Kmin is the minimum 

stress intensity factor. The typical relationship between the crack growth rate and the range of 

the stress intensity is presented in Figure 2.10 and Figure 2.11. It can be mentioned that many 

other attempts have been made to establish models for crack growth e.g.: Foreman et al. 

(1967), McEvily (1988), Dowling & Begley (1976), Anderson (1991).  
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Figure 2.10. Paris law Figure 2.11. Measured fatigue crack growth rates 

for different Berea sandstone specimen sizes (Le, 

Manning, & Labuz, 2014) 

Crack propagation in geomaterials 

The cracks can occur only in cohesive materials, therefore the crack growth and 

micromechanical approach can only be applied on rock materials in geomechanics. For sands 

and other weak cohesive materials no cracks can be created as the materials are already 

completely fractured or contain a large number of cracks (e.g. very jointed rocks).  

 

The fatigue failure mechanism of metals is different than that of rocks because the rock as a 

natural material contains cracks and imperfections. The metal fatigue can be described by a 

dominant single crack growth, where for rock material it is a generalised microcracks growth 

(Post, Case, & Lesko, 2008). The micromechanical approach to fatigue of rocks can even 

become further complicated by the anisotropic behaviour (Gatelier, Pellet, & Loret, 2002) 

which results in a stress redistribution and behaviour of cracks under hydrostatic pressure 

(Lockner, 1998).  

 

For rocks, the results of studies of the initiation and propagation of a fracture from a single 

crack in a biaxial compressive stress was proposed e.g. by Hoek & Bieniawski (1965), Aglan 

and Bayomy (1998) etc. Many authors (Chen & Taylor, 1986), (Bagde & Petroš, 2005), 

(Peng, Ju, Xie, & Li, 2011), have proposed models based on energy-dependent crack 

propagation. Attewell & Farmer (1973) found similarities with creep response under constant 

static loading. Le et al. (2014), showed that the Paris-Erdogan law is applicable for a wide 

range of amplitudes of the stress intensity factor for Berea sandstone. 

 

The crack propagation in rocks (induced by creep or cyclic loading) has been analysed using 

laboratory experiments (Gatelier, Pellet, & Loret, 2002), (Bagde & Petroš, 2009), (Xiao, 

Ding, Jiang, & Xu, 2009), (Erarslan & Williams, 2012a), (Salim & Mohamed, 2012); 

acoustic emission AE (Labuz & Biolzi, 2007); scanning electron microscope–SEM (Erarslan 



CYCLICALLY LOADED FOUNDATIONS & GEOMATERIALS 

 

28 

 

& Williams, 2012b) and numerical simulations (Ingraffea & Heuze, 1980), (Kazerani, 2011), 

(Sukumar, Chopp, & Moran, 2003), (Manouchehrian & Marji, 2012). The cracks are 

generally characterised for the jointed models of rocks in uniaxial compression tests on rock-

like samples (Brown & Hudson, 1974) with artificial flaws (Li, Chen, Zhang, & Swoboda, 

2001).  

 

The proper description of crack initiation and development it is not an easy task and no 

simple constitutive law could probably be given for all geomaterials. This is similar to 

concrete fatigue (see appendix C), where the application of micromechanics into geomaterials 

is impractical. It can be concluded that the mechanical approach based on crack development 

is unsuitable for geomaterials and the empirical and statistical approach seems more 

appropriate. 

2.2.5. Particle breaking 

High cyclic loading stresses and frequencies on granular materials lead to fracture and 

crushing of individual soil particles (Goder, Kalman, & Ullmann, 2002), (Datta, Gulhati, & 

Rao, 1982). This is caused because dilatancy is hindered by a confinement pressure, and 

grains cannot roll or slide and can only crush.  

 

Cyclic loadings transmitted from piles or shallow foundations to adjacent soil masses can 

cause skin friction degradation due to the particles cracking (Al-Douri & Poulos, 1991). The 

particle breakage depends on confining pressure; void ratio as well as the size and shape of 

the particles and the susceptibility of the soil grains to attrition; the amplitude, number and 

direction of the load-cycles, i.e. one-way or two-way loading e.g. Yang et al. (2010). 

Basically, particle breaking can also occur for shallow foundations. The particle breakage, 

however, may not occur and time effects are negligible in granular materials at very low 

stresses (Lade & Karimpour, 2015).  

2.2.6. Compaction of granular materials 

The other notable phenomenon that occurs in cyclic loadings on sand is a large decrease in 

void ratio compared to other static or low frequency cyclic loading. This large volume 

decrease is sometimes broadly described as compaction of a material (Pyke, 1973), (Youd, 

1972) and Airey et al. (1992). Compaction of granular material under repeated shear was also 

found by Ansell & Brown (1978) and Chan (1990). In general, material compaction may be a 

result of particle rearrangement, a particle crushing (Al-Douri & Poulos, 1991), or a 

combination of both mechanisms. This does not necessarily lead to a material failure because 

the compaction can cause for example an increase in maximum shear strength of a granular 

material (Suiker, 2002). The compaction of granular material can also be described on the 

base on the shakedown theory (Yu, 2006). 

 

Silver & Seed (1971) found in their experimental studies that compaction in cyclic simple 

shear tests is a function of the relative density and previous strain history as well as of the 
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magnitude of the cyclic shear strain. The compaction per cycle decreases with an increasing 

number of load cycles. They also found, that for a given cyclic shear strain the amount of 

compaction was independent of the vertical stress. Similar results were presented by Pyke 

(1973) who showed the amount of compaction in cyclic triaxial tests increases with an 

increase in the confining pressure but that it is independent of the vertical stress in cyclic 

simple shear tests. Youd (1972) additionally showed that the compaction in simple shear tests 

is independent of frequency for both dry and drained saturated samples and also that cyclic 

shearing is most effective in causing densification. 

 Conclusions 2.3.

For both types of foundations, shallow and deep, the shear strength parameters ϕ and c are 

used to calculate the allowable bearing capacity. It was found out, that for both type of 

foundations, there is no complete formulation which describes the effect of cyclic loading on 

these shear strength parameters. There are already solutions proposed for cyclic loading on 

foundations for the offshore oil and gas industry like API RP2A-WSD (2007) or DNV-OS-

J101 (2013); however, these are focusing mainly on the stress-strain relation of a pile 

foundation. This is because, as is usual for cyclically loaded foundations, the serviceability 

criteria are dictating the design criteria rather than the ultimate capacity. Therefore no typical 

civil engineering procedure exists that would describe in details the loss of shear strength on 

soils and rocks. 

 

Changes in type of materials and its properties as well as boundary conditions can cause big 

differences in the cyclic behaviour and the corresponding strength parameters of 

geomaterials. There are already a few methods which try to describe the impact of cyclic 

loading on geomaterials. For geomaterials, important effects of cyclic loading are the 

irreversible strain accumulation and liquefaction. These two effects are already quite well 

described in literature. Another type of physical damage measurement is the shear strength. 

This will be further investigated. 
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3. FATIGUE OF MATERIALS 

 Introduction 3.1.

 
To be able to describe fatigue of geomaterials near foundations, first cyclic loading must be 

defined. A proper fatigue life characterisation should contain the following elements: the 

counting method, formulations for describing S-N curves, constant fatigue life diagrams, 

damage rules and a statistical description of a probability of failure. This will be first 

discussed in this chapter. Additionally, at the end of this chapter, a short literature review of 

fatigue on geomaterials will be presented.  

 Parameters describing cyclic loading  3.2.

Cyclic loading is defined as a repeated type of loading which has some regularity both in its 

magnitude and frequency. Machine man-made loading is often regular and can be described 

by e.g. a sinusoidal wave (Figure 3.1b). To make data obtained from naturally occurred cyclic 

loading useful for engineers (Figure 3.1a), the natural cyclic loading must be simplified from 

an irregular to a regular waveform with constant period and amplitude (Figure 3.1b and Table 

3-1). The constant period and amplitude should be the same as the natural one. These two 

parameters are translated into σ and N, where σ is the cyclic stress amplitude and N is the 

number of cycles. 

 

 

 

 

 

 

 

a) Irregular   b)  Repeated 

Figure 3.1. a) Irregular (or random) stress cycle and b) Repeated stress cycle 

Table 3-1. Types of cyclic loading 

 Nature of the loading: Where occurs: Description: 

Irregular stress cycles  random natural forces Very complex 

    

Repeated stress cycles regular laboratory tests, human induced 

cyclic loading 

By set of values 



FATIGUE OF MATERIALS 

 

32 

 

The stress cycle is usually sinusoidal (Figure 3.1b) of shape and can be described by the 

following set of values: 

- Maximum cyclic stress σmax 

- Minimum cyclic stress σmin  

- Cyclic stress   σcyc = σmax - σmin 

- Mean stress   σm = (σmax + σmin)/2 

- Cyclic stress amplitude σa = (σmax - σmin)/2 

- Frequency   f 

- Number of applied cycles  n 

- Number of cycles to failure N 

 

The direction, the sign and the type of the cyclic loading play a crucial role in the assessment 

of fatigue. The type of cyclic loading can significantly change the fatigue life, especially of 

inhomogeneous materials (e.g. concrete and rocks). These parameters are also very important 

for the preparation of laboratory tests and for choosing or developing a correct model for the 

strength loss behaviour. 

 Counting method 3.3.

Loads, which are occurring in a natural environment, e.g. wind, traffic, wave and earthquake 

loads, develop irregularly. Such a type of load is called a random load and is described by 

means of statistical functions, in particular the probability density function and the energy 

density spectrum. To correctly evaluate the number of random cycles and the magnitude of 

the loading, a simple counting method is required.  

 

Many counting methods have been already proposed, e.g. ASTM E1049-85 (2005) includes: 

level-crossing counting, peak counting, simple-range counting, range-pair counting, and 

rainflow counting (Figure 3.2). Eurocode 3 (2006) mentions two counting methods: rainflow 

and reservoir. 

 
Figure 3.2. Basic Fatigue Loading Parameters according to ASTM E1049-8 (2005) 

The rainflow method 

The rainflow counting (Matsuishi & Endo, 1968) belongs to the most often used methods 
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used in fatigue analysis in order to reduce a spectrum of varying stress into a set of simple 

stress reversals. The method is very fast, well defined, operator independent, and counts all 

cycles in the time series according to ASTM E1049-85 (2005). What also makes this method 

often used is that it allows the application of Miner’s rule (see chapter 3.5.4) in order to 

assess the fatigue life of a structure subjected to complex loading. 

 

The rainflow name is used because this method resembles a flow of a rain drop falling from a 

pagoda and running down the edges of the roof. The main purpose of the rainflow analysis is 

to create a histogram of cyclic stress, in order to form a fatigue damage spectrum. The basic 

algorithm can be described as follows: 

- Consider the segment of stress (Figure 3.3, left). Rotate the picture 90° as shown in 

Figure 3.3, right.  

- Imagine each trough has a water source and water flows downward from off of the 

“roofs”. 

- The water path is interrupted when the path passes a trough which is more negative 

(e.g., point 5) than the original (e.g., point 1). This path defines stress range S1 as 

shown. Note that the mean value of this stress cycle is also defined. 

- A path (e.g., starting at point 3) ends when it hits another path as shown. This defines 

another stress range S2. 

- The same process is pursued throughout the length of the available record. 

- The process can be repeated by considering the peaks as water sources. The stress 

cycles generated by the peak process should match the cycles of the trough generated 

process. 

 
Figure 3.3 Scheme of rainflow method (ASTM E 1049-85 (Reapproved 2005), 2005) 

In the case of irregular cycles (in terms of maximum stress) a number of equivalent cycles 

Neq can be introduced. It is used to transform the wave spectrum into equivalent groups of 

regular uniform waves, assuming that damage can be represented by an equivalent number of 

uniform waves. 
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The main limitation of the rainflow method is the loss of cycle order, which means that the 

high loading at the beginning and low at the end has the same effect as the opposite cyclic 

loading (low at the beginning and high at the end). Norén-Cosgriff et al. (2015), added that 

the rainflow method may not be well suited for the determination of the cyclic undrained 

behaviour of soils because soils are generally highly dependent on the ratio between the 

average and cyclic stress components. 

 Definition of fatigue for solid materials 3.4.

Fatigue is usually defined as a premature failure of materials due to cyclic loading at a stress 

level lower than its strength under static load conditions. Attention of engineers on the fatigue 

problems was caused by a loss of 12 Liberty ships during Second World War due to hull and 

deck cracks. The most significant effect has fatigue in aerospace engineering. Due to the air-

craft accidents – De Havilland Comet case from 1954, described by Whitney (2001), which 

were caused by structural fatigue (e.g. wings cracks), many researchers focused on the metal 

fatigue and yielded in various methods of its describing and predicting.  

 

Existing fatigue descriptions (in steel fatigue) may be classified under the following groups: 

- Fracture mechanics approach (models based on crack growth, see Chapter 2.2.4) 

- Empirical relationship - S-N curves, remaining strength curves, etc. 

- Low cycle fatigue approach 

- Damage models: Palmgren-Miner, Marco & Starkey (1954), Lemaitre brittle damage 

model (1985), etc., 

 

In this thesis only the S-N curve and remaining strength curve are employed and will be 

briefly described in subsequent chapters. 

 Empirical relationship - S-N curve 3.5.

Fatigue damage can be presented in various approaches and one of the most common is the 

empirical approach. The results used in the empirical approach, are based on an experimental 

characterisation of structures and materials through repetitive loading until a macroscopically 

observable failure mode occurs: usually fracture, resulting in the inability to carry the applied 

load. 

 

In the empirical approach, the fatigue data is usually represented by an S-N curve (sometimes 

called Wöhler’s curves or Wöhler’s diagrams), where the stress S is plotted against the 

number of cycles N (Figure 3.4 and Figure 3.5). The S is the magnitude of the cyclic stress 

σcyc and N is the number of cycles to failure at a specified cyclic stress ratio S.  

 

 

 

 

 



FATIGUE OF MATERIALS 

 

35 

 

S 

N 

 ultimate strength 

low fatigue cycle 

S-N curve 

endurance limit 

≈10
4
 N1 N2 

S1 

S2 

Se 

n1 

n2 

 

 

  

 

 

 

 

 

 

 

Figure 3.4. Idealised S-N curve 

 
Figure 3.5. Typical S-N curve for metals (Wikipedia, www.en.wikipedia.org) 

The main purpose of the S-N curve is to count the number of cycles for a given cyclic stress 

ratios until the sample reaches a failure state. The failure state is observed when the material 

is not able to reach the applied cyclic stress anymore. This simply states that the static 

strength S0 is reduced to σcyc for the last cycle N. The N is the sought variable denoting the 

fatigue life of material at given cyclic stress σcyc. Thus, one “S-N” curve can be created for 

various cyclic loads σcyc (S in S-N) and for the corresponding number of cycles to failure N. It 

is usually assumed that the points for N are log-normally distributed (ASTM E739-91, 1998), 

(EN 1993-1-9:2006 Eurocode 3, 2006). 

 

Types of S-N diagrams 

Fatigue in the S-N approach can be distinguished in two main ways of how it is described: 

- Strain approach - increase in strain due to cyclic loading (ε-N) 

- Stress approach - decrease in strength due to cyclic loading (S-N) 

 

A description of both of these approaches can be found in ASTM E739-91 (1998). In the 

strain approach, the damage parameter is the strain accumulation for given load amplitude 
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where for the stress approach, the damage parameter is the strength reduction in number of 

cycles. 

 

In the offshore industry, fatigue assessment in design is based primarily on S-N curves in 

order to define the strength. Usually the following three standards are the most commonly 

cited by designers and analysts in the offshore industry: API RP2A-WSD (2007), AWS 

D1.1:2000 (2000), and UK DEn (1990). 

3.5.1. Analytical description of S-N curves 

Types of S-N curves 

Since different materials show differences in strength reduction behaviour, it is difficult to 

establish a unified expression of S-N curve for all materials, therefore different empirical 

models (parabolic, hyperbolic, linearised, etc.) have been proposed in the literature to fit 

experimental data. A brief summary was given by e.g. Castillo & Fernandez-Canteli (2009): 

  𝑙𝑜𝑔 𝑁 = 𝑎 − 𝑏(𝑆)    (Wöhler, 1870) 3-1 

  𝑙𝑜𝑔 𝑁 = 𝑎 − 𝑏(𝑙𝑜𝑔 𝑆)    (Basquin, 1910) 3-2 

  𝑙𝑜𝑔 𝑁 = 𝑎 − 𝑏(𝑙𝑜𝑔(𝑆 − 𝑆0))   (Strohmeyer, 1914) 3-3 

  𝑙𝑜𝑔(𝑁 + 𝑑) = 𝑎 − 𝑏(𝑙𝑜𝑔(𝑆 − 𝑆0))    (Palmgren, 1924) 3-4 

  𝑙𝑜𝑔(𝑁 + 𝑑) = 𝑎 − 𝑏 𝑙𝑜𝑔((𝑆 − 𝑆0)/(𝑆𝑠𝑡 − 𝑆0))   (Weibull, 1949) 3-5 

  𝑙𝑜𝑔 𝑁 = 𝑎 − 𝑏 𝑙𝑜𝑔((𝑆 − 𝑆0)/(𝑆𝑠𝑡 − 𝑆0))    (Stüssi, 1955) 3-6 

  (𝑙𝑜𝑔 𝑁 − 𝑏)(𝑆 − 𝑆0) = 𝑎 𝑒𝑥𝑝[−𝑐(𝑆 − 𝑆0)]    (Bastenaire, 1972) 3-7 

where a, b, c, d are best fit coefficients. 

 

To the most often used models belong this first and the most simple one – the linear S-logN 

curve (Wöhler, 1870). The biggest advantage of linear formulation is that the log N = a –b (S) 

can be very easily fitted by a statistical linear regression and it gives accurate enough 

predictions. The Equation 3-1 is also incorporated into main engineering standards ASTM 

E739-91 (1998) and Eurocode 3 (2006). 

 

Static strength of materials 

To find the static strength S0, the following two most common failure criterions are used in 

metal engineering: 1) maximum shear stress – Tresca theory, 2) maximum shear strain energy 

- Von Mises theory. They are expressed as: 

- Maximum shear stress - Tresca: 

  
1

2
𝑚𝑎𝑥(|𝜎1 − 𝜎2|, |𝜎2 − 𝜎3|, |𝜎3 − 𝜎1|) = 𝑆𝑠𝑦 =

1

2
𝑆𝑦 3-8 

- Maximum shear-strain energy - Von Mises: 

  (𝜎1 − 𝜎2)2 + (𝜎2 − 𝜎3)2 + (𝜎3 − 𝜎1)2 = 2𝑆𝑦
2 3-9 

where Sy is the yield strength in uniaxial tension, Ssy is the yield in shear, and σ1, σ2, σ3 are 

principal stresses. 
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Both theories (Tresca and Von Mises) are one-parameter theories and therefore these can be 

very easily applied to the fatigue description of materials in which strength can be described 

by one parameter (e.g. tensile strength for steel, or unconfined compression strength for 

concrete). 

 

Endurance limit and fatigue life of material 

The fatigue S-N curve is commonly associated with a high number of cycles to failure. The 

endurance limit (Figure 3.4) is also sometimes denoted as a fatigue limit Se (or σe), which is a 

stress below which failure would never occur and is in the range of N = 10
7
 or 10

8
 cycles for 

metals. Below this limit, the material can endure an infinite number of cycles until failure. 

Many materials do not have a fatigue limit, thus even a low stress causes damages. The two 

curves from Figure 3.6 present two different kinds of fatigue in materials. The curve entitled 

Aluminium 2014-T6 denotes a material that does not have a fatigue limit, while the 1045 steel 

presents a typical material with a fatigue limit.  

 
Figure 3.6. Load cycles before failure (www.efunda.com, High-Cycle loading) 

3.5.2. S-N curve fitting and probability of failure 

Regression lines for S-N 

A simple statistical approach to an S-N (also ε–N) analysis is described in ASTM E739–91 

(1998). It recommends using the log-normal distribution to fit the data points. Eurocode 3 

(2006), which refers to Annex D of EN (1990) for a statistical analysis, also suggests using a 

log-normal distribution. It is convenient to analyse log (N) using models based on the normal 

distribution because it introduces linearisation which can be easily parameterised and 

calculated by a linear regression analysis. Therefore, the investigation of fatigue of 

geomaterials will be also based on the log-normal distribution. 

 

Normalised S-Curves 

The cyclic results can be presented as a normalised S-N curve defining permissible stress for 

fatigue-loaded welded joints. The normalised S-N curve is presented as band of a width 
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T=1:(m+1.28∙s)/(m-1.28∙s). The band describes a probability of survival between Pu=90% and 

Pu=10% (see Figure 3.7). The proposed value of the Ts is from 1:1.5 to 1:1.26.  

 
Figure 3.7. Normalised S-N curves for welded components (Haibach, 1989) 

Probability of failure for S-N 

According to the ASTM E739–91 (1998) and Eurocode 3 (2006), it is assumed that the 

scatter in log life is the same for low and high stress levels (Figure 3.8). In most cases the S-

N curve is given as the 50% percentile of the survivability line (median curve). Additionally, 

ASTM E739–91 (1998) and Eurocode 3 (2006) propose 95% confidence band (Figure 3.8); 

however other probabilities of failures can also be applied. For guideline purposes, the S-N 

curve data can be described in terms of percentiles other than the 50% of the survivability 

line. In that case, the percentile is included in the S-N curve description. This way of 

incorporating probabilistic calculation is sometimes denoted as an S-N-P curve (Figure 3.9). 

These models usually are based on a Weibull or Gumbel distribution.  

 

 

 

 

 

 

 

 

 

 

Figure 3.8. Possibility of survival for a fatigue life at a specified stress level for number of cycles NR 
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Figure 3.9. S-N-Pf curves for Hybrid Steel-Polypropylene Fibrous Concrete Beams in Flexure (75% 

steel fibres + 25% polypropylene fibres) (Singh, 2011). 

In many test results e.g. for concrete (Oh, 1986), the Weibull distribution gives a better 

correlation than the log-normal one. Whitney’s (1981) pooling scheme and the wear out 

model used by Sendeckyj (1981) for fibre polymers, derive S-N curves by taking into account 

the probabilistic nature of the fatigue properties of materials. Both the pooling scheme and 

the wear out models assume that the experimental data follow a Weibull (1949) distribution 

(in contrast to ASTM and Eurocode standards), which make these models more complicated. 

Joosse et al. (1994), concluded that the linear regression is more preferable because it is 

simple and the results are similar for higher number of cycles than the more complicated 

models. 

3.5.3. Goodman diagram (constant fatigue life diagram) – effect of a mean stress 

Very often a Goodman (1899) equation is presented together with the S-N curves. The 

Goodman equation (3-10) is a relation used to quantify the interaction of mean stress σm and 

cyclic stress amplitude σa (also denoted as an alternating stresses) on the fatigue life of a 

material. The Goodman relation can be given as: 

  
𝜎𝑎

𝜎𝑒𝑓𝑓
+

𝜎𝑚

𝜎𝑢
= 1 3-10 

Some other empirical curves are given by Soderberg (1930): 

  
𝜎𝑎

𝜎𝑒𝑓𝑓
+

𝜎𝑚

𝜎𝑦
= 1 3-11 

by Gerber (1874): 

  
𝜎𝑎

𝜎𝑒𝑓𝑓
+ (

𝜎𝑚

𝜎𝑦
)

2

= 1 3-12 

and by Morrow (1968): 

  
𝜎𝑎

𝜎𝑒𝑓𝑓
+

𝜎𝑚

𝜎𝑓
= 1 3-13 

where σa is the cyclic stress amplitude, σm is the mean stress, σeff effective alternating stress at 
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failure for a fatigue life of N cycles, σy is a yield stress, σu is the ultimate stress and σf is the 

true fracture stress. 

 

The Goodman diagram (Figure 3.10 and Figure 3.11) is a graph of mean stress versus cyclic 

stress amplitude, showing how the fatigue life is changing with changes of mean stress for a 

given level of alternating stress. In other words, the relation can be plotted to determine the 

safe cyclic loading of a material. The solid lines represent point with the same estimated 

fatigue life (number of cycles) and the area below the curve indicates that the material should 

not fail for a given stress. The area above the curve represents likely failure of the material.  

 

  

Figure 3.10. Goodman diagram Figure 3.11. Goodman (constant fatigue life) 

diagram (Sarfaraz Khabbaz, 2012) 

 

Stress ratio R 

The diagram also incorporates the influence of a range of cyclic loading - a ratio of minimum 

stress σmin to maximum stress σmax in a cycle (Figure 3.1a): 

  𝜎𝑚𝑎𝑥 = 𝜎𝑚 + 𝜎 3-14 

  𝜎𝑚𝑖𝑛 = 𝜎𝑚 − 𝜎 3-15 

This ratio is called (cyclic) stress ratio and is commonly denoted by R.  

  𝑅 =
𝜎𝑚𝑖𝑛

𝜎𝑚𝑎𝑥
 3-16 

For example, the stress ratio R = -1 represents a test at zero mean stress and R = 0 test in one 

direction. The most common value of R is 0.1 for a cyclic tests and corresponds to a tension-

tension (compression-compression) cycle in which σmin = 0.1 σmax.  

3.5.4. Cumulative damage approach: Palmgren-Miner rule 

The natural load spectrum varies in time and it is important to link fatigue behaviour to 

damage in the material due to these random loads. The cumulative damage theory states that 

permanent damages, denoted as a Di, (Equation 3-17) caused by single cyclic loads i or series 
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of loads, accumulate.  

  ∑ 𝐷𝑖

𝑘

𝑖=1

= 𝐷1 + 𝐷2 + 𝐷3 + ⋯ + 𝐷𝑖 = 𝐷 3-17 

It also assumes that the total damage D caused by a number of stress cycles is equal to the 

summation of damages caused by the individual stress cycle. There a few theories which are 

based on these suppositions and they are called damage hypothesis. 

 

The Palmgren-Miner rule 

The Palmgren-Miner rule (Palmgren, 1924), (Miner, 1945) is based on S-N curves and this is 

used in most standards related to fatigue design. 

 

The Palmgren-Miner rule, states that where there are k different stress magnitudes in a 

spectrum, Si (1 ≤ i ≤ k), each contributing ni(Si) cycles, then if Ni(Si) is the number of cycles 

to failure of a constant stress reversal Si (see Figure 3.12), so failure occurs when: 

  ∑
𝑛1

𝑁1

𝑘

𝑖=1

=
𝑛1

𝑁1
+

𝑛2

𝑁2
+

𝑛3

𝑁3
+ ⋯ +

𝑛𝑖

𝑁𝑖
= 𝐷 = 1 3-18 

where ni is the number of load cycles with a certain amplitude and range; Ni is the 

corresponding total number of cycles to fatigue failure. 

 

Eurocode 9 (2011) uses for the safe fatigue life design the assumption of a linear damage 

accumulation (Palmgren-Miner rule); the safe design damage value DL,d for all cycles should 

fulfil the condition: 

  𝐷𝐿,𝑑 ≤ 1 3-19 

The Palmgren-Miner rule can be interpreted graphically as a shift of the S-N curve (Figure 

3.13). For example, if n1 cycles are applied at stress S1 (where the fatigue life is N1 cycles), 

the S-N curve is shifted so that goes through a new fatigue life value, N1*. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12. Idealistic Palmgren-Miner rule Figure 3.13. Shift of the S-N curve in Palmgren-

Miner rule 
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Advantages and disadvantages of Palmgren–Miner’s rule (cumulative damage rule) 

The advantages of Palmgren-Miner rule are: 

- It is simple, 

- It is widely used as first estimation, 

- It is in most cases accurate enough. 

 

The disadvantages of Palmgren-Miner rule:  

- It does not well describe the random nature of natural cyclic loading, 

- It considers the damage development to be linear, 

- The value of the damage parameter only indicates whether or not failure occurred, it 

does not relate to a physically quantifiable damage, 

- It does not well predict the applied load sequences (cycles of low stress followed by 

high stress cause more damage than in reality but high stress followed by low stress 

may have less damage), 

- It assumes that the small loads have negligible damaging influence, 

- The damage accumulation is assumed to be independent of the cyclic stresses. 

 

There is always a risk that this simplistic approach is in a certain situations inaccurate, but it 

can be useful for basic fatigue life estimation. Nevertheless special care must be taken for 

implementing this rule in fatigue life estimation procedures and standards. The FKM 

guideline (2003) proposes value of critical damage sums D for some types of metals e.g. 

steel, alloy steels, aluminium alloys as 0.3 for non-welded components and 0.5 for welded 

ones. 

 

Other cumulative damage models 

Modification of Miner’s rule has been a common way of improving the fatigue life prediction 

retaining the amount of input information. One of the simplest modifications of Miner’s rule 

is multiplying it by a factor K, other than 1: 

  𝐷 = ∑
𝑛𝑖

𝑁𝑖
= 𝐾

𝑘

𝑖=1

 3-20 

High-low fatigue tests are tests where the testing occurs sequentially at two stress levels 

S1>S2. These tests generally show that failure occurs for K < 1. This means that the Palmgren-

Miner rule is non-conservative for these tests. For low-high tests, K values are typically >1. 

 

Echtermeyer et al. (1996) considers spectrum loading, a K of 0.1 safe for most cases. The 

value of K is usually determined empirically. Essentially, modifying Miner’s rule in this way 

is identical to shifting the S-N curves towards lower fatigue life (Figure 3.13).  

 

A nonlinear Miner’s rule was given by e.g. Goodin et al. (2004) and others. The model 

parameters in these formulations typically take the quality of fitting parameters, rather than 

that they are parameters quantifying the physical background of the material degradation. The 
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basic formulation is given as: 

  𝐷 = ∑ (
𝑛𝑖

𝑁𝑖
)

𝛼
𝑘

𝑖=1

 3-21 

where α is a parameter describing the nonlinearity. 

 

One of the more complex formulations was proposed by Howe & Owen (1972): 

  𝐷 = ∑ [𝐴
𝑛𝑖

𝑁𝑖
+ 𝐵 (

𝑛𝑖

𝑁𝑖
)

𝐶

]

𝑘

𝑖=1

 3-22 

This equation was introduced to describe damage in terms of normalised resin cracking (for 

polymeric material). Introducing additional parameters is not increasing significantly the 

accuracy, but these nonlinear models lose its biggest advantages – its simplicity. 

 

The safety check expression for the cumulative damage rules can be presented in a very 

simple way: 

  𝐷 ≤
1.0

𝐹𝐷𝐹
 3-23 

where FDF is a fatigue design factor (the concept of a factor of safety on fatigue life). 

 

Many other cumulative fatigue damage and fatigue life prediction theories were already 

proposed e.g. Marco & Starkey (1954), Corton & Dolen (1956), etc. A review of these 

theories was given by e.g. Fatemi & Yang (1998). 

3.5.5. The impact of static strength on S-N curve 

It is still not decided yet, whether the static data should or should not be incorporated into 

derivation of S-N curves. It seems that neither the incorporation of the static data, nor the 

exclusion is completely justified (Nijssen, Krause, & Philippidis, 2004). There is a list of 

arguments pro and contra regarding this discussion: 

 

For the static data inclusion: 

- Static data are fatigue specimens which failed in the first load cycle 

- Including static data in the linear regression diminishes inconsistencies in low-cycle 

region 

- S-N curves that describe both static and fatigue have the potential of simplifying 

experimental programmes and fatigue life prediction, since fatigue behaviour can be 

described by static strength and a slope-parameter 

 

Contra the static data inclusion: 

- Static strength is usually not obtained at strain rates corresponding with fatigue strain 

rates 

- Including static data might cause the fatigue life to be poorly represented for higher 
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number of cycles 

- Static and fatigue failure mechanisms are often distinctly different 

- Models which include the static strength require more parameters to model the 

material’s behaviour 

 

ASTM and Eurocode do not recommend using the static data in derivation of the S-N curve. 

A practical argument against the advantages of including static data is the fact that most 

fatigue calculations, low-cycle fatigue is of little or no interest, given the long design fatigue 

lives. As presented in Figure 3.14, for different applied cyclic loads (R-ratios), different S-N 

curves are obtained. For a higher cyclic stresses, plasticity plays an important role, and 

therefore the results for a low cycle fatigue (LCF) are not included in standard S-N curves 

(Figure 3.15). This is because the use of static strength data could lead to incorrect 

estimations in high cycle fatigue (HCF). However in geotechnics, in some cases the number 

of cyclic loads could be small but the loads could be significant and the small number of 

cycles would be of interest (e.g. during earthquakes or very strong guts or waves). 

 
Figure 3.14. S-N curve for tension and tension-dominant fatigue loading (Sarfaraz Khabbaz (2012) 
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Figure 3.15. Comparison of exponential and power curves for laminates excluding static data 

(Sarfaraz Khabbaz, 2012) 

 Low cycle fatigue approach 3.6.

The number of cycles to failure in engineering is considered as N >10
4
, however, for some 

materials (e.g. rocks and concrete) already a low number of cycles in relation with high cyclic 

stresses could lead to a substantial loss of strength. A material subjected to high cycle fatigue 

(HCF) loading, is mostly found to be in the elastic range, usually below 2/3 of the yield 

stress. Very high repeated cyclic loadings due to earthquakes or other catastrophic events may 

cause failures in less than 100 cycles. These failures are sometimes referred to as low cycle 

fatigue (LCF). 

 

Basquin equation 

All general methods for fatigue life estimation under LCF are based on three equations. The 

first of them has been published for high cyclic stresses by Basquin (1910): 

  𝜎𝑎 = 𝜎𝑓
′(2𝑁𝑓)

𝑏
 3-24 

It describes the exponential relationship between the number of cycles to failure Nf and a 

stress amplitude σa.  

 

Coffin-Manson equation 

The second equation was given by the Coffin (1954) - Manson (1953): 

  𝜀𝑎𝑝 = 𝜀𝑓
′ (2𝑁𝑓)

𝑐
 3-25 

where εap is the amplitude of plastic strain and Nf is a corresponding fatigue life. This 

equation relates empirically the cycles to failure Nf to the plastic strain amplitude εap (similar 

to Basquin equation). The εf and c are experimentally determined constants. 
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The third equation describes a total strain as a sum of the elastic and plastic strains: 

  
𝜀𝑡 = 𝜀𝑒 + 𝜀𝑝 =

𝜎

𝐸
+ (

𝜎

𝐾′
)

1
𝑛′

 
3-26 

This plotted creates the cyclic stress-strain curve and the curve forms a hysteresis loop in a 

single fatigue cycle. The area of that loop is the dissipated energy per unit volume during a 

cycle. 

 

Morrow equation 

Several of formulae have been proposed for evaluating the parameters in the Coffin-Manson 

equation for the short fatigue life Nf. To the most common belongs the Morrow (1964) 

notation for universal strain-life, represented by: 

  ∆𝜀

2
= (

𝜎𝑟
′

𝐸
) (2𝑁𝑓)

𝑏
+ 𝜀𝑓

′ (2𝑁𝑓)
𝑐
 

3-27 

Here, Δε/2 is the strain amplitude (i.e., half the total strain range), and 2Nf is the number of 

reversals (two reversals for each of the Nf cycles of failure). The terms 𝜀𝑓
′  and 𝜎𝑓

′/E are strain 

intercepts at 2Nf =1, and c and b are slopes of the plastic and elastic lines, respectively (as in 

Figure 3.16). The intersection of the two straight lines is known as the “transition point”, and 

its coordinates are designated ΔεT/2 and 2NT respectively. 

 

The universal slope equations were given for the elastic and plastic lines -0.12 and -0.6 

respectively for all materials. These slopes were based on 29 materials (metallic) which 

covered a wide range of strength and ductility. Based on this, Manson-Hirschberg (1964) 

derived the following equation: 

  ∆𝜀 = (3.5𝑆𝑢/𝐸)𝑁𝑓
−0.12 + 𝐷0.6𝑁𝑓

−0.60 3-28 

Thus, only the tensile properties Su, D and E are required to determine the relationship 

between fatigue life and strain range. 

 

 
Figure 3.16. Morrow’s notation for use in the Manson-Coffin-Basquin model for fatigue in strain 
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cycling 

The low fatigue cycle is a promising approach to be investigated for a lower number of high 

cyclic stresses; however, other approaches could be more useful. The LCF could be probably 

directly incorporated into HCF. This will be further investigated for geomaterials. 

 Fatigue of geomaterials 3.7.

To compare behaviour of geomaterials under cyclic loading, the geomaterials are divided into 

two groups: 

- Cohesive 

- Cohesionless 

 

Cohesive geomaterials - rocks 

Burdine (1963) first showed that compressive cycling loading on rock resulted in a 

weakening of the material. Many other tests on a variety of rock types were presented which 

clearly demonstrated the progressive weakening of rock due to cyclic loading (Haimson, 

1978), (Attewell & Farmer, 1973), (Ishizuka, Abe, & Kodama, 1990), (Mirzaghorbanali, 

Nemcik, & Aziz, 2013), (Jong & Chan, 1991), (Bagde & Petroš, 2011). Fatigue cyclic tests 

on artificially cemented soil were conducted by Viana da Fonseca et al. (2013). Only a 

limited number of cyclic tests have been conducted on rock discontinuities and discontinuous 

(jointed) rock masses so far; e.g. Canelli et al. (2012) conducted tests cyclic load tests on 

smooth and rough discontinuities. An S-N curve for limestone was proposed by Lee & Rhee 

(1992), see Figure 3.17. Liang et al. (1993) also proposed an S-N curve and a simple formula 

based on cyclic tests on deep coal rock masses: 

  𝑝 = 𝐵 − 𝐴 𝑙𝑛 𝑁 3-29 

where A and B are the functions: 𝐴 = 𝐴(𝜎, 𝑝̇), 𝐵 = 𝐵(𝜎, 𝑝̇) in which p is the cyclic axial 

pressure amplitude, 𝑝̇ is the axial loading rate and σ is the confining pressure. 

 
Figure 3.17. S-N curve for Indiana limestone and Seoung-Ju specimen (Lee & Rhee, 1992) 
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Mingming et al. (2015), concluded that the relationship between the fatigue life and loading 

speed, frequency, and stress amplitude under dynamic cyclic loading for sandstone would be 

expressed as the S-N curve. They also proposed a formula which best fit is: 

  𝑁 = 𝑎𝑋−𝑏 3-30 

Ray et al. (1999) studied the impact of cyclic loading on Chunar sandstone. In tests for given 

number of cycles (similar to remaining strength curve) they found that the UCS decreases in 

cyclic loading with constant amplitude for higher number of cycles and showed that after 

certain number of cycles the percentage decreases in uniaxial compressive strength does not 

increase uniformly. They divided the curve into three zones (see Figure 3.18). 

 
Figure 3.18. Effect of number of cycles on percentage decrease in UCS (Ray, Sarkar, & Singh, 1999) 

Rocks lose their strength in cyclic loading and the loss of strength is larger than compared 

with non-geomaterials, which was found by e.g. Bagde & Petroš (2011) and Liu et al. (2014). 

Cyclic test results for concrete (ACI Committee 215R, 2005), of which one could think it is a 

similar material to rock, showed that the fatigue strength after 10 million cycles was 

approximately 55% of the static strength, which is a value often used in design. 

 

Cohesionless geomaterials - soils 

Soil can be seen as a mixture of rock fragments or mineral grains, sometimes including 

organic particles. Unfortunately, soil fatigue cannot be treated similarly to that of ductile 

(metals) or brittle (rocks) materials. Failure does not occur in a typical three-phase order: 

crack initiation, crack propagation and failure (compare chapter 2.2.4). Cracking, which is the 

main fatigue mechanism in solid materials, cannot develop in soils, as the soil is already 

disintegrated. Soil fatigue is only a moderate reduction of the strength which occurs mainly in 

the vicinities of a foundation that is cyclically loaded, for example shaft skin friction 

degradation (see chapter 2.1.2).  
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The nature of strength of a soil is different from solid materials. For soils the friction angle ϕ 

gives the strength, where for many other materials it is mostly, or totally the cohesion c. Most 

soils lack, or only have a very low cohesion, which may be an important factor for the soil 

fatigue description, and this could be even more challenging for soils than for rock materials. 

 

Cyclic tests on clay show that the shear strength of undrained samples is reduced according to 

Sangrey et al. (1969), Thiers & Seed (1969), Patiño et al. (2013). Carter et al. (1982) 

proposed a model for prediction of the mean effective stress reduction in clayey soils under 

cyclic loading. An improved model was proposed by Sridhanya et al. (2009). However, a 

series of cyclic tests on pottery clay conducted at the University of Luxembourg (Knaff, 

2013) showed no fatigue. On the contrary, the strength of the samples even increased due to 

cyclic loading. It has to be noticed, however, that the amount of tests and the number of 

cycles was very limited. The results for cyclically loaded drained soils also showed an 

increase in shear strength of granular materials (Suiker, 2002). Eurocode 8 (2004), states that 

“no reduction of the shear strength need to be applied for strongly dilatant cohesionless soils, 

such as dense sand”. In cases of high cyclic loads and high confining pressures, skin shaft 

friction degradation may occur - see chapter 2.1.2. 

3.7.1. Factors affecting strength of geomaterials 

Basically, factors which are important in fatigue behaviour of materials, like steel and 

concrete, should also be taken into account of fatigue life of geomaterials. It can be assumed 

that the most significant effects on fatigue life will be: 

- Loading rate (frequency), 

- Load history, 

- Stress gradients, 

- Specimen size, 

- Temperature, 

- Rest period, 

- Varying maximum stresses, 

- Shape of the wavelength of loading, 

- Confining pressure, 

- Material properties, 

- Saturation (presence of water), 

- Mechanism of fatigue failure, 

- Impact of environment (humidity, salinity, corrosive agents, etc.). 

 

Some of the factors are very similar to concrete fatigue factors (Appendix A.C). All of these 

effects, however, have to be taken into account for the preparation of laboratory tests and the 

description of the fatigue of geomaterials. 
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Frequency of load 

One of the important parameters of cyclic loading is the frequency. It is well known, for ex-

ample Zhao (2000), Li et al. (1999), and Lockner (1998) that the dynamic strength of rock 

depends on the loading rate. Ishizuka et al. (1990), Bagde & Petros, (2011), Haimson & Kim 

(1972), Liu et al. (2012) reported that the fatigue life increases with increasing frequency. 

 

For wind turbines, the frequency of wind turbulence lies below f = 0.1 Hz. The rotational 

speed is typically in the range of 10-20 revolutions per minute, corresponding to a full revolu-

tion, in the range f = 0.17 - 0.33 Hz. For traffic, machine, wave and earthquake loading fre-

quencies tend to be in range f = 0.1 – 20 Hz (see Table 3-2). The dominating force in offshore 

wind turbine foundations is the wave load, which has a much longer period, around 10 ~ 20 

seconds (large waves can reach even 200 s) that means a frequency of f = 0.1–0.05 Hz.  

 

Even though the span of the loading frequency, which is important for geotechnical struc-

tures, is wide (Figure 3.19), it is still in the range of the cyclic loading (see Table 3-2). 

Table 3-2. Approximate classification of repeated loading of soils [Peralta, 2010] 

Repeated Loading of Soils Cyclic Cyclic-Dynamic Dynamic 

Frequency f  0 to 1 Hz 1-10 Hz >10 Hz 

Inertia No (negligible) Yes (relevant) Yes (relevant) 

Strain accumulation Predominantly plastic Plastic and elastic Predominantly elastic 

 
Figure 3.19. Frequency of cyclic loading range in geotechnics 

Number of cycles 

The number of cyclic loads, especially in offshore structures, can be quite significant. Wind 

turbine rotor blades can be subjected to the number of load cycles up to 10
8
 or 10

9
 according 

to Mandell et al., (1992) and Van Delft et al., (1997). The number of load cycles, that a stand-

ard wing turbine might be subjected to over its 20-year life time given by Janssen et al., 

(2012), is 100 million to 1 billion. For other geotechnical structures the number of loads may 

be much smaller, e.g. for sluices, underground gas storage facilities, or during mining opera-

tions and earthquakes. The range of applied number of cycles has a significant impact on the 

fatigue of materials. There is a lack of tests in the literature, which investigated the behaviour 

of geomaterials under a large number of cycles. 

 

Usually two different ranges of load cycles are investigated: 

- High cycle fatigue (HCF): in case material requires more than N >10
3
 – 10

4
 cycles to 
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failure. 

- Low cycle fatigue (LCF): in case material requires less than N < 10
3
 – 10

4
 cycles to 

failure. 

 

Static fatigue 

Brantut et al. (2013) gave a summary of a brittle creep - a process which leads to static 

fatigue. Static fatigue is a delayed failure of rock material when loaded to a stress lower than 

the short-term failure stress (Kranz, 1980), (Lockner, 1998). The time to failure was found 

empirically to be related to a stress, through an exponential or power law (Kranz, 1980). 

Static fatigue was found to be one of the main mechanisms responsible for weakening over 

time of iron ore pillars in underground mines in Lorraine (Grgic & Giraud, 2014). Static 

fatigue of geomaterials should also be considered in order to describe cyclic fatigue. 

 

Stress amplitude 

Attewell & Farmer (1973) found that for higher cyclic stress amplitude the fatigue life 

decreased. The same result was given by Zhenyu & Haihong (1990), Bagde & Petros (2005) 

and Kranz (1980), Xiao et al. (2009) and others. 

 

Influence of confining pressure σ3 on a static and cyclic strength of geomaterials 

The yield criteria for metals; Tresca and Von Mises, are one parameter criteria, which are not 

taking into account the confining (lateral) pressure. However, most non-metallic materials, 

and some high-strength steel and alloys, have their static strength dependent on the lateral 

pressure. Some studies (Crossland, 1954), (Hu, 1959) show that the effect of the lateral stress 

on the plastic behaviour of metals can be significant. Still, in metal engineering, the influence 

of the lateral pressure σ3 on the static strength S0 is neglected. 

 

A number of experiments conducted by Bridgman (1923) show that the confining pressure is 

unimportant for metal fatigue. Hudson (1973) summarised fatigue tests on metal alloys and 

found that lower air confining pressure produces longer fatigue lifes. Different results were 

found earlier by Libertiny (1967). He observed that a large hydrostatic pressure produces an 

increase in the short fatigue life of the metal. Wadsworth & Hutchings (1958) tested strip 

polycrystalline copper, aluminium and gold in both air and a vacuum. The ratio of fatigue 

life-in-air to fatigue life-in-vacuum was about 1:20 for copper, 1:5 for aluminium, and 1:1 for 

gold. The impact of the confining pressure on metal fatigue life is still subject of research.  

 

For rock, concrete and soil, an increase in static strength for higher lateral (confining) 

pressure is well known (Kwasniewski & Takahashi, 2006), and is incorporated in the Mohr-

Coulomb failure theory since Coulomb's first publication in 1773. 

 

Even though the experimental and theoretical studies on cyclic loading on rocks primarily 

focus on the influence of the stress amplitude and loading rate, only a small concern is given 

to the influence of the confining pressure. The increase in number of cycles, with an increase 
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in confining pressure, was confirmed by Burdine (1963), Kranz (1980) and Zafar & Rao 

(2010) and Haimson (1978). 

 

Intermediate stress σ2 effect on fatigue 

The Mohr-Coulomb theory, because of its big advantage of simplicity, has unfortunately a 

limitation, because it does not include the intermediate principal stress σ2. The results of 

many experiments show that with increase in the intermediate principal stress σ2, higher 

strengths are obtained (Figure 3.20 and Figure 3.21). 

 
Figure 3.20. Relation between strength and intermediate principal stress σ2 (Mogi, 1972) 

 
Figure 3.21. Effect of intermediate principal stress σ2 on Naxos Marble (Michelis, 1985) 
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Mogi (1972) was the first one, who studied the effect of the confining pressure, intermediate 

principal stress and minimum principal stress on a differential stress-axial strain characteristic 

of rocks. The results of true triaxial compression tests (Kwasniewski & Takahashi, 2007), 

show that the effect of intermediate principal stress σ2 on the ultimate strength of the 

limestone is weaker than the effect of confining pressure σ3. El-Gammel (1984) investigated 

the effect of the intermediate principal stress and he observed significant changes in the 

stress-strain behaviour of samples. Xu & Geng (1985) pointed out that, varying σ2 while 

keeping the other principal stresses σ1 and σ3 unchanged could lead to a rock failure, and this 

fact could also be attributed to the inducement of earthquakes.  

 

So far, no cyclic fatigue tests were conducted to investigate the impact of σ2 on the remaining 

strength because those tests would be extremely difficult to conduct and these results alone 

could be insufficient to make any conclusions. 

 

Type of failure 

For uniaxial compression test of rocks, there is a range of different failure mechanisms 

possible of which the two most common are illustrated in Figure 3.22. One failure 

mechanism involves axial splitting, which is dominated by tensile stresses induced by plate 

friction and other end effects. The other failure mechanism is shearing. A uniaxial 

compressive strength tests should produce an inclined shear plane, or planes, through the test 

sample, if is to represent compressive stress conditions (Johnston, 1991). 

 
Figure 3.22. Failure mechanism in the uniaxial compression tests: a) axial splitting and b) shearing 

The type of fracture also depends on the confining pressures as is presented in Figure 3.23 

and in Figure 3.24. The type of fracture has a significant impact on the plastic strain (and the 

critical energy accumulation) and strongly depends on the confining pressure (Karman, 

1911). Liu & He (2012) found that the confining pressure had a significant influence on the 

cyclic deformation and fatigue damage of the sandstone samples, because the axial strain at 

failure increased with increasing confining pressure. Therefore it is clearly visible that for 

geomaterials the strain and critical energy models would lead to difficulties to properly 

describe the cyclic plastic strains and critical energy accumulation. Johnston (1991) stated 

that the yield point which exists between brittle ductile behaviour could be the same for rocks 

(brittle ductile transition pressure) and soils (maximum overburden pressure). It can be 

summarised that a very limited scientific effort was done to investigate the type of failure on 
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the fatigue behaviour on geomaterials. 

 
Figure 3.23. Types of fractures or flow in Wombeyan marble at various confining pressures. a) axial 

splitting failure at atmospheric pressure; b) single shear failure at 3.5 MPa; c) conjugate shears at 35 

MPa; d ductile behaviour at 100 MPa (Paterson, 1958) 

 
Figure 3.24. Progression in the natures of the stress-strain curve in triaxial compression of Wombeyan 

marble as confining pressure is increased as shown (Paterson, 1958) 

 Conclusions 3.8.

Fatigue of geomaterials in terms of shear strength (shear strength parameters c and ϕ) has not 

been deeply investigated. The existence of fatigue of geomaterials was already confirmed, but 

unfortunately not many research was done in order to investigate the relationship involving 

the shear strength parameters reduction, cyclic loading, confining pressure, type of cyclic 

loading and etc. The main concern of researchers in the past was related to dynamic strength 

of rock and shaft skin friction degradation of soil. No comprehensive description of cohesion 

or friction angle reduction in cyclic loading was found.
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4. REMAINING SHEAR STRENGTH CURVE FOR 

GEOMATERIALS 

 

 Introduction 4.1.

 

The microvoids and cracks, created during geological life of rocks, expand due to the cyclic 

loading because of a concentration of high stresses. Compared to other materials, especially 

to metals (microcraks in quenched and tempered steel are around 130 μm length, Barsom, 

2009), the initial microcracks in rocks are larger (1-3 mm in Stanstead granite Nasseri, et al. 

2007) and the internal structure is much more inhomogeneous. This makes the rock fatigue 

life prediction very complex. To evaluate fatigue in metals, the measurement of the maximum 

stress and the fatigue life is sufficient, where for rocks this may be not enough. 

 

Many non-geomaterials lose their strength in cyclic loading (chapter 3) and in contrast to 

geomaterials, their fatigue life has already been described. For geomaterials, which are also 

affected by cyclic loading (see chapter 2.2), no remaining strength model exists yet. Due to 

this lack of available models, used for describing the remaining strength, a simple remaining 

shear strength model for geomaterials will be proposed in this thesis. Based on this model, 

laboratory tests on geomaterials will be conducted and the fatigue life prediction, as well as 

the impact of the confining pressure and the different cyclic stresses will be studied. 

 

First, the static strength of geomaterials has to be described, second, the S-N curve for shear 

strength will be updated and finally the remaining shear strength curve will be proposed. 

Additionally, based on the assumption of a constant friction angle in cyclic loading on 

geomaterials, a curve for the remaining cohesion will be given. At the end of this chapter, 

similarities and differences between the S-N curve and remaining shear strength curve will be 

presented. 

 Static shear strength - Mohr-Coulomb failure criterion 4.2.

Strength characteristics of soils and rocks, even though they are quite different materials, are 

still similar (Johnston, 1991). The static strength of geomaterials is usually given as a shear 

strength and for both materials the shear strength can be described by a Mohr-Coulomb 
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τ 

failure criterion. The most important property of the Mohr-Coulomb theory is that the shear 

strength increases with an increase in the confining pressure. The Mohr-Coulomb failure 

theory is a linear failure criterion which gives two parameters: the cohesion and the friction 

angle.  

 

There are few methods which can be used to describe the stress state in soil mechanics. One 

way is to give four components (in a plane state of stress) with a fixed coordinate system (σxx, 

σyy, τxy, σzz). Another way is to specify the stress state using the principal stresses (σ1, σ2, σ3). 

The function defining the Mohr-Coulomb failure criterion is usually presented in terms of the 

maximum σ1 and minimum principal stresses σ3 as: 

  (
𝜎1 + 𝜎3

2
) 𝑠𝑖𝑛 𝜙 − (

𝜎1 − 𝜎3

2
) + 𝑐 ∙ 𝑐𝑜𝑠 𝜙 = 0 4-1 

where c is the cohesion, and ϕ is the friction angle. The two parameters c and ϕ can be 

obtained from laboratory tests (e.g. triaxial or direct shear tests) or field investigation (e.g. 

vane shear test). Stresses at failure in triaxial tests are normally presented on a 2D failure 

surface considering only the minor and major principal stresses σ1 and σ3 (Figure 4.1a). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. Failure in triaxial compression test (a) the stress-state, (b) the Mohr-Coulomb failure 

envelope 

The Mohr-Coulomb failure criterion can also be given as: 

  𝜏 = 𝜎 𝑡𝑎𝑛 𝜙 + 𝑐 4-2 

where τ is the shear strength, σ is the normal stress, c is the cohesion (intercept of the failure 

envelope with the τ axis) and ϕ is the slope of the failure envelope (Figure 4.1b). 

 

Other failure criterions, like Drucker-Prager and Hoek-Brown, will not be taken into consid-

eration due to two main limitations: they are more complicated and less used in geotechnical 

engineering. 

 

Shear strength at failure to the predicted shear strength  

The measured shear strength at failure can be compared to the predicted shear strength ac-

cording to the equation: 
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σxy 

 

 
  

𝜏

𝜏0
≝

𝜏𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(𝑁 ≫ 1)

𝜏𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑(𝑁 = 1)
 4-3 

where τmeasured is the measured in triaxial test shear strength (of single or cyclic test for N 

number of cycles), τpredicted or τ0 is the predicted shear strength based on Mohr-Coulomb shear 

strength parameters (cohesion c and friction angle ϕ obtained in series of static triaxial tests). 

The τpredicted is calculated for the same confining pressure σ3, as was applied for the τmeasured. 

This is presented in Figure 4.2: 

 

 

 

 

 

 

 

Figure 4.2. Measured shear strength to the predicted shear strength (where subscripts m and p denotes 

measured and predicted value correspondingly). 

The shear strength is given as: 

  𝜏 =
𝜎1 − 𝜎3

2
 4-4 

where σ1 and σ3 are the maximum and minimum principal stresses  

 

The relation from Equation 4-3 can be also written in terms of principal stresses: 

  
𝜏

𝜏0
=

 𝜎1,𝑚 − 𝜎3

2
𝜎1,𝑝 − 𝜎3

2

 4-5 

where σ1,m is the measured maximum principal stress and σ1,p is the predicted maximum 

principal stress. Based on an equation for deviatoric stress: 

  𝜎𝑑 = 𝜎1 − 𝜎3 4-6 

the relationship of the measured to the predicted shear strength can be also calculated as: 

  
𝜏

𝜏0
=

𝜎𝑑,𝑚

𝜎𝑑,𝑝
 4-7 

where, σd,m is the measured deviatoric stress and σd,p is the predicted deviatoric stress. The 

deviatoric stress is calculated simply as: 

  𝜎𝑑 =
𝐹

𝐴
 4-8 

where F is an applied force in triaxial apparatus and A is a cross-sectional area of a sample. 

τm 

τp 

σ3 σxx,yy 

 

σ1,p σ1,m 

τ = σ tanϕ+c 

 

 = σ 



REMAINING SHEAR STRENGTH CURVE FOR GEOMATERIALS 

 

58 

 

 S-N curve for geomaterials 4.3.

In the case of the S-N curve for non-geomaterials, the S corresponds to the cyclic stress σcyc. 

For geomaterials though, the hypothesis is that the fatigue depends in the same way as the 

static strength on the confining stress. This will be investigated in this thesis. 

 

S-N shear strength curve 

To be able to describe for geomaterials the shear strength reduction by S-N curves, instead of 

the cyclic stress σcyc, the ordinate axis has to be described by a σcyc/S0 ratio, which is the ratio 

of the applied cyclic stress σcyc to the static strength S0.  

 

For the shear strength reduction in cyclic loading, the S0 is replaced by the static shear 

strength (shear stress based on the linear regression for static tests): 

  𝑆0 = 𝜏0 4-9 

The applied cyclic stress σcyc is also proposed as a cyclic shear stress: 

  𝜎𝑐𝑦𝑐 = 𝜏𝑐𝑦𝑐  4-10 

For the non-dimensional S-N curve, the cyclic stress ratio can be proposed as a ratio of the 

applied cyclic shear stress to the maximum (static) shear strength: 

  
𝜏𝑐𝑦𝑐

𝜏0
= 𝑖 4-11 

Because for geomaterials the static shear strength τ0 depends on the confining pressure σ3, the 

cyclic stress τcyc should also be adjusted to that confining pressure. That means the fatigue 

strength is normalised to its static strength and should not be influenced by parameters such 

as strength, type of aggregate, age, and the confining pressure etc. This is already taken into 

account by dividing the τcyc by the τ0. In other words: 

  
𝜏𝑐𝑦𝑐(𝜎3)

𝜏0(𝜎3)
= 𝑖 4-12 

For further description and calculations it is assumed that the static and cyclic stresses 

correspond to a given confining pressure, therefore the symbol (σ3) will be omitted in the 

equations. It can be noticed that, the tests with a confining pressure equal to 0 kPa are similar 

to unconfined compression tests (UCS) which are normally used for concrete (ACI 

Committee 215R, 2005) and steel (ASTM E739-91, 1998). 

 

The S-N curve for the shear strength reduction can be based on the formulas described in 

chapter 3.5, and proposed by Eurocode 3 (2006) and ASTM E739-91 (1998): 

  
𝜏𝑐𝑦𝑐

𝜏0
=

𝐴

𝜏0
−

𝐵

𝜏0
𝑙𝑜𝑔10 𝑁 4-13 

where A and B are coefficients obtained in a linear regression analysis for a log-normal 

distribution. 

 

The final step is to prepare a plot (Figure 4.3) with regression line and a 95% confidence 
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band and 95% prediction band (Figure 4.3). The 95% confidence band encloses area between 

2.5% and 97.5% of probability that the band contains the true curve with reliability level 

50%. It gives a visual sense of how well data define the best-fit curve. The confidence band is 

calculated, according to ASTM E739-91 (1998), as: 

  𝐴̂ + 𝐵̂𝑋 ± √2𝐹𝑝𝜎 [
1

𝑘
+

(𝑋 − 𝑋̅)2

∑ (𝑋𝑖 − 𝑋̅)2𝑘
𝑖=1

]

0.5

 4-14 

where Fp is value of F distribution. 

 

The 95% prediction band (tolerance limits or confidence interval, according to (ASTM E739-

91, 1998) encloses an area between 2.5% and 97.5% of probability that the band contains 

95% of the data points. The prediction band, according to ASTM E739-91 (1998), is given as: 

  𝐴̂ + 𝐵̂𝑋 ± 𝑡𝑝𝜎̂ [1 +
1

𝑘
+

(𝑋 − 𝑋̅)2

(𝑘 − 1)𝑠𝑥
2]

0.5

 4-15 

where tp is value of Student’s t distribution, and 𝜎̂ is the standard error of the prediction. 

 

Other types of curve fitting can be investigated (power, exponential etc.), whether they 

describe the S-N curve more accurately or not. 

 
Figure 4.3. S-N curve for geomaterials with confidence and prediction band 

 Remaining strength curve for geomaterials 4.4.

In this thesis a remaining shear strength curve for geomaterials is proposed. This remaining 

strength curve describes the amount or percentage of the remaining strength after a number of 

cycles has been applied. The advantage of using the remaining strength instead of the S-N 

curve is that the information of the remaining strength is, in some cases, more important than 

the remaining life. Because the strength decreases after each cycle, it is important to know if 

the strength after a certain fraction of the fatigue life still has the capacity to carry its loads. 
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For the remaining shear strength curve, the constant fatigue life diagram (Goodman diagram, 

see chapter 3.5.3) and the cumulative damage rule (Palmgren-Miner rule, see chapter 3.5.4) 

can be directly incorporated into the remaining strength curve. 

4.4.1. Analytical description of the remaining strength curve 

The remaining strength curve assumes that the initial static strength S0 after a number of 

cyclic loads n is reduced. This phenomenon is called strength reduction or remaining strength 

curve after fatigue. The goal is to describe the remaining strength Srem as a function of the 

cyclic stress σcyc, the number of applied cycles n and the initial static strength S0: 

  𝑆𝑟𝑒𝑚 = 𝑓(𝜎𝑐𝑦𝑐 , 𝑛, 𝑆0) 4-16 

Since N is the fatigue life or the number of cycles until failure in the S-N curve, for the 

remaining strength curve the letter n will be used to describe the number of applied cycles. 

The number of applied cycles n is always smaller than the fatigue life N which means n ≤ N. 

The predetermined number of load cycles n is given before testing. Powers of 10 are used to 

present conveniently the results on a semi – logarithmic plot (linearised on log-normal plot) 

with a base of 10. The maximum possible number of applied cycles nmax should be more or 

less the same as the fatigue life N obtained in the S-N testing for the same cyclic stress σcyc. 

This would also correspond to the same loss of strength for both the S-N and the remaining 

strength curves (Srem = σcyc) in the case the same cyclic loading has been applied. In case 

where n = 1, the remaining strength Srem equals the static strength Srem = S0. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4. Remaining strength curve 

The remaining strength is a straight line for each (jth) cyclic stress σcyc (Figure 4.5): 

  𝑆𝑟𝑒𝑚,𝑗(𝑛) = 𝐶𝑗(𝜎𝑐𝑦𝑐) − 𝐷𝑗(𝜎𝑐𝑦𝑐) 𝑙𝑜𝑔10 𝑛 4-17 
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Figure 4.5. Remaining strength curve 

The parameters C and D depend on the cyclic stress σcyc and will be obtained by a linear 

regression analysis. For each cyclic stress σcyc, a single linear curve can be plotted (Figure 

4.6). 

 

A simplified version of Equation 4-17 will be used from here on in the thesis: 

  𝑆𝑟𝑒𝑚,𝑗 = 𝐶𝑗 − 𝐷𝑗 𝑙𝑜𝑔10 𝑛 4-18 

The final plot for the remaining strength curve is presented in Figure 4.6. The plot denotes the 

loss of strength in number of cycles n for a given cyclic stresses σcyc. 

 
Figure 4.6. Remaining strength for different cyclic stresses σcyc 

Remaining strength curve for metals and polymers (degraded strength models) are based 

usually on the Tresca or Von Mises yield criterions e.g. Broutman & Sahu (1972), Whitney 

(1981), Reifsnider & Stinchcomb (1986) and Sarfaraz Khabbaz (2012) etc. These curves 
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(models) unfortunately may not necessarily be suitable for geomaterials. 

4.4.2. Remaining shear strength curve 

The remaining shear strength equation for geomaterials can be given in the same way as the 

simple remaining strength equation (Equation 4-18). According to the Mohr-Coulomb failure 

theory, the shear strength τ depends on the confining pressure σ3. Thus the equation for single 

remaining shear strength curve is given as: 

  𝑆𝑟𝑒𝑚 =  𝜏𝑟𝑒𝑚(𝜎3) = 𝐶(𝜎𝑐𝑦𝑐) − 𝐷(𝜎𝑐𝑦𝑐) 𝑙𝑜𝑔10 𝑛 4-19 

where τrem denotes the remaining shear strength under confining pressure σ3 and C and D are 

again regression coefficients. The same cyclic load acting on a material under different 

confining pressures σ3 will lead to a different reduction of strength, however.  

 

To remove the dependency on the confining pressure σ3, the formula is normalised by 

dividing the whole equation by the static strength τ0. The remaining shear strength is given as 

a ratio of the initial strength τ0 to the remaining strength τrem. This is similar to the S-N curve 

for the remaining shear strength: 

  
𝜏𝑟𝑒𝑚(𝜎3)

𝜏0(𝜎3)
=

𝐶

𝜏0(𝜎3)
−

𝐷

𝜏0(𝜎3)
𝑙𝑜𝑔10 𝑛 4-20 

The coefficients C/τ0 and D/τ0 are replaced by the parameters α and β. 

  
𝜏𝑟𝑒𝑚

𝜏0
= 𝛼 − 𝛽 𝑙𝑜𝑔10 𝑛 4-21 

The cyclic stress i is defined in the same way as for the S-N curve for geomaterials, as a ratio 

of the applied cyclic shear stress to the maximum (static) shear strength: 

  𝑖 =
𝜏𝑐𝑦𝑐

𝜏0
 4-22 

For a number of sets j of cyclic stress ratios i, the Equation 4-25 becomes:  

  
𝜏𝑟𝑒𝑚,𝑗

𝜏0
= 𝛼𝑗 − 𝛽𝑗 𝑙𝑜𝑔10 𝑛 4-23 

The parameters αj and βj depend on the cyclic stresses τcyc. For different cyclic stresses the βj 

value should be different. It is expected that the higher the cyclic stress τcyc the higher the 

declination of the βj and also, the faster the strength reduction occurs. After conducting 

laboratory tests, the parameter β can be presented as a function of cyclic stress τcyc, material 

properties etc.: 

  𝛽 =  𝛽𝑗(𝜏𝑐𝑦𝑐 , 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠, 𝑒𝑡𝑐) 4-24 

Because for n = 1, the remaining shear strength equals to the static strength τrem = τ0 for all 

cyclic stress ratios i, the intercept αj equals 1.0 and Equation 4-18 can be transformed to: 

  
𝜏𝑟𝑒𝑚

𝜏0
= 1.0 − 𝛽 𝑙𝑜𝑔10 𝑛 4-25 
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- prematurely failed samples 

4.4.3. Prematurely failed samples in remaining strength curve 

Because the strength of a material is randomly distributed, it may happen that for some 

samples the expected strength has a greater value than the real strength of the sample. For 

those particular samples the cyclic loading will lead to a faster strength reduction and 

therefore, the sample will not survive the planned number of applied cycles. In that case, the 

sample is called a prematurely failed sample and is not taken into consideration to obtain the 

remaining strength curve (Figure 4.7). 

 

The removal of a part of the tests samples which are the weakest brings up a question about 

the reliability of the remaining strength curve. One of the proposed solutions is to use lower 

probabilities of failure. This, however, will not necessarily increase the accuracy of the 

material fatigue life prediction. Another solution is to include these prematurely failed 

samples in the calculation of the remaining strength parameters. This is, however, uncommon 

in remaining strength testing and could lead to erroneous calculation of the fatigue life. To 

avoid the problems with prematurely failed samples Yao & Himmel (1999) proposed a two 

parameter Weibull distribution of remaining strength. This problem, however, is still not 

properly solved yet.  

 

 

 

 

  

 

 

 

 

 

 

Figure 4.7. The remaining strength curve with prematurely failed samples 

4.4.4. Fatigue life span for the remaining strength curve - the maximum number of 

cycles  

For the remaining shear strength curve, the fatigue life N can be calculated directly from the 

equation of the remaining strength (Equation 4-21), without introducing any degradation 

parameter.  

 

For a given cyclic stress τcyc, after transformation, one can obtain the fatigue life until failure 

as: 

  𝑙𝑜𝑔10 𝑛 =
𝛼𝑗 − 𝜏𝑟𝑒𝑚

𝛽𝑗
 4-26 

and finally: 
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  𝑁 = 𝑛 = 10

𝛼𝑗−𝜏𝑟𝑒𝑚

𝛽𝑗  4-27 

where αj, βj are linear regression coefficients for a jth cyclic stress ratio i. If the material was 

not previously cyclically loaded, the remaining shear strength equals to the static strength 

τrem = τ0 and the intercept αj equals 1.0 

 

One of the expressions for an equivalent number of cycles neq was given by Schaff & 

Davidson (1997a) and Schaff & Davidson (1997b). These proposals are, however, more 

complicated and will not be used for the investigation in the fatigue of geomaterials. 

4.4.5. Cumulative damage rule for the remaining shear strength 

Remaining shear strength 

The remaining shear strength after a series of loads can found by a subtraction of individual 

strength losses for each of the cyclic loading sets. This can be presented mathematically as: 

  𝜏𝑟𝑒𝑚 = 𝜏0 − ∑ 𝑑𝑗

𝑘

𝑗=1

= 𝜏0 − 𝑑 4-28 

where the dj is the strength reduction in a one load sequence, for jth sequence. This formula 

can replace the Palmgren-Miner rule and the τrem parameter replaces the damage parameter D 

from Equation 3-17 (compare with Palmgren-Miner rule described in chapter 3.5.4). By 

incorporating Equation 4-18 into Equation 4-28, the remaining strength can also be presented 

as: 

  𝜏𝑟𝑒𝑚 = 𝜏0 − ∑(𝛼𝑗 − 𝛽𝑗 log10 𝑛𝑗)

𝑘

𝑗=1

 4-29 

where αj, βj are parameters obtained from the regression line of a given cyclic stress ratio i, 

and a given number of cycles nj in jth sequence, k is the number of cyclic loading sequences. 

For one loading sequence the cyclic stress ratio i is constant. 

 

Remaining life 

Based on Equation 4-27 one can also calculate the remaining number of cycles (fatigue life) 

for different loading sequences: 

  𝑁𝑟𝑒𝑚 = 𝑁 − (𝑛1 + 𝑛2 + ⋯ + 𝑛𝑖) = 𝑁 −  ∑ 𝑛𝑗

𝑘

𝑗=1

 4-30 

This can be written as: 

  𝑁𝑟𝑒𝑚 = 10

𝛼𝑗−𝜏𝑟𝑒𝑚

𝜏𝑗 −  ∑ 𝑛𝑗

𝑘

𝑗=1

 4-31 

In which the Nrem is the remaining life for cyclic stress ratio i given for a certain remaining 

shear strength (τrem). The single sequence of fatigue life reduction can be given by: 
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𝑛𝑗 = 10

𝛼𝑗−(𝜏𝑎𝑗−𝜏𝑏𝑗)

𝛽𝑗   4-32 

where nj is the number of cycles consumed under an jth cyclic stress ratio i, leading to a 

reduction of the strength from τ0 to a strength level denoted as τbj. In the case, when the 

remaining strength was already reduced (due to e.g. a past cyclic loading, or previous cyclic 

load set) the consumed fatigue life has to start from a lower strength equal to τaj. This idea is 

presented in Figure 4.8. Also here, the αj, βj parameters are obtained from a regression line 

for a cyclic stress ratio ij.  

 

 

 

 

 

 

 

 

 

 

Figure 4.8. Consumed part of the fatigue life in one sequence  

This gives final formulation for the remaining life: 

  
𝑁𝑟𝑒𝑚 = 10

1.0−𝜏𝑟𝑒𝑚
𝛽

 − 
𝛼𝑗−(𝜏𝑎𝑗−𝜏𝑏𝑗)

𝛽𝑗  
4-33 

Care must be taken, however, that the lack of the sequence order effect has not been proven 

yet, and some tests on e.g. concrete show that the statement, that the fatigue damage is 

accumulated linearly, does not hold (Murdock, 1965). The proposed cumulative damage rule 

ignores the effects of loading sequence (similar to Palmgren-Miner rule). To overcome these 

shortcomings non-linear damage theories have been proposed e.g. Anderson (1991). 

4.4.6. Effect of the mean stress and R ratio on the remaining strength of geomaterials 

Additionally, the effects of the different mean and amplitude stresses on the remaining 

strength should also be investigated (chapter 3.5.3). These effects are included in the 

regression variable βj. It is expected that the effects of the amplitude and mean loading on the 

remaining strength should be similar to the one described for the S-N curve (described in 

chapter 3.5). It means that the constant fatigue life diagram or Goodman diagram (see chapter 

3.5.3) can be skipped for the remaining strength curve and the effects of different mean and 

amplitude stresses can be included directly into the βj parameter. 

 Constant friction angle in soil mechanics 4.5.

In order to investigate more precisely the cyclic behaviour of geomaterials, the research into 

reduction of the shear strength τ, given by the parameters c and ϕ, should be further extended. 
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It was assumed that the friction angle ϕ has a constant value. This corresponds to a statement 

of Van Baars (1996) who, based on discrete element modelling, notified that: “The strength of 

a cohesive material depends on the contact strength and the normal force distribution. The 

friction angle is constant and does not even depend on the contact force. The cohesion 

depends only on the strength of a single contact and on the number of contacts per micro 

volume.” 

 

The assumption of the constant friction angle ϕ was also confirmed by laboratory tests. 

Vyalov (1978) observed that for rocks, the decrease of strength over time is a result of a 

decrease in cohesion c while the friction angle ϕ remains constant. Brantut et al. (2013), gave 

a summary of his tests, proving that brittle creep (permanent deformations under the 

influence of mechanical stresses) reduces the cohesion of rocks, but does not directly affect 

their internal friction. A cohesion reduction in weak rocks, based on similarities with creep 

and microcracks growth, was described by Larson (1998). Zhao (2000) found that rock 

material strength under dynamic loads can be approximately described by the Mohr-Coulomb 

criterion when the confining pressure was low and that the variation of cohesion with loading 

rate mainly led to a change in strength. From this all it must be concluded that only the 

cohesion is reduced by cyclic loading, while the friction angle ϕ remains constant. 

 Remaining cohesion curve 4.6.

Based on the hypothesis of constant friction angle, one can propose a similar to remaining 

shear strength curve (see Figure 4.5), a curve for a remaining cohesion (see Figure 4.9). The 

remaining shear strength ratio τrem/τ0 (or cyclic stress ratio τcyc /τ0 for S-N curve) can be 

replaced by the remaining cohesion ratio crem/c0. 

  
𝑐𝑟𝑒𝑚,𝑗

𝑐0
= 1.0 − 𝑌𝑗 𝑙𝑜𝑔 𝑛 4-34 

where Yj is a regression parameter, crem,i is the remaining cohesion after an applied number of 

cycles n at a given cyclic stress τcyc,j and c0 is cohesion based on the linear regression for 

static tests. The intercept point of the regression line will be equal 1.0 (or 100%). 
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Figure 4.9. Theoretical plot of the remaining cohesion curve 

Remaining cohesion for the remaining shear strength curve 

For each test at the end of the cyclic loading, the remaining cohesion crem is obtained simply, 

first by loading until failure and secondly by recalculating the cohesion from the remaining 

strength by using the Mohr-Coulomb equation. In Equation 4-1, the principal stresses 

correspond to the principal stresses in this loading until failure (σ1,rem and σ3,rem). The friction 

angle ϕ is assumed to be equal to the friction angle calculated from the static tests. Based on 

this, the remaining cohesion for each test can be calculated from the following formula: 

  𝑐𝑟𝑒𝑚,𝑗 = (
𝜎1,𝑟𝑒𝑚,𝑗 − 𝜎3,𝑟𝑒𝑚,𝑗

2
)

1

𝑐𝑜𝑠 𝜙
− (

𝜎1,𝑟𝑒𝑚,𝑗 + 𝜎3,𝑟𝑒𝑚,𝑗

2
) 𝑡𝑎𝑛 𝜙 4-35 

where σ1,rem,j and σ3,rem,j are the principal stresses at failure after number of cycles n (or N) for 

jth sample. 

 

Remaining cohesion for the S-N curve 

In the S-N curve the remaining cohesion can be obtained simply by replacing in Equation 4-1 

the principal stresses by the cyclic stress parameters σ1,cyc and σ3,cyc: 

  𝑐𝑟𝑒𝑚,𝑗 = (
𝜎1,𝑐𝑦𝑐,𝑗 − 𝜎3,𝑐𝑦𝑐,𝑗

2
)

1

𝑐𝑜𝑠 𝜙
− (

𝜎1𝑐𝑦𝑐,𝑗 + 𝜎3,𝑐𝑦𝑐,𝑗

2
) 𝑡𝑎𝑛 𝜙 4-36 

where σ1,cyc,j and σ3,cyc,j are the principal cyclic stresses at failure for jth sample. 

4.6.1. Endurance limit for geomaterials – minimum level of a damaging cyclic loading 

The existence of an endurance limit σe of geomaterials is confirmed when a small cyclic 

stress ratio τcyc / τ0 does not cause a cohesion reduction and a large ratio does. One can 

propose three hypotheses for the description of this minimum level of the applied cyclic 

stress. 
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According to a first hypothesis of this endurance limit, the endurance limit σe is higher than 

the cohesion σe > c0 (Figure 4.10). It also means that the frictional part of the total strength is 

first cyclically loaded and the cohesion is loaded only at high cyclic stresses. 

 
Figure 4.10. Cohesion and frictional part of the strength - case 1 

According to a second hypothesis, the endurance limit σe is higher than the frictional part of 

the strength (Figure 4.11) for a given confining pressure σ3.  

  𝜎𝑒 > 𝜎 𝑡𝑎𝑛 𝜙  4-37 

This also means that that the endurance limit increases when higher confining pressures are 

applied, and both, the frictional and cohesive part of total strength, are cyclically loaded 

proportionally. The cohesion reduction does not much depend on the cyclic stress ratio, but 

more on the frictional part of the total strength σ tan ϕ.  

 
Figure 4.11. Cohesion and frictional part of the strength - case 2 
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According to a third hypothesis (Figure 4.12), the cohesion will always be reduced. The 

cyclic stress ratio is unimportant, so the endurance limit is σe = 0. It means that, as a first the 

cohesive part of total strength is cyclically loaded. 

 
Figure 4.12. Cohesion and frictional part of the strength - case 3 

The hypothesis of the existence of the endurance limit σe for geomaterials can only be proven 

in laboratory tests. The first hypothesis is confirmed, when there is a threshold for the cyclic 

loading, higher than the cohesion, for which no cohesion reduction occurs. For the second 

hypothesis, the cohesion reduction becomes lower for higher confining pressures. The third 

hypothesis will be confirmed when the cohesion reduction always occurs, and the size of the 

cyclic loading and the confining pressure does not have any impact on the remaining shear 

strength. 

4.6.2. Impact of confining pressure on cohesion in cyclic loading 

The cohesion is only a part of the total shear strength of a geomaterial and it varies with the 

confining pressure according to the Mohr-Coulomb failure envelope. From the Mohr-

Coulomb theory it follows that, for normal stress σ = 0 the whole strength comes from the 

cohesion (because τ = 0∙tanϕ + c). It means that the cyclic load is fully applied on the 

cohesive part of the strength.  

 

For an increasing normal stress σ > 0 (related to increase in confining stress σ3), the part of 

the strength which comes from the cohesion c, decreases and the part of the strength coming 

from the friction increases (Mohr–Coulomb failure envelope).  

 

Cyclic loading on cohesion 

If one assumes that the second hypothesis from previous chapter (4.6.1) for geomaterials is 

valid (the endurance limit is dependent on the confining pressure), the cyclic loading acting 
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is “taken” by cohesion c and part by the frictional part of the strength given as σ tan ϕ. The 

remaining cohesion depends thus not only on the cyclic stress ratio but also on the confining 

pressure σ3. For higher confining pressures, the cyclic loading has thus probably lower impact 

on the shear strength reduction than for lower confining pressures (Burdine, 1963).  

 

The cohesion c can be calculated from: 

  𝑐 = (
𝜎1 − 𝜎3

2
)

1

𝑐𝑜𝑠 𝜙
− [(

𝜎1 − 𝜎3

2
) +

2𝜎3

2
] 𝑡𝑎𝑛 𝜙 4-38 

where σ1, σ3 are the minor and major principal stresses. 

 

Including into the Mohr-Coulomb equation the cyclic shear stress ratio i, the cyclically 

“loaded” cohesion c”loaded” can be calculated as: 

  𝑐"𝑙𝑜𝑎𝑑𝑒𝑑" = (
𝜎1 − 𝜎3

2
)

𝑖

𝑐𝑜𝑠 𝜙
− [(

𝜎1 − 𝜎3

2
) ∙ 𝑖 +

2𝜎3

2
] 𝑡𝑎𝑛 𝜙 4-39 

where i is the cyclic stress ratio τcyc/τ0. For i =1.0, the cyclic load corresponds to the static 

strength and the equation is the same as for the Mohr-Coulomb failure envelope. It also 

means that the whole part of cohesion is in that case “loaded”, which leads to failure of a 

material. For smaller values of i, the part of the cohesion, which is “loaded”, decreases, 

because the c”loaded” is dependent on the confining pressure σ3. The cyclic stress ratio τcyc/τ0 = 

50% is loading exactly 50% of the cohesion only for confining pressure σ3 = 0. A plot of 

cyclically “loaded” cohesion as a part of the total cohesion under cyclic stresses for different 

confining pressures is given in Figure 4.13.  

 
Figure 4.13. Cyclically “loaded” cohesion as a part of the total cohesion under cyclic stresses for 

different confining pressures 
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e.g. 50% of the maximum cohesion c under confining pressure e.g. σ3 = 0.5 MPa, the cyclic 

stress ratio should be raised up to i = 58% according to the Equation 4-39 and Figure 4.13. 

 

The consideration presented here can only be confirmed or rejected by cyclic triaxial tests. 

Some already conducted tests: e.g.: Kranz (1980) show that the life to fracture increased with 

increasing pressure, even when the stress differences were normalised to account for the 

increase in strength with pressure. 

 Unsolved issues for fatigue of geomaterials 4.7.

There are many questions about the behaviour of geomaterials under repeated loading that 

need be answered. The most significant are: 

- What is the main mechanism of soil and rock failure under cyclic loading? 

- Which curve is the most suitable for describing the fatigue of geomaterials? 

- Is a model with low number of variables adequate to describe the remaining shear 

strength of geomaterials under cyclic loading? 

- What is the relation of the applied cyclic loading to the loss of shear strength? 

- What is the fatigue limit or endurance limit (if applicable) for geomaterials? 

- How can variable-amplitude loading be incorporated into the remaining shear strength 

curve? 

- Is the linear cumulative damage rule (e.g. Palmgren-Miner) adequate for 

geomaterials? 

- Is the order of various cyclic loadings important for the loss of strength of 

geomaterials? 

- How can multiaxial fatigue problems and different cyclic loading stress directions (σ3 

as a cyclic loading, when σ1 - σ3 stays constant) be incorporated into the model? 

-  What is the impact of the environment on the strength results (temperature, water 

content, grain size, humidity etc.)? 

- Is the behaviour of geomaterials the same for low confining pressures as for higher 

pressures? 

- Can both, the low cycle fatigue and high cycle fatigue, be incorporated into one 

remaining shear strength formulation? 

 Conclusions 4.8.

In this chapter a simple remaining shear strength curve was proposed. The curve has some 

advantages and can be competitive to the standard S-N curve. Laboratory tests are required to 

confirm of neglect the usefulness of the remaining shear strength curve. Additionally, based 

on the assumption of a constant friction angle in soil mechanics, the remaining shear strength 

curve was extended to the remaining cohesion curve. Thus, the fatigue of geomaterials can be 

described as a fatigue of the cohesion, which can be easily incorporated into the geotechnical 

standards. The proposed remaining cohesion curve was given for both, the S-N and the 

remaining shear strength curves. It can be noticed that both formulations are very simple and 

similar (see Equations 4-13 and 4-23), which is a big advantage for an application of this 



REMAINING SHEAR STRENGTH CURVE FOR GEOMATERIALS 

 

72 

 

formula in standards.
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5. LABORATORY TESTS 

 Introduction 5.1.

The remaining shear strength curve, proposed in chapter 4, should be tested and proved in 

laboratory tests before being adopted into guidelines. The number of laboratory fatigue tests 

for geomaterials described in literature is very small (see chapter 3.7), and therefore 

insufficient to validate the remaining shear strength curve. For this validation triaxial 

laboratory tests were chosen. The advantage of the triaxial machine is that the machine can be 

electronically controlled which makes it possible to conduct cyclic tests and register all 

important data. 

 

Prior to the triaxial tests, several points have been considered. First, the planning and the test 

preparation had to be done. Second, a specially designed controlling program has been 

written, based on the required models and parameters for the cyclic triaxial testing procedure. 

Third, the right type of material has to be properly chosen; since the material should be as 

homogeneous and isotropic as possible, so that the results will be most accurate and useful 

for describing and calibrating the remaining shear strength curve. 

 Triaxial laboratory tests 5.2.

The triaxial test is one of the most common and widely performed geotechnical laboratory 

tests for determination of the shear strength and stiffness parameters. The strength parameters 

obtained from the test, the friction angle ϕ and cohesion c, will be investigated on its 

reduction during cyclic loading.  

5.2.1. Laboratory test equipment 

The main components of the triaxial cell and servo-hydraulic loading system for the 

deviatoric and confining stress are presented in Figure 5.1 and Figure 5.2.  

 

The laboratory equipment at the University of Luxembourg consists of 3 sets of: 

- Triaxial machine 28-WF4005 Tritech 50 kN (Figure 5.1) built on a triaxial loading 

frame (Figure 5.3), 

- Plexiglas chamber (Figure 5.5 and Figure 5.2), 

- Displacement gauges, 

- Pressure and force transducers, 
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- Hydraulic cell and back pressure controllers (Figure 5.4), 

- PC connected with National Instruments data logging system with installed LabVIEW 

software. 

 

 
Figure 5.1. Triaxial apparatus Figure 5.2. Plexiglas chamber 

Measurement precision 

The axial transducer stress measurement precision is ±0.001 kN. Both, the loads (forces) and 

the axial strains, are measured. The strains are monitored by potentiometric displacement 

transducer. Measurement precision of the axial displacement is ±0.002 mm. The confining 

pressure was held constant up to ±10 kPa during each experiment. The precision of the 

measured confining pressure is about ±1 kPa. The pressure, axial stress and displacement 

were sampled every half a second. The measurement instruments were calibrated by the 

manufacturer, who provided corresponding certificates. Additionally, the calibration check 

was done in the lab by comparing the readings with the model set up. 

  
Figure 5.3. Triaxial load frame Figure 5.4. Cell and back pressure controllers 
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Influence of friction on sample ends 

The triaxial tests can be influenced not only by the machine setup but also the sample 

placement in the triaxial machine. One of the causes of the internal non-uniformity is the 

contact between the sample and caps at the top and bottom end platens. Because the sample 

ends are restricted, some additional shear stress has to be applied to cause a failure and the 

true shear strength is unknown. Some techniques are sometimes used to reduce the friction at 

sample ends e.g. bearings. 

 

However, elimination of friction has little effect on samples of standard height. Goto and 

Tatsuoka (1988) showed that the value of friction angle in dense sand can be larger of about 

1° for regular end that with lubricated ends, which is not a high value. The ball-seated platens 

can also induce shear stresses at the sample ends which are likely to vary as the test proceeds. 

 

The enlarged end platens were not used because the radial expansion of the specimen is small 

(low shear strains) and e.g. the bulging of the specimens was not happening. 

5.2.2. Test set-up 

In the triaxial machine set-up presented in this thesis, (Figure 5.5and Figure 5.1) a cylindrical 

soil specimen is surrounded with a confining medium (water) and the vertical stress is applied 

by a piston (Figure 5.5), along the axis of the cylindrical sample. The vertical stress is 

different from the stresses applied in the horizontal directions (the confining pressure).  

 

The confining pressure is transmitted through the water surrounding the test specimen in a 

plexiglas chamber (Figure 5.5 and Figure 5.2), where the pressure is applied by a constant 

pressure hydraulic pump. To remain dry, each specimen is sealed on the top and bottom by 

platen and a latex membrane in the sides. The confining pressure is equal for all horizontal 

directions and only in a true triaxial test the stresses can be different for all three directions. 

The pressure is monitored by a pressure transducer connected to the triaxial cell. The pore 

pressure changes were not measured because all tests were conducted on dry (unsaturated) 

samples. The diameter of each sample is 38mm. 
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Figure 5.5. Load cell scheme 

The deviatoric loading is applied through a piston that enters the top cell through a bushing, 

and pushes against the top cap of the specimen. The movement of the piston is controlled by 

an electro-mechanical actuator and measured by a 5 kN load cell. A ball-bearing fitted 

between the coned end of the piston and a similar recess in the cap. This allows correcting a 

small misalignment while loading is gradually applied, but it may give however, an uncertain 

start to the stress-strain curve. The displacement is measured outside the cell and the force 

transducer is attached after the piston. 

 

The piston was loosely fitted (BS 1377:1990 specifies that friction between the piston or seal 

and its bushing shall be small enough to allow the piston to slide freely under its own weight 

when the cell is empty). Because the friction was small no correction for friction on loading 

piston with load cell was applied. 

 

To simulate cyclic loading on geomaterials, the triaxial machine was programed to apply 

constant cyclic loading up to certain threshold. The cyclic load stress ratio was set to τcyc/τ0 = 

40%, 60%, 80%, of the maximum strength respectively, for each confining pressure σ3 (100, 

300, and 500 kPa). For the remaining shear strength curve, a series of n = 10, 100, 1000, 10 

000 and 100 000 cycles were investigated. 20% of the cyclic stress was applied for the 

highest number of cycles n = 100 000, to assure that no failure will occur before reaching this 

number of cycles. In the case of the S-N curve, the tests were run until failure (until the 

moment where the sample could not be loaded up to certain cyclic load threshold). More 

details of the cyclic triaxial tests is presented in the subsequent chapters. 

Cell pressure

Controller
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Steel Ball

Top Cap
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5.2.3. Organisation of the laboratory triaxial tests 

The triaxial laboratory tests are divided into two series: 

1. Static triaxial tests 

2. Cyclic triaxial tests 

5.2.4. Series I - static tests 

A series of static load tests are conducted in order to determine the shear strength parameters 

of the Mohr-Coulomb failure criterion. These parameters (cohesion and friction angle) will 

be calculated from the regression line (described in chapter 5.5). The static triaxial tests were 

conducted according to the norms e.g. BS 1377: Part 8 (1990) and testing manuals e.g. Day 

(2001). 

5.2.5. Series II - cyclic triaxial tests 

The aim of the cyclic tests is to investigate the remaining shear strength of geomaterials after 

cyclic loading has been applied. This will be done by comparing the shear strength 

parameters c and ϕ obtained from the static tests with the results from cyclic tests. The cyclic 

tests are based on multiple loadings and unloadings under constant confining pressure: σ2 = 

σ3. 

 

Two different types of cyclic tests have been performed based on the testing method: 

 I – S-N curve 

 II – Remaining shear strength curve 

 

Modifications of the two main curves can also be considered: 

 III – Cyclic confining pressure 

 IV – Various mean and amplitude cyclic loadings 

 

The first two test types (I and II) are used for investigating the fatigue of geomaterials. The 

last two test types (III and IV) provide a better insight into the material behaviour, however, 

due to time and equipment limitations, they have not been performed. All types of test are 

explained below. 

 

I – S-N curve 

The methodology to obtain the S-N curve is to count the number of cycles until failure N for 

a given cyclic loading τcyc (Figure 5.6). Each test is conducted under constant confining pres-

sure σ3. Based on tests of several cyclic stress ratios, the S-N curves for soils and rocks can be 

developed. This type of test is a typical fatigue test in mechanical engineering (described in 

chapter 3.5.2). Unfortunately it is difficult to predict the time required for fatigue description, 

which is a problem, because triaxial tests require more time. Insight into the required time is 

given by e.g. ASTM E739–91 (1998), which recommends a minimum number of specimens 

needed to prepare an S-N curve as 6 to 12 for preliminary and exploratory and 12 to 24 for 

design allowable data and reliability data (for steel).  
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II – Remaining shear strength curve  

In the remaining shear strength tests the samples are first subjected to cyclic loading τcyc for a 

given number of cycles n. In the last cycle, the samples are loaded until failure following the 

same procedure as the static strength tests (Figure 5.7). These tests will provide information 

about the remaining shear strength of the material after a number of applied cycles. Since the 

time of one cycle is known from static tests, all tests can be scheduled easily. The 

prematurely failed samples are not taken into account in the calculations. 

 

 

 

 

 

 

 

 

 

 

Figure 5.6. S-N curve Figure 5.7. Remaining shear strength 

curve 

III – Cyclic confining pressure 

This type of test is similar to the previous two types (the S-N and the remaining shear 

strength curve), but in this case the minimum principal stress σ3 is cyclically changed instead 

of σ1. These tests give the information about the influence of the smallest principal stress 

changes σ3 on the strength parameters reduction and increase the accuracy of the prediction of 

fatigue of geomaterials. The biggest disadvantage of this type of test is that the pressure σ3 is 

difficult to be controlled accurately in a reasonable time. That means that this type of test is 

challenging to carry out in a laboratory and it can take more time.  

  

IV – Various mean and amplitude cyclic loadings 

In this type of test, different cyclic stresses are applied in which the minimum stress does not 

return to “zero”. Using different cyclic stresses (with different mean and amplitude stresses) 

make it possible to predict more accurately the total strength reduction due to various types of 

cyclic loading and also to make a more accurate prediction of the fatigue life for the material. 

This however requires a lot of laboratory testing. 

 

The overview of the laboratory tests is presented in the Table 5-1. The detailed description of 

each test is presented in appendix in the referenced tables (from Table A-1 to Table A-24). 
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Table 5-1. Overview of the laboratory tests 

Type of triaxial test Type of geomaterial Table No of conducted tests 

 Artificial gypsum Table A-1 37 

 Mortar (beach sand, 1week, cement/sand = 0.5) Table A-2 11 

 Mortar (coarse sand, 1week, cement/sand = 1.5) Table A-3 5 

 Mortar (coarse sand, 1week, cement/sand = 1.0) Table A-4 6 

 Mortar (coarse sand, 1month, cement/sand = 1.0) Table A-5 7 

Static tests Limestone (vertical samples) Table A-6 4 

 Limestone (horizontal samples) Table A-7 6 

 Crumbled limestone Table A-8 6 

 Norm sand Table A-9 4 

 Beach sand Table A-10 3 

 Coarse sand Table A-11 3 

 Artificial gypsum Table A-12 47 

Cyclic tests Mortar (beach sand, 1 week, cement/sand = 0.5) Table A-13 9 

(S-N curve) Mortar (beach sand, 1 week, cement/sand = 1.0) Table A-14 4 

 Mortar (coarse sand, 1 month, cement/sand = 1.0) Table A-15 3 

 Artificial gypsum Table A-16 44 

 Mortar (beach sand, 1week, cement/sand = 0.5) Table A-17 19 

 Mortar (beach sand, 1week, cement/sand = 1.0) Table A-18 16 

Cyclic tests Mortar (beach sand, 1month, cement/sand = 1.0) Table A-19 10 

(Remaining curve) Limestone Table A-20 10 

 Crumbled limestone Table A-21 7 

 Norm sand Table A-22 7 

 Beach sand Table A-23 6 

 Coarse sand Table A-24 2 

  Total 276 

 Cyclic test parameters 5.3.

In cyclic tests the several parameters affect the test results to a greater or lesser extent 

(chapter 3.7.1). Among these, the following can be identified as being important in fatigue 

testing: 

- Loading pattern, 

- Cyclic stress and cyclic stress ratio, 

- Stress ratio R, 

- Control mode, 

- Frequency, 

- Waveform, 

- Type of triaxial tests. 

 

This will be further explained below. 
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Loading pattern 

To be able to conduct cyclic tests, the most important parameter is the type of cyclic loading. 

The loading can be divided in terms of the sign of the acting loading: 

- From zero σmin to max σmax and back (load is applied to a maximum value and later 

the load is completely removed), 

- From positive σmin to max σmax and back (the acting load is not completely removed), 

- From negative (minimum) σmin to positive (maximum) σmax and back (fully-reversing 

loads, typical compression-tension tests). 

 

For the tests presented in this thesis, a constant amplitude with zero minimum stress level σmin 

= 0 was chosen, because it is the basic type of cyclic loading and it is easy to be controlled by 

the program. Probably the total removal of stress is causing smaller sample disturbance than 

the disturbance which could be caused by applying some minimum load different from zero. 

This could be supported by the fact, that the total removal of load did not produce 

disturbances in the stress–strain plot. Importantly, the lower range of cyclic loading is 

probably also less important on the strength reduction than the σmax. 

 

The pattern of the cyclic loading is presented in Figure 5.8. 

 

 

 

 

 

 

 

Figure 5.8. Cyclic loading pattern 

Cyclic stress 

The cyclic stress ratio is given as a ratio of applied cyclic shear stress τcyc to the shear stress τ0 

based on the linear regression for static tests: 

  𝑖 =
𝜏𝑐𝑦𝑐

𝜏0
=

( 𝜎1,𝑚𝑎𝑥 − 𝜎1,𝑚𝑖𝑛) − 𝜎3

2
𝜎1 − 𝜎3

2

 5-1 

where σ1,max is the maximum and σ1,min is the minimum principal cyclic stress. Finally, the 

cyclic shear stress ratio can also be given as a ratio of the deviatoric cyclic stress σd,cyc to the 

static deviatoric stress σd,0: 

  𝑖 =
𝜎𝑑,𝑐𝑦𝑐

𝜎𝑑,0
 5-2 

Three different cyclic stress ratios were applied i = τcyc/τ0 = 40%, 60%, and 80%. Only for the 

tests with the highest number of cycles this ratio was lowered to 20%. These applied values 

assure that the range of applied cyclic loads is widely covering most of the spectrum of 
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possible cyclic loads, when the extreme values are avoided. 

 

In all tests the minimum cyclic loading σ1,min was equal to 0 Pa (complete unloading) and 

thus the mean stress σm is therefore simply a half of the deviatoric cyclic stress σd,cyc: 

 
  

𝜎𝑚 =
𝜎𝑑,𝑐𝑦𝑐

2
 5-3 

Stress ratio R  

The type of the applied load, whether tensile or compressive or even a combination of both, 

can be easily determined by the stress ratio R, i.e. the ratio of the minimum to the maximum 

applied cyclic stress (here as a cyclic deviatoric stresses). The geomaterials usually have a 

very low tensile strength, and the most important strength parameter is the shear strength, 

therefore, the R ≥ 0. In the laboratory tests presented here, all tests were conducted for R = 0, 

because: 

  𝑅 =
𝜎𝑚𝑖𝑛

𝜎𝑚𝑎𝑥
=

0

𝜎𝑚𝑎𝑥
= 0 5-4 

Control mode 

In general, a fatigue test can be performed under load (stress) or under displacement (strain) 

control. Even though the triaxial machine is originally displacement controlled machine, a 

special program written in LabVIEW allowed the triaxial machine being stress controlled (by 

setting up the maximum and minimum axial stresses). The precise stress level obtained by 

constant slow displacement application decrees the measurement and loads uncertainties and 

also allows registering the post-peak behaviour of materials. The maximum and minimum 

stresses have to be controlled because usually the stress is the parameter which is directly 

measured (e.g. the loading of a track on the bridge) and the purpose of this research is to 

investigate shear strength reduction, not cyclic strain behaviour, which was already studied in 

literature (chapter 2.2.1). 

 

Frequency 

In contrast to metals, the fatigue life of geomaterials is probably affected by the frequency of 

loading (see chapter 3.7.1). Another important factor which has to be considered is the 

triaxial machine and laboratory data logger sensitivity: the higher the strain rate, the less 

accurate reading from data loggers is. To provide a typical low speed cyclic loading condition 

for geomaterials (see chapter 3.7.1) and accurate data readings of the force, the applied speed 

of the cyclic loading was set to v = 0.5 mm/min. This corresponds to a frequency of the 

loading equal f = 0.01 Hz (e.g. a wave load) and would reduce the data error readings, 

especially for higher frequencies. Therefore, the cyclic-dynamic and dynamic loading can be 

omitted and only the cyclic loading will be considered in this paper. 

 

Waveform 

The shape of the applied load can affect the fatigue test results. The sinusoidal waveform  

Figure 5.9) is the most commonly used in fatigue testing. Other types of loading are: the 
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triangular, step, square, and saw-tooth waveforms. In the thesis presented here the shape is 

not exactly sinusoidal, because the unloading speed was higher in order to save the time.  

 

 

 

 

 

 

 

Figure 5.9. Wave form of the applied cyclic loading 

Type of triaxial tests and saturation 

All performed laboratory tests are drained with natural moisture conditions. Introducing pore 

pressure would significantly complicate the description of shear strength reduction in cyclic 

loading. Therefore the changes in pore pressure due to cyclic loading were omitted, and e.g. 

the liquefaction mechanism (chapter 2.2.2) did not have to be investigated.  

 

All used materials had a natural degree of saturation. The limestone blocks were kept covered 

in dark and cool place, in order to preserve the natural water content of that rock. The gypsum 

material and mortar samples (after curing time) were also kept in dark place in constant room 

temperature. During the tests, all samples were sealed in a rubber membrane, and no 

saturation was provided. 

 Triaxial machine setup 5.4.

The triaxial machine is connected through a RS 232 port with a computer. A program was 

written in LabVIEW (Figure 5.11) for applying cyclic loading on the sample in the triaxial 

machine and to log data from sensor readings (Figure 5.12). The program allows to control 

the speed of applied cyclic loading, to adjust the applied cyclic stress (minimum and 

maximum cyclic stress) and to run a desired number cycles (in case of S-N test, the number 

of cycles is set very high, so that the material will fail before). The program can be easily 

modified for other types of cyclic tests (different loading pattern or control mode). The 

schematic LabVIEW program loop is presented in Figure 5.10.  
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Figure 5.10. LabVIEW cyclic loading program – scheme 

Input 

Start the test 
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Figure 5.11. LabVIEW program - graphical block diagram (the LabVIEW-source code) 

 
Figure 5.12. LabVIEW program main window 

Input parameters and equipment limitations 

- Sample diameter     d = 38 mm 

- Sample height      h = 78 mm 

Input 

parameters 

Output 

parameters 
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- Max load of triaxial load frame   Fmax = 50 kN 

- Speed of the applied displacements   v = 0.25 mm/min  

- Max possible speed of the app. displacement  vmax = 9.9 mm/min, 

- Max possible confining pressure   σ3,max = 1.7 MPa 

 

Measured parameters in static test 

- Deviatoric stress   σd 

- Strains     ε 

- Confining pressure   σ3 

 

Input parameters for cyclic test 

- Speed of the displacement up  0.25 mm/min 

- Speed of the displacement down 5 mm/min 

- Time of fatigue test for 1000 cycles 1 day 

- Cyclic stress ratio   τcyc /τ0 (40%, 60% and 80%) 

- Applied number of cycles  n (for remaining shear strength curve) 

 

Measured parameters in cyclic test 

- Number of cycles    N (for S-N curve) 

- Cyclic stresses    σcyc 

- Plastic strain accumulation  εp 

 Data presentation convention 5.5.

Three common ways are applied in geoengineering to present in a graphical form the 

laboratory data of the stress state: 

- Mohr’s circles,  

- Stress path, 

- σ3 - σ1 space plot.  

 

Mohr’s circle provides a graphical representation of the stresses in any direction acting at a 

point. The stress paths method is a convenient technique in which the stresses in a point are 

represented by two characteristic parameters δ – is the slope and b – interception with the y 

axis. The σ3 - σ1 space is commonly used in rock engineering because it can provide quick 

and simple estimation of the increase in strength σ1 with an increase in the confining stress σ3. 

 

Mohr circles 

Usually the failure envelope (Figure 5.13) is presented in the form of the Mohr-Coulomb 

equation (compare with Equation 4-1): 

 
  

𝜏 = 𝑐 + 𝜎 𝑡𝑎𝑛 𝜙 5-5 

where 
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𝜏 =
𝜎1 − 𝜎3

2
, 𝜎 =

𝜎1 + 𝜎3

2
  5-6 

 

 

 

 

 

 

 

 

 

Figure 5.13. Mohr-Coulomb failure envelope 

p-q space 

In p – q space (sometimes also denoted as a τ – σ space) each point can be characterised by 

the average of the minor and major principal stresses and the difference of the major and 

minor principal stresses. The introduction of the factor 0.5 in the two definitions of q and p 

make them the location of the centre, and the radius of the circle in Mohr’s diagram.  

 

There are two common methods of presenting the stress path: 

- The MIT convention described by Lambe & Whitman (1969), which is more accurate 

in describing the strength in stress plots, 

- The critical state convention – Oxford convention given by Schofield & Wroth (1968) 

which is often used in constitutive model, like Cam Clay, which describes better the 

stiffness of the soil. 

 

The MIT stress path convention is given as 

 
  

𝑝 =
𝜎1 + 𝜎3

2

𝑞 =
𝜎1 − 𝜎3

2

 5-7 

The Oxford convention is: 

  
𝑝 =

𝜎1 + 𝜎2 + 𝜎3
2

𝑞 = 𝜎1 − 𝜎3         
 5-8 

In this thesis the MIT notation is used, because this notation gives more accurate results than 

the Oxford one for the strength description of geomaterials (Coulomb). 

 

The possible stress states are limited by the Mohr-Coulomb failure criterion expressed as: 

  𝑞 = 𝑝 𝑠𝑖𝑛 𝜙 + 𝑐 𝑐𝑜𝑠 𝜙 5-9 

This describes a straight line in the p - q diagram. This straight line has been showed in 

Figure 5.14. The slope of this line δ is equal to sin ϕ, which is slightly less steep than the 



LABORATORY TESTS 

 

87 

 

 

p 

q 

b 
δ 

 

σ1 

σc 
θ 

envelope in the diagram of Mohr circles (in this case tan ϕ). The intersection with the vertical 

axis is: 

  𝑏 = 𝑐 𝑐𝑜𝑠 𝜙 5-10 

For σ2 = σ3 the shear strength of the material is probably at its lowest point, because σ3 is the 

minimal principal stress and for σ2 the Mohr-Circles in 3D gives the minimum radius and 

strength (in case σ2 has any influence on the strength). 

 

 

 

 

 

 

 

 

 

Figure 5.14. Stress paths 

The cohesion - c, the friction angle - , and uniaxial tensile strength - UTS can be calculated 

from the formulas given below: 

  𝜙 = 𝑎𝑟𝑐 𝑠𝑖𝑛 𝛿 5-11 

  𝑐 = 𝑏/ 𝑐𝑜𝑠 𝜙 5-12 

  𝑈𝑇𝑆 = 𝑐
𝑐 𝑐𝑜𝑠 𝜙

1 + 𝑠𝑖𝑛 𝜙
 5-13 

where, δ is the tangent angle of failure line, and b is the ordinate for σ = 0 in a p - q diagram 

from the Equation 4.4. 

 

σ3 - σ1 space 

The Mohr-Coulomb failure parameters can be calculated from the plot in σ1-σ3 space as  

 
  𝜙 = 𝑎𝑠𝑖𝑛 (

𝑡𝑎𝑛 𝜃 − 1

𝑡𝑎𝑛 𝜃 + 1
) 5-14 

 

  
𝑐 = 𝜎𝑐 (

1 − 𝑠𝑖𝑛 𝜙

2 𝑐𝑜𝑠 𝜙
) 5-15 

where θ is slope and σc - intercept in σ3 - σ1 space – see Figure 5.15. 
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Figure 5.15. σ3 - σ1 space 

The chosen method used in this thesis 

It was found (see Appendix A.a) that the most accurate prediction of the friction angle ϕ and 

cohesion c can be obtained from the p-q plot. Also for the p-q method the derivation of the 

Mohr-Coulomb failure envelope parameters is the easiest. Therefore, the p-q convention has 

been chosen to calculate the shear strength parameters for both the static and the cyclic tests. 

 Characteristic of used materials 5.6.

Four different kinds of geomaterials were chosen for the investigation of the cyclic behaviour 

and fatigue of geomaterials. These four materials are divided into 2 groups: 

 

 a) Cohesive 

- artificial gypsum, 

- mortar (cemented sand), 

 b) Cohesionless (low-cohesive or non-cohesive) 

- limestone, 

- crumbled limestone and various sands. 

 

Several standards for rock and soil sampling were taken into account for the preparation of 

the samples for triaxial tests e.g. ASTM D4543-01 (2001), ISRM (1979, 1983 and 1999). 

Based on these standards, the samples were prepared in order to assure flatness of the 

surfaces, which were parallel to each other and perpendicular to the sample vertical axis. All 

samples had the same diameter to length ratio equal 1:2 (diameter d = 38 mm and height h = 

78 mm). In the following chapters (5.6.1 and 5.6.2) a more detailed description of the 

materials is given. 

5.6.1. Cohesive materials 

First experiments have been carried out on an artificial gypsum (construction block), because 

it was assumed that this artificial gypsum can provide more accurate and consistent results 

than natural materials and can be used as an example of a weak unjointed brittle rock. 

 

Later, artificially prepared mortar samples, made from a mixture of sand, water and cement 

were used to simulate weak rocks. It was expected that samples prepared in a controlled way 

in the lab, would have very accurate and coherent strength properties. 

 

Artificial gypsum 

The artificial gypsum is a typical material (Figure 5.16 and Figure 5.17) used in a 

construction of a non-load bearing partition wall and is usually composed of gypsum plaster 

and water. 
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Figure 5.16. Standard gypsum construction block Figure 5.17. Samples drilled from the standard 

gypsum block 

Gypsum blocks are manufactured according to the European norm EN 12859 (EN 12859, 

2012). The dimensions of European standard gypsum blocks are: length: 666 mm, height: 

500 mm. Three blocks thus make area an A =1 m². 

 

The investigated gypsum block has a thickness equal to a 100 mm. This allowed trimming of 

the samples after the drilling phase. The drilling was done by a core drilling machine. Water 

cooling was not necessary because the material was soft (Figure 5.17). The average density of 

the used gypsum blocks is ρ = 1.0 g/cm
3
. 

 

Mortar – cemented sand 

Mortar can be used to simulate rock and cemented soil material. The mortar samples were 

prepared from a mixture of clean durable sand, cement and water with constant proportions 

(Figure 5.18). Typical construction sand (coarse sand), meeting grading requirements for fine 

aggregates, was mixed with a high amount of quick cement to ensure high strength. Great 

care was made in preparing identical, high-quality samples to improve reproducibility of the 

tests results. 

 

The proportion which would give the best result (high cohesion with small data point spread) 

had to be investigated first. After testing of a several proportions (see chapter: 6.2.2), the best 

ratio was found to be 3:3:1 (sand to cement to water). The water-cement (w/c) ratio was set to 

0.33 to provide easy flow and placement of the mixture into a metal mould.  
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Figure 5.18. Setup for mortar samples preparation Figure 5.19. Preparation of mortar samples 

The mixture after blending all components, was quickly put in metal forms (Figure 5.19) and 

kept in the form for a time of a one day (Figure 5.20-a). After removal from the form (Figure 

5.20-b), the samples were cured for a period of a one month in a dark and dry place, 

following the norm EN 12390-2:2000 (2000). At one time 6 samples were prepared 

simultaneously. The average density after 28 days was found to be ρd = 1.87 g/cm
3
 (c/s = 1.0, 

for coarse sand). 

 

The static strength was determined at 28
th

 day, according to norm Eurocode 2: EN 1992-1-

1:2004 (2004) and ASTM C192 / C192M-15 (2015). The age of the specimens at the time of 

initiation the cyclic loading, ranged from 28 to max 36 days. The samples which were not 

tested within than time interval were excluded from testing. 

  

Figure 5.20. Mortar samples during curing process  

5.6.2. Cohesionless (low-cohesive) materials 

According to the proposed remaining shear strength curve, only the cohesion is reduced. 
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Even though many soils and rocks have zero or very small cohesion, the acting cyclic loading 

can also cause their shear strength reduction. Therefore, cohesionless (low-cohesive) 

materials are investigated in order to fully describe the behaviour of geomaterials under 

cyclic loading for all type of geomaterials. Two types of cohesionless (or very low cohesion) 

materials were investigated: weak rock (limestone) and typical sands (crumbled limestone, 

coarse sand, rounded beach sand). 

 

Limestone 

The sedimentary rock limestone (carbonate sandstone, also known as Marl or “Mergel”) 

came from the site of the highway tunnel pit Geusselt A2 in Maastricht (see Figure 5.21-

Figure 5.24). To obtain samples for the triaxial testing, a visitation and sampling was organ-

ised on site on 5 of September 2013. A team from the University of Luxembourg with the 

assistance of the company Avenue2 (Strukton and Ballast Nedam) dug rock samples from the 

site presented in Figure 5.21. 

 

The Maastricht Formation (Dutch: Formatie van Maastricht; abbreviation: MMa), for which 

this limestone belongs, is a geological formation in the Dutch Limburg, Belgian Limburg and 

adjacent areas in Germany. The rock belonging to Maastricht Formation, locally called 

"mergel”, is an extremely weak, porous rock, consisting of soft, sandy shallow marine weath-

ered carboniferous limestone, which is in fact chalk and calcareous arenite. These lithologies 

locally alternate with thin bands of marl or clay.  

 

The laboratory tests were conducted on a very young and shallow layer of that rock (Figure 

5.21), so the material is not much compacted and cemented (Pytlik & Van Baars, 2015). It 

was expected that the strength parameters will be low. The samples were prepared according 

to the Eurocode 7: part 2 (2007) (Figure 5.26). The bulk density of the limestone (in this case 

dry density) was found to be ρd = 1.16 g/cm
3
 based on the linear measurement method de-

scribed in the norm CEN ISO/TS 17892-2 (2004). 

 

Crumbled limestone and various sands 

Intact limestone crumbles very easily when being brought to the surface. This disintegrated 

crumbled limestone looks like a fine dry sand, and consists of small particles of carbonates 

(see Figure 5.27 and Figure 5.28). The density of the crumbled limestone was calculated for a 

loose packing: ρmin = 1.06 g/cm
3
 and for a dense packing: ρmax = 1.26 g/cm

3
. Comparing this 

results with the intact limestone (ρmax = 1.16 g/cm
3
) it was found that the intact limestone 

packing lays somewhere between the loose and dense packing of the already disintegrated 

rock (sand). The loose packing (minimum density) was calculated according to ASTM D 

4254 (2016) (the A method), by pouring slowly in air the sand through a funnel to a standard 

cylindrical mold. The dense packing (max density) was obtained by shaking multiple times a 

cylinder with sand and constantly refilling the mold up to maximum possible volume. 

 

The density of the particles (particle density or true density) was found to be ρp = 2.5 g/cm
3
. 
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The particle density was calculated based on the water displacement method. This value of 

the density of particles is lower than that of the typical Maastricht calcarenite (typical value 

of Maastricht stone is usually around 2.7 g/cm
3
, given by e.g. Hall & Hamilton, 2016). The 

porosity of the intact limestone was then calculated as n = 54%, which is a high value for a 

limestone.  

 

The crumbled limestone samples were prepared by filling the membrane with sand through a 

funnel directly into a 38 mm diameter split form. In order to obtain a density more or less 

similar to that of the natural state of the crumbled limestone, a compaction was done by a 

hand tamping with a steel rod. 

 

Three other sands: the norm sand DIN EN 196-1 (2005) presented in Figure 5.29, rounded 

sand from the beach (Figure 5.30) near the city the Hague and coarse sand (construction 

sand) were also tested in order to compare the different types of sands with the crumbled 

limestone. The crumbled limestone and other sands were completely dry during testing and 

prepared in the same way as the crumbled limestone samples. 

  
Figure 5.21. Limestone excavation site Figure 5.22. Mechanical cutting of the rock 

The grain size details for crumbled limestone are given in Figure 5.31. Table 5-2 presents the 

parameters, average grain size D50, uniformity coefficient Cu, coefficient of curvature CC, 

void ratio e, and porosity n. Norm sand, beach and the coarse sand are also included here. 

Following the ASTM D2487 (2011) norm, all these geomaterials are classified as poorly 

graded. 
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Figure 5.23. View of the freshly unveiled rock Figure 5.24. Rock samples ready for transportation 

Table 5-2. Sand parameters 

 

 
Figure 5.25. Limestone sample on the laboratory 

table (visible stratification) 

Figure 5.26. Limestone sample preparation 

 Crumbled limestone Norm sand Coarse sand Beach sand 

D50 (mm) 0.2 0.73 0.45 0.28 

Cu (-) 2.24 6.14 2.34 2.27 

Cc (-) 0.82 1.80 0.85 1.12 

e (-) 1.15 0.49 0.66 0.28 

n (-) 0.53 0.33 0.39 0.22 
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Figure 5.27. Partially crumbled Limestone Figure 5.28. Completely crumbled Limestone 

 
 

Figure 5.29. Norm Sand Figure 5.30. Beach sand 

 
Figure 5.31. The grain size distribution curve of the crumbled limestone, norm sand, beach sand and 

coarse sand 
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6. STATIC TEST RESULTS 

 Introduction 6.1.

In this chapter triaxial static test results are presented. The triaxial static tests are conducted in 

order to find the maximum deviatoric stress. The maximum deviatoric stress in triaxial 

apparatus is indicated by a decrease in stress state for increasing strains when sample is 

loaded until failure. The maximum deviatoric stress for a set of samples with different 

confining pressures allowed finding the shear strength parameters for cohesive and 

cohesionless materials. The cohesive materials used in the tests are respectively: artificial 

gypsum and mortar; and the cohesionless are: intact limestone, crumbled limestone and 

various sands (described in chapter 5.6). 

 

The Mohr-Coulomb envelope strength parameters ϕ and c will be obtained from the stress 

points plots (chapter 5.5). The best fit line will be presented together with the 95% 

confidence band and 95% prediction band. 

 

It has to be mentioned that not many tests were carried out for the confining pressure σ3 = 0 

MPa because the main aim of the static tests was to calculate most accurately the Mohr-

Coulomb shear strength parameters. More tests for different confining pressures increase the 

accuracy of the linear regression of the MC failure envelope. Therefore, usually only one 

typical UCS test (σ3 = 0) was carried out for each material. The spread of the static test results 

for tests without applied confining pressure (UCS tests) was also not investigated. 

 Cohesive materials 6.2.

A total number of 37 samples were tested to obtain the shear strength parameters c and  in 

static triaxial tests of artificial gypsum.  

 

For mortar, the number of investigated samples was also significant. For different proportions 

of sand and cement, as well as different types of sand, the total number of samples was 17. 

For one set at least 5 samples were tested to be able to create the p-q plot and to obtain the 

shear strength parameters. 

6.2.1. Artificial gypsum 

The linear least-square regression parameters from the p-q plot for artificial gypsum are 

presented in Table 6-1. The values of cohesion c and the friction angle ϕ resulting from the p-
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q plots are given in Figure 6.3 and Table 6-2. It can be noticed that the internal friction angle 

ϕ and cohesion c are quite high - similar to weak rocks e.g. sandstone or a weak concrete 

(Verruijt, 2001, 2006).  

 

The results presented in Table 6-1 indicate, that the standard error of estimate (i.e. standard 

error of the predicted y-value for each x in the regression) is sest = 76 kPa. This value is 

smaller than the standard deviation of all points without regression sall = 174 kPa. The 

coefficient of determination is r
2
 = 0.82, therefore the assumption of linearity seems valid. 

 
Figure 6.1. Stress points for 37 static tests in the stress points plot for artificial gypsum 

Table 6-1. Linear regression coefficients and standard errors 

Slope 

δ 

Intercept 

b 

Standard deviation 

of slope δ 

Standard deviation 

of intercept b 

Standard error 

of estimate 

Coefficient of 

determination r
2
 

(-) (MPa) (-) (MPa) (MPa) (-) 

0.65 0.94 0.05 0.17 0.11 0.82 

 

Table 6-2. Mohr-Coulomb envelope parameters for static tests for artificial gypsum 

Total number of samples ϕ (°) c (MPa) UCS (MPa) 

37 40.7 1.24 6.02 

 

Additionally, the 0.975 quantile of the Student’ t-distribution with 35 degrees of freedom (t35 

= 2.069 for 37 samples) was obtained, and the 95% confidence intervals for slope δ, and 

intercept b were calculated. The results are presented in Table 6-3. 

Table 6-3. The 0.975 quantile of the Student's t-distribution with 35 degrees of freedom 

0.975 quantile  min max 

Slope δ  (-) 0.55 0.76 

Intercept b  (MPa) 0.58 1.29 
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Pressure dependence  

It was observed that for higher confining pressures (σ3 > 0.5 MPa) the artificial gypsum 

samples had smaller strength than would result from the linear Mohr–Coulomb failure theory. 

The reason can be that the shear strength for this artificial gypsum is nonlinear for higher 

confining pressures, which is the case for rocks e.g. (Barton, 1976). Another explanation is 

that the set of the tested samples for higher confining pressures has on average smaller 

strength than the ones used for lower confining pressures.  

 

Spread of data points 

It may be of interest to note that during the static tests on artificial gypsum, the data points 

were very close to each other (this can be seen also on Figure 6.1). The reason is that, due to 

the limitation of the level of applied confining pressure σ3, (at 1 MPa water starts to leak from 

the chamber, even though the maximum possible pressure is 1.7 MPa), higher shear strengths 

could not be reached. The estimation of the friction angle ϕ and cohesion c is less accurate for 

a small range of data points. The uncertainty of the shear strength parameters is significant (r
2
 

value is 0.82), which is clearly visible by the wide range of the confidence and prediction 

bands. 

6.2.2. Mortar – (cemented sand) 

Before the static and cyclic testes on mortar can be started, a correct amount of sand, cement 

and water had to be determined in order to prepare samples giving the best range of strength 

with the highest accuracy. The best range of strength means that the strength reduction in 

cyclic loading depends on the lab equipment, which has to be able to carry the necessary 

loads to cause a failure of a sample in a reasonable time.  

 

The values of cohesion c and the friction angle ϕ were obtained (Table 6-4) from the plot of 

stress points (Figure 6.2 - Figure 6.3). First, shear strength tests have been performed for a 

cement/sand ratio = 0.5. The cohesion had a small value (c = 0.39 MPa). Because of that, the 

cement/sand ratio was increased up to 1.5, which is a very high value. As a result, the 

cohesion was much larger (c = 2.73 MPa) than that for the previous smaller amount of 

cement. Unfortunately, adding more cement increased significantly the strength and stiffness 

of the mortar samples. This caused a new problem. For these samples, the stiffness of the 

laboratory triaxial frame was not high enough, so the tests for higher confining pressures 

could not be conducted. Therefore the cement/sand ratio was lowered to a ratio of 1. This 

ensured a high cohesion (1.4 MPa), small spread of data points and allowed that the 

laboratory machine easily handled the applied stresses. 

Table 6-4. Mohr-Coulomb envelope parameters for static load tests for mortar 

 
No of samples cement/sand water/cement ϕ (°) c (MPa) UCS (MPa) 

Attempt I 7 0.5 0.5 41.3 0.39 1.72 

Attempt II 5 1 0.5 51.4 1.40 8.01 

Attempt III 5 1.5 0.5 49.4 2.73 14.79 
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The static tests on mortar show that the shear strength parameters are close to weak rocks, 

just as in the case of the previously investigated artificial gypsum. The advantage of using 

mortar samples is that by changing the cement/sand ratio one can control the cohesion, while 

the friction angle does not change much and lies between 41.3° and 51.4°. 

 

 
Figure 6.2. Stress points for mortar for c/s= 0.5 

 
Figure 6.3. Stress points for mortar for c/s =1 
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Figure 6.4. Stress points for mortar for c/s=1.5 

The estimates of the regression coefficients and their standard errors are presented in Table 

6-5. The coefficient of determination r
2
 for all three attempts is very high (0.98-1.0), 

therefore the assumption of linearity seems valid and the samples are homogeneous and 

prepared in a proper way. However, care must be taken, because the high r
2
 value can be 

caused by a small number of test results. 

 

Additionally, the 0.975 quantile of Student’s t-distribution with n degrees of freedom was 

obtained, and thus the 95% confidence intervals for slope δ and intercept b were calculated. 

The results again are showing a very low spread of data points. 

Table 6-5. Linear regression coefficients and their standard errors  

 
Slope δ 

(-) 

Intercept b 

(MPa) 

Standard 

deviation δ 

(slope) (-) 

Standard 

deviation b 

(intercept) 

(MPa) 

Standard error of 

estimate (MPa) 

Coefficient of 

determination r
2
 

Attempt I 0.66 0.29 0.007 0.016 0.017 0.99 

Attempt II 0.78 0.87 0.055 0.32 0.18 0.98 

Attempt III 0.76 1.78 0.023 0.19 0.036 0.99 

Table 6-6. The 0.975 quantile of the Student's t-distribution for mortar 

 
cement/sand 

δ (-) b (MPa) 

min max min max 

Attempt I 0.5 0.57 0.60 2.49 3.35 

Attempt II 1 0.58 0.74 1.12 1.63 

Attempt III 1.5 0.61 0.69 1.29 2.26 

 

Influence of the cement / sand ratio on the strength results 

It was investigated, how the cement/sand ratio affects the cohesion (Figure 6.5) and the 

friction angle (Figure 6.6). The cohesion increases according to a power law: 
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  𝑐 = 1.35 ∙ 𝑥1.78 6-1 

where x is the cement/sand ratio. This power law gives the highest value of r
2
 = 1. This 

means that the correlation between the amount of cement and cohesion is very strong (see 

Figure 6.5). By using a power regression, the value of the cohesion for 0 amount of cement is 

also automatically equal 0. Care must be taken with extrapolation of this curve, because the 

cohesion cannot increase infinitely according to a power law for higher cement/sand ratios. 

 
Figure 6.5. Influence of cement/sand ratio on the cohesion 

The friction angle ϕ dependency on the cement/sand ratio was checked and this correlation is 

very weak (Figure 6.6). The value of r
2
 is not very high and no strong relationship could be 

found. The friction angle varies but stays more or less constant (compare with the friction 

angle of the sand which was used to prepare the samples – at point cement/sand = 0, in Figure 

6.6). This agrees with the prediction of a constant friction angle given by Van Baars (1996). It 

can be noticed that the friction angle reaches a maximum value for a cement/sand ratio, 

which is here around 1. 

0 0.5 1 1.5
0

1

2

3

Cement / Sand (-) 

C
o
h
es

io
n
 c

 (
M

P
a)

c = 1.35  (c/s) 1.78

           r2 = 1.00



STATIC TEST RESULTS 

 

101 

 

 
Figure 6.6. Influence of cement/sand ratio on the internal friction angle 

 Cohesionless materials 6.3.

To make the description of the static loading on geomaterials complete, a series of tests on 

weak cohesive and cohesionless materials were conducted. In the following subchapters, 

results for a very weak rock and several types of sands are presented. 

 

First, 10 static (4 for vertical and 6 for horizontal direction) triaxial tests were performed on 

intact limestone from the Maastricht tunnel construction site (more details in chapter 5.6.2). 

Later, triaxial tests were carried out on a crumbled limestone (7 samples) and several types of 

sands (for each sand 3 samples were tested). 

6.3.1. Intact limestone 

The triaxial tests on limestone were conducted with a confining pressure σ3, which varied 

from 0 kPa to 300 kPa. The results (Table 6-7 and Figure 6.7) for different directions (in 

terms of rock stratification) show that for vertical samples the cohesion c = 89.9 kPa is more 

than twice as big as for horizontal ones c = 37.4 kPa. 

 

As a result, the uniaxial compression strength (UCS) is also almost twice as big as for the 

vertical samples. This is a typical anisotropic behaviour. In contrast, the calculated friction 

angle is almost equal for both directions: ϕ = 40.2° for horizontal and ϕ = 38.9° for vertical 

samples. The other regression coefficients are presented in Table 6-8. 
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Figure 6.7. Stress points for limestone (horizontal & vertical samples) 

Table 6-7. Limestone strength parameters obtained from triaxial tests. 

  Horizontal samples Vertical samples 

  (°) 40.2 38.9 

c  (kPa) 37.4 89.9 

UCS  (kPa) 167.0 292.0 

tensile strength  (kPa) 32.5 84.5 

 

Table 6-8. Linear regression coefficients and their standard errors for limestone 

Slope δ 

(-) 

Intercept 

b (kPa) 

Standard 

deviation δ 

(slope) (-) 

Standard 

deviation b 

(intercept) (kPa) 

Standard error of 

estimate (kPa) 

Coefficient of 

determination 

r
2
 

0.65 26.78 0.032 15.44 21.31 0.99 

 

Due to a low cohesion and a high friction angle, the tensile strength is very low, which was 

noticed during the excavation stage. The excavated rock cracked and crumbled very easily, 

especially at the sedimentary layers (Figure 5.25). But, as long as the limestone remains 

unexcavated, it seems as if the confining pressure binds the material, and the rock contains its 

strength. This is the reason why after a visual inspection it was first believed that the rock is 

stronger. 

 

The process of preparing samples was time consuming (chapter 5.6.2), because this limestone 

was very brittle and fragile and was constantly cracking (Figure 5.25). The coefficient of 

determination was very high for both the horizontal and the vertical direction (r
2
 > 0.99), 

even though it was very difficult to obtain good samples for the triaxial tests. The biggest 

problem occurred at obtaining samples for the vertical direction, because these samples were 

constantly breaking along the sedimentary layers.  

 

It is important to notice that only the undamaged samples were used in the triaxial tests and 

the strength of the weaker parts of the rock was not taken into account. For this reason, the 
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shear strength obtained from the triaxial tests it expected to be higher than in situ. Therefore, 

the question arises, whether the shear strength in triaxial tests is not overestimated. 

6.3.2. Crumbled limestone 

The stress points at failure of the crumbled limestone are plotted in a p–q coordinate system 

(see Figure 6.8, Figure 6.9 and Table 6-9). The triaxial tests on crumbled limestone resulted 

in the values ϕ = 43° and c = 26 kPa (Table 6-9). This is a very surprising result, because 

these parameters are very close to the intact limestone (Figure 6.9) and the crumbled 

limestone seems to have some cohesion. Since sand is a cohesionless material it should not 

have any cohesion. Using the same laboratory data for the Mohr-Coulomb failure envelope 

and assuming that c = 0 kPa, the friction angle was recalculated and found to be equal ϕ = 

45.5° (Pytlik & Van Baars, 2015). This is even a higher value than for the intact limestone. 

 
Figure 6.8. Stress points for crumbled limestone 

 
Figure 6.9. A p-q plot at failure in triaxial tests for crumbled and intact limestone 
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Table 6-9. Crumbled limestone strength parameters 

  
Crumbled limestone 

(recalculated)  

Horizontal intact 

limestone 

Vertical intact 

limestone 

 (°) 43.3 (45.5) 40.2 38.9 

c  (kPa) 25.9 (0) 37.4 89.9 

tensile strength  (kPa) 20.9 (0) 32.5 84.5 

UCS (kPa) - 161 376 

 

The linear regression correlation of the data points is very high for the crumbled limestone (r
2
 

> 0.99). More details of the linear regression are presented in Table 6-10. 

Table 6-10. Linear regression coefficients and their standard errors for crumbled limestone 

Slope δ 

(-) 

Intercept b 

(kPa) 

Standard 

deviation δ 

(slope) (-) 

Standard 

deviation b 

(intercept) 

(kPa) 

Standard error of 

estimate (kPa) 

Coefficient of 

determination r
2
 

0.68 18.78 0.01 7.66 12.2 0.99 

 

Stress-strain comparison between intact and crumbled limestone 

Since the strength parameters are so similar for intact and crumbled limestone, also a 

comparison between the intact limestone stress-strain behaviour and the crumbled one is 

presented in Figure 6.10. For both materials the confining pressure was 50 kPa. It can be 

noticed that the stiffness of the intact limestone is much higher; however, its strength is not 

reaching the maximum value of the crumbled material. The intact limestone demonstrates 

typical brittle failure behaviour, where the crumbled one exhibits a ductile one (strain 

softening behaviour). Despite the fact that the densities and the material building both 

geomaterials are the similar, the post peak behaviour for the intact and crumbled limestone is 

completely different. It can be easily observed that the cemented materials are characterised 

by the brittle failure behaviour with significant drop in strength in post peak curve. 

 

This comparison also shows, that the Mohr-Coulomb failure envelope is not particularly well 

describing the strength of weak rock, as it cannot model the non-linearity of the failure 

envelope e.g. Johnston (1991), Hoek (2000). 
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Figure 6.10. Stress-strain plot for intact and crumbled limestone 

6.3.3. Other sands 

Results for other sands are presented in Figure 6.11 and Table 6-12. 

 
Figure 6.11. Stress-strain plot for Norm, Beach and Coarse sand  

The linear regression correlation of the data points for all sands is very high (r
2
 > 0.99). More 

details of the linear regression are presented in Table 6-11.  
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Table 6-11. Linear regression coefficients and their standard errors for various sands 

Sand 
Slope  

δ (-) 

Intercept  

b (kPa) 

Standard 

deviation  

δ (slope) (-) 

Standard deviation  

b (intercept) (kPa) 

Standard error 

of estimate 

(kPa) 

Coefficient of 

determination 

r
2
 

Norm sand 0.61 12.1 0.022 11.55 10.6 0.99 

Beach sand 0.63 17.6 0.014 14.84 11.1 0.99 

Coarse sand 0.66 13.1 0.0001 0.152 0.12 1.00 

 

It can be noticed that all sands have a small cohesion (Table 6-11, column Intercept), which 

of course is not true. For further calculation the cohesion for the sands is taken as 0 and the 

friction angles are recalculated for this value (see Table 6-12, last column titled:  (°) 

recalculated). For most sands, the friction angle increases when the coefficient of uniformity 

cu decreases. The sand which contains more fine particles, has larger gradation and will have 

higher friction angle . Any strong correlation, however, has not been found. Similar results 

were given by Kim & Ha (2014). They also noted that other researches were not conclusive. 

Table 6-12. Strength parameters of various sands 

 d50 cu  (°) c (kPa)  (°) (recalculated) 

Norm sand 0.73 6.14 37.5 15 39.1 

Beach sand 0.28 2.27 38.8 22 39.9 

Coarse sand 0.45 2.34 41.4  17 42.3 

Crumbled limestone 0.20 2.24 43.3 25 45.5 

 Conclusions 6.4.

The static test results were presented in this chapter for various materials. For artificial 

gypsum, the Mohr-Coulomb failure envelope does not match exactly the strength results. 

This means that the strength of the artificial gypsum behaves nonlinearly. Also the spread of 

the test results for artificial gypsum is significant. 

 

The mortar samples, which were prepared in laboratories in a strict way, gave very accurate 

results and their strength parameters could by easily adjusted to the requirements of the tests 

conditions. The cohesion can be controlled by changing the cement/sand ratio, while the 

friction angle has more or less a constant value. The friction angle of mortar samples depends 

strongly on the friction angle of the sand, which is used to prepare these samples. 

 

In Figure 6.12 and Figure 6.13 typical shear band for both, the artificial gypsum and mortar 

samples, is well visible and this band looks like the shear band of weak rocks. The static tests 

on artificial gypsum and mortar proved that the manmade samples can give similar strength 

parameters and can model quite well the strength behaviour of weak rocks. 

 

The tested limestone is a very weak rock, because during the sample preparation, many 

samples easily cracked. The cracked samples were not taken into account; therefore, the 

strength results for this material are slightly overestimated. The limestone presented also a 

typical anisotropic behaviour, which can also affect the cyclic test results. 
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Figure 6.12. Gypsum sample after triaxial test Figure 6.13. Mortar sample after triaxial test 

Triaxial tests on other sands (i.e. coarse, norm, and beach sand) showed that the coefficient of 

determination r
2 

is very high for all sands, therefore, only a small number of tests was needed 

to achieve high accuracy. For the crumbled limestone, obtained from the intact limestone, the 

strength parameters have very similar value to the intact limestone, which is a very surprising 

result. 

  

During testing the following points were discovered. 

- Material inhomogeneity (imperfections etc.) had a significant impact on scatter of the 

results (especially for artificial gypsum), 

- Due to a low stiffness of the triaxial frame (the frame buckle), higher loads could not 

be applied, which means that the stronger rock material could not be tested, 

- Higher confining pressure than 0.5 MPa could not be applied for a longer time due to 

slow fluid leakage of that system. 

 

The artificial gypsum, mortar and natural limestone exhibit mostly brittle behaviour, where 

the crumbled limestone and other sand typical ductile one. All the sands as well as the 

crumbled limestone were slightly densified before testing; therefore, they can be treated as 

dense sands. The UCS for the crumbled limestone is 0.17 MPa and standard error of estimate 

σest = 0.021 MPa, where for mortar UCS = 9.11 MPa with σest = 0.18 MPa and for gypsum 

UCS = 6.02 MPa with standard deviation = 0.53. 
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7. CYCLIC TEST RESULTS 

 Introduction 7.1.

The results of the cyclic loading tests on geomaterials are presented in this chapter. S-N 

curves are created for geomaterials and compared with the remaining shear strength curves. 

To create those curves, for artificial gypsum a total number of 94 samples were tested (50 

samples for the S-N and 44 samples for the remaining shear strength curve). For mortar, the 

number of samples was 16 for the S-N and 45 for the remaining shear strength curve. The 45 

mortar samples tested for the remaining shear strength curve were divided into 3 sets with 

different cement/sand ratio and curing time.  

 

In the case of cohesionless materials, no tests were conducted for S-N curve. For limestone, 

the number of available samples was only 10, so all samples were used for obtaining the 

remaining shear strength curve. Additionally, 14 samples were tested for crumbled limestone, 

13 for norm sand, 13 for beach sand and 4 for coarse sand. 

 

The cyclic load stress ratio, for both the S-N curves and the remaining shear strength curves, 

was set to τcyc/τ0 = 40%, 60%, 80%, of the maximum strength respectively, for each confining 

pressure σ3 (100, 300, and 500 kPa). For the remaining shear strength curve, a series of n = 

10, 100, 1000, 10 000 and 100 000 cycles were investigated. 20% of the cyclic stress was 

applied for the highest number of cycles n = 100 000, to assure that no failure will occur 

before reaching this number of cycles.  

 

Also other damage parameters (e.g. stiffness, plastic strain accumulation and rate of plastic 

strain) were measured and their changes in cyclic loading investigated in order to see if these 

damage parameters can lead to a better, or even earlier determination of the fatigue life of 

geomaterials. 

 The S-N curve 7.2.

The S-N curves were prepared according to the procedure described in chapter 4.3 and 5.2.5. 

Instead of the strength (denoted as an S) on the ordinate axis, the cyclic load stress ratio is 

given (τcyc/τ0). It has to be mentioned, that most of the data for the S-N curves came from 

samples tested for the remaining shear strength curves but failed before reaching the desired 

number of cycles n. Although, this is not the typical S-N curve obtaining procedure; this data 

was still used for a comparison, due to a lack of data (and testing time). This, of course can 
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lead to problems, such as overestimating the fatigue life and decreasing probabilities of 

failure. 

 

The low number of tested mortar samples, was caused by a much higher strength of these 

samples which leads to a higher number of applied cycles, in case if no higher cyclic stress is 

applied. 

7.2.1. The S-N curve for a cohesive material 

The S-N curve for artificial gypsum 

A number of different types of fatigue models (S-N curves) have been presented in the 

literature, which take into account parameters affecting the fatigue behaviour such as the 

stress ratio, frequency, etc. (see chapter 3.5.1). The most simple and also the most common 

are the logarithmic (linearised), power (Basquin, 1910), and the exponential regression. 

These models are parametrised for artificial gypsum, and the results are presented in Figure 

7.1, Figure 7.2 and Figure 7.3.  

 

The logarithmic regression (Figure 7.1) gave the best fit result (highest r
2
) and is also the 

easiest to obtain the regression parameters (except, of course, for the linear regression). 

 
Figure 7.1. Logarithmic regression of the Stress – Life (S-N) plot for artificial gypsum 

In Figure 7.2 the best fit line for the power regression (Eq. 3-2) is presented and it also gives 

a very good fit, similar to the logarithmic regression. 
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Figure 7.2. Power (Basquin) regression of the Stress – Life (S-N) plot for artificial gypsum 

The exponential regression was also investigated, but it represented the worst performance 

among all types of regressions (Figure 7.3). A sudden loss of strength is observed on the right 

side of the last data point; this was not caused by a real material behaviour, but by a lack of 

data points for higher cycle numbers. 

 
Figure 7.3. Exponential regression of the Stress – Life (S-N) plot for artificial gypsum 

In Table 7-1 four different regressions mentioned before are presented. The logarithmic 

model will be used in further calculations because it provides the easiest way of obtaining the 

regression coefficients, has very high accuracy, same as of the other models (the estimate of 

r
2
 was very low for the exponential regression) and it is described in most standards e.g. 

ASTM E739-91 (1998). The biggest difference between the regressions is in the fitting of the 

data points for higher number of cycles (Table 7-1). Of course, the more points on the right 
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side of the S-N curve, the more accurate the prediction of fatigue life is. 

Table 7-1. S-N curve parameters for different regressions 

Regression Basic regression Parametrised regression r
2
 

Linear τcyc/τ0 = α -β∙N τcyc/τ0 = 1.0-0.000002∙N -0.44 

Logarithmic  τcyc/τ0 = α -β∙logN τcyc/τ0 = 1.0-0.107∙logN 0.52 

Power τcyc/τ0 = α ∙N
β
 τcyc/τ0 = 1.0∙N

 -0.064
 0.50 

Exponential τcyc/τ0 = α ∙e 
β ∙N

 τcyc/τ0 = 1.0∙e 
-0.000004∙N

 -0.07 

 

S-N curve for mortar 

The S-N curve for 3 different sorts of mortar samples is presented in Figure 7.4, Figure 7.5 

and Figure 7.6. The low number of test results is caused by a longer fatigue life of this 

material, which also means that more cycles are necessary to cause failure. The fatigue is 

clearly visible for all sorts of mortar samples (cement/sand ratio = 0.5, 1.0 and 1.5) when the 

static tests are included (1.0 intercept point). It must be mentioned, however, that the tests for 

lower cyclic stress ratio τcyc/ τ0 were not performed due to time limitation. It is also worth to 

notice that the spread of data is comparable with artificial gypsum and is therefore quite 

large. 

 
Figure 7.4. S-N curve for mortar (1 week, cement/sand ratio = 0.5) /beach sand 
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Figure 7.5. The S-N curve for mortar (1 week, cement/sand ratio = 1.0)/beach sand 

 
Figure 7.6. The S-N curve for mortar (1 month, cement/sand ratio = 1.0) /coarse sand 

7.2.2. The S-N curve for a cohesionless material 

The number of tests carried out on intact limestone was very small due to lack of good 

(unbroken) samples and therefore only tests were performed for preparing a remaining shear 

strength curve. It was found that for this weak rock, up to 1000 cycles it was impossible to 

cause a fatigue failure. Therefore, no data is available for making an S-N curve. Because the 

maximum number of cycles applied on an intact limestone was small (1000), the chance of 

existence of fatigue failure for a higher number of cycles cannot be neglected. 

 

Also for crumbled limestone and other sands, a typical fatigue failure (loss of shear strength) 
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was not observed up to 100 000 cycles (for norm sand). 

7.2.3. Conclusions from the S-N curves 

Cohesive geomaterials lose their strength in cyclic loading and the loss of strength is much 

larger than compared with non-geomaterials. For artificial gypsum and mortar the fatigue 

strength was found to be lower than 50% of the static strength for a number of cycles of less 

than 100 000. 

 

The spread of the data results, for both artificial gypsum and mortar is very large. The 

confidence and prediction bands, with 95% of probability, are much wider than those for 

metals and composite materials. The strength reduction for a number of cycles equal 10
5
 is 

within the range of 0.85-0.35 of the static strength. Similar results were also found by 

Ishizuka et al. (1990), who reported, that the reduction of the rock strength due to repeated 

loading differs greatly.  

 

The highest r
2
 coefficient was obtained for a logarithmic regression but the value of the 

coefficient of determination is very low (r
2
 = 0.26 for artificial gypsum). The power 

regression also performed quite well, while the exponential and linear one had a very poor fit.  

 

No endurance limit is found, even at a cyclic stress ratio i = 20%. Similar results were 

recently presented in literature e.g. Liu et al. (2014). Ohnaka & Mogi (1982) and Brown & 

Hudson, (1974) confirm that cracks may appear even for low applied deviatoric stresses, in 

small parts of the rock, where a stress concentration exceeds the local strength. This could 

confirm the observation that even small cyclic loads will cause damage in geomaterials. 

 The remaining shear strength curve 7.3.

Introduction: 

The purpose of the remaining shear strength curve is to describe the loss of shear strength for 

several cyclic stress ratios by a simple logarithmic equation. The methodology is described in 

chapter 4.4 and the testing procedure in chapter 5.2.5. 

 

Normally, in case that the fatigue tests are carried and for more than 10
4

 cycles and for lower 

ranges of applied cycles, a low static fatigue approach is used (see chapter 3.7.1). Perhaps, a 

single description could be given for all ranges of cyclic loading. The remaining shear 

strength curve will be investigated if it can incorporate the whole range of cyclic loads. 

7.3.1. The remaining shear strength curve for cohesive materials 

The remaining shear strength for artificial gypsum 

The linear regression lines for artificial gypsum are presented in Figure 7.7, for three cyclic 

stress ratios and excluding static results. These lines can also be forced to be as close as 

possible to intercept the ordinate at 100% (Figure 7.8 and in Table 7-2). It can be noticed that 



CYCLIC TEST RESULTS 

 

115 

 

all three lines have in this case almost the same slope (Pytlik & Van Baars, 2014). That 

suggests the cyclic stress ratio does not have any effect on the loss of strength. This is a very 

surprising result. One would expect that different cyclic stresses will cause different strength 

reductions (see chapter 3.5). This lack of correlation between the cyclic stresses τcyc and the 

remaining shear strength τrem should be further investigated because it can be caused by the 

high scatter of the data results. One of the explanations could be that, due to the scatter of the 

results, the influence of the cyclic stress ratio is obscured by that scatter. The slope of the 

curve for different cyclic loading ratio is more sensitive to the initial strength of the sample 

(and the scatter of the results) than the loss of strength in cyclic loading. 

 
Figure 7.7. The remaining shear strength curves for artificial gypsum (excluding static tests) 

 
Figure 7.8. The remaining shear strength curve for artificial gypsum (including static tests) 
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loading, a single log-normal curve can be given for all cyclic tests (Figure 7.9). This curve 

takes for the regression fit all tested samples into account, and thus omits the information of 

the cyclic stress ratio τcyc/τ0. This implies that the remaining shear strength curve is losing one 

of its advantages – the estimation of a fatigue life for different cyclic stress ratios. 

 
Figure 7.9. The remaining shear strength curve for artificial gypsum excluding the cyclic stress ratio 

In Figure 7.9 it can also be noticed that especially for cyclic tests, the prediction band and 

data spread are very high. For the static test results (chapter 6.2.1), the coefficient of 

determination in p-q plot is equal r
2
 = 0.82, while the r

2
 for cyclic tests (Table 7-2) is very 

low. This means, that the cyclic test results are much more influenced by the material 

discontinuity properties than the static test results, even if static tests show that the material 

has very uniform strength properties. 

Table 7-2. The remaining shear strength curve parameters for different cyclic stress ratios (including 

static data) 

τcyc/τ0 r
2 slope intercept 

40% 0.32 0.068 1.00 
60% 0.34 0.086 1.00 
80% 0.28 0.072 1.00 

 

The remaining shear strength curve for mortar 

In Figure 7.10, Figure 7.11 and Figure 7.12, the remaining shear strength curves for mortar 

are presented. When the number of cycles increases, the shear strength of mortar increases, 

for some tests (Figure 7.11, Figure 7.12); while for some other decreases (Figure 7.10). This 

is different from the results for the S-N curve of mortar (compare with chapter 7.2.1). The 

increase in strength and lack of fatigue can be caused by the higher cement/sand ratio (higher 

cohesion) for the samples, for which the cement/sand ratio was the highest. A lack of fatigue 

for low cycles can indicate that the stronger the material the longer the fatigue life is. 
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A longer curing time can also play a role and therefore, the increase in strength of samples for 

times longer than one month has to be further investigated. For the number of cycles 10 000 

the tests can last up to 1 week, in which the strength of mortar samples can further increase 

due to still continuing hardening process. Unfortunately, the impact of time hardening on the 

strength has not been investigated, and no corrections which take the curing period could be 

included. Due to this, the time of curing of a one week has to be extended to a one month.  

 

It is worth to mention that, the best fit of the static test results for mortar was very high (r
2
 = 

1.0) and it was therefore expected that cyclic tests on this material would also give more 

accurate results than artificial gypsum. Nevertheless as it can be noticed for the cyclic tests, 

the spread of data points is large, even though high homogeneous and isotropic samples were 

used.  

 
Figure 7.10. The remaining shear strength curve for mortar (1 week, cement/sand ratio = 0.5) 
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Figure 7.11. The remaining shear strength curve for mortar (1 week, cement/sand ratio = 1.0)/ beach 

sand 

For the remaining shear strength curve from Figure 7.11 and Figure 7.12 (for a cement/sand 

ratio of 1) there is even a negative fatigue. This is probably caused by the fact that the mortar 

was still hardening during the tests. 

 

In the presented Figure 7.11 and Figure 7.12, the coefficient of determination is very low 

(close to 0). It means that the model does not explain any variation. The line is constant and 

no correlation between the number of cycles and strength reduction exists. By looking at the 

data points it can be found, however that neither strength reduction increase, nor decrease is 

found.  

 
Figure 7.12. The remaining shear strength curve for mortar (1 month, cement/sand ratio = 1.0) 

/coarse sand 
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7.3.2. The remaining shear strength curve for cohesionless materials 

Intact limestone 

In case of limestone material, only horizontally drilled samples were tested in triaxial cyclic 

tests. Series of 10, 100 and 1000 applied cycles were carried out. Due to a low number of 

available samples, only one cyclic stress ratio was applied - τcyc/τ0 = 80%. By comparing the 

static test results (Figure 6.7) with the cyclic ones, it was found that the shear strength slightly 

increased (Figure 7.13 and Table 7-3). This means there is negative fatigue in limestone, 

which is remarkable. From the p-q plot in Figure 7.14, it can be noticed that the friction angle 

is almost unaffected by cyclic loading.  

 
Figure 7.13. The remaining shear strength curve for limestone (τcyc = 80%) 

 
Figure 7.14. Effect of cyclic loading on limestone for 100 cycles and τcyc/τ0 = 80%  
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Table 7-3. Limestone strength parameters from triaxial tests in cyclic loading 

Parameter  Static  100 cycles tests, τcyc/τ0 = 80% 

 (°) 40.5  42.5 

c (kPa) 35.2  58.6 

 

Crumbled limestone & other sands 

Cyclic triaxial tests have also been carried out on crumbled limestone. The results can be 

found in Figure 7.15 and Table 7-4.  

 
Figure 7.15. The remaining shear strength curve for crumbled limestone 

Table 7-4. Friction angle of crumbled limestone for cyclic and static triaxial tests 

 τcyc/τ0 = 40% τcyc/τ0 = 80% 

 (°) for 1 cycle 44.8 44.8 

 (°) for 1000 cycles 47.9 49.3 

 (°) for 10000 cycles 46.5 51.9 

 

Since the strength of crumbled limestone increased during cyclic loading, similar to intact 

limestone, no fatigue was found. This behaviour agrees with laboratory tests on coarse gravel 

conducted by e.g. Suiker (2002). He stated that granular materials influenced by cyclic 

loading can obtain a higher strength than for static loading.  

 

Other types of sands (i.e. beach sand, coarse sand and norm sand) present the same behaviour 

as the crumbled limestone. The increase in shear strength was found for all sands (Figure 

7.16). The shear strength increase is significant and the maximum increase is as high as 15% 

for a cyclic loading τcyc/τ0 = 80% and n = 10 000 cycles in the case of crumbled limestone. 

This value is similar for all tested sands. The higher strength is probably obtained by higher 

compaction (densification) caused by the high cyclic loading. This agrees with the 

shakedown theory (Yu, 2006). The changes of density were, however, not measured.  

1 10 100 1000 10 000
0%

20%

40%

60%

80%

100%

120%

140%

n (-) 

 re
m

 /
 

0
 (

%
)

 

 

remaining shear strength curve

prediction band 95%

confidence band 95%


rem

 / 
0
 = 1.0 + 0.055 log(n)

           r
2
 = 0.54



CYCLIC TEST RESULTS 

 

121 

 

 
Figure 7.16. Remaining shear strength curve for norm sand (cyclic stress ratio τcyc/τ0 = 80%) 

Friction angle in cyclic loading for cohesionless materials 

For cohesionless granular materials the only strength parameter is the friction angle ϕ. 

Therefore, the ratio of the remaining shear strength to the static shear strength Srem/τ0 can be 

replaced by the ratio of the remaining friction angle ϕrem to the static ϕ0 (static) friction angle. 

In a similar way as for the remaining shear strength curve, a plot can be generated (Figure 

7.17). It can be easily noticed that the friction angle increases with the increase in number of 

cycles n.  

 
Figure 7.17. Remaining friction angle versus the initial friction angle after a given number of cycles 

for intact limestone (τcyc /τ0 = 80%) 

The friction angle of the static tests is compared with the friction angle of the cyclic tests 

(Table 7-5, Table 7-6 and Table 7-7). In all cases the friction angle increased. 
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Table 7-5. Friction angle of norm sand for static triaxial and cyclic triaxial tests 

 τcyc/τ0 = 80% τcyc/τ0 = 40% 

 (°) for 1 cycle 39.1 39.1 

 (°) for 1000 cycles 41.4 40.0 

 (°) for 10 000 cycles 41.7 41.8 

 (°) for 100 000 cycles 46.8 - 

 

Table 7-6. Friction angle of beach sand for static triaxial and cyclic triaxial tests 

 τcyc/τ0 = 80% τcyc/τ0 = 40% 

 (°) for 1 cycle 39.9 39.9 

 (°) for 1000 cycles 43.1 42.2 

 (°) for 10 000 cycles 45.0 43.6 

 

Table 7-7. Friction angle of coarse sand for static triaxial and cyclic triaxial tests 

 τcyc/τ0 = 80% τcyc/τ0 = 40% 

 (°) for 1 cycle 42.3 42.3 

 (°) for 1000 cycles 42.8 42.2 

 (°) for 10 000 cycles 44.8 42.4 

7.3.3. Conclusions from the remaining shear strength curves 

The remaining shear strength curves confirm a reduction of the shear strength due to the 

cyclic loading on cohesive materials (artificial gypsum and some mortar tests). An impact of 

cyclic stress ratio was not found, which is very surprising. It means that for the remaining 

shear strength curve, the number of cycles n is more crucial than the cyclic loading.  

 

Fatigue was not observed for cohesionless materials. Limestone does not lose its strength in 

cyclic loading, which is remarkable. Additionally, the friction angle is almost unaffected in 

cyclic loading. Even more, the friction angle slightly increases. The fatigue of geomaterials is 

governed primarily by a loss of the cohesion, while the friction angle remains constant. Other 

cohesionless granular materials show the same pattern as intact limestone. Cyclic loading 

leads in cohesionless (very weak cohesive) materials to an increase in the friction angle, 

which is caused by densification (see chapter 2.2.6).  

 Stiffness changes in cyclic loading 7.4.

Stiffness changes for geomaterials 

The stiffness reduction in cyclic loading may be an interesting parameter to investigate as it 

requires less laboratory testing than strength tests and can be additionally assessed by non-

destructive techniques. The stiffness reduction progress can be used as a rough estimation of 

the actual fatigue life and a strength reduction process. The changes in stiffness could 

improve the assessment of fatigue life, but unfortunately, only several tests were conducted 

on stiffness reduction for geomaterials, and thus there is not enough data and no good 
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prediction model is available. One of the very few examples gave Bagde & Petros (2011), 

who found that stiffness modulus degrades for sandstone in compressional cyclic tests.  

 

For other materials (composite materials), remaining stiffness fatigue prediction models have 

already been proposed. Hwang & Han (1986) stated however, that the estimation of the 

stiffness reduction is not errorless and does not provide very accurate results. Post et al. 

(2006), showed that for composite materials, there was no correlation between the stiffness 

and the remaining strength or the fatigue life. 

 

Stiffness calculation 

Usually the stiffness is calculated as a proportion of the stress difference at a certain level to a 

strain difference corresponding to this stress (see Figure 7.18, left). For instance, the measure 

of static Young’s modulus varies depending on the loading/unloading path and the level of 

confining pressure (Plona & Cook, 1995). Eurocode 7 (2007), suggests that the Young’s 

modulus may be characterised by a complete curve, or by conventional values:  

1) at a fixed percentage of ultimate strength (i.e. 50 %) – Etan; (see Figure 7.18, left). 

2) the mean value Eav at the linear section of the axial stress-strain curve; (see Figure 

7.18, right). 

3) the secant modulus Esec, measured from zero stress to a certain fixed percentage of 

the ultimate strength(see Figure 7.18, left). 

 

For the purpose of this investigation, the Young’s modulus is measured at a fixed percentage 

Eav - 80% of the maximum strength and 10% as the minimum strength (see Figure 7.18, 

right). This assures that the range of stresses is linearly proportional to the strain. Taking the 

minimum 10% of the maximum strength allowed avoiding problems with the equipment 

readings, because for lower stresses the readings of the stiffness from the laboratory 

equipment are not very accurate. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.18. Stiffness measurement for geomaterials 

Stiffness – Strength correlation in static tests 

It was found that no strong correlation between the static strength (normalised to static 
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strength at given confining pressure σ3) and static stiffness exists for artificial gypsum (Figure 

7.19) and limestone (Figure 7.20). Weak correlation was found for mortar (Figure 7.21). The 

lack of a strong correlation is for all materials evident. 

 

Some correlations between stiffness and strength for rocks are proposed in literature e.g. 

Horsrud (2001). The derivation of the strength from the stiffness was investigated by Chang 

et al. (2006). They found that some of the empirical relations work fairly well for some rocks; 

however most of the relations do not fit the measured data. 

 
Figure 7.19. Correlation between static stiffness and static strength for artificial gypsum 

 
Figure 7.20. Correlation between static stiffness and static strength for limestone  
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Figure 7.21. Correlation between static stiffness and static strength for mortar  

Stiffness reduction for cohesive materials 

In cyclic tests on artificial gypsum, as well as for mortar and limestone, the first cycle has a 

much smaller stiffness (slope) than the next several dozen cycles (see Figure 7.22). The 

increase in stiffness after the first cycle is much larger than in subsequent cycles, which leads 

to an increase in stiffness. 

 
Figure 7.22. Stiffness reduction in 100 cycles of one sample for artificial gypsum 

In order to describe the changes in stiffness under cyclic loading, the ratio Erem/Emax is 

introduced as a ratio of the stiffness in the last cycle Erem to the maximum stiffness Emax 

during the whole cyclic loading test. The reason why the whole cyclic test run was considered 

is that, for the first several cycles, the stiffness can vary significantly (see Figure 7.22) and 

the maximum stiffness Emax is usually somewhere at the beginning of cyclic loading, but not 
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for the first cycle. 

 

The data used to create the stiffness reduction curve was obtained from the same tests used to 

create the remaining shear strength curve (Figure 7.23 and Figure 7.24) and S-N curve 

(Figure 7.25 and Figure 7.26). This was possible, because the strains were also measured 

during the cyclic shear strength tests. For all the plots, the curve was force to intercept the y-

axis at 100%. During cyclic loading, the cohesive materials lose their stiffness with increase 

in number of cycles as can be noticed from Figure 7.22. The stiffness reduction is for all 

samples in Figure 7.23 very similar to the corresponding remaining shear strength curve for 

artificial gypsum (compare Figure 7.9 with Figure 7.23). Similar results are found for mortar. 

 
Figure 7.23. Remaining stiffness curve for artificial gypsum (based on remaining shear strength curve 

data) 

 
Figure 7.24. Remaining stiffness curve for mortar (1 week, cement/sand ratio=0.5) (based on 
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remaining shear strength curve data) 

 
Figure 7.25. Remaining stiffness curve for artificial gypsum (based on S-N curve data) 

 
Figure 7.26. Remaining stiffness curve for mortar (1 week, cement/sand ratio=0.5) (based on S-N 

curve data) 

In the Figure 7.27 a plot which combines the cyclic strength and cyclic stiffness is presented. 

As it can be noticed no strong correlation could be found, which is similar to the static 

strength and stiffness lack of correlation. Similar results (lack of correlations, where also 

found for other materials and different mortar mixtures). 
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Figure 7.27. Cyclic strength to cyclic stiffness correlation for mortar samples (1 week, cement/sand 

ratio=0.5) (based on remaining shear strength curve data) 

Stiffness increase for cohesionless materials 

For cohesionless materials the cyclic loading induces an increase in stiffness as it can be seen 

in Figure 7.28 for limestone. This also corresponds to the results for the remaining shear 

strength tests on cohesionless materials (compare Figure 7.13 with Figure 7.28), where the 

increase in stress is caused by sample densification. For other sands the same stiffness 

increase was found. 

 
Figure 7.28. Stiffness change of limestone in one test (100 cycles) 
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Figure 7.29. Stiffness “reduction” curve for limestone 

 Cyclic strain accumulation 7.5.

Strains of geomaterials in static tests 

In Figure 7.30 and Figure 7.31 the typical stress-strain behaviour for artificial gypsum is 

plotted (for other material the stress-strain behaviour is very similar). It is interesting to note 

that prior to failure, the stiffness decreases while the strains increase nonlinearly. For a low 

confining pressure σ3 = 0 MPa (Figure 7.30) after the maximum load is reached, a typical 

brittle behaviour is observed. For a confining pressure σ3 > 0.5 MPa (Figure 7.31) the 

stiffness decreases and an increase in plastic deformations is clearly visible. The strain-stress 

relationship becomes ductile and the plastic strains increase nonlinearly prior to failure, 

which indicates that the same cyclic stress ratio cause larger plastic deformations for higher 

confining pressure than for the lower one. 

1 10 100 1000
0%

20%

40%

60%

80%

100%

120%

n (-) 

E
re

m
/E

m
ax

 (
%

)

 

 

remaining stiffness

prediction band 95%

confidence band 95%

intercept 100%

E
rem

/E
max

 = 1.00 + 0.030 log(n)

r
2
 = 0.36



CYCLIC TEST RESULTS 

 

130 

 

 
Figure 7.30. A typical triaxial compression test plot of artificial gypsum for σ3=0 MPa 

  
Figure 7.31. A typical triaxial compression test plot of artificial gypsum for σ3=0.5 MPa 

After failure of the material, the stresses are decreasing much slower in the case of a ductile 

material (strain softening), and remain at higher levels than for a brittle material. The same 

pattern can be found for concrete e.g. Malcot et al (2010), Poinard et al. (2010).  

 

This difference in stress-strain plot for static tests may indicate that the cyclic behaviour is 

also different for lower and higher confining pressures. This can lead to difficulties in 

developing of a single cyclic strain accumulation model for all geomaterials. The 

development of a fatigue model based on strain and plastic strain energy accumulation would 

require a lot of laboratory testing and the results could be insufficient. For this reason, the 

accumulation of plastic strain is shortly discussed in this thesis. 
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Accumulation of strains for geomaterials in cyclic tests 

One of the effects of cyclic loading on geomaterials is plastic strain accumulation (chapter 

2.2.1). A typical strain accumulation is presented for drained conditions in Figure 7.32 and 

for undrained in Figure 7.33.  

  
Figure 7.32. Residual strength locus (Brown & 

Hudson, 1974) 

Figure 7.33. Spestone kaolin: cycles of undrained 

loading (Roscoe & Burland, 1968) 

The strain in single cycle can be divided into two parts: recoverable (elastic – ε
e
) and 

unrecoverable (plastic – ε
p
) strain. The total incremental strain in one cycle Δε is a sum of the 

elastic strain component Δε
e
 and the plastic strain component Δε

p
: 

  𝛥𝜀 = 𝛥𝜀𝑒 + 𝛥𝜀𝑝 7-1 

In cyclic loading, the amplitude of the recoverable elastic strain Δε
e
 is almost constant for 

each cycle and completely reversible (but only for small amplitudes). 

 

In contrast to the elastic strains, the plastic strain Δε
p
 may decreases or increase with a 

progressive number of cycles. For cohesive geomaterials the rate of the plastic strain 

accumulation is increasing prior to failure. In case of cohesionless materials, both a decrease 

and an increase in the strain rate may occur. The different cyclic behaviour of strains for 

cohesionless material can be described by the characteristic state and shakedown theory, 

which will be further briefly investigated (see chapter 7.5.2). 

7.5.1. Strain accumulation and strain rate of cohesive materials in cyclic loading 

During cyclic loading on cohesive geomaterials, after a first several cycles (marked as stage 

A in Figure 7.34), the plastic strain in each cycle seems to reach a stable intermediate cycle 

state Δε
p
 = const. (stage B). With an increasing number of cyclic loads, the strains accumulate 

for each cycle and this is a clear evidence of a permanent strain build-up during cyclic 

loading. 

 

The last several cycles before failure (stage C) show that the plastic strain increases much 

faster than that for the intermediate cycle stage (stage B).  
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Figure 7.34. A typical stress-strain plot for artificial gypsum under cyclic loading until failure 

The increase (or decrease) of the plastic strains can be described by the plastic strain rate: 

  ∆𝜀̇𝑝 =
𝑑𝜀𝑝

𝑑𝑁
=

𝑑

𝑑𝑁
(

𝑙𝑝(𝑁) − 𝑙0

𝑙0
) 7-2 

here, ∆𝜀̇𝑝 is the plastic strain ratio in one cycle, ε
p
 is the plastic strain, N is the number of 

cycle, l is length of a sample after cyclic loading, l0 is the initial length of the sample. 

 

The increase in plastic strain rate indicates that the damage of the sample is progressing very 

fast and this leads to an inevitable failure. The strain rate can be an indicator of an upcoming 

failure. This is probably related to an increase in number of microcracks and damages in the 

sample. At a certain level of damage, when the number of cracks is high enough, the sample 

deteriorates fast enough to fail. 

 

The incremental build-up of plastic strains is sometimes called cyclic creep because it is 

similar to the creep behaviour of brittle materials described by e.g.: Haimson & Kim (1972), 

Brown & Hudson (1974), Haimson (1978) and Yamashita et al. (1999). This typical creep 

behaviour is also divided into three zones, similar to the ones in Figure 7.34. It should be 

mentioned, however, that creep and fatigue are different phenomena.  

 

Limitations 

During the laboratory triaxial cyclic tests, it was found that the plastic strain rate for some 

artificial gypsum and mortar tests did not follow the typical ABC pattern presented in Figure 

7.34. For example, in Figure 7.35, another common pattern of plastic strain accumulation can 

be found. Around the middle of the cyclic loading a several cycles with much higher plastic 

strains occurred. The increasing strain rate is thus not necessarily implying an upcoming 

failure of the material. The cyclic loading still proceeds after this high accumulation of 

strains. 
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Figure 7.35. Stress-strain plot for another common type of plastic strain accumulation 

Artificial gypsum 

A plot based on all artificial gypsum tests is presented in Figure 7.36 (tests for the S-N curve) 

and in Figure 7.37 (tests for remaining shear strength curve). It can be seen that the total 

plastic strain accumulation until failure increases with an increasing number of cycles (the 

more cycles the higher the total plastic strain accumulation). The coefficient of determination 

r
2
 = 0.17-0.18 has a very low value, so the data points are highly spread. Therefore, 

predictions based on strain accumulation do not give proper results for the fatigue life of 

artificial gypsum. Hilsdorf & Kesler (1966) also noted that the strain at failure was 

independent of the fatigue life. 

 
Figure 7.36. Plastic strain accumulation until failure (all artificial gypsum samples for the S-N curve) 
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Figure 7.37. Plastic strain accumulation until failure (all artificial gypsum samples for the remaining 

shear strength curve) 

Mortar: 

For mortar the same results as for artificial gypsum is found. Based on the data from the 

remaining shear strength tests, no strong correlation between the plastic strain accumulation 

and number of cycles exists (Figure 7.38). A complete different behaviour is found, when the 

strains are calculated from tests for the S-N curve (Figure 7.39). Some correlation exists for 

which there is no clear explanation yet. 

 
Figure 7.38. Plastic strain accumulation until failure (1 week, c/s =0.5 mortar test for the remaining 

shear strength curve) 
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Figure 7.39. Plastic strain accumulation until failure (1 week, c/s =0.5 mortar samples tested for S-N 

curve) 

Remarks for the plastic strain accumulation of cohesive materials 

From a micromechanical point of view, the energy which is stored in a sample is much higher 

for a high confining pressure σ3 than for a lower one. The cyclically loaded sample for with a 

higher confining pressure σ3 can store more energy, accumulate more plastic strains ε
p
, and 

thus have longer fatigue life (for remaining shear strength curve for the same applied number 

of cycles, the remaining shear strength is higher for higher confining pressure). According to 

energetic models, the more plastic strain energy the sample can store, the longer its fatigue 

life is. In other words, a higher confining pressure should decrease susceptibility to cyclic 

fatigue. This agrees with Brown & Hudson (1974), who stated that increasing ductility can 

result in post-peak curve flattening. This limits fatigue when brittle rocks are subjected to a 

high confining pressure. 

 

The results of the strain accumulation in cyclic loading for cohesive samples, could not 

however, give conclusive remarks to that hypothesis. 

7.5.2. Strain accumulation of cohesionless materials in cyclic loading 

More detailed description of the effect of cyclic loading on cohesionless soils can be given by 

the characteristic state theory (Luong, 1980) and shakedown theory. 

 

Characteristic state 

The characteristic state line (Figure 7.40) describes the transition from compressive to 

dilative behaviour of cohesionless drained geomaterial (phase transformation line for 

undrained tests). When the cyclic stress is higher than the characteristic state it can lead to 

dilation. For dilative sands, a significant amount of strain due to cyclic loading can develop. 
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For stresses smaller than the maximum stress of previous loading, sand behaves much stiffer, 

compacted and gains strength. With an increasing number of cycles, the strain in each cycle 

decreases, reaching a stable state after a certain number of cycles. This is called cyclic 

shakedown (Yu, Khong, & Wang, 2007). Sand with a higher relative density dilates more and 

gains therefore higher ultimate shear strength. However, for very loose sands and for sands 

under a very high confining pressure, the characteristic line coincides with the failure 

envelope. 

 

Shakedown theory 

The basic assumption of the shakedown theory is that below a certain load the ultimate 

response will be purely elastic (reversible) and therefore, there is no more accumulation of 

plastic strain. If the applied load is higher than the shakedown load, uncontrolled permanent 

deformations will develop and therefore unstable conditions will progress (Figure 7.41).  

 

The European Standard Committee has included in the actual standard for granular materials 

under cyclic loads (CEN, 2004) three classification ranges according to the work of 

Werkmeister (2003),  

- range A–plastic shakedown–stable deformation behaviour;  

- range B–plastic creep–failure at a high number of load cycles;  

- range C–incremental collapse–failure at low number of load cycles. 

  
Figure 7.40. A characteristic state (IL- 

instability line and compaction/dilation zones) 

Figure 7.41. Shakedown theory 

Accumulation of plastic strains for cohesionless materials in cyclic loading 

The accumulation of plastic strains in cyclic loading can be easily noticed for intact limestone 

in Figure 7.42 and Figure 7.43. Similar results for cohesionless geomaterials were found by 

e.g. Galjaard et al. (1996). For both, the intact and the crumbled limestone, the accumulation 

of strains corresponds to a decreasing strain rate d𝜀̇𝑝, because the plastic strain rate reaches a 

stable state after a certain number of cycles (Figure 7.43). The decreasing strain rate d𝜀̇𝑝 

indicates that the strain response of the material after certain number of cycles is purely 

elastic (shakedown). For all cohesionless materials the patter of strain accumulation () is the 
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same. It also means that probably all sands were already slightly densified before applying 

cyclic loading, leading to a shakedown (decrease in plastic strains with increasing number of 

cycles), see Figure 7.42. 

 
Figure 7.42. Stress – Strain plot of intact limestone for 100 cycles 

 
Figure 7.43. Plastic strain accumulation in number of cycles for intact limestone 

 Conclusions 7.6.

All triaxial tests were conducted on dry samples in their natural state, without presence of 

water (no pore pressure). The range of the confining pressure was between 0 MPa and 0.5 

MPa. The carried out cyclic tests were typical multiple loading tests with constant 

displacement ratio up to a certain stress level. The frequency was kept low to allow for 

precise application of cyclic loads and accurate data readings. What is more, the frequency of 
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the cyclic loading corresponds to the natural loading of waves and winds. The number of 

applied cycles ranged between few cycles and up to few hundred thousand cycles (max 

number of applied cycles was 370 000). 

 

It must be noticed that, since the upper piston in the triaxial machine was pushed up through 

the water pressure in the cell, the force did not reduce to zero. Therefore, the minimum cyclic 

stress σmin is equal 0 only when the confining pressure σ3 is also equal to 0. 

 

The main constraint in the cyclic triaxial laboratory tests is the speed of the data logging 

system. Due to a slow response time, a quick application of constant and accurate cyclic 

loading was not possible and it could even lead to overloading of samples. The frequency had 

to be kept low in order to avoid misreading and overloading the samples, thus limiting the 

number of available tests. 

 

Cyclic laboratory tests prove that the cohesive geomaterials lose strength in cyclic loading. 

The loss of strength can be described by an S-N curve or by a remaining shear strength curve. 

Laboratory tests on cohesionless materials prove that the friction angle remains constant 

during cyclic loading. For sand, due to densification caused by the cyclic loading the shear 

strength increases slightly. 

 

A good quality of data is of utmost importance for the description of fatigue of geomaterials. 

The strength results of the cyclic laboratory tests have a significant spread. This spread has 

many causes, from differences in test setup, sample preparation and imperfections, to testing 

conditions (temperature, humidity, etc.). Unfortunately, all these factors cannot be 

incorporated into a fatigue description due to insufficient data. 

 

The impact of the size of cycling loading on the strength reduction for the remaining shear 

strength curve is negligible. Therefore there is no parameter which describes the cyclic stress 

ratio in the remaining shear strength curve. The strength reduction is strongly dependent only 

on the applied number of cycles. 

 

In cyclic loading, the stiffness change of geomaterial follows the shear strength change. For 

cohesive materials the stiffness decreases and for cohesionless increases in increasing number 

of cycles. The main limitation of using the stiffness reduction in cyclic loading for describing 

the fatigue is that the derivation of static strength from static stiffness was not successful. 

This was because no correlation between the static strength and static stiffness was found and 

the stiffness is independent on the strength of the material. The usefulness of the stiffness 

reduction in order to predict strength reduction in cyclic loading, therefore, is questionable. 

 

Application of the accumulation of strain to describe the fatigue of geomaterials does not 

seem to be promising. Sometimes the measured strains do not follow the typical stress-strain 

path because plastic deformations can be significant even before failure. Describing the 

fatigue life by the accumulation of strains is not possible, because there is no correlation 
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between accumulated strains and sample fatigue life. Also the plastic strain rate thus cannot 

be applied to predict the progress of strength loss. 

 

Because the strain and stiffness changes cannot be used as a standard method for estimating 

geomaterial damages in terms of cyclic loading, the empirical (S-N or remaining shear 

strength curves) approach seems more appropriate. 

 

In some cases, the accumulation of plastic strains can reach the maximum allowable value 

(chapter 7.5). For that reason the strain accumulation has to be checked separately (see 

chapter 2.2.1). Crack opening, and liquefaction were not investigated in this thesis, however 

in some cases, during the design stage, they must be checked separately for cyclic loading 

(e.g. saturated undrained conditions, large expected displacements, non-homogeneous 

material etc.). 

 

The fatigue of geomaterials under realistic loading conditions - variable amplitude loading as 

well as multiaxial loading and cyclic confining pressure σ3 has not been investigated in this 

dissertation due that time limitation. 

 

The spread of static points for the remaining shear strength curve and the S-N curve is 

different than that for the static tests, because of different methods (coordinate system) of 

presenting the same tests results. For the remaining shear strength curve and S-N curve, the 

test results are normalised to the predicted shear strength at a given confining pressure τrem/τ0 

(see the methodology in chapter 4.2). For the typical static p-q plot (e.g. Figure 6.1) the 

results are not normalised and by presenting the test results in the p-q coordinate system, the 

information how the tests results are spread for the same confining pressure is not clearly 

visible. Therefore, the p-q (and similarly τ-σ plot) hide the real spread of data results. 
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8. S-N CURVE VS REMAINING SHEAR STRENGTH CURVE 

 Introduction 8.1.

In this chapter, the S-N curve and the proposed remaining shear strength curve are compared 

by presenting the similarities and differences between these two curves. The comparison is 

based on the laboratory cyclic triaxial tests. The impact of the static data, confining pressure 

and cyclic stress ratio is investigated in this chapter. The cumulative damage rule for the 

remaining shear strength is compared with the cumulative damage rule for the S-N curve. At 

the end of the chapter, the remaining shear strength curve will be converted into a remaining 

cohesion curve, which was proposed in chapter 4.6. 

 The remaining shear strength curve as a S-N curve 8.2.

The remaining shear strength curve is independent of the cyclic stress ratio τcyc/τ0 according 

to the triaxial test results (chapter 7.3.1). When τcyc < τrem, the size of cyclic stress τcyc is 

unimportant until the cyclic stress is not touching the remaining shear strength curve. The 

remaining shear strength τrem depends on the number of cycles (Figure 8.1) only. As long as 

the applied number of cycles n is not higher than the number of maximum cycles N for a 

certain remaining shear strength, the cyclic loading can progress. While cyclic loading 

progresses, the τrem is decreasing, and at some point the cyclic shear stress touches the 

remaining shear strength τcyc = τrem and the material fails.  

 

 

 

 

 

 

 

 

 

 

 

Figure 8.1. The remaining shear strength curve 
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Figure 8.2. The remaining shear strength curve for different cyclic stresses 

Because τrem is only related to N, it does not matter how the material is cyclically loaded 

(Figure 8.2). This has a big impact on the cumulative damage rule, because the accumulation 

of damage should also be independent of the cyclic stress τcyc. This can be easily investigated 

in laboratory tests (see chapter 8.7). 

 

Even though the static stress-strain behaviour (see chapter 7.5) is different under different 

confining pressures, the fatigue life seems unaffected by the confining pressure. The impact 

of a higher confining pressure (up to 0.5 MPa) is not found and the hypothesis of different 

strength reductions for different confining pressure σ3, as described in chapter 4.6.2, is not 

confirmed. It was expected that the higher the confining pressure, the longer the fatigue life 

(remaining strength), but any cyclic stress ratio for any confining pressure is a causing similar 

shear strength loss. 

 

Similarly, the strain accumulation in cyclic loading described in chapter 7.5.1 could not give 

conclusive remarks to the hypothesis of different strain accumulation for different confining 

pressures. The strain accumulation does not depend on the confining pressure, similarly to the 

decrease of strength. The lack of effect of different cyclic loading ratios on the remaining 

shear strength curve is a very important material property and this can be related to the stage 

B of an elastic strain in cyclic loading, as described in chapter 7.5.1. The strain starts to 

increase mainly prior to failure and the last cycles are the most important, because the cyclic 

stress τcyc quickly approaches τrem. 

 

If the plastic strain accumulation is unimportant for fatigue life of geomaterials, one can 

assume that the energy stored in the sample has also no impact on the fatigue life. The lack of 

correlation between energy and life, could lead to the conclusion that the cyclic stress ratio is 

not very important for the strength reduction, which could confirmed the statement that the 

fatigue of geomaterials primarily depends on the maximum number of cycles N for a certain 

remaining shear strength.  

 

The remaining shear strength can be then recalculated from the S-N curve, based on the fact 
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that the shear strength is reduced to τcyc one cycle prior to failure: 

  𝜏𝑟𝑒𝑚 = 𝐴 − 𝐵 𝑙𝑜𝑔10(𝑁 − 1) 8-1 

where A and B are S-N curve fit parameters. The S-N curve can be treated therefore as a 

remaining shear strength curve one cycle before the failure in tests for S-N curve. This means 

that the remaining shear strength curve is similar to as the S-N curve, and the impact of σa 

and σmean can be omitted. The remaining shear strength gives then simple formula for 

obtaining the remaining shear strength without any transformations and vice-versa. Other 

differences and similarities will be investigated in subsequent chapters. 

 Comparison between the S-N curve and the remaining shear strength curve 8.3.

Artificial gypsum 

The slope and the intercept of both the S-N curve (Figure 8.3) and the remaining shear 

strength curve (Figure 8.4) are presented in Table 8-1. The S-N curve gives a steeper slope 

than the remaining shear strength curve. This implies that the S-N curve give shorter life and 

faster reduction in comparison to the remaining shear strength curve. This is not a very 

surprising result, because the prematurely failed samples are not included in the calculations 

and in this case, a significant number of the S-N samples are the prematurely failed samples 

from the remaining shear strength tests. This means an exact comparison is not possible. 

Table 8-1. The S-N and remaining shear strength curve parameters for artificial gypsum 

 

slope intercept 

S-N curve 0.107 log(N) 1.0 

Remaining shear strength curve 0.067 log(n) 1.0 

 

 
Figure 8.3. The S-N curve for artificial gypsum 
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Figure 8.4. The remaining shear strength curve for artificial gypsum 

Mortar 

The comparison between the S-N (Figure 8.5) and the remaining shear strength curve (Figure 

8.6) for mortar shows different slopes, so the S-N curve indicates a higher strength loss in 

cyclic loading than the remaining shear strength curve (Table 8-2). This is the same result as 

for the artificial gypsum, which also presented higher loss of strength for the S-N curve. 

 
Figure 8.5. The S-N curve for mortar (1 week, cement/sand ratio =0.5) 
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Figure 8.6. The remaining shear strength curve for mortar (1 week, cement/sand ratio = 0.5) 

Table 8-2. The S-N and the remaining shear strength curve parameters for mortar (1 week, 

cement/sand ratio = 0.5) 

 

slope intercept 

S-N curve 0.082 log(N) 1.0 

Remaining shear strength curve 0.050 log(n) 1.0 

 

8.3.1. Palmgren-Miner rule & the remaining shear strength curve 

In the Figure 8.7, the sum of damages (cyclic and final static) calculated according the 

Palmgren-Miner rule (see chapter 3.5.4) is presented. 

 
Figure 8.7. Palmgren-Miner sum for 42 samples from remaining shear strength tests (artificial 

gypsum) 
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It can be noticed that the sum for most samples is much lower than 1. All values of the sum 

higher than 1, are plot as 1. The conclusion can be given that the Palmgren-Miner rule does 

not well predict the life in the case of the remaining curve for artificial gypsum. For mortar 

samples the sum is similar to the pattern exhibited by artificial gypsum. 

8.3.2. Advantages and disadvantages of the standard S-N and the remaining shear 

strength curve 

The S-N curve and the remaining shear strength curve methodology have both their 

advantages and disadvantages. The biggest disadvantages of both curves are that they are not 

taking into account all available data. The S-N curve does not take into account “run outs” 

(samples for which no failure occurred) and the remaining shear strength curve does not take 

into account prematurely failed samples (samples which do not reach the required number of 

cycles). 

 

The remaining shear strength curve  

The biggest advantage of the remaining shear strength curve compared to the S-N curves is 

that this curve does not only predict failure, but it also predicts the remaining shear strength. 

The remaining shear strength is measured directly and in a simple way. Besides, the empirical 

damage parameter used in describing the cumulative damage by Palmgren-Miner rule, can be 

replaced by the remaining shear strength.  

 

Another advantage of the remaining shear strength curve is that it can predict more accurately 

the fatigue life for a low number of cycles and for a high cyclic stress. The S-N curve is valid 

and used mainly for a higher number of cycles and a low cyclic stress. For low number cycles 

before failure, the low cycle fatigue approach is commonly used (chapter 3.6). Moreover, the 

tests for the remaining shear strength curve can be easily scheduled. 

 

The biggest disadvantage of the remaining shear strength curve is that it accounts only for the 

samples which survived the number of applied cycles. This leads to the conclusion that the 

remaining shear strength curve overestimates the strength. The S-N curve gives then “safer” 

results than compared to the remaining shear strength curve (see Table 8-2 and Figure 8.3 and 

Figure 8.4). Same results can be seen in Figure 8.8 (Philippidis & Passipoularidis, 2006) 

indicating a lower fatigue life (strength) prediction for the S-N curve in case of composite 

materials.  
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Figure 8.8. Remaining strength and S-N curves (Philippidis et al., 2006) 

In the laboratory triaxial tests it was found that the cyclic stress ratio is unimportant, so only 

one remaining shear strength curve is necessary to be obtained, which makes the effort 

similar to prepare the S-N curve. 

 

S-N curve  

To the main advantages of the S-N curve belongs: it is easily applicable (cyclic tests for 

compression, tension or both combined); it is fairly accurate; and it is well described and 

widely used (in material science). 

 

The S-N curve has few disadvantages. The S-N curve does not give directly the remaining 

strength, which is the parameter needed in design. The static tests usually are not taken into 

account in the calculations (in this thesis, the static tests were, however, included). The 

presence of censored data – “run outs” can lead to erroneous fatigue life estimation. 

 Spread of test results & probability of failure in cyclic loading 8.4.

Spread of test results 

For both, the artificial gypsum and mortar, the spread of the static results is lower than the 

spread of the cyclic results (Figure 8.9 and Figure 8.10). To compare the static tests with the 

cyclic, all artificial gypsum samples loaded for 1000 cycles are taken, disregarding their 

cyclic stress ratio τcyc/τ0. In the case of mortar, all samples loaded with 10000 cycles are 

considered. For tests series with different number of applied cycles, the spread of the cyclic 

results is also higher than the spread of the static tests. 

 

The wider spread of cyclic test results has to be taken into account for calculating the design 

values of the strength. For all tested materials, the spread of static tests was significant, so the 

design static strength has to also be significantly reduced. For cyclic tests the spread is even 

bigger, which results in an even bigger reduction of the design strength. To describe the 

design strength in cyclic loading one has to not only reduce the strength because of the 
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material degradation caused by cyclic loading but also has to consider higher spread of the 

tests results. The higher spread can also suggest that to estimate what part of material strength 

has been consumed in cyclic loading is difficult, based on e.g. core tests from sites to 

evaluate the remaining strength. 

 
Figure 8.9. Normal distribution curve of cohesion for static and cyclic tests (1000 cycles) for artificial 

gypsum 

 
Figure 8.10. Normal distribution curve of cohesion for static and cyclic tests for mortar samples (1 

week, cement/sand ratio =1 and for 10000 cycles)  

Probability of failure 

The probability of failure is described by the prediction band. The prediction band of the S-N 

curve depends on the distribution of samples at the cyclic stress level; see Figure 3.8, ASTM 

E739-91, (1998) and Eurocode 3, (2006). In contrast, the prediction band of the remaining 
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23% 

22% 

shear strength curve depends on the distribution of the tests for a certain number of cycles 

(see Figure 4.4). The distribution of the cyclic tests for the remaining shear strength curve for 

a given number of cycles is similar to the static tests (see previous chapter - 8.3). The spread 

of the data shows no significant difference between the S-N curve and the remaining shear 

strength curve (see Figure 8.11, Figure 8.12 and Table 8-3).  

 
Figure 8.11. The S-N curve data spread for artificial gypsum 

 
Figure 8.12. The remaining shear strength curve data spread for artificial gypsum 
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Table 8-3. Probability of failure p < 2.5% (lower prediction line 2.5%) 

 

Distance from the curve 

(1.96∙sandard error of estimate %) 

S-N curve 23% 

Remaining shear strength curve 22% 

 Impact of the static test results on the S-N curve and remaining shear strength 8.5.

curve 

The impact of the static test results on S-N curve 

The S-N curve including static data (Figure 8.14) presents only a slight increase in the 

accuracy in comparison to the curve which excludes the static data (Figure 8.13). 

Improvement in the fatigue life estimation in the LFC region is found. Because the number of 

applied cycles is small (N > 100 000 cycles), a conclusive remark cannot be made whether 

the static results should be included in the calculations or not. The slops of the curves are 

only slightly smaller (Table 8-4) and the use of the static data for the derivation of the S-N 

curves is, therefore, not conclusive.  

Table 8-4. Comparison between parameters including and excluding static test results 

Regression Forced intercept 1.0 Excluding static tests 

Logarithmic τcyc/τ0 = 1.0 - 0.107∙log(N) τcyc/τ0 = 1.02-0.114∙log(N) 

 

 
Figure 8.13. The S-N curve excluding static test results for artificial gypsum 
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Figure 8.14. The S-N curve including static test results for artificial gypsum 

The impact of static test results on the remaining shear strength curve 

The static test results are usually included in the description of remaining shear strength 

curves (see chapter 4.4). The static tests can be treated as a cyclic tests for n = 1.  

 

The remaining shear strength curves, where each curve corresponds to different cyclic stress 

ratios τcyc/τ0, are presented including (Figure 8.16) and excluding (Figure 8.15) static test 

results. Significant increase in the accuracy of the remaining shear strength curve was found 

(Table 8-5 and Table 8-6). The same increase in accuracy was observed for the single 

remaining shear strength curve for all cyclic stress ratios τcyc/τ0 (Table 8-7, Figure 8.18 and 

Figure 8.17). 

 
Figure 8.15. The remaining shear strength curve excluding static test results for artificial gypsum 
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Figure 8.16. The remaining shear strength curve including static test results for artificial gypsum 

Table 8-5. The remaining shear strength curve parameters for different cyclic stress ratios (excluding 

static tests) for artificial gypsum 

τcyc/τ0 r
2 slope intercept 

40% 0.27 0.07 1.05 
60% 0.39 0.11 1.13 
80% 0.66 0.13 1.15 

Table 8-6. The remaining shear strength curve parameters for different cyclic stress ratios (including 

static data) for artificial gypsum 

τcyc/τ0 r
2

 slope intercept 

40% 0.33 0.055 1.0 

60% 0.31 0.062 1.0 

80% 0.28 0.056 1.0 
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Figure 8.17. A single remaining shear strength curve excluding static test results for artificial gypsum 

 
Figure 8.18. A single remaining shear strength curve including static test results for artificial gypsum 

Table 8-7. Regression coefficients including and excluding static test results for artificial gypsum 

Regression Including static tests Excluding static tests 

Logarithmic τrem/τ0= 1.0 - 0.067∙log(n) τrem/τ0 = 1.10 - 0.104∙log(n) 

 Impact of the confining pressure on fatigue of geomaterials 8.6.

Impact of a confining pressure σ3 on the remaining shear strength was checked for artificial 

gypsum (for mortar there was an insufficient number of samples to make a comparison).  

 

The S-N curve 
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pressure σ3 is found (Table 8-8). Only a very small increase in strength is observed (steeper 

slope) for confining pressure σ3 = 0.5 MPa. 

Table 8-8. The remaining shear strength curve parameters for different confining pressures for 

artificial gypsum 

Confining pressure σ3 (MPa) slope intercept 
0.1 0.093 1.0 
0.3 0.099 1.0 
0.5 0.165 1.0 

 

 
Figure 8.19. The S-N curve for σ3= 0.1 MPa for artificial gypsum 

 
Figure 8.20. The S-N curve for σ3= 0.3 MPa for artificial gypsum 

1 10 100 1000 10000 100000
0%

20%

40%

60%

80%

100%

120%

N (-) 

 cy
c
 /

 
0
 (

%
)

 

 

S-N curve

prediction band 95%

confidence band 95%


cyc

 / 
0
 = 1.00 -0.093 log(N)

           r
2
 = 0.40

1 10 100 1000 10000 100000
0%

20%

40%

60%

80%

100%

120%

N (-) 

 cy
c
 /

 
0
 (

%
)

 

 

S-N curve

prediction band 95%

confidence band 95%


cyc

 / 
0
 = 1.00 -0.099 log(N)

           r
2
 = 0.42



S-N CURVE VS REMAINING SHEAR STRENGTH CURVE 

 

155 

 

 
Figure 8.21. The S-N curve for σ3= 0.5 MPa for artificial gypsum 

The remaining shear strength curve 

For the remaining shear strength curve similar results are found as obtained for the S-N 

curve. There is no strong correlation between the remaining shear strength and the confining 

pressure for artificial gypsum (Table 8-9). 

Table 8-9. The remaining shear strength curve parameters under different confining pressures for 

artificial gypsum 

Confining pressure σ3 (MPa) slope intercept 
0.1 0.041 1.0 
0.3 0.082 1.0 
0.5 0.083 1.0 

 
Figure 8.22. The remaining shear strength curve for σ3= 0.1 MPa for artificial gypsum 
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Figure 8.23. The remaining shear strength curve for σ3= 0.3 MPa for artificial gypsum 

 
Figure 8.24. The remaining shear strength curve for σ3= 0.5 MPa for artificial gypsum 

For both, the S-N curve and the remaining shear strength curve, the loss of strength in 

number of cycles was slightly higher for the highest confining pressure. The differences in 

the stress reduction for higher confining pressure are, however, insignificant.  

 Cumulative damage rule for geomaterials 8.7.

The fatigue life of a geomaterial (number of cycles N until failure) can be predicted when the 

parameters of the remaining shear strength curve (Table 7-2) are known. 

 

Cumulative damage rule for remaining shear strength curve 
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cyclic stress ratio (see chapter 7.3.1) implies that the fatigue life is independent on the cyclic 

stress ratio and depends only on the number of cycles. The fatigue life of a geomaterial is 

simply just the fatigue life minus the sum of the consumed lives of previous cyclic loads. 

This assumption is presented in Equation 8-2 and Figure 8.25. 

  𝑛 = 𝑛1 + 𝑛2 + 𝑛3 + ⋯ + 𝑛𝑖 8-2 

 
Figure 8.25. Predicting the fatigue life based on a remaining shear strength curve 

The fatigue life N for the remaining shear strength curve is calculated from the Equation 

4-27: 

  𝑁 = 𝑛 = 10
𝛼−𝜏𝑟𝑒𝑚

𝛽  8-3 

where, τrem is the remaining shear strength, β is the slope and α is the intercept of the 

remaining shear strength curve. The above equation is parameterised for the artificial 

gypsum. It yields with equation: 

  𝜏𝑟𝑒𝑚 = 1.0 − 0.067  ∙ 𝑙𝑜𝑔10 𝑛 8-4 

To be able to compare the remaining shear strength cumulative damage rule with the 

Palmgren Miner rule for S-N, the τrem in Equation 8-3 will be replaced by τcyc.  

 

The remaining life for two sets of cyclic loads can be calculated according to the remaining 

shear strength curve as: 

  𝑛2 = 𝑁 − 𝑛1 8-5 
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  𝑛 =  
1

𝑧1
𝑁1

+
𝑧2
𝑁2

+
𝑧3
𝑁3

+ ⋯ +
𝑧𝑘
𝑁𝑘

 8-6 

where n is the number of cycles before failure, zi is the part of life spent at cyclic stress ratio 

i, and Ni is the life for that cyclic stress ratio. 

 

The remaining life for two sets of cyclic loads according the Palmgren-Miner cumulative 

damage rule for the S-N curve can be calculated as: 

  𝑛 =  
1

𝑧1
𝑁1

+
1 − 𝑧2

𝑁2

 8-7 

  

Cumulative damage – laboratory tests 

Some basic assumptions of the cumulative damage rules, for both the remaining shear 

strength curve and the S-N curve, can be proven in cyclic triaxial laboratory tests. The 

comparison between cumulative damage rules for the remaining shear strength and S-N will 

allow checking if the remaining shear strength curve indeed is independent on the cyclic 

stress ratio i and if the predicted life from the remaining shear strength curve is correct and 

similar to that given by the S-N curve. 

 

In the proposed here laboratory tests, each sample is loaded with two sets of loads. For the 

first set the cyclic stress ratio is τcyc/τ0 = 80% and the applied number of cycles is n1 = 400 

cycles. The number of 400 cycles is less than the calculated fatigue life for that cyclic 

loading, N80% = 966) and is based on the equation for the remaining shear strength curve 

(Equation 8-4). Next, a lower cyclic stress ratio τcyc/τ0 = 70% (60%, 40%, etc.) will be applied 

and the number of cycles until failure n2 will be counted. 

 

The searched number of cycles until failure n2 for τcyc/τ0 = 70% is (the fatigue life is 30 000 

cycles for that cyclic stress ratio): 

- According to remaining shear strength cumulative damage rule: 

  n2 = 30 000 – 966 = 20 044 

- According to the Palmgren-Mine rule for the S-N curve: 

𝑛2 =  
1

400
966
966 +

1 −
400
966

30 000

= 2231 

 

It can be noticed, that the Palmgren-Miner rule gives much smaller number of cycles n2 

which can be applied in comparison to the simpler cumulative damage rule for the remaining 

shear strength curve. The difference is very big (9 times more) and it should be easy to prove 

which one is correct by conducting tests.  
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Results 

The result is the number of counted cycles until failure n2 for the second cyclic stress ratios 

ratio τcyc/τ0 = 70%. Two tests were conducted and the number of cycles is: 

 test 1: n2,I = 7307 cycles 

 test 2: n2,II = 5435 cycles 

 

More tests were carried out, but all of them ended before reaching the 400 cycles for 1
st
 set of 

cyclic loading (sample failed in 151 cycles). Additionally, a lower first cyclic set was applied 

with cyclic stress ratio τcyc/τ0 = 60%. Unfortunately also in that case the samples failed during 

the first cyclic loading set at a number of cycles n1 = 877, and 116. 

 

Conclusions 

The real value of applied cycles lies between the number given by the strength reduction 

cumulative damage rule and the Palmgren-Miner rule. No conclusive results were obtained. It 

also means that that the remaining shear strength cumulative damage rule is not validated and 

it is still not proven whether the fatigue of geomaterials is independent on the cyclic stress 

ratio according the remaining shear strength curve or not. The Palmgren-Miner rule gives 

safer results than the simple additive rule for remaining shear strength curve. 

 The remaining shear strength – the remaining cohesion 8.8.

Constant friction angle 

To extend the shear strength reduction in cyclic loading, the cohesion reduction in cyclic 

loading is proposed (chapter 4.4.6). The shear strength in cyclic loading is independent on the 

friction angle based on the comparison between the static and cyclic test results for artificial 

gypsum for different confining pressures (chapter 8.6, and Figure 8.26), and as well as the 

cyclic testes on cohesionless materials (chapter 7.3.2). 

 

The Figure 8.26 shows a spread of the data points for distance of the remaining shear strength 

points in cyclic loading (normalised to the static strength τ0) for different confining pressures 

σ3. The plot shows that there is no correlation between the spread of the data points and the 

confining pressure σ3.  
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Figure 8.26. Strength reduction in correlation to σ3 for artificial gypsum 

The cyclic test results on cohesive and cohesionless materials pointing out that the shear 

strength reduction in cyclic loading is not related to a decrease in friction angle ϕ, but with a 

decrease in cohesion c. 

 

The remaining cohesion 

Applying constant friction angle into the fatigue description of geomaterials, similar curves 

as for the remaining shear strength curve – Figure 7.9, can be created for the remaining 

cohesion (described in chapter 4.6). The remaining shear strength ratio τrem/τ0 can be replaced 

by the remaining cohesion ratio crem/c0 as presented in Figure 8.27.  

 
Figure 8.27. The remaining cohesion (% of the initial cohesion) after given number of cycles n for all 

cyclic samples including the static results 
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The interpolated formula for all samples can be written: 

  𝑐𝑟𝑒𝑚 = 𝑐0 ∙ [𝛼 − 𝛽 ∙ 𝑙𝑜𝑔(𝑛)] 8-8 

where α and β are parameters obtained from the regression lines, and are specific to the tested 

material. In case the material is intact, the parameter α can be taken as a 1.0 (100% of the 

initial strength). 

 

The Mohr-Coulomb failure criterion for cyclically loaded material 

For cohesionless materials (e.g. sand) no cohesion is present (c = 0 kPa) thus, a shear strength 

reduction can be neglected for such a material. Therefore, a clear distinction has to be made 

between the cohesive and the cohesionless materials under cyclic stresses.  

 

The updated shear strength τ according to the above considerations can be given as: 

  𝜏 = 𝜎 𝑡𝑎𝑛 𝜙 + 𝑐𝑟𝑒𝑚 8-9 

where the remaining cohesion crem replaces the best fit “static” cohesion c0. This can also be 

written as: 

  𝜏 = 𝜎 𝑡𝑎𝑛 𝜙 + 𝑐0 ∙ [𝛼 − 𝛽 ∙ 𝑙𝑜𝑔 𝑛] 8-10 

Based on this an updated Mohr-Coulomb failure criterion described by principal stresses is 

proposed: 

  (
𝜎1 − 𝜎3

2
) − (

𝜎1 + 𝜎3

2
) 𝑠𝑖𝑛𝜙 − 𝑐𝑟𝑒𝑚 ∙ 𝑐𝑜𝑠 𝜙 = 0 8-11 

or: 

  (
𝜎1 − 𝜎3

2
) − (

𝜎1 + 𝜎3

2
) 𝑠𝑖𝑛𝜙 − 𝑐0 ∙ [𝛼 − 𝛽 ∙ 𝑙𝑜𝑔 𝑛] ∙ 𝑐𝑜𝑠 𝜙 = 0 8-12 

The fatigue life is then related to a complete loss of cohesion during cyclic loading. 

 

Fatigue life of geomaterials at a certain cyclic stress ratio for remaining shear strength curve 

In order to describe fully the fatigue of geomaterials for the remaining shear strength curve, 

the fatigue life of a material has to be known. The number of cycles before fatigue life for the 

remaining shear strength curve nmax = N can be found from a simple transformation of 

Equation 8-8: 

  𝑙𝑜𝑔10 𝑛𝑚𝑎𝑥 =
𝑐0 ∙ 𝛼 − 𝑐𝑟𝑒𝑚

𝑐0 ∙ 𝛽
 8-13 

Which gives: 

  𝑛𝑚𝑎𝑥 = 𝑁 = 10
𝑐0∙𝛼−𝑐𝑟𝑒𝑚

𝑐0∙𝛽  8-14 

 

Proposed procedure for reduction of bearing capacity of foundations 

The basic methodology for a designer, who is using the remaining shear strength curve, is to 

apply a simple equation which predicts the remaining shear strength. This simple equation 

must be a result of laboratory analysis of cyclic loading acting on a specified geomaterial. A 

percentage of the remaining shear strength (or cohesion) is obtained by dividing the 
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remaining shear strength by the static shear strength. To evaluate the strength reduction of 

geomaterials, a natural spectrum of cyclic loading (see chapter 3.2) has to be simplified by 

using a method to count the cycles (rainflow method, described in chapter 3.3) and by a 

cumulative damage rule (chapter 8.7) which has to be used for a set of cycles with different 

cyclic stress ratios. For predicting the fatigue life of geomaterials, a nomenclature from steel 

fatigue can be incorporated e.g. Eurocode 3 (2006).  

 

As described in chapter 2.1.1, to calculate the bearing capacity of a shallow foundation the 

following equation can be used:  

  𝑝 = 𝑐𝑁𝑐 + 𝑞𝑁𝑞 +
1

2
𝛾𝐵𝑁𝛾  8-15 

For cyclically loaded foundations a modification of this formula can be proposed: 

  𝑝 = 𝑐𝑟𝑒𝑚𝑁𝑐 + 𝑞𝑁𝑞 +
1

2
𝛾𝐵𝑁𝛾  8-16 

The crem is the remaining cohesion after cyclic loading, calculated by: 

  𝑐𝑟𝑒𝑚 = 𝑐0 ∙ [𝛼 − 𝛽 ∙ 𝑙𝑜𝑔 𝑛] 8-17 

The same procedure can be applied for pile foundations (see chapter 2.1.2, Equation 2-6): 

  𝑅𝑏 = (𝑐𝑟𝑒𝑚𝑁𝑐 + 𝑞0𝑁𝑞 +
1

2
𝛾𝑑𝑁𝛾) 𝐴𝑏 8-18 

 Conclusions 8.9.

The strength of geomaterials is low in comparison to the strength of other materials (e.g. 

metals) and the spread of test points for geomaterials varies significantly. This makes, 

therefore, the description of fatigue life very conservative and in order to assure safety, a high 

strength reduction factors has to be applied.  

 

For the comparison purpose for both types of curves (S-N and remaining shear strength) the 

static tests are incorporated in the strength reduction description. The static test results do not 

significantly improve the accuracy of the S-N curve and the remaining shear strength curve. 

 

The shear strength reduction of geomaterials was not affected by different levels of the 

confining pressure up to 0.5 MPa. The loss of strength, therefore, is independent of the 

confining pressure. The proposed hypothesis for lower strength reduction under higher 

confining pressures (described in chapter 4.6.1 and 4.6.2) does not seem valid.  

 

An unexpected result of the cyclic tests is that, in tests for remaining shear strength curve, no 

impact of the cyclic stress ratio on the fatigue life was found. This makes the remaining shear 

strength curve similar to the S-N curve. 

 

To describe fatigue of geomaterials many tests have to be conducted. The effects of the initial 

sample damage, loading frequency etc. are not yet investigated. Future research should 
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involve higher number of cycles and lower cyclic loadings, as well as combinations of 

various cyclic loads (different minimum cyclic loading, amplitude loading). Future research 

should also confirm or reject the cumulative damage rule for geomaterials, because the 

cumulative damage rule was here only briefly checked. More laboratory tests have to be 

conducted. An attempt should also be made to investigate cycling loading, where τ remains 

constant and σ3 is cyclically changing. 
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9. CONCLUSIONS & RECOMMENDATIONS 

 Conclusions 9.1.

Cyclic loading on geomaterials can cause different types of effects (Figure 9.1). The results 

of the large number of laboratory tests presented in this thesis, confirm that the shear strength 

of cohesionless materials increases during cyclic loading, while the shear strength of cohesive 

materials decreases. The conducted triaxial tests are showing the following results. The loss 

of strength can lead to fatigue (Table 9-1 and the red path in Figure 9.1) and the fatigue of 

geomaterials is proposed as a reduction of cohesion, while the friction angle remains 

constant. The existence of a constant friction angle has been validated in laboratory tests. It 

still has to be verified whether all natural cohesive geomaterials present a similar behaviour 

or not. 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Figure 9.1. Effects of cyclic loading on geomaterials 

Table 9-1. Effects of cyclic loading on sand and rock 

Material property Sand Rock 

Shear strength Not found Significant reduction 

Strains Large Small 

Water pore pressure Increase – it can lead to liquefaction None or negligible 

Stiffness Increase or decrease Significant reduction 

Cracks and microcracks Material is already crushed, 

eventually crushing of the grains 
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A small variation of the material properties, which cannot be avoided, leads to a high spread 

of the static shear strength results and a wide range of the prediction band (probability of 

failure). The imperfections of artificial gypsum and mortar were found to have a significant 

impact especially on the cyclic shear strength results. This is also the reason why a high 

number of samples prematurely failed (for remaining shear strength curve) and why the 

fatigue life for S-N curve has a very high spread.  

 

The remaining shear strength curve slightly overestimates the prediction of the fatigue life 

because it neglects the prematurely failed samples excluded from the calculations. It means 

that the standard S-N curve offers a safer life prediction.  

 

From the remaining shear strength tests it was found that, the strength reduction does not 

depend on the size of the cyclic stress ratio. This is an unexpected result, because it was 

believed that this significant laboratory testing effort will bring more detailed data about 

fatigue of geomaterials than the S-N curves. The remaining shear strength curve resembles 

therefore the S-N curve. 

 

The impact of different types of cyclic stresses (varying the minimum cyclic stress, amplitude 

stress etc.) as well as the frequency of the cyclic loading was not investigated due to time 

limitation. The cumulative damage rule, for various set of cycles and cyclic stress ratios, has 

not been extensively investigated in cyclic loading of geomaterials. Additionally, an 

endurance (fatigue limit) has not been found. 

 

Strength reduction due to cyclic loading is sometimes described as a stiffness reduction or a 

plastic strain accumulation. The accumulation of strains for cohesive materials cannot be used 

as a damage parameter, because the strain accumulation cannot be described in a simple way 

and it varies greatly between samples. 

 

For the investigated materials, the stiffness reduction curve follows the shear strength 

reduction curve. For cohesive materials the stiffness decreases and for cohesionless materials 

the stiffness increases with an increasing number of cycles. The main limitation of the 

stiffness reduction during cyclic loading is that no correlation between the static strength and 

static stiffness is found and therefore a derivation of the strength from the stiffness is not 

successful. 

 

The change of the stiffness and strains during cyclic loading cannot be used to describe the 

fatigue of geomaterials and the empirical (S-N curve or remaining shear strength curve) 

approaches seem more appropriate to predict the loss of strength in cyclic loading. 

 

To be able to incorporate the fatigue description of geomaterials into geotechnical guidelines, 

the static cohesion can be replaced by a remaining cohesion. Methods which are used and 

well developed in standard fatigue life (like methods of counting the numbers of cycles, or 

statistical methods, etc.) can be directly applied into the S-N or remaining shear strength 
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curve. Statistical analysis can also provide a reliable estimation of the safety factors for the 

cyclic strength of geomaterials. The full description of the design value of the strength 

depends then on two important aspects: 

- the strength reduction in cyclic loading, 

- the increased spread of data in cyclic loading (see chapter 8.4). 

Both this aspects has to be taken into account to properly describe the loss of strength of 

geomaterials in cyclic loading. 

 Recommendations 9.2.

The following recommendations for further investigations are proposed: 

 

1. It is recommended to conduct more various tests on geomaterials in order to increase 

the accuracy of the fatigue life estimation (e.g. various minimum cyclic stresses ratio, 

different “zero” stress level and its combinations etc.).  

2. The influence of the water content, humidity and other environmental parameters as 

well as the loading frequency on the strength reduction is recommended to be 

investigated. 

3. The effect of the cyclic stress, when the cyclic stress is the minor principal stress on 

the sample fatigue life, is recommended to be checked. 

4. The possibility of using prematurely failed samples in the calculation of the remaining 

shear strength curve should be considered. 

5. The impact of higher confining pressures on geomaterials fatigue should be further 

checked. 
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LIST OF SYMBOLS 

Bearing capacity 

δ  - angle of the wall friction 

γ  - volumetric weight 

γt, γb, γs  - partial factors 

ξ1, ξ2  - correlation factors 

ϕ  - friction angle 

c  - cohesion 

d  - diameter of the shaft at base level 

ic, iq, iγ  - correction factors 

n  - total factor of safety 

p  - ultimate bearing capacity 

q  - side load 

q0  - is the average effective overburden pressure 

sc  - shape factor 

sq  - shape factor 

sγ  - shape factor 

Ab  - base area of pile 

B  - total width of the loaded strip 

Ks   - average lateral earth pressure coefficient 

Nc, Nq, Nγ - dimensionless bearing capacity factors 

Ra  - working load 

Rb  - base resistance 

Rb;k  - characteristic values of the base resistance 

Rc;k  - characteristic compressive resistance 

Rc;m(mean) - mean characteristic compressive resistance 

Rc;m(min)  - minimum characteristic compressive resistance 

Rc;d  - design compressive resistance 

Rb;k  - characteristic values of the shaft resistance 

Rs  - shaft resistance 

 

Stresses & strains 

δ  - tangent angle of failure line in p-q diagram 

ε  - strain 

εap  - amplitude of plastic cyclic strain 

εe  - elastic strain 

εp  - plastic strain 

εt  - total strain 

σ  - stress 

σ1  - maximum principal stress 

σ2  - medium principal stress 
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σ3  - minimum principal stress 

σc  - intercept in σ3 - σ1 space 

σd  - deviatoric stress 

σd,max   - maximum deviatoric stress  

Δσ  - stress range 

τ  - shear stress 

τ0  - shear stress based on the linear regression for static tests 

b  - ordinate in a p – q diagram 

p  - the average value of the minor and major principal stresses 

q  - the difference of the major and minor principal stresses 

A  - cross-section area of a sample 

E  - Young’s modulus 

Eav  - average Young’s modulus (measured at 10%-80% of ultimate strength) 

Esec  - Young's modulus measured from zero stress to a certain fixed percentage of  

the ultimate strength 

Etan   - Young's modulus measured at 50 % of ultimate strength 

F  - load 

Ssy  - yield strength in shear 

Sy  - yield strength in uniaxial tension 

 

Cyclic loading & Fatigue 

α,β   - remaining shear strength curve parameters 

σa  - cyclic stress amplitude 

σe, Se  - endurance limit (fatigue limit) 

σeff  - effective alternating stress 

σf  - true fracture stress 

σcyc   - cyclic stress 

σd,cyc   - cyclic deviatoric stress  

σm  - cyclic mean stress 

σmax  - maximum cyclic stress 

σmin  - minimum cyclic stress 

σu   - ultimate stress  

σy   - yield stress  

c0  - cohesion based on the linear regression for static tests 

crem  - remaining cohesion 

τcyc  - cyclic shear stress 

τrem  - remaining shear strength 

i   - cyclic stress ratio 

f  - frequency of cyclic loading 

n  - applied number of cycles 

zi   - part of life spent at cyclic stress ratio i 

D  - damage parameter 
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DL,d  - safe design damage value 

Fcyc  - cyclic force 

FDF  - fatigue design factor 

N  - number of cycles to failure (fatigue life) 

Nrem  - remaining number of cycles to failure 

R  - stress ratio 

S  - fatigue strength 

S0  - static (initial) strength 

Srem  - remaining strength 

 

Others 

ρ  - density of material 

ρd  - average density of material 

ρmin  - minimum density of material 

ρmax  - maximum density of material 

ρp  - density of the particles 

a  - crack length 

c/s  - cement to sand ratio 

d  - sample diameter 

e  - void ratio     

h   - sample height      

m  - material constant 

n  - porosity 

A  - area of the sample 

C  - material constant 

Cc  - coefficient of curvature 

Cu  - uniformity coefficient 

D50  - average grain size 

K   - stress intensity factor 

Kmax  - maximum stress intensity factor 

Kmin   - minimum stress intensity factor 

 

Statistics 

μ  - mean of normal distribution 

a,b,c, A,B, C, D, F,G - regression coefficients 

p  - probability of failure 

r
2
  - coefficient of determination 

std  - standard deviation of normal distribution 

sall  - standard deviation of all points 

sest  - standard error of estimate 

Neq  - equivalent number of cycles 

Si  - random sample
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A. LABORATORY TEST RESULTS 

a) Data presentation convention - comparison 

Below a comparison based on the laboratory tests results are presented. For each type of data 

presentation convention a linear regression can be applied and the Mohr-Coulomb shear 

strength parameters can be obtained. Due to sensitivity of number of data point and data 

spread different coefficient of determination (and different accuracy of the results) can be 

obtained. The influence of some parameters on the linear regression was discussed by Cornell 

& Berger (1987). They advised to keep in mind that multiple observations of Y at each X have 

a reducing effect on the r
2
; therefore, r

2
 should not be relied on as the sole model-fitting 

criterion. The selected range of X should be as large as possible, with the assurance that the 

relationship between Y and X is linear over the range. The slope δ (the higher the slope, the 

smaller the r
2
) also has an impact on the r

2
. 

 

From the Figure A.1, Figure A.2 and Figure A.3 it can be seen that the most accurate predic-

tion of the friction angle ϕ and cohesion c can be obtained from the p-q plots.  

 
Figure A.1. σzz,σxx – τzx,τxz – Mohr circles for artificial gypsum 
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Figure A.2. p-q plot for artificial gypsum 

 
Figure A.3. σ3 - σ1 plot for artificial gypsum 

b) Static data & normal distribution 

First static, triaxial tests were performed on cylindrical samples. All the tests were conducted 

in dry conditions, and the samples had natural moisture. The static tests were run until failure 

the number maximum peak load was measured (p, q). The failure was determined as load for 

which the strains are increasing and the stresses cannot reach the cyclic stresses. The densities 

for all samples investigated in static tests are also presented. Additionally the ratio of the 

laboratory tests to the calculated interpolated failure curve is given (τ/τ0). The results are 

presented below. 
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Artificial gypsum – static triaxial tests 

 

Table A-1. Artificial gypsum static test results 

 
Fmax (N) σ3 (MPa) p (MPa) q (MPa) τ/τ0 (-) ρd = (g/cm3) behaviour 

Type of 

fracture 

Test 1 7484 0.10 3.43 3.33 1.14 0.99 brittle Cone & Split 

Test 2 7186 0.10 3.19 3.09 1.06 1.01 brittle-ductile Cone & Split 

Test 3 6919 0.10 3.04 2.94 1.00 0.97 brittle Cone & Split 

Test 4 7713 0.20 3.51 3.31 1.05 0.99 brittle-ductile Cone & Split 

Test 5 6972 0.20 3.20 3.00 0.95 0.99 ductile Cone & Split 

Test 6 7410 0.20 3.42 3.22 1.02 1.00 ductile Cone & Split 

Test 7 7972 0.30 3.79 3.49 1.02 1.00 brittle-ductile Cone & Split 

Test 8 6914 0.30 3.28 2.98 0.87 0.99 ductile Cone & Split 

Test 9 7040 0.30 3.40 3.10 0.91 1.00 brittle Cone & Split 

Test 10 7191 0.10 3.23 3.13 1.07 1.00 brittle-ductile Cone & Split 

Test 11 7196 0.10 3.25 3.15 1.07 1.00 brittle-ductile Cone & Split 

Test 12 8065 0.20 3.72 3.52 1.11 1.00 brittle-ductile Cone & Split 

Test 13 7992 0.20 3.66 3.46 1.09 0.99 brittle-ductile Cone & Split 

Test 14 7332 0.30 3.49 3.19 0.94 0.99 brittle-ductile Cone & Split 

Test 15 7797 0.30 3.71 3.41 1.00 0.99 brittle-ductile Cone & Split 

Test 16 7793 0.30 3.69 3.39 0.99 0.98 ductile Cone & Split 

Test 17 7783 0.30 3.74 3.44 1.01 0.99 ductile Cone & Split 

Test 18 7937 0.50 4.00 3.50 0.90 0.99 ductile Cone 

Test 19 7845 0.50 3.96 3.46 0.89 1.00 ductile Cone 

Test 20 7671 0.50 3.83 3.33 0.86 1.00 brittle-ductile Shear 

Test 21 7299 0.20 3.39 3.19 1.01 0.99 brittle Cone & Split 

Test 22 6985 0.20 3.34 3.14 0.99 1.01 ductile Cone & Split 

Test 23 7061 0.20 3.32 3.12 0.98 1.00 brittle-ductile Cone & Split 

Test 24 7262 0.20 3.43 3.23 1.02 0.99 brittle-ductile Cone & Split 

Test 25 6770 0.50 3.52 3.02 0.78 1.00 ductile Cone & Split 

Test 26 5435 0.10 2.52 2.42 0.83 1.00 brittle Cone & Split 

Test 27 6907 0.50 3.58 3.08 0.79 1.02 brittle-ductile Cone & Split 

Test 28 7247 0.50 3.71 3.21 0.83 1.02 brittle-ductile Cone & Split 

Test 29 7177 0.00 3.18 3.18 1.18 1.01 brittle Cone & Split 

Test 30 6736 0.00 2.89 2.89 1.07 0.98 brittle Cone & Split 

Test 31 7340 0.50 3.65 3.15 0.81 0.98 ductile Cone & Split 

Test 32 6364 0.30 3.03 2.73 0.80 0.98 ductile Cone & Split 

Test 33 7441 0.30 3.50 3.20 0.94 0.99 ductile Cone & Split 

Test 34 7855 0.50 3.87 3.37 0.87 1.00 ductile Cone & Split 

Test 35 7018 0.10 3.11 3.01 1.03 1.01 brittle-ductile Cone & Split 

Test 36 5704 0.00 2.45 2.45 0.91 1.01 brittle Cone & Split 

Test 37 7276 0.00 3.13 3.13 1.16 1.02 brittle Cone & Split 

 

Only samples 1, 3, 10, 11, 25, 27, 29 and 30 had small flaws on the surface after core drilling. 
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A bigger flaw on the surface was present only on sample 24. Defect in the core after triaxial 

tests were found only in samples no 9, 25, 27, 32 and 33. 

 

The cumulative empirical and standard normal distribution of cohesion is presented in Figure 

A.4. Both, the empirical (based on the measure data) and the standard normal cumulative 

density functions are very similar. The Kolmogorov-Smirnov tests give value 0, so the test 

does not reject the null hypothesis at the 5% significance level. (i.e., there is no difference 

between data and a normal data set). The data is normally distributed (however, the 

probability is low: 41%) Test for normality showed that the results are approximately 

symmetric (skewness = -0.368, where for -0.5 to 0.5 the distribution is assumed to be 

symmetric) and no conclusion about the kurtosis can be given because the value is between 

−2 and +2 (the kurtosis is -0.85, where the kurtosis of the normal distribution is 0). Thus, it 

can be assumed that the cohesion is normally distributed. The coefficient of variation is low 

and equals 11.4%. 

 
Figure A.4. The cumulative empirical and normal distribution of cohesion for artificial gypsum 

The bootstrap method 

 

The bootstrapping statistical technique was used to draw a large number of observations with 

replacement from the original data to create a bootstrap sample (resample), and calculate the 

mean for this resample and standard deviation. This procedure is repeated many times (e.g. 

1000). The values of mean and standard deviation can show if there is a difference of 

quantifying the random variability. 

 

Nearly all the estimates for friction angle ϕ lie on the interval 40.4° ±3.3° (Figure A.5) and c 

= 1.25 ±0.25 MPa for cohesion (Figure A.6). Whereas the friction angle ϕ is very-well 

constrained, the cohesion c shows larger scatter. The true values as used to simulate the 

laboratory data set are ϕ= 40.4° for the slope and c = 1.25 MPa for the intercept with the y-
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axis, whereas the coefficients calculated using the linear regression were ϕ = 40.7° and c = 

1.24 MPa, respectively. It can be seen that the values are very close to each other. 

 
Figure A.5. Histogram of the friction angle ϕ regression coefficient as estimated from bootstrap 

resampling 

 
Figure A.6. Histogram of the cohesion c regression coefficient as estimated from bootstrap resampling 
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Mortar – static triaxial tests 

Table A-2. Mortar static test results (1 week, cement/sand 0.5, beach sand) 

 

Fmax (N) σ3 (MPa) p (MPa) q (MPa) τ/τ0 (-) ρd = (g/cm
3
) behaviour 

Test 1 3555 0.10 1.68 1.58 0.91 1.92 brittle 

Test 2 4200 0.30 2.11 1.81 0.80 1.90 brittle-ductile 

Test 3 5212 0.50 2.71 2.21 0.79 1.85 brittle ductile 

Test 4 4416 0.00 1.90 1.90 1.29 1.93 brittle 

Test 5 5860 0.25 2.77 2.52 1.18 1.88 brittle 

Test 6 9727 1.00 5.20 4.20 1.02 1.93 brittle-ductile 

Test 7 3422 0.00 1.48 1.48 1.01 1.91 brittle 

Test 8 4555 0.30 2.28 1.98 0.87 1.87 brittle 

Test 9 8845 1.00 4.86 3.86 0.93 1.90 brittle-ductile 

Test 10 6799 0.30 3.28 2.98 1.31 1.92 brittle-ductile 

Test 11 3676 0.00 1.61 1.61 1.10 1.86 brittle 

 

Table A-3. Mortar static test results (1 week, cement/sand 1.5, beach sand) 

 

Fmax (N) σ3 (MPa) p (MPa) q (MPa) τ/τ0 (-) ρd = (g/cm
3
) behaviour 

Test 1 16355 0.00 7.28 7.28 0.94 1.71 brittle 

Test 2 19676 0.10 8.57 8.47 1.06 1.76 brittle 

Test 3 20496 0.30 9.01 8.71 1.03 1.70 brittle 

Test 4 21384 0.50 9.68 9.18 1.03 1.75 brittle 

Test 5 22225 1.00 10.58 9.58 0.95 1.73 brittle-ductile 

 

Table A-4. Mortar static test results (1 week, cement/sand 1.0, beach sand) 

 

Fmax (N) σ3 (MPa) p (MPa) q (MPa) τ/τ0 (-) ρd = (g/cm
3
) behaviour 

Test 1 10490 0.00 4.67 4.67 0.98 1.80 brittle 

Test 2 10717 0.10 4.71 4.61 0.93 1.77 brittle 

Test 3 13259 0.30 5.93 5.63 1.05 1.81 brittle 

Test 4 13917 0.50 6.48 5.98 1.03 1.80 brittle 

Test 5 14725 1.00 7.34 6.34 0.93 1.80 brittle-ductile 

Test 6 15533 0.30 6.12 5.82 1.08 1.83 brittle 

 

Table A-5. Mortar static test results (1 month, cement/sand 1.0, coarse sand) 

 

Fmax (N) σ3 (MPa) p (MPa) q (MPa) τ/τ0 (-) ρd = (g/cm
3
) behaviour 

Test 1 10339 0.00 4.56 4.56 1.14 1.89 brittle 

Test 2 10511 0.10 4.73 4.63 1.06 1.90 brittle 

Test 3 12196 0.20 5.58 5.38 1.14 1.86 brittle 

Test 4 12329 0.30 5.74 5.44 1.07 1.84 brittle 

Test 5 9599 0.50 4.73 4.23 0.73 1.88 brittle-ductile 

Test 6 16782 1.00 8.40 7.40 0.98 1.90 brittle-ductile 

Test 7 12918 0.50 6.19 5.69 0.98 1.85 brittle 
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The cumulative empirical and standard normal distribution of cohesion for mortar (1 month, 

c/s = 1.0) is presented in Figure A.4. Both, the empirical (based on the measure data) and the 

standard normal cumulative density functions are very similar. The Kolmogorov-Smirnov 

tests give value 0, so the test does not reject the null hypothesis at the 5% significance level. 

(i.e., there is no difference between data and a normal data set). The data is normally 

distributed (the probability is high: 89%) Test for normality showed that the results are 

approximately symmetric (skewness = -0.18, where for -0.5 to 0.5 the distribution is assumed 

to be symmetric) and no conclusion about the kurtosis can be given because the value is 

between −2 and +2 (the kurtosis is -1.4, where the kurtosis of the normal distribution is 0). 

Thus, it can be assumed that the cohesion is normally distributed. The coefficient of variation 

is low and equals 7.1%. For other mortar set of samples (different curing time and c/s ratio) 

the results are similar. 

 
Figure A.7. The cumulative empirical and normal distribution of cohesion for mortar (1 month, 

c/s=1.0) 

Limestone – static triaxial tests 

Table A-6. Limestone (vertical samples) 

 

Fmax (N) σ3 (MPa) p (MPa) q (MPa) τ/τ0 (-) ρd = (g/cm
3
) behaviour 

Test 1 315 0.00 0.15 0.15 1.91 1.25 brittle 

Test 2 881 0.15 0.60 0.45 0.99 1.29 brittle-ductile 

Test 3 1473 0.30 1.02 0.71 0.86 1.30 ductile 

Test 4 736 0.05 0.41 0.35 1.61 1.34 brittle 
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Table A-7. Limestone(horizontal samples) 

 

Fmax (N) σ3 (MPa) p (MPa) q (MPa) τ/τ0 (-) ρd = (g/cm
3
) behaviour 

Test 1 421 0.05 0.27 0.22 1.10 1.46 brittle 

Test 2  549 0.11 0.44 0.33 0.99 1.43 ductile 

Test 3 656 0.16 0.54 0.39 0.87 1.45 ductile 

Test 4 1269 0.30 0.90 0.60 0.76 1.28 ductile 

Test 5 232 0.06 0.16 0.10 0.46 1.34 brittle 

Test 6 170 0.00 0.08 0.08 1.10 1.37 brittle 

 

Crumbled limestone – static triaxial tests 

Table A-8. Crumbled limestone 

 

Fmax (N) σ3 (MPa) p (MPa) q (MPa) τ/τ0 (-) behaviour 

Test 1 677 0.10 0.40 0.30 1.03 ductile 

Test 2 1722 0.30 1.06 0.76 0.87 ductile 

Test 3 1182 0.20 0.72 0.52 0.92 ductile 

Test 4 347 0.05 0.21 0.15 1.01 ductile 

Test 5 921 0.15 0.56 0.41 0.92 ductile 

Test 6 2430 0.49 1.56 1.07 0.77 ductile 

 

Norm sand – static triaxial tests 

Table A-9. Norm sand 

 

Fmax (N) σ3 (MPa) p (MPa) q (MPa) τ/τ0 (-) behaviour 

Test 1 269 0.06 0.17 0.12 0.96 ductile 

Test 2 423 0.11 0.29 0.19 0.78 ductile 

Test 3 865 0.21 0.59 0.38 0.84 ductile 

Test 4 1081 0.30 0.77 0.48 0.73 ductile 

 

Beach sand – static triaxial tests 

Table A-10. Beach sand 

 

Fmax (N) σ3 (MPa) p (MPa) q (MPa) τ/τ0 (-) behaviour 

Test 1 574 0.12 0.37 0.25 0.95 ductile 

Test 2 1398 0.35 0.97 0.62 0.76 ductile 

Test 3 2116 0.52 1.45 0.93 0.78 ductile 

 

Coarse sand – static triaxial tests 

Table A-11. Coarse sand 

 

Fmax (N) σ3 (MPa) p (MPa) q (MPa) τ/τ0 (-) behaviour 

Test 1 531 0.10 0.33 0.23 0.92 ductile 

Test 2 1416 0.30 0.92 0.62 0.81 ductile 

Test 3 2303 0.50 1.52 1.02 0.80 ductile 

c) S-N curve 

In tables below cyclic test results used to create the S-N curves can be found. All the tests 

were conducted in dry conditions, and the samples had natural moisture. The cyclic tests were 
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run until failure for a given cyclic stress ratio τcyc/τ0 and the number of cycles until failure N 

was counted. The failure was determined as load for which the strains are increasing and the 

stresses cannot reach the cyclic stresses. 

 

S-N curve for artificial gypsum – cyclic triaxial tests 

Table A-12.Tests for S-N curve for artificial gypsum 

 

σ3 (MPa) N τcyc /τ0 behaviour Type of fracture surface defects 

Test 1 0.10 167 0.95 ductile Cone & Split small flaws 

Test 2 0.10 132 0.95 ductile Cone & Split small flaws 

Test 3 0.10 2 0.95 ductile Cone & Split big flaws 

Test 4 0.10 159 0.95 ductile Cone & Split small flaws 

Test 5 0.10 170 0.95 ductile Cone & Split small flaws 

Test 6 0.10 7 0.95 ductile Cone & Split one big flaw 

Test 7 0.10 172 0.95 ductile Cone & Split one small flaw 

Test 8 0.30 68 0.80 ductile Cone & Split 3 small flaws 

Test 9 0.30 140 0.80 ductile Cone & Split  

Test 10 0.30 17 0.80 ductile Cone & Split small flaws 

Test 11 0.30 165 0.80 ductile Cone & Split  

Test 12 0.30 4 0.80 ductile Cone & Split  

Test 13 0.30 262 0.80 ductile Cone & Split  

Test 14 0.30 120 0.70 ductile Cone & Split one flaw 

Test 15 0.30 135 0.80 ductile Cone & Split few flaws 

Test 16 0.30 166 0.80 ductile Cone & Split many flaws 

Test 17 0.50 174 0.70 ductile Cone & Split  

Test 18 0.20 15 0.90 ductile Cone & Split  

Test 19 0.10 53 0.90 ductile Cone & Split  

Test 20 0.30 50 0.90 ductile Cone & Split two flaws 

Test 21 0.30 20 0.90 ductile Cone & Split  

Test 22 0.30 47 0.90 ductile Cone & Split  

Test 23 0.30 9 0.90 ductile Cone & Split  

Test 24 0.30 50 0.90 ductile Cone & Split  

Test 25 0.50 14 0.90 ductile Cone & Split  

Test 26 0.50 8 0.90 ductile Cone & Split two flaws 

Test 27 0.10 30 0.70 ductile Cone & Split one flaw 

Test 28 0.30 21 0.70 brittle Cone & Split two small flows 

Test 29 0.30 37 0.70 brittle Cone & Split one small flaw 

Test 30 0.10 176 0.80 ductile Cone & Split  

Test 31 0.10 855 0.80 ductile Cone & Split  

Test 32 0.10 945 0.80 ductile Cone & Split  

Test 33 0.10 331 0.80 ductile Cone & Split  

Test 34 0.30 182 0.80 ductile Cone & Split  

Test 35 0.30 343 0.80 No data Cone & Split  

Test 36 0.10 177 0.60 No data Cone & Split  

Test 37 0.50 635 0.60 ductile Cone & Split  

Test 38 0.50 374 0.40 ductile Cone & Split  

Test 39 0.10 622 0.80 brittle-ductile Cone & Split  

Test 40 0.30 1275 0.80 brittle-ductile Cone & Split  

Test 41 0.30 876 0.80 brittle-ductile Cone & Split  

Test 42 0.50 228 0.60 brittle Cone & Split  
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Test 43 0.30 291 0.60 ductile Cone & Split  

Test 44 0.30 3256 0.60 ductile Cone & Split  

Test 45 0.10 510 0.40 ductile Cone & Split  

Test 46 0.10 705 0.40 ductile Cone & Split  

Test 47 0.10 3682 0.80 ductile Cone & Split  

Test 48 0.10 5951 0.60 ductile Cone & Split  

Test 49 0.10 1271 0.90 brittle Cone & Split  

Test 50 0.10 11341 0.40 ductile Cone & Split  

 
Defect in the core after triaxial tests were found only in samples number 3, 4, 6, 10, 12, 14, 

15, 17, 20, 22, 23, 24, and 28. 

 

S-N curve for mortar – cyclic triaxial tests 

Table A-13.Tests for S-N curve for mortar (1 week, cement/sand 0.5) 

 

σ3 (MPa) N τcyc /τ0 behaviour 

Test 1 0.30 97 0.8 brittle 

Test 2 0.30 654 0.8 brittle 

Test 3 0.30 2 0.8 brittle-ductile 

Test 4 0.10 89 0.8 brittle 

Test 5 0.00 5 0.8 brittle 

Test 6 0.30 829 0.8 brittle 

Test 7 0.10 2183 0.6 brittle 

Test 8 0.10 1363 0.8 brittle 

Test 9 0.50 4342 0.8 brittle 

 

Table A-14.Tests for S-N curve for mortar (1 week, cement/sand 1.0) 

 

σ3 (MPa) N τcyc /τ0 behaviour 

Test 1 0.10 9 0.8 brittle 

Test 2 0.50 19 0.8 brittle 

Test 3 0.10 127 0.8 brittle 

Test 4 0.10 523 0.8 brittle 

 

Table A-15.Tests for S-N curve for mortar (1 month, cement/sand 1.0) 

 

σ3 (MPa) N τcyc /τ0 behaviour 

Test 1 0.10 332 0.80 brittle 

Test 2 0.10 42369 0.80 brittle 

Test 3 0.30 12484 0.80 brittle 

Test 4 0.30 12 0.80 brittle-ductile 

Test 5 0.10 193 0.80 brittle 

Test 6 0.30 839 0.60 brittle 

Test 7 0.10 5920 0.80 brittle 

Test 8 0.10 4353 0.60 brittle 

d) The remaining shear strength curve data points 

In tables below cyclic test results used to create the remaining shear strength curves can be 
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found. All the tests were conducted in dry conditions, and the samples had natural moisture. 

The cyclic tests were run for a given number of cycles N and then in the final cycle until the 

failure the maximum remaining strength (p and q) was measured. The ratio of cyclic loading 

to a static strength for the same confining pressure is given as a ratio τcyc/τ0. 

 

Artificial gypsum – cyclic triaxial tests 

Table A-16.Tests for remaining shear strength curve for artificial gypsum 

 

τcyc /τ0 N σ3 (MPa) p (MPa) 

q (MPa) behaviour Type of 

fracture 

Test 1 0.80 10 0.30 3.30 3.00  cone & split 

Test 2 0.80 10 0.10 3.30 3.20 ductile cone & split 

Test 3 0.80 10 0.50 4.13 3.63 ductile cone & split 

Test 4 0.80 100 0.10 2.88 2.78 ductile cone & split 

Test 5 0.80 100 0.30 2.92 2.62 ductile cone & split 

Test 6 0.80 100 0.10 2.85 2.75 ductile cone & split 

Test 7 0.80 100 0.30 3.41 3.11 ductile cone & split 

Test 8 0.80 100 0.10 2.89 2.79 ductile cone & split 

Test 9 0.80 100 0.50 3.87 3.37 ductile cone & split 

Test 10 0.80 100 0.50 3.63 3.13 ductile cone & split 

Test 11 0.80 1000 0.10 2.16 2.06 ductile cone & split 

Test 12 0.80 1000 0.30 2.77 2.47 brittle cone & split 

Test 13 0.80 1000 0.50 3.41 2.91 brittle cone & split 

Test 14 0.60 10 0.10 3.22 3.12 ductile cone & split 

Test 15 0.60 10 0.30 3.31 3.01 ductile cone & split 

Test 16 0.60 10 0.50 4.06 3.56 ductile cone & split 

Test 17 0.60 100 0.30 3.06 2.76 ductile cone & split 

Test 18 0.60 100 0.50 3.74 3.24 ductile cone & split 

Test 19 0.60 100 0.10 2.79 2.69 ductile cone & split 

Test 20 0.60 100 0.30 3.06 2.76 brittle cone & split 

Test 21 0.60 100 0.10 3.21 3.11 ductile cone & split 

Test 22 0.60 1000 0.10 3.06 2.96 ductile cone & split 

Test 23 0.60 1000 0.30 2.61 2.31 ductile cone & split 

Test 24 0.60 1000 0.30 2.34 2.04 ductile cone & split 

Test 25 0.60 1000 0.50 2.96 2.46 ductile cone & split 

Test 26 0.60 1000 0.10 2.49 2.39 brittle cone & split 

Test 27 0.40 10 0.10 3.48 3.38 ductile cone & split 

Test 28 0.40 10 0.30 3.22 2.92 ductile cone & split 

Test 29 0.40 10 0.50 3.68 3.18 brittle-ductile cone & split 

Test 30 0.40 100 0.10 2.67 2.57 ductile cone & split 

Test 31 0.40 100 0.30 3.01 2.71 ductile cone & split 

Test 32 0.40 100 0.50 3.40 2.90 ductile cone & split 

Test 33 0.40 100 0.10 2.91 2.81 ductile cone & split 

Test 34 0.40 100 0.30 3.24 2.94 ductile cone & split 

Test 35 0.40 1000 0.10 3.14 3.04 ductile cone & split 

Test 36 0.40 1000 0.30 2.94 2.64 ductile cone & split 

Test 37 0.40 1000 0.50 2.91 2.41 ductile cone & split 

Test 38 0.40 1000 0.10 2.64 2.54 ductile cone & split 

Test 39 0.40 1000 0.10 3.05 2.95 brittle cone & split 

Test 40 0.40 1000 0.30 2.81 2.51 No data cone & split 
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Test 41 0.40 10000 0.30 2.49 2.19 ductile cone & split 

Test 42 0.40 10000 0.10 2.20 2.10 ductile cone & split 

Test 43 0.20 100000 0.10 1.53 1.43 brittle cone & split 

Test 44 0.20 100000 0.50 2.59 2.09 brittle cone & split 

 

Mortar – cyclic triaxial tests 

Table A-17.Tests for remaining shear strength curve for mortar (1 week, cement/sand ratio = 0.5) 

 

τcyc /τ0 N σ3 (MPa) p (MPa) q (MPa) behaviour 

Test 1 0.60 100 0.10 1.50 1.40 brittle-ductile 

Test 2 0.60 100 0.30 1.97 1.67 ductile 

Test 3 0.60 100 0.50 2.93 2.43 ductile 

Test 4 0.80 100 0.10 2.54 2.44 brittle 

Test 5 0.80 100 0.50 3.80 3.30 ductile 

Test 6 0.80 100 0.30 2.35 2.05 ductile 

Test 7 0.80 100 0.30 2.69 2.39 brittle-ductile 

Test 8 0.80 100 0.00 1.78 1.78 brittle 

Test 9 0.40 1000 0.50 2.63 2.13 ductile 

Test 10 0.40 1000 0.10 1.06 0.96 brittle-ductile 

Test 11 0.40 1000 0.30 1.77 1.47 brittle 

Test 12 0.60 1000 0.30 2.21 1.91 brittle-ductile 

Test 13 0.60 1000 0.10 1.76 1.66 brittle 

Test 14 0.60 1000 0.50 2.68 2.18 brittle-ductile 

Test 15 0.80 1000 0.50 3.15 2.65 ductile 

Test 16 0.40 10000 0.30 1.70 1.40 brittle 

Test 17 0.40 10000 0.10 1.25 1.15 brittle 

Test 18 0.60 10000 0.30 2.24 1.94 brittle 

Test 19 0.60 10000 0.50 3.05 2.55 brittle 

 

Table A-18.Tests for remaining shear strength curve for mortar (1 week, cement/sand ratio = 1.0) 

 

τcyc /τ0 N σ3 (MPa) p (MPa) q (MPa) behaviour 

Test 1 0.80 100 0.10 4.38 4.28 brittle 

Test 2 0.80 100 0.30 5.90 5.60 brittle 

Test 3 0.60 100 0.10 5.01 4.91 brittle 

Test 4 0.60 100 0.50 6.20 5.70 brittle 

Test 5 0.40 100 0.10 5.25 5.15 brittle 

Test 6 0.40 100 0.50 5.77 5.27 brittle 

Test 7 0.80 1000 0.30 5.93 5.63 brittle 

Test 8 0.60 1000 0.10 4.38 4.28 brittle 

Test 9 0.60 1000 0.30 5.93 5.63 brittle 

Test 10 0.40 1000 0.10 3.63 3.53 brittle 

Test 11 0.40 1000 0.50 6.02 5.52 brittle-ductile 

Test 12 0.80 10000 0.50 9.80 9.30 brittle 

Test 13 0.60 10000 0.10 7.05 6.95 brittle 

Test 14 0.60 10000 0.50 5.95 5.45 brittle-ductile 

Test 15 0.40 10000 0.50 5.04 4.54 brittle-ductile 

Test 16 0.40 10000 0.10 5.01 4.91 brittle 
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Table A-19.Tests for remaining shear strength curve for mortar (1 month, cement/sand ratio = 1.0) 

 

τcyc /τ0 N σ3 (MPa) p (MPa) q (MPa) behaviour 

Test 1 0.80 100 0.1 4.11 4.08 brittle 

Test 2 0.60 100 0.1 3.53 3.43 brittle 

Test 3 0.60 100 0.3 4.06 3.76 brittle-ductile 

Test 4 0.80 1000 0.30 5.34 5.04 brittle 

Test 5 0.80 1000 0.10 4.08 3.98 brittle 

Test 6 0.80 1000 0.50 6.24 5.74 brittle 

Test 7 0.40 1000 0.10 4.12 4.02 brittle 

Test 8 0.40 1000 0.50 5.33 4.83 ductile-brittle 

Test 9 0.80 10000 0.30 5.94 5.64 brittle 

Test 10 0.80 10000 0.00 5.24 5.24 brittle 

Test 11 0.80 10000 0.50 7.64 7.14 brittle 

Test 12 0.60 10000 0.10 4.46 4.36 brittle 

Test 13 0.60 100000 0.10 6.35 6.25 brittle 

Test 14 0.60 100000 0.30 6.89 6.59 brittle 

 

Limestone – cyclic triaxial tests 

Table A-20.Tests for remaining shear strength curve for limestone 

 

τcyc /τ0 N σ3 (MPa) p (MPa) q (MPa) behaviour 

Test 1 0.80 10 0.05 0.27 0.22 ductile 

Test 2 0.80 10 0.30 0.92 0.61 ductile 

Test 3 0.80 100 0.05 0.27 0.23 ductile 

Test 4 0.80 100 0.30 1.09 0.78 ductile 

Test 5 0.80 100 0.15 0.60 0.45 ductile 

Test 6 0.60 100 0.05 0.29 0.24 ductile 

Test 7 0.60 100 0.15 0.63 0.47 ductile 

Test 8 0.80 1000 0.05 0.36 0.29 ductile 

Test 9 0.80 1000 0.05 0.42 0.37 ductile 

Test 10 0.80 1000 0.15 0.58 0.42 ductile 

 

Crumbled limestone – cyclic triaxial tests 

Table A-21.Tests for remaining shear strength curve for crumbled limestone 

 

τcyc /τ0 N σ3 (MPa) p (MPa) q (MPa) behaviour 

Test 1 0.80 1000 0.10 0.43 0.34 ductile 

Test 2 0.80 1000 0.30 1.10 0.83 ductile 

Test 3 0.80 1000 0.05 0.29 0.23 ductile 

Test 4 0.80 1000 0.20 0.85 0.64 ductile 

Test 5 0.80 10000 0.20 0.93 0.73 ductile 

Test 6 0.80 10000 0.10 0.55 0.46 ductile 

Test 7 0.80 10000 0.30 1.37 1.07 brittle-ductile 

 

Norm sand – cyclic triaxial tests 

Table A-22.Tests for remaining shear strength curve for norm sand 

 

τcyc /τ0 N σ3 (MPa) p (MPa) q (MPa) behaviour 

Test 1 0.80 1000 0.20 0.59 0.39 ductile 
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Test 2 0.80 1000 0.05 0.18 0.13 ductile 

Test 3 0.80 1000 0.10 0.32 0.22 ductile 

Test 4 0.80 1000 0.30 0.85 0.56 ductile 

Test 5 0.80 10000 0.30 0.88 0.58 ductile 

Test 6 0.80 10000 0.10 0.35 0.25 ductile 

Test 7 0.80 100000 0.10 0.37 0.27 brittle 

 

Beach sand – cyclic triaxial tests 

Table A-23.Tests for remaining shear strength curve for beach sand 

 

τcyc /τ0 N σ3 (MPa) p (MPa) q (MPa) behaviour 

Test 1 0.80 100 0.10 0.32 0.22 ductile 

Test 2 0.80 100 0.30 0.92 0.62 ductile 

Test 3 0.80 1000 0.10 0.31 0.21 ductile 

Test 4 0.80 1000 0.30 0.95 0.65 ductile 

Test 5 0.80 10000 0.30 1.02 0.72 ductile 

Test 6 0.80 10000 0.10 0.37 0.27 ductile 

 

Coarse sand – cyclic triaxial tests 

Table A-24.Tests for remaining shear strength curve for coarse sand 

 

τcyc /τ0 N σ3 (MPa) p (MPa) q (MPa) behaviour 

Test 1 0.80 1000 0.10 0.38 0.28 ductile 

Test 2 0.80 1000 0.30 0.91 0.61 ductile 

Test 3 0.80 10000 0.10 0.40 0.30 ductile 

Test 4 0.80 10000 0.30 0.98 0.68 ductile 

Test 5 0.40 10000 0.10 0.32 0.22 ductile 

Test 6 0.40 10000 0.30 0.91 0.61 ductile 

Test 7 0.40 1000 0.10 0.33 0.23 ductile 

Test 8 0.40 1000 0.30 0.90 0.60 ductile 

e) Hoek-Brown failure criterion for limestone 

The tests on crumbled limestone showed that the Mohr-Coulomb failure criterion might be 

inaccurate for weak rocks. Since Mohr-Coulomb failure criterion is not accurate for small 

stresses, the best solution might be to reduce the cohesion of the limestone, or to use another 

failure criterion to model the strength of this soft limestone. Therefore, the Hoek-Brown 

failure criterion (Hoek & Brown, 1980), (Hoek & Brown, 1988), (Hoek, Wood, & Shah, 

1992), (Hoek, 2000) has been investigated. Hoek et al. (1998) extended the range of the 

Geological Strength Index (GSI) down to 5 to include extremely poor quality schistose rock 

masses (grade: R0 for extremely weak rock, when UCS = 0.25 – 1 MPa). For excellent to fair 

quality rock masses, the original Hoek-Brown criterion is used, while for poor and extremely 

poor masses, the modified criterion (1992) with zero tensile strength is applied.  

 

The Hoek-Brown failure criterion defined this limestone as an extremely weak rock due to 

the uniaxial compressive strength (UCS) = 292 kPa (in Hoek-Brown indicated as σci). The 

Hoek-Brown parameter mi = 7 was taken from Hoek & Brown (1988) for sedimentary 
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carbonate rock. From all methods (Hoek & Brown, 1980, modified HB from 1988, HB model 

based on RMR and GSI methods etc.) of estimating the values of mb, s and in some cases a 

(see Table A-25 and Figure A.8) the failure line could not fit the laboratory data. It must be 

mentioned, however, that Bieniawski’s RMR is difficult to be applied for very poor quality 

rock masses and also that the relationship between RMR and m and s is no longer linear in 

these very low ranges. As the cohesion c is very low and the friction angle ϕ of the limestone 

is very high, the inclination of the failure line is much higher than the predicted by the HB 

model.  

Table A-25.Hoek-Brown model parameters 

Model  mb mb/mi s a 

(Hoek & Brown, 1980) 𝜎1 = 𝜎3 + 𝜎𝑐𝑖√
𝑚𝑏𝜎3

𝜎𝑐𝑖

+ 𝑠 7 - 1 0.5 

(Hoek, Wood, & Shah, 1992)
1)

 𝜎1 = 𝜎3 + 𝜎𝑐𝑖 (
𝑚𝑏𝜎3

𝜎𝑐𝑖

)
𝑎

 0.007
1)

 0.001 0
1)

 0.65
1)

 

GSI, (Hoek, 1994)
2)

 𝜎1 = 𝜎3 + 𝜎𝑐𝑖 (
𝑚𝑏𝜎3

𝜎𝑐𝑖

+ 𝑠)
𝑎

 0.037
2)

 - 1.05
2)

 0.62
2)

 

RMR, (Hoek & Brown, 1988)
3)

 𝜎1 = 𝜎3 + 𝜎𝑐𝑖√
𝑚𝑏𝜎3

𝜎𝑐𝑖

+ 𝑠 0.26
3)

 - 3.63
3)

 - 

Best fit
4)

 𝜎1 = 𝜎3 + 𝜎𝑐𝑖 (
𝑚𝑏𝜎3

𝜎𝑐𝑖

+ 𝑠)
𝑎

 5.41 - 0.82 0.84 

Best fit based on original HB 

equation
5)

 
𝜎1 = 𝜎3 + 𝜎𝑐𝑖√

𝑚𝑏𝜎3

𝜎𝑐𝑖

+ 𝑠 21.81 - 1 0.5 

1) For modified Hoek-Brown there is no tension, thus s = 0, mb and a are constants for crushed rock, 

 mb/mi = 0.001  based on surface condition and structure  

 a = 0.65   very poor surface condition were taken 

2) For GSI = 5 values of mb, s and a were calculated as: 

 
𝑚𝑏

𝑚𝑖
= 𝑒𝑥𝑝 (

𝐺𝑆𝐼−100

28−14𝐷
) 

 𝑠 = 𝑒𝑥𝑝 (
𝐺𝑆𝐼−100

9−3𝐷
) 

 𝑎 =
1

2
+

1

6
(𝑒−𝐺𝑆𝐼/15 − 𝑒−20/3) 

 where D = 0.7 excavation of soft rock by ripping and dozing and the degree of damage to the slope is 

 less (mechanical excavation) 

3) For RMR=8 calculated as summation for carbonate rocks of fair quality rock mass 5 for spacing of 

discontinuities and 3 for RQD=8, the values of mb and s were calculated from: 

 
𝑚𝑏

𝑚𝑖
= 𝑒𝑥𝑝 (

𝑅𝑀𝑅−100

14
) 

 𝑠 = 𝑒𝑥𝑝 (
𝑅𝑀𝑅−100

6
) 

4) Best fit parameters were obtained in nonlinear regression of the Hoek (1994) formulation 

5) Best fit parameters were obtained in nonlinear regression of the original Hoek & Brown (1980) 

formulation 
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Figure A.8. Hoek-Brown models for limestone 

Although the HB model predicts correctly the low tensile strength, it does not predict 

accurately the σ1 - σ3 relationship for higher confining pressures σ3 > 0. The recalculated 

equivalent cohesion and friction angle did not correspond to the ones calculated with the M-C 

theory. Therefore, only Hoek-Brown parameters taken arbitrarily could fit the laboratory data 

(best fit method, Figure A.8), which limits the main advantage of the Hoek-Brown method – 

the simple parameterisation of the model. There is also an extension of Hoek-Brown model 

for layered rocks, but this was not used as it requires many other parameters and extensive 

laboratory data obtaining, making that particular approach useless for basic strength 

estimation. 

 

The information presented above indicates that the Hoek-Brown failure criterion is also not 

enough accurate to describe extremely weak rocks like limestone. Therefore, the simple two-

parameter Mohr-Coulomb criterion, although it does not model the limestone’s strength 

behaviour for low confining pressures very well, is still the most reasonable failure model.
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B. FACTORS AFFECTING THE RESULTS OF ARTIFICIAL GYPSUM 

a) Imperfections in artificial gypsum 

It was noticed that some cyclic tests finished at very early stage, after only few cycles has 

been applied. In some samples, air bubbles (Figure B.9 and Figure B.10) were found on the 

shear plane surface, and probably lowered the strength of the sample and caused prematurely 

fail (Figure B.11). The presence of imperfections induces more stress concentration effect, 

causing the crack resistance to be much lower than for the material without such a bubbles.  

 
Figure B.9. Air bubbles on the surface of the sample  

 
Figure B.10. Air bubbles inside the tested sample 
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Figure B.11. Stress-strain plot of prematurely failed artificial gypsum due to air bubbles 

b) Water content 

Crumbled limestone 

To investigate the impact of water on the shear strength, several tests were carried out for 

saturated and crumbled limestone with natural moisture. The results were very surprising 

(Figure B.12 and Table B-26). A significant cohesion reduction and small friction angle 

increase was found. It was expected that strength parameter (cohesion) will increase due to 

suction, as was presented by researcher: Donald (1956), Lamborn (1986), and Peterson 

(1988). Peterson gave the following strength equation: 

  𝜏 = 𝑐′ + (𝜎 − 𝑢) 𝑡𝑎𝑛 𝜙′ + 𝐶𝜓 B-1 

where Cψ is an apparent cohesion due to suction. The apparent cohesion due to suction, Cψ, 

depends on the water content of the soil.  

0 0.005 0.01 0.015 0.02
0

1

2

3

4

5

6

 (-)


1
- 

3
 (

M
P

a)



APPENDICES 

 

215 

 

 
Figure B.12. Mohr Coulomb failure envelope for dry and fully saturated crumbled limestone 

Table B-26.Shear strength parameters from triaxial tests for saturated crumbled limestone 

Saturation:  0% 100% 

  (°) 43.4 (44.8)  44.1 (43.3) 

c  (kPa) 25.4 (0) -8.7 (0.0) 

tensile strength  (kPa) 21.9 (0) -7.3 (0.0) 

 

It was found from laboratory tests on sand, that there is no suction and the water has a 

negative effect on the Mohr-Coulomb strength parameters. For the purpose of the research, it 

was assumed that the saturation does not have significant effect on the triaxial tests for sand. 

 

It should be noticed that there is no formulation to account for water suction on rocks. 

Experiments show that the strength of silicate rocks can drop by as much as 30% due to 

saturation (Dobereiner & Freitas, 1986). 

 

The water impact on the fatigue life of geomaterials can have significant effects. Grgic & 

Giruad (2014) stated that the increase in microcracking damage is mainly due to the poro-

mechanical coupling. They showed that the time-dependent strength and the time to failure 

increase while the dilatant volumetric deformation decreases as the chemical influence of the 

interstitial fluid decreases, i.e., the rock is weaker in the presence of water. At a microscopic 

scale, capillary suction implies negative liquid pressure in pores and microcraks. This 

negative liquid pressure applies tensile forces on crack planes thus inducing a decrease in the 

stress intensity factor as does confining pressure. More, tests are required to investigate the 

water presence and fatigue life dependency. 

c) Mortar – curing time 

The curing time of mortar can have a big impact on the cyclic strength results. For static tests, 
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the cohesion c (constant friction angle ϕ was assumed) increased of about 25% for tests done 

after 3 weeks comparing with the tests done after 1 week (Figure B.13 and Table B-27). This 

could have a significant meaning in case of long cyclic tests. 

 
Figure B.13. Stress point for static triaxial tests on mortar after 1 and 3 weeks 

Table B-27.Strength parameters after 1 and 3 weeks (constant friction angle assumed) 

 1 week 3 weeks 3 weeks / 1 week 

 (°) 42.6 42.6 Const.  

c (MPa) 2.08 2.58 125% 
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C. FATIGUE OF CONCRETE 

Introduction 

Many concrete structures such as highway, bridges, railroad, airport pavements, and marine 

structures are subjected to cyclic loading. Fatigue of concrete can be, however, interesting for 

two other reasons. One is that the foundations, which transmit the cyclic loadings directly 

into the ground, are often made from concrete and the second reason is that concrete and 

rocks are similar materials and their strength can be represented accurately by Mohr-

Coulomb failure criterion. 

 

Basically, concrete is a solid material and consists of three components: the cement matrix, 

the aggregate and the interface between the matrix and aggregate. The internal structure is 

similar to rocks, which are also solid aggregate of one or more minerals or mineraloids. 

Concrete, same as rock, as a conglomerate, contain many flaws and pre-cracked aggregates 

from which cracks may initiate, and concrete lacks of complete bonds between aggregate and 

matrix. Because of this, the strength of concrete is widely scattered. This information can be 

helpful to describe and prepare tests for fatigue tests of rocks and soils 

 

Cyclic loading on concrete structures 

Even though, during the lifetime of a bridge, road or rail, traffic and environmental loadings 

will produce large numbers of repetitive loading cycles, fatigue in concrete was recognised 

rather late in comparison to steel. Therefore the mechanism of fatigue failure in concrete is 

not fully understood yet. 

 

The mechanism associated with fatigue-crack propagation in brittle materials, is quite distinct 

from those commonly encountered in ductile materials (e.g. metals). This is caused by 

microvoids and microcracks which were formed during shrinking and hardening period in 

concrete. Due to cyclic loading these microcracks propagate - at the beginning the growth of 

cracks is very slow but at the end of the fatigue life in both concrete and steel rapidly 

accelerates. In concrete the crack-growth rate is much more sensitive to the applied stress 

intensity than in metals, thus the crack growth in concrete is much faster than in steel and the 

fatigue life of concrete is much shorter than of metals. Because concrete as a composite 

materials is much less homogeneous than steel the failure in concrete does not require any 

phase of crack initiation. It is known that the weakest zone in concrete is the cement-matrix 

part and fracture of concrete occurs through the paste with very few failures occurring 

through the sand particles (Lloyd, Lott, & Kesler, 1968). Murdock (1965) has prepared a 

comprehensive and critical review of research conducted in the area of concrete fatigue. He 

noted that the fatigue of concrete can be studied from two points of views: fundamental 

(micromechanical) and empirical one (e.g. S-N curves). 

 

The first use of fracture mechanics with mortar and concrete was made by Kaplan (1961). 
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Glucklich (1965) extended fracture mechanics to mortar under repeated loading. Cyclic 

loading on stones and brick masonry was conducted by Oliveira et al. (2006). Recently a lot 

of models have been proposed based on theory of elasticity e.g. (Ahmad & Shah, 1982), 

plasticity e.g. (Chen & Chen, 1975), Abu-Lebdeh & Voyiadjis (1993) and Voyiadjis & Abu-

Lebdeh (1994), damage theory e.g. (Lemaitre, 1985), Mazaras (1984), elastic-plastic-damage 

models e.g. Lubliner et al., (1989), Maekawa et al. (2003). Numerical modelling was 

conducted by e.g. (Lowes, 1993). 

 

Fracture mechanics for concrete 

Some of the experimental investigations on fatigue crack propagation in concrete have been 

already carried out e.g. (Bazant & Oh, 1983). Bazant & Xu (1991) confirmed that Paris law 

can be applied in concrete. The behaviour of concrete under strain control cyclic loading was 

studied by Bahn & Hsu (1998). Resende & Martin (1987), Yazdani & Schreyer (1988), Mu & 

Shah (2005) stated that it is possible to predict the fatigue life of the airport concrete 

pavement by conducting the fatigue test over just a few cycles. Although the basic concepts 

of fracture mechanics appear rational in nature, the application of the method to a concrete 

requires many approximations. This approach makes application of results difficult (Lloyd, 

Lott, & Kesler, 1968). 

 

Description of concrete in standards 

The description for concrete fatigue is given in Eurocode 2-2 – Design of concrete structures. 

A detailed description of concrete fatigue is also given in e.g. ACI – American Concrete 

Institute (2005), VBB1995 – Dutch Code – Concrete bridges, etc.  

 

The Eurocode 2 suggests checking the resistance of concrete for both for concrete and for 

steel and the calculation shall be based on the assumption of cracked cross sections 

neglecting the tensile strength of concrete but satisfying compatibility of strains. The 

Eurocode 2 suggests using techniques applied in steel fatigue to fatigue in concrete. 

 

The loading factor is usually 1.0. This implies that calculations on fatigue have to be 

completed on serviceability limit state. Material factors are different for different codes, and 

they range from 1.2 for VBB 1995 (Dutch Code) to 1.5 EC2/2 (Euro Code 2). 

 

The Miner’s hypothesis, which is very useful in metals fatigue, is probably valid with some 

limitations for concrete materials. Hilsdorf & Kesler (1966) showed, however, that the 

Miner’s assumption of linear accumulation of fatigue damage in concrete is false. It was 

already investigated that concrete does not possess endurance limit, and even small cyclic 

loadings shorten its fatigue life (ACI Committee 215R, 2005). This is probably due to lack of 

strain hardening in concrete (Gylltoft, 1983).  

 

Parameters influencing fatigue life of concrete 

A large number of parameters are known to influence fatigue behaviour of concrete. These 
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include:  

- Concrete properties (cement content, water-to-cement ratio etc.), 

- Curing conditions,  

- Specimen size,  

- Aggregate type and quality,  

- Moisture condition, e.g. Gylltoft & Elfgren (1977), Galloway et al. (1979), 

- Age of concrete,  

- Environmental effects, e.g. humidity: Van Leeuwen & Siemens (1979) and Waagaard 

(1981), temperature etc., 

- Stress range, e.g. Hilsdorf & Kesler (1966), 

- Rate of loading, 

- Creep effect, e.g. Slutter & Ekberg (1958), 

- Rest effect between cycles, e.g. Lloyd et al. (1968), Murdock (1965), 

- Load frequency, e.g. Awad 1971, Spark 1973, Awad 1974, Hordijk (1991), 

- Load history, 

- Stress reversal, 

- Confining pressure, 

- Etc. 
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