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Abstract—Recent advances in Milimeter wave (mmWave)
band mobile communications may provide solutions to the in-
creasing traffic demand in modern wireless systems. Even though
mmWave bands are scarcely occupied, the design of a prospect
transceiver should guarantee the efficient coexistence with the
incumbent services in these bands. To that end, in this paper,
two underlay cognitive transceiver designs are proposed based
on a hybrid Analog/Digital transceiver architecture that enables
the mmWave spectrum access while controlling the interference
to the incumbent users with low hardware complexity and power
consumption. The first cognitive solution designs a codebook free
cognitive hybrid pre-coder by maximizing the mutual information
between its two ends subject to interference, power and hardware
constraints related to the analog counterpart. The second solution
is codebook based and exhibits less complexity than the first
one at the cost of inferior spectral efficiency. A novel codebook
free solution for the post-coder at the cognitive receiver part
is further proposed, based on a hardware constrained Minimum
Mean Square Error criterion. Simulations study the performance
of both the proposed hybrid approaches and compare it to the
one of a fully digital solution for typical wireless environments.

I. INTRODUCTION

Exponentially increasing demand for higher data rates as
well as the spectrum congestion in the lower parts of the
electromagnetic spectrum forces the exploration of systems for
frequencies within the so-called mmWave band [1]. However,
the development of communications systems for mmWave
bands is a challenging task. MmWave signals suffer from
severe propagation loss, penetration loss and rain fading com-
pared to signals in lower frequencies [2]. Fortunately, the
short wavelength of mmWave frequencies enables the denser
packing of more antennas in the transceiver, enabling large
array structures for providing high beamforming gains and/or
improving the system’s spectral efficiency.

The conventional fully digital pre/post-coding techniques,
developed for lower frequency MIMO systems, are indepen-
dent of the carrier frequency, though they cannot be applied in
mmWave ones due to the one RF chain per antenna require-
ment that results in high demands in hardware complexity and
power consumption. Thus, a digital only mmWave transceiver
seems to be currently impractical and to that end, hybrid
Analog/Digital (A/D) architectures are examined in literature.

A hybrid approach is based on a two stage setup that
consists of a low dimensional digital pre-coder applied in
the BaseBand (BB) and an analog beamformer applied in the
RF domain [3]. The RF processing part is implemented via
a network of variable phase shifters. A number of different
hybrid approaches [3]–[5], was developed recently.

In existing mmWave approaches, the wireless system is
assumed as a stand-alone MIMO communications system.
Considering the fact that mmWave bands are also allocated
to several services (e.g. point-to-point (P2P) or point-to-
multipoint (P2MP) backhaul microwave links, satellite links,

high resolution radar, radio astronomy, amateur radio e.t.c.) [6],
such an assumption seems to be very optimistic. Therefore, it
is necessary to take constraints on the imposed interference
on the incumbent services into account while designing the
mmWave transceivers. This is the subject of this paper.

In detail, the contributions of the present paper are as fol-
lows. Two cognitive hybrid analog/digital transceiver designs
for point-to-point MIMO systems are presented with the view
to maximize the spectral efficiency subject to interference to
the Primary User (PU), power and hardware related (limited
number of RF chains) constraints. The first approach is a
codebook free one and the second a codebook based one.Both
of the proposed approaches are based on the underlay cognitive
radio paradigm [7] where the Secondary User (SU) may access
a spectrum area licensed to a PU, simultaneously with the
latter and provided that the interference power on the PU
transmissions is below a predefined threshold. The proposed
approaches derive the pre-coding and post-coding (combining)
matrices by decoupling the transmitter receiver optimization
problem. Theoretical results regarding the convergence of the
first approach are presented and the performance of both of
the approaches is evaluated via simulations and compared to
the one of the corresponding fully digital solution.

The remainder of the paper is organized as follows. In
Section II, the system description is given. in Section III,
the description of the optimal digital only solutions is given.
Section IV describes the codebook free hybrid transceiver
design. In Section V, the codebook based hybrid transceiver
design is developed and Section VI presents some numerical
results and the related discussion.

II. SYSTEM MODEL

Let us assume that a SU Rs × Ts MIMO system access
a spectrum area licensed to a Rp × Tp PU under a typical
cognitive underlay approach (Fig. 1) [7]. The SU system (Fig.
1) is assumed to be equipped with Nst << Ts and Nsr << Rs

RF chains at the transmitter and the receiver, respectively
and transmits a number of Ls ≤ min{Nst, Nsr} streams.
Furthermore, the SU system applies a Ts × Ls hybrid pre-
coding matrix at the transmitter given by F = FRFFBB where
FRF is the Ts ×Nst analog RF precoder implemented via a
network of phase shifters and FBB is the Nst × Ls digital
BB one. In a similar manner, the Rs ×Ls post-coding matrix
is given by W = WRFWBB where WRF is the Rs ×Nsr

analog post-coding matrix and WBB is the Nsr × Ls digital
BB one, respectively.

The received signal ys at the SU receiver for a narrow-band
block fading propagation channel is given by

y′
s = WHys = WH

(
HssFxs + H̃spxp + ns

)
(1)

where Hss is the Rs×Ts channel matrix between the two SU
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Fig. 1. PU-SU transceiver pairs. The SU is equipped with Nst << Ts and Nsr <<
Rs RF chains at the transmitter’s and receiver’s side, respectively.

ends, xs is the Ls × 1 vector of the SU transmitted symbols
such that E{xsx

H
s } = σ2

sITs , E{·} is the expectation operator,
σ2
s is the variance of the symbols transmitted by the SU

transmitter, ITs is the Ts ×Ts identity matrix, H̃sp = HspFp,
Hsp is the Rs×Tp channel matrix between the PU transmitter
and the SU receiver and Fp is the Tp ×Lp pre-coding matrix
applied at the PU transmitter, Lp × 1 is the number of the
transmitted PU streams, xp is the Lp × 1 vector of the PU
transmitted symbols such that E{xpx

H
p } = σ2

pITp , σ2
p is the

variance of the symbols transmitted by the PU transmitter and
ns is i.i.d. complex Gaussian noise modeled as CN (0, σ2

nIRs
).

The received signal at the PU receiver is given by

yp = HppFpxp +HpsFxs + np, (2)

where Hpp is the Rp × Tp channel matrix between the two
PU ends, Hps is the Rp × Ts channel matrix between the
SU transmitter and the PU receiver and np is i.i.d. complex
Gaussian noise modeled as CN (0, σ2

nIRp). A geometrical
channel model is assumed for all the involved channels that
captures better the characteristics of the mmWave band which
is described in detailed in [3], [5].

Let us now assume that the SU has perfect knowledge
of Hss, H̃sp and Hps channels. Note that this is a typical
requirement in CR underlay approaches [7]. The aim is to
derive the pre/post-coding matrices in order to maximize the
spectral efficiency of the SU system subject to constraints on
the total transmission power (Pmax) and on the interference
to the PU transmissions (Imax). To that end, the following
optimization problem is defined.

(P1) : max
F,W

R(F,W)

s.t. tr(FFH) ≤ Pmax & tr(HpsFF
HHH

ps) ≤ Imax

where the spectral efficiency R(F,W) is defined as

R(F,W) = log2 det
(
ILs +R−1

n WHHssFF
HHH

ssW
)
,
(3)

with Rn = WH(H̃spH̃
H
sp + σ2

nILs)W denoting the interfer-
ence plus noise covariance matrix at the SU receiver and det(·)
is the determinant of a matrix. For the sake of simplicity, we
consider in this paper the case where interference constraints
are posed from only one PU. Extensions to the multiple
PU case are straightforward by adding the corresponding
interference related constraints on (P1).

III. DIGITAL ONLY SOLUTION

In the digital only design, the SU pre/post-coding matrices
can be found by solving directly (P1) under the assumption

that both the transceiver ends have equal number of RF chains
and antennas. This problem is in general intractable [8] and
the common approach is to temporally decouple the designs at
the transmitter and the receiver. To that end, the optimal pre-
coding matrix FD is designed such that the mutual information
achieved by Gaussian signaling over the wireless channel is
maximized. Thus, the following optimization problem should
be solved

(P2) : max
F̃

log2 det(ILs +Q−1/2HssF̃H
H
ssQ

−1/2)

s.t. tr(F̃) ≤ Pmax & tr(HpsF̃H
H
ps) ≤ Imax & F̃ � 0 (4)

where A � 0 denotes a positive semi-definite matrix, Q =
H̃spH̃

H
sp + σ2

nIRs is the covariance matrix of the interference

plus noise signal and F̃ = FDFH
D [9]. Note that (P2) is

convex and thus, it can be solved efficiently by standard convex
optimization techniques (i.e. interior point methods [10]).
Then, by the Eigenvalue Value Decomposition on the optimal
matrix F̃∗ = UFΣFUF , we may find FD = UF

√
ΣF .

For the receiver’s side, a Minimum Mean Square Error
(MMSE) approach is considered. That is , matrix W is derived
as the solution to the optimization problem

min
W

E
{‖xs −WHys‖2F

}
, (5)

where ‖ · ‖F is the Frobenius norm. The solution is given by

WMMSE = E{ysy
H
s }−1

E{xsy
H
s }H

=
(
HssFDFH

DHH
ss + H̃spH̃

H
sp + σ2

nIRs

)−1

HssFD (6)

where we used (1)-(2) and the assumption that E{xsx
H
p } =

0Ls×Lp [11], where 0Ls×Lp is a Ls×Lp matrix of zero entries.

IV. CODEBOOK FREE HYBRID TRANSCEIVER DESIGN

In the case of the hybrid approaches, the solution of (P1)
is even harder to be derived since the constraints related to
the phase shifting network force the analog counterparts to lie
in the non-convex space of unit modulus complex matrices.
In order to achieve a simple solution, the transceiver design
should be again temporally decoupled.

Let us first present the pre-coder design by casting (P2)
into the hybrid pre-coding case, that is

(P3) : max
FRF ,FBB

log2 det(ILs + H̃ssFRFFBBF
H
BBF

H
RF H̃

H
ss)

s.t. FRFFBB ∈ S & FRF ∈ F (7)

where S =
{
A ∈ C

Ts×Nst | ‖A‖2F ≤ Pmax & ‖HpsA‖2F
≤ Imax} and F =

{
A ∈ C

M×N | |A(m,n)| = 1, 1 ≤ m ≤
M, 1 ≤ n ≤ N} for an arbitrary matrix A with complex
entries A(m,n) and H̃ss = σsQ

−1/2Hss. Problem (P3) is
non-convex due to the bi-convex cost function and the non-
convex constraint set F . In the following, an efficient solution
is derived by employing the so-called ADMM [12]. Let us first
write (P3) in the following equivalent form

(P4) : min
Z,FRF ,FBB

− log2 det(ILs + H̃ssZZ
HH̃H

ss) + 1S{Z}+
1F{FRF }

s.t. Z = FRFFBB (8)



where Z is an auxiliary Ts × Nst matrix variable and the
indicator function of sets S , F is defined as

1S(F){A} =

{
A, A ∈ S(F)

∞, A /∈ S(F)
. (9)

The augmented Lagrangian function of (P4) is given by

LT (Z,FRF ,FBB ,Λ) = − log2(ILs + H̃ssZZ
HH̃H

ss)+

1S{Z}+ 1F{FRF }+ 〈Λ,Z− FRFFBB〉+
α

2
‖Z− FRFFBB‖2F , (10)

where 〈A,B〉 = ∑
m,n A(m,n)B(m,n), for two matrices A

and B, Λ is the Ts × Nst Lagrange Multiplier matrix and α
is a scalar penalty parameter.

Following the ADMM approach, the solution to (P4) is
given by the following alternating minimization steps (P4A)-
(P4D)

Zn = argmin
Z

LT (Z,FRF (n−1),FBB(n−1),Λn−1) (11)

FRF (n) = argmin
FRF

LT (Zn,FRF ,FBB(n−1),Λn−1) (12)

FBB(n) = argmin
FBB

LT (Zn,FRF (n),FBB ,Λn−1) (13)

Λn = argmin
Λ

LT (Zn,FRF (n),FBB(n),Λ) (14)

where n is the iteration index. Let us first derive the solution
of (P4A). This is a convex problem (with respect to the
optimizing matrix parameter Z) and its solution will be based
on a projected gradient based approach. Thus, Zn is derived by
updating at each step the solution Zi,n based on the previous
one Zi−1,n as,

Zi,n = ΠS {Zi−1,n−
μ∇ZLT (Zi−1,n,FRF (n−1),FBB(n−1),Λn−1)

}
, (15)

where μ is a step size parameter, ∇Z is the gradient operator
with respect parameter Z and ΠS is the projection onto the set
S operator that it can be shown to be given for an arbitrary
matrix A [13] by

ΠS{A} =

{
A, S ∈ S
B−1A, S /∈ S (16)

where, B = (1 + λ1)ILs + λ2H
H
psHps and λ1 and λ2 are set

such that the power (Pmax) and interference constraints (Imax)
are met, i.e. via a bisection method [14]. The iterations of (15)
are running until the following termination criterion is met [13]

Let us move now to the derivation of the solution to (P4B)
which can be given by solving the corresponding unconstrained
problem and then projecting onto the set F . That is,

F̃RF (n) =
1

α
(Λn−1 + αZn)F

H
BB(n)

(
FBB(n)F

H
BB(n)

)−1

FRF (n) = ΠF
{
F̃RF (n)

}
, (17)

where ΠF is the projection onto the set F operator which it
can be shown to be given for an arbitrary matrix A and its
projection onto the set F AF (AF = ΠF{A}) by [13]

AF (m,n) =

{
0, A(m,n) = 0

A(m,n)/|A(m,n)|, A(m,n) �= 0
, (18)

where AF (m,n) and A(m,n) are the elements at the mth
row - nth column of matrices AF and A respectively and | · |
is the modulus of a complex number.

We move now to the solution of (P4C) which can be shown
to admit the following closed form by equating the gradient
of (10) with respect to FBB to zero,

FBB(n) =
1

α

(
FH

RF (n)FRF (n)

)−1

FH
RF (n)(Λn−1 + αZn).

(19)
Finally, Lagrange multiplier (P4D) is updated via the following
gradient ascent step

Λn = Λn−1 + α
(
Zn − FRF (n)FBB(n)

)
. (20)

Upon convergence of the ADMM sequence, we project
the digital pre-coder solution to the set S ′ defined as, S ′ ={
A ∈ C

Ts×Nst | ‖FRF (†)A‖2F ≤ Pmax‖HpsFRF (†)A‖2F ≤
Imax} where FRF (†) is the solution for the analog pre-coder
provided by the ADMM sequence and A is again, an arbitrary
matrix. Similarly to (16), it can be shown that for A /∈ S ′ the
projection onto S ′ is given by [13]

ΠS′{A} = C−1A, (21)

where C = ILs + FH
RF (†)

(
γ1ITs + γ2H

H
psHps

)
FRF (†) and

the Lagrange Multipliers γ1 and γ2 are again set such that the
power (Pmax) and interference constraints (Imax) are met.

Regarding the convergence of the ADMM sequence (11)-
(14) to an optimal point, the following theorem is given
Theorem 1: Let {Θn} =

{
Zn,FRF (n),FBB(n),Λn

}
is a

sequence generated by the alternating minimization steps (11)-
(14). Let us further assume that the multiplier sequence {Λn}
is bounded and satisfies

∑∞
n=0 ‖Λn − Λn−1‖2F < ∞. Then,

{Θn} converges always to an optimal point of (P4).
Proof: The proof can be found in [13].

The implementation aspects of the proposed approach
are discussed in [13]. The complete procedure is given for
reference in Algorithm 1.

Let us now move to the derivation of the post-coding matrix
by expressing the corresponding optimization problem as

(P7) : min
WRB ,WBB

E
{‖xs −WH

BBW
H
RFys‖2F

}
s.t. WRF ∈ F . (22)

In the absence of hardware limitations that pose the phase
only constraints on the receiver, one may find the corre-
sponding optimal digital only post-coder by solving again the
unconstrained problem of (5) given that the hybrid pre-coding
solutions of Algorithm 1 are applied on the transmitter side.
Thus, by denoting with WD the optimal digital only MMSE
post-coder, it is straightforward to see from (6) that,

WH
D =

(
HssFRFFBBF

H
BBF

H
RFH

H
ss + H̃spH̃

H
sp + σ2

nIRs

)−1

×HssFRFFBB . (23)

Returning now to the non-convex problem (P7), we first
express it in the following equivalent form [3], [13]

(P8) : min
G,WRF ,WBB

∥∥∥E{
ysy

H
s

}1/2
(WD −G)

∥∥∥2
F

+ 1F{WRF }
s.t. G = WRFWBB , (24)



Algorithm 1 Codebook Free Hybrid Precoder Design

1: Initialize Z0, FRF (0), FBB(0) with random values and Λ0 with zeros
2: while The termination criteria are not met do
3: Z0,n ← Zn−1

4: while The termination criteria are not met do
5: Update Zi,n from (15)
6: end while
7: Zn ← Zi,n

8: Update FRF (n), FBB(n) and Λn from (17)-(18), (19) and (20)
9: end while

Return: FRF (n), ΠS′
{
FBB(n)

}

Algorithm 2 Codebook Free Hybrid Post-coder Design

1: Initialize G0, WRF (0), WBB(0) with random values and Π0 with zeros
2: while The termination criteria are not met do
3: Update Gn, WRF (n), WBB(n) and Πn from (26)-(29), respectively
4: end while

Return: WRF (n), WBB(n)

where G is an auxiliary Rs × Nsr matrix variable and the
indicator function of set F is defined as in (9).

The augmented Lagrangian function of (P8) is given by

LR(G,WRF ,WBB ,Π) =
∥∥∥E{

ysy
H
s

}1/2
(WD −G)

∥∥∥2
F
+

1F{WRF }+ 〈Π,G−WRFWBB〉
+

β

2
‖G−WRFWBB‖2F , (25)

where Π is the Rs × Nsr Lagrange Multiplier matrix and β
is a scalar penalty parameter.

Following again the ADMM methodology, the solution
of matrices G, WRF and WBB is given via an alternating
minimization procedure similar to the one of (11)-(14). Due
to space limitations we provide directly the solutions.

Thus, matrix Gn is updated via

Gn =
(
E
{
yyH

}
+ βIRs

)−1 ×(
E
{
yyH

}
WD −Πn−1 + βWRF (n−1)WBB(n−1)

)
. (26)

The matrix FRF (n), is correspondingly given by,

W̃RF (n) =
1

β
(Πn−1 + βGn)W

H
BB(n)[WBB(n)W

H
BB(n)]

−1

WRF (n) = ΠF
{
W̃RF (n)

}
(27)

Furthermore, matrix FBB(n) is updated via the following
equation

WBB(n) =
1

β

(
WH

RF (n)WRF (n)

)−1

WH
RF (n)(Πn−1+βGn).

(28)
Finally, Π is updated via a gradient ascend step, that is

Πn = Πn−1 + β
(
Gn −WRF (n)WBB(n)

)
. (29)

Algorithm 2 summarizes the procedure.

V. CODEBOOK BASED HYBRID TRANSCEIVER DESIGN

Let us assume that the analog precoders the SU transceiver
ends are determined from a codebook. Here, we assume a
finite dictionary derived from the uniform quantization of the
azimuth angles over the interval [0, 2π]. Thus, the columns

of matrices FRF and WRF must satisfy F
(i)
RF (W

(i)
RF ) ∈

Cφ =
{
a(φ1), . . . , a(φ2Nφ )

}
, respectively, where Nφ are the

quantization bits for the azimuth angles.
Let us start with the solution for the precoding matrix FRF .

The approach of [3] is followed where the hybrid pre-coder is
designed such that the Frobenious norm of its difference to the
optimal digital only solution is minimized. Thus, the following
optimization problem is defined,

(P9) : min
FRF ,FBB

‖FD − FRFFBB‖2F
s.t. FRFFBB ∈ S & FRF ∈ FRF (30)

where the optimal digital only solution FD is computed by
solving (P2) in Section III and FRF is the feasible set for the
analog precoder. (P9) can be cast as a sparse representation
problem over the dictionary Cφ, that is

(P10) : min
F̃BB

∥∥∥FD −ΦF̃BB

∥∥∥2
F

s.t. ΦF̃BB ∈ S & ‖F̃BBF̃
H
BB‖0 = Nt, (31)

where ‖ · ‖0 is the l0 norm, F̃BB is a 2Nφ × Nst matrix of
at most Nst no zero rows and Φ =

[
a(φ1), . . . , a(φ2Nφ )

]
.

The solution to (P10) can be derived via the Orthogonal
Matching Pursuit (OMP) concept from the relevant sparse
representation/reconstruction literature [15], as it is presented
in [3]. The solution is given by Algorithm 1 of [3], with the
difference that the result in line 7 of this algorithm is projected
onto the set S ′ in order to satisfy the power and interference
constraints in (P10).

Let us move now to the design of the proposed codebook
based hybrid solution for the SU receiver. It is easy to see that
we can cast directly problem (P7) to the codebook based case
via the following sparse representation problem

(P11) : min
W̃BB

∥∥∥E{
ysy

H
s

}1/2
(
WD −ΦW̃BB

)∥∥∥2
F

s.t. ‖diag(W̃BBW̃
H
BB)‖0 = Nsr, (32)

where W̃BB is a 2Nφ+θ×Nsr matrix of at most Nsr. The solu-
tion to (P11) is given again via an OMP-based solution which
can be found in [3] with the difference that values E

{
ysy

H
s

}
and WD have to be replaced with the corresponding ones of
the present paper.

VI. NUMERICAL RESULTS AND DISCUSSION

In this section, numerical results are presented for eval-
uating the performance of the proposed hybrid approaches.
An environment of Np = 15 propagation paths is assumed
for all the involved links (SU-to SU, the SU-to-PU and PU-
to-SU). The codebook Φ is designed as described in [3] for
NΦ = 8 bits. The performance of the proposed approaches is
examined in terms of the achieved mean spectral efficiency
versus the Signal-to-Noise-Ratio (SNR) over 100 channel
realizations. We now refer to the parameter tuning of the
proposed Algorithms. The following numbers are the same for
all the experiments presented in this paper. For Algorithm 1,
the parameters are set as μ = 10−3 and α = 10. For Algorithm
2, we set β = 1. Termination criteria for both Algorithms 1
and 2 can be found in [13].

In Fig. 2.a, the performance of the different hybrid tech-
niques is examined for a SU 64 × 16 MIMO system with
Nst = Nsr = {2, 4, 6} RF chains. The performance of the
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Fig. 2. Spectral Efficiency of the Hybrid Transceivers vs SNR for a 64×16 MIMO system for a) Different number of RF Chains, Nst = Nsr = Ls = {2, 4, 6}
and b) Different PU signal’s Rank, Lp = {2, 6, 9}.

digital only solution is also plotted for Ls = {2, 4, 6} for
a fair comparison, since the hybrid approaches can support
transmission of maximum min{Nst, Nsr} streams. The maxi-
mum transmission power and interference constraints are set to
Pmax = 1 and Imax = 1, respectively. The PU is assumed to
transmit a signal of rank Lp = 4. As its shown, the codebook
free hybrid approach achieves close performance to the one of
the digital only solution for all the examined cases. Moreover,
the performance of the codebook based technique is severely
inferior to the one of the codebook based solution, especially
for high SNR values. This is due to the codebook use that
restricts the solution set of the analog counterpart, as it was
also observed in [4], [5].

In Fig. 2.b, we examine the impact of the PU signal’s rank
on the performance of the proposed techniques. The number
of RF chains is fixed to Nst = Nsr = 6 and Imax = 1.
We consider PU signals of rank Lp = {2, 6, 9} respectively.
The rest of the parameters are the same with the one of the
experiment of Fig. 2.a. As it was expected, the performance
of all the techniques is degraded as the rank of PU signal’s
increases. This can be attributed to the fact that more of
the available degrees of freedom are occupied by the PU,
as its signal’s rank increases and thus, the SU has to reduce
further its transmitted power in order to satisfy the interference
temperature constraint. The proposed codebook free hybrid
approach achieve once again close performance to the one
of the digital only optimal solution, independently of the PU
signal’s rank. On the contrary, the performance of the code-
book based approach is degraded with an increase on the PU
signal’s of rank.

Future works that are currently under development include
the extension of the proposed approach to partially connected
hybrid solutions and frequency selective channels.
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