
Cryptanalysis of a Theorem: Decomposing the
Only Known Solution to the Big APN Problem

(Full Version)⋆

Léo Perrin1(�), Aleksei Udovenko1(�), and Alex Biryukov1,2(�)

1 SnT, University of Luxembourg, Luxembourg City, Luxembourg
{leo.perrin,aleksei.udovenko}@uni.lu

2 CSC, University of Luxembourg, Luxembourg City, Luxembourg
alex.biryukov@uni.lu

Abstract. The existence of Almost Perfect Non-linear (APN) permuta-
tions operating on an even number of bits has been a long standing open
question until Dillon et al., who work for the NSA, provided an example
on 6 bits in 2009.
In this paper, we apply methods intended to reverse-engineer S-Boxes
with unknown structure to this permutation and find a simple decompo-
sition relying on the cube function over 𝐺𝐹 (23). More precisely, we show
that it is a particular case of a permutation structure we introduce, the
butterfly. Such butterflies are 2𝑛-bit mappings with two CCZ-equivalent
representations: one is a quadratic non-bijective function and one is a
degree 𝑛 + 1 permutation. We show that these structures always have
differential uniformity at most 4 when 𝑛 is odd. A particular case of
this structure is actually a 3-round Feistel Network with similar dif-
ferential and linear properties. These functions also share an excellent
non-linearity for 𝑛 = 3, 5, 7.
Furthermore, we deduce a bitsliced implementation and significantly re-
duce the hardware cost of a 6-bit APN permutation using this decompo-
sition, thus simplifying the use of such a permutation as building block
for a cryptographic primitive.

Keywords: Boolean functions, APN, Butterfly structure, S-Box decom-
position, CCZ-equivalence, Feistel Network, Bitsliced implementation.

1 Introduction

When designing a symmetric primitive, it is common to use functions operating
on a small part of the internal state to provide non-linearity. These are called

⋆ Full version of the paper published in the proceedings of CRYPTO 2016 (c○IACR
2016). The work of Léo Perrin is supported by the CORE ACRYPT project (ID
C12-15-4009992) funded by the Fonds National de la Recherche (Luxembourg). The
work of Aleksei Udovenko is supported by the Fonds National de la Recherche,
Luxembourg (project reference 9037104)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/78371454?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

S-Boxes and their properties can be leveraged to justify security against differ-
ential [1] and linear [2] attacks using for example a wide-trail argument, as was
done for the AES [3].

A popular strategy for choosing S-Boxes with desirable cryptographic prop-
erties is to use mathematical construction based for example on the inverse in a
finite field [4]. A function with optimal differential property (in a sense that we
will define later) is called Almost Perfect Non-linear or APN. While it is easy
to find functions with this property, permutations are more rare. Many mono-
mials are known to be APN permutations in finite fields of size 2𝑛 for 𝑛 odd (for
example the cube function), but whether there even exists APN permutations
operating on an even number of bits is still an important research area.

In this context, the 6-bit APN permutation described by a team of mathe-
maticians from the NSA (Dillon et al.) in [5] is of great theoretical importance:
it is the only known APN permutation for even 𝑛 so far. Furthermore, it has
already been used to design an authenticated cipher: Fides [6]. However, the
method used by the Dillon et al. to find it relies on sophisticated considerations
related to error correcting codes and no generalization of their results has been
published to the best of our knowledge. In their paper, the authors state the
“big APN problem” and it is, 6 years later, still as much of an open question:

(STILL) The Big APN Problem: Does there exist an APN permu-
tation on 𝐺𝐹 (2𝑚) if 𝑚 is EVEN and GREATER THAN 6?

Our Contribution By applying methods designed by Biryukov et al. to reverse-
engineer the S-Box of the last Russian cryptographic standards [7], we show the
existence of a much simpler expression of the 6-bit APN permutation. This is
stated in Theorem 3 which we reproduce here.

Main Theorem (A Family of 6-bit APN Permutations). The 6-bit per-
mutation described by Dillon et al. in [5] is affine equivalent to any involution
built using the structure described in Figure 1, where ⊙ denotes multiplication
in the finite field 𝐺𝐹 (23), 𝛼 ̸= 0 is such that Tr(𝛼) = 0 and 𝒜 denotes any 3-bit
APN permutation.

𝒜
𝒜−1

⊙𝛼

⊕

⊕
3 bits

𝒜
𝒜

⊙
𝛼

⊕

⊕

Fig. 1: Some S-Boxes affine-equivalent to the Dillon APN permutation.

2

We study extensively this structure, both experimentally and mathematically,
and derive in particular new families of differentially 4-uniform permutations of
2𝑛 bits for 𝑛 odd.

Outline This paper is devoted to first deriving this theorem and then exploring
its consequences. Section 2 describes how the cryptanalysis strategy described
in [7] can be successfully applied to the 6-bit APN permutation to identify a
highly structured decomposition. We then study this structure in Section 3. Next,
we show in Section 4 that the same structure can be used to build differentially 4-
uniform permutations with algebraic degree at least 𝑛 in fields of size 2𝑛 for odd
𝑛. Finally, we use our results on the decomposition of 6-bit APN permutations
to describe efficient bit-sliced and hardware implementation of some of them in
Section 5.

Notations and Definitions

We use common definitions and notations throughout this paper. For the sake of
clarity, we list them here. First, we describe the notations related to finite field:

– F2𝑛 is a finite field of size 2𝑛,
– for any 𝑥 in F2𝑛 , the trace of 𝑥 is Tr(𝑥) =

∑︀𝑛−1
𝑖=0 𝑥2𝑖 ,

The differential properties of an S-Box 𝑓 : F𝑛
2 → F𝑚

2 are studied using its Differ-
ence Distribution Table (DDT), the 2𝑛×2𝑚 matrix 𝒟(𝑓) such that 𝒟(𝑓)[𝛿,𝛥] =
#{𝑥 ∈ F2𝑛 , 𝑓(𝑥 + 𝛿) + 𝑓(𝑥) = 𝛥}. The maximum coefficient3 in 𝒟(𝑓) is the dif-
ferential uniformity of 𝑓 and, if it is equal to 𝑢, then we say that 𝑓 is differentially
𝑢-uniform. A differentially 2-uniform function is called Almost Perfect Non-linear
(APN).

Similarly, security against linear attacks can be justified using the Linear
Approximation Table (LAT)4 of 𝑓 . It is the 2𝑛 × 2𝑚 matrix ℒ(𝑓) such that
ℒ(𝑓)[𝑎, 𝑏] = #{𝑥 ∈ F2𝑛 , 𝑎·𝑥 = 𝑏·𝑦}−2𝑛−1 (where “·” denotes the scalar product).
The non-linearity of a 𝑓 : F𝑛

2 → F𝑚
2 is 𝒩ℒ(𝑓) = 2𝑛−1 − max (|ℒ(𝑓)[𝑎, 𝑏]|) where

the maximum is taken over all non-zero line and column indices 𝑎 and 𝑏.
Finally, we also consider algebraic decompositions of the functions we study

using the following tools:

– if 𝑥 and 𝑢 are vectors of F𝑛
2 , then 𝑥𝑢 =

∏︀𝑛−1
𝑖=0 𝑥𝑢𝑖

𝑖 so that 𝑥𝑢 = 1 if and only
if 𝑥𝑖 = 1 for all 𝑖 such that 𝑢𝑖 = 1,

– the Algebraic Normal Form (ANF) of a Boolean function 𝑓 is its unique
expression 𝑓(𝑥) =

⨁︀
𝑢∈F𝑛

2
𝑎𝑢𝑥

𝑢 where all 𝑎𝑢 are in {0, 1},

– the algebraic degree of a Boolean function 𝑓 is denoted deg(𝑓) and is equal
to the maximum Hamming weight of 𝑢 such that 𝑎𝑢 = 1 in the ANF of 𝑓 ,

3 The maximum is taken over all non-zero line indices.
4 This object is also sometimes referred to as the “correlation matrix”. Up to a mul-
tiplication by a constant factor, the coefficients in the LAT of a function also form
its Walsh Spectrum.

3

– the field polynomial representation of 𝑓 mapping F2𝑛 to itself is its unique

expression as a univariate polynomial of F2𝑛 , so that 𝑓(𝑥) =
∑︀2𝑛−1

𝑖=0 𝑐𝑖𝑥
𝑖

with 𝑐𝑖 in F2𝑛 . It can be obtained using Lagrange interpolation.

Note that the algebraic degree of a polynomial of F2𝑛 is equal to the maximum
Hamming weight of the binary expansions of the exponents in its field polynomial
representation. For example, the algebraic degree of the cube function 𝑥 ↦→ 𝑥3

in F2𝑛 is equal to 2.
Two functions 𝑓 and 𝑔 are affine equivalent if there exist affine permutations

𝐴 and 𝐵 such that 𝑔 = 𝐵 ∘ 𝑓 ∘ 𝐴. If we also add an affine function 𝐶 to the
output, that is, 𝑔 = 𝐵 ∘ 𝑓 ∘ 𝐴 + 𝐶, then 𝑓 and 𝑔 are extended affine-equivalent
(EA-equivalent).

Finally, we denote the concatenation of two binary variables using the symbol
“||”. In particular, we will often interpret bit-strings of length 2𝑛 as 𝑥||𝑦, where
𝑥 and 𝑦 are in F𝑛

2 .

2 A Decomposition of the 6-bit APN Permutation

In this section, we identify a decomposition of the Dillon APN permutation. We
denote this permutation 𝑆0 : F6

2 → F6
2 and give its look-up table in Table 1. As we

are interested only in its being an APN permutation, we allow ourselves to com-
pose it with affine permutations as such transformations preserve this property.
We will omit the respective inverse permutations to simplify our description.

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .a .b .c .d .e .f

0. 00 36 30 0d 0f 12 35 23 19 3f 2d 34 03 14 29 21

1. 3b 24 02 22 0a 08 39 25 3c 13 2a 0e 32 1a 3a 18

2. 27 1b 15 11 10 1d 01 3e 2f 28 33 38 07 2b 2c 26

3. 1f 0b 04 1c 3d 2e 05 31 09 06 17 20 1e 0c 37 16

Table 1: The Dillon permutation 𝑆0 in hexadecimal (e.g. 𝑆0(0x10) = 0x3b).

Our strategy is identical to the one used to recover the structure of the S-Box
of the last Russian cryptographic standards described in [7]. First, we obtain a
high level decomposition of the permutation relying on two distinct but closely
related 3-bit keyed permutations (the “TU-decomposition”) in Section 2.1. Then,
we decompose these keyed permutations in Sections 2.2. Finally, we provide the
complete decomposition of an S-Box affine-equivalent to 𝑆0 in Section 2.3.

2.1 High-Level TU-Decomposition

As suggested in [8] and [7], we looked at the “Jackson Pollock” representation
of the absolute value of the LAT of the S-Box (see Figure 2a). We can see some
patterns, namely columns and aligned short vertical segments of black and white

4

colors within a grey rectangle (white is 0, grey is 4 and black is 8). The black-
and-white columns also have the 8 topmost coefficients equal to zero. Moreover,
their horizontal coordinates form a linear subspace of F6

2.

Therefore, as was done in [7], we compose the S-Box with a particular linear
permutation chosen so that these particular columns are clustered to the left
of the picture, i.e their abscissa become [0, 7]. The black-and-white columns
have coordinates {0, 4, 10, 14, 16, 20, 26, 30} and the binary expansion of these
numbers form a linear subspace of F6

2 spanned by the binary expansions of
{4, 10, 16}. We thus construct a permutation 𝜂, linear over 𝐺𝐹 (2), such that
𝜂 : 1 ↦→ 4, 2 ↦→ 10, 4 ↦→ 16 and then we complete it by setting 𝜂 : 8 ↦→ 1, 16 ↦→
2, 32 ↦→ 32 so that 𝜂 is a permutation. By Theorem 1 from [7], the composition
𝜂𝑡 ∘ 𝑆0 of such mapping with the S-Box will group the black-and-white columns
in the LAT. The Jackson Pollock representation of 𝜂𝑡 ∘ 𝑆0 is given in Figure 2b.

(a) LAT of 𝑆0. (b) LAT of 𝜂𝑡 ∘ 𝑆0.

Fig. 2: The Jackson Pollock representation of the LAT of two permutations (ab-
solute value). Row/column indices correspond to input/output linear approxi-
mation masks respectively. White pixels correspond to 0, grey to 4 and black to 8.

As we can see the columns are now aligned, as was our goal, and the short
segments became grouped into small squares, thus making the whole picture
more structured. Doing this also caused the appearance of a “white-square” in
the top-left square [0, 7] × [0, 7]. This last pattern is a known side effect of the
existence of specific integral properties (see Lemma 2 of [7] which is itself derived
from [9]). Hence, we checked for integral/multiset properties as defined in [10]
and identified the following property: fixing the last 3 bits of the input and
letting the first 3 take all possible values leads to the last 3 bits of the output
taking all possible values.

We keep following the blueprint laid out in [7] and investigate the conse-
quences of this integral distinguisher. In fact we generalize their next step, which
consists in providing a high level decomposition of the S-Box, by describing the
TU-decomposition.

5

Lemma 1. Let 𝑓 be a function mapping F𝑛
2 × F𝑛

2 to itself such that fixing the
right input to any value and letting the left one take all 2𝑛 possible values leads
to the left output taking all 2𝑛 possible values. Then 𝑓 can be decomposed using
a keyed 𝑛-bit permutation 𝑇 and a keyed 𝑛-bit function 𝑈 (see Figure 3a):

𝑓(𝑥, 𝑦) =
(︀
𝑇𝑦(𝑥), 𝑈𝑇𝑦(𝑥)(𝑦)

)︀
,

Besides, if 𝑓 is a permutation then 𝑈 is a keyed permutation.

𝑇

𝑈

(a) Basic TU-decomposition.

𝑇

𝑈

(b) TU-decomposition composed with a swap.

Fig. 3: Principle of the TU-decomposition.

Proof. We simply define 𝑇𝑦(𝑥) to be the left side of 𝑓(𝑥, 𝑦). Because of the
multiset property, 𝑇𝑦 is a permutation for all 𝑦. We then define 𝑈 to be such
that 𝑈𝑘(𝑦) is the right side of 𝑓

(︀
𝑇−1
𝑦 (𝑘), 𝑦

)︀
.

If 𝑓 is a permutation then (𝑥, 𝑦) ↦→ 𝑓
(︀
𝑇−1
𝑦 (𝑥), 𝑦)

)︀
is a permutation equal to

(𝑥, 𝑦) ↦→ (𝑥, 𝑈𝑥(𝑦)). In particular, it holds that 𝑈𝑥 is a permutation for all 𝑥,
making it a keyed permutation. ⊓⊔

We apply Lemma 1 to 𝜂𝑡 ∘𝑆0 and deduce its TU-decomposition. We actually
have the output halves swapped so we may draw the structure in a more sym-
metric fashion (see Figure 3b). The corresponding keyed permutations 𝑇 and 𝑈
are given in Table 2.

0 1 2 3 4 5 6 7
𝑇0 0 6 4 7 3 1 5 2
𝑇1 7 5 1 6 4 2 0 3
𝑇2 4 3 2 0 5 6 1 7
𝑇3 3 5 2 1 4 6 7 0
𝑇4 1 2 0 6 4 3 7 5
𝑇5 6 5 2 4 7 0 1 3
𝑇6 5 2 6 4 0 3 1 7
𝑇7 2 0 1 6 5 3 4 7

(a) 𝑇 .

0 1 2 3 4 5 6 7
𝑈0 0 3 6 4 2 7 1 5
𝑈1 7 4 0 2 3 6 1 5
𝑈2 1 4 2 6 3 0 5 7
𝑈3 7 2 5 1 3 0 4 6
𝑈4 7 3 4 1 0 2 6 5
𝑈5 3 7 1 4 2 0 5 6
𝑈6 1 3 7 4 6 2 5 0
𝑈7 4 6 3 0 5 1 7 2

(b) 𝑈 .

Table 2: The keyed permutations 𝑇 and 𝑈 . 𝑇𝑘 and 𝑈𝑘 denote the permutations
corresponding to the key 𝑘.

6

The degree of 𝑇 as a 6-bit permutation is equal to 3 and that of 𝑈 is equal to
2. However the degree of 𝑇−1 is equal to 2 as well. One may think that 𝑇−1 and 𝑈
are somehow related and we indeed found that 𝑇−1 and 𝑈 are linearly equivalent
using the algorithm by Biryukov et al. from [11]. The linear equivalence of 𝑇−1

and 𝑈 is given by:

𝑈(𝑥) = 𝑀 ′
𝑈 ∘ 𝑇−1 ∘𝑀𝑈 (𝑥),

where 𝑇 and 𝑈 are considered as 6-bit permutations and the linear permutations
𝑀𝑈 and 𝑀 ′

𝑈 are given as the following binary matrices:

𝑀𝑈 =

⎡⎢⎢⎢⎢⎢⎣
0 1 1 0 1 0
1 0 0 0 1 0
0 0 1 0 1 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 1 1

⎤⎥⎥⎥⎥⎥⎦,𝑀 ′
𝑈 =

⎡⎢⎢⎢⎢⎢⎣
1 1 0 0 0 0
0 1 0 0 1 0
1 0 1 1 1 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 1 1

⎤⎥⎥⎥⎥⎥⎦.

2.2 Decomposing 𝑇

As we applied a linear mapping on the output of the S-Box, we might have
scrambled the initial structure of 𝑈 . Hence, we choose the decomposition of 𝑇−1

as our main target. We start by composing it with a Feistel round to ensure
that 0 is mapped to itself for all keys. Again, this simplification was performed
while reverse-engineering the GOST S-Box. If we apply such an appropriate
Feistel round before or after 𝑇−1, the corresponding Feistel function is always a
permutation. Moreover, in the case when the Feistel function is used between 𝑇
and 𝑈 , the Feistel function is linear5 so we choose this side. We define 𝑡(𝑘) =
𝑇𝑘(0) and 𝑇 ′

𝑘(𝑥) = 𝑇𝑘(𝑥) ⊕ 𝑡(𝑘) so that 𝑇 ′
𝑘(0) = 𝑇 ′−1

𝑘 (0) = 0 for all 𝑘 (see
Figure 4a). The linear permutation 𝑡 is given by 𝑡(𝑥) = (0, 7, 4, 3, 1, 6, 5, 2).

𝑇 ′−1

𝑡⊕

(a) Detaching a linear
Feistel round.

𝐿

𝑡

𝑁

⊕

⊕

(b) Splitting 𝑇 ′−1 into 𝑁
and 𝐿.

𝐿

𝑡

ℐ

𝑝

⊕

⊕

(c) Simplifying 𝑁 into ℐ
and linear functions.

Fig. 4: Simplifying the keyed permutation 𝑇 ′−1.

5 If we had attacked 𝑈 instead of 𝑇−1, then detaching a Feistel function in this way
leads only to a nonlinear Feistel function (regardless of the side), which supports our
choice of 𝑇 ′−1 as an easier target.

7

We then check the existence of particular algebraic structure in 𝑇 ′. We choose
the irreducible polynomial 𝑋3 + 𝑋 + 1 to represent elements of F23 as binary
strings and, furthermore, we represent these binary strings as integers. In equa-
tions we represent such constants in italic. Note that this representation was
motivated by convenience reasons for working in Sage [12] and we are using it
only in this section for describing the decomposition process.

Now we use Lagrange interpolation to represent each 𝑇 ′−1
𝑘 as a polynomial

over F23 . The result is given in Table 3. Interestingly, the coefficients of the
non-linear terms 𝑥6, 𝑥5, 𝑥3 are key-independent. We therefore decompose 𝑇 ′−1

as a sum of its non-linear part 𝑁 and its key-dependent linear part 𝐿𝑘 so that
𝑇 ′−1
𝑘 (𝑥) = 𝑁(𝑥) +𝐿𝑘(𝑥), where 𝑁(𝑥) = 3𝑥6 +2𝑥5 +5𝑥3 and 𝐿𝑘(𝑥) is linear for

any 𝑘 (see Figure 4b).

0 1 2 3 4 5 6 7 Interpolation polynomial

𝑇 ′−1
0 0 5 7 4 2 6 1 3 3𝑥6 + 2𝑥5 + 3𝑥4 + 5𝑥3 + 2𝑥2 + 0𝑥

𝑇 ′−1
1 0 3 1 4 7 5 2 6 3𝑥6 + 2𝑥5 + 1𝑥4 + 5𝑥3 + 4𝑥2 + 2𝑥

𝑇 ′−1
2 0 4 5 7 3 6 2 1 3𝑥6 + 2𝑥5 + 0𝑥4 + 5𝑥3 + 0𝑥2 + 0𝑥

𝑇 ′−1
3 0 2 3 7 6 5 1 4 3𝑥6 + 2𝑥5 + 2𝑥4 + 5𝑥3 + 6𝑥2 + 2𝑥

𝑇 ′−1
4 0 2 5 1 7 4 6 3 3𝑥6 + 2𝑥5 + 3𝑥4 + 5𝑥3 + 0𝑥2 + 5𝑥

𝑇 ′−1
5 0 4 3 1 2 7 5 6 3𝑥6 + 2𝑥5 + 1𝑥4 + 5𝑥3 + 6𝑥2 + 7𝑥

𝑇 ′−1
6 0 3 7 2 6 4 5 1 3𝑥6 + 2𝑥5 + 0𝑥4 + 5𝑥3 + 2𝑥2 + 5𝑥

𝑇 ′−1
7 0 5 1 2 3 7 6 4 3𝑥6 + 2𝑥5 + 2𝑥4 + 5𝑥3 + 4𝑥2 + 7𝑥

Table 3: The values and polynomial interpolation of each 𝑇 ′−1
𝑘 .

We now simplify 𝑁 by applying a linear function of our choice after 𝑇 ′−1 (see
Figure 4c). We allow ourselves to do this because this side corresponds to the
input of the S-Box on which, as we said before, we may apply any affine layer
as those would preserve the differential uniformity of the whole permutation.
Choosing this side also prevents the need for a corresponding modification of 𝑈 .
We choose 𝑝(𝑥) = 4𝑥4 + 𝑥2 + 𝑥 because (𝑝 ∘𝑁)(𝑥) = 𝑥6 is the inverse function
in F23 , denoted ℐ.

We further remark that 𝑝 ∘ 𝐿𝑘 is simpler than 𝐿𝑘 too: there are nonzero
coefficients only at 𝑥2 and 𝑥4 (see Table 4). Note also that 𝑝 ∘𝐿2 = 0 so we add
2 to 𝑘 to obtain these linear layers:

(𝑝 ∘ 𝐿𝑘)(𝑥) = 𝑙2(𝑘 + 2)𝑥2 + 𝑙4(𝑘 + 2)𝑥4,

where 𝑙2(𝑥) = 2𝑥4 + 4𝑥2 + 𝑥 and 𝑙4(𝑥) = 𝑥4 + 6𝑥2 + 2𝑥 are obtained from the
Lagrange interpolations of 𝑝 ∘ 𝐿𝑘 given in Table 4.

In our effort to simplify the structure, we search for a linear permutation 𝑞
such that both 𝑙2 ∘ 𝑞 and 𝑙4 ∘ 𝑞 have a simpler form and find that 𝑞(𝑥) = 3𝑥4 +
7𝑥2+3𝑥 is such that (𝑙2∘𝑞)(𝑥) = 𝑥4 and (𝑙4∘𝑞)(𝑥) = 𝑥2. Therefore, we can write
(𝑝 ∘𝐿𝑘)(𝑥) = 𝑘′4𝑥2 + 𝑘′2𝑥4, where 𝑘′ = 𝑞−1(𝑘 + 2). We deduce a representation

8

Function Polynomial

𝑝 ∘ 𝐿0 7𝑥4 + 3𝑥2

𝑝 ∘ 𝐿1 2𝑥4 + 4𝑥2

𝑝 ∘ 𝐿2 0𝑥4 + 0𝑥2

𝑝 ∘ 𝐿3 5𝑥4 + 7𝑥2

Function Polynomial

𝑝 ∘ 𝐿4 4𝑥4 + 6𝑥2

𝑝 ∘ 𝐿5 1𝑥4 + 1𝑥2

𝑝 ∘ 𝐿6 3𝑥4 + 5𝑥2

𝑝 ∘ 𝐿7 6𝑥4 + 2𝑥2

Table 4: The interpolation polynomials of each 𝑝 ∘ 𝐿𝑘.

of the whole structure of 𝑝 ∘ 𝑇 ′−1 depending only on linear functions and the
inverse function which we describe in Equation (1) and Figure 5.

(𝑝 ∘ 𝑇 ′−1
𝑘)(𝑥) = 𝑥6 + 𝑥2𝑘′4 + 𝑥4𝑘′2 = (𝑥 + 𝑘′)6 + 𝑘′6, with 𝑘′ = 𝑞−1(𝑘 + 2). (1)

𝐿

𝑡

ℐ

𝑝

⊕

⊕
2

𝑞1 𝑞−1 ⊕
2

⊕

(a) Using 𝑘′ = 𝑞(𝑘)⊕ 2.

𝑡

ℐ

ℐ⊕

𝑞−1 ⊕
2

⊕
⊕

(b) Using Equation (1).

Fig. 5: Simplifying 𝑝 ∘ 𝐿 and thus 𝑇 ′−1. The dashed area corresponds to the
equivalence given by Equation 1.

Then, we replace the application of 𝑥 ↦→ 𝑞−1(𝑥+2) on the horizontal branch
in Figure 5b by its application on the right vertical branch followed by its inverse
(see Figure 6a; note that 𝑞−1(2) = 5). By then discarding the affine permutation
applied on the top of the right branch (we omit the affine layers applied to the
outside of the complete permutation), we obtain the equivalent structure shown
in Figure 6b. Finally, we merge the two linear Feistel functions into 𝑧(𝑥) =
𝑡(𝑞(𝑥)) ⊕ 𝑥 to obtain our final decomposition of 𝒯 −1:

𝒯 −1(ℓ||𝑟) = ℐ
(︀
ℓ + 𝑧

(︀
𝑞−1(𝑟)

)︀
+ 5

)︀
+ ℐ

(︀
𝑞−1(𝑟) + 5

)︀
|| (𝑞−1(𝑟) + 5),

which is also is described in Figure 6c. Now that we have found a decomposition
of 𝑇 , we shall use it to express a whole permutation affine-equivalent to 𝑆0.

2.3 Joining the decompositions of 𝑇 and 𝑈 .

Let us now join the decomposition of 𝑇 and 𝑈 together, that of 𝑈 being obtained
using that 𝒰(𝑥) = 𝑀 ′

𝑈 ∘ 𝒯 −1 ∘ 𝑀𝑈 (𝑥). The affine transformations applied on

9

𝑡

𝑞−1

5

ℐ
ℐ

5

𝑞

(a)

𝑞−1

ℐ

𝑞𝑡⊕
⊕
⊕5 ⊕5

ℐ⊕

(b)

𝑞−1

ℐ

𝑧⊕
⊕5 ⊕5

ℐ⊕

(c)

Fig. 6: Finishing the decomposition of 𝑇−1: moving 𝑞, 𝑞−1 and 𝑥 ↦→ 𝑥+2 around,
removing the outer affine layer and merging the Feistel linear rounds.

the top of 𝑇 ′−1 make the relation between 𝑇−1 and 𝑈 affine instead of linear
on one side. This side corresponds to the output of the S-Box and we omit this
transformation. The other linear mapping 𝑀𝑈 connecting 𝑇−1 and 𝑈 merges
with the linear part of 𝑇−1 and its symmetric copy from 𝑈 into the linear
mapping 𝑀 (see Figure 7a and 7b). The linear permutation 𝑀 is given by the
following matrix over F2:

𝑀 =

⎡⎢⎢⎢⎢⎢⎣
1 0 1 1 1 1
1 1 0 0 1 0
0 0 1 1 1 0
1 1 0 1 0 1
1 1 1 1 1 0
1 0 1 0 0 1

⎤⎥⎥⎥⎥⎥⎦.
In order to further improve our decomposition, we studied how each compo-

nent of this structure could be modified so as to preserve the APN property of
the permutation. We investigated both the replacement of the linear and non-
linear permutations used and describe our findings in Section 3.3. In particular,
we found that we could modify the central affine layer in the following fashions
while still keeping the APN property of the permutation (see Theorem 2):

– changing the xor constants to any value, in particular 0;
– inserting two arbitrary 3-bit linear permutations 𝑎 and 𝑏 as shown in Fig-

ure 7c.

Thus, we remove the xors from the structure and exhaustively check all linear
permutations 𝑎, 𝑏 such that the resulting linear layer from Figure 7c has the
simplest form. We found that for 𝑎(𝑥) = 2𝑥4+2𝑥2+4𝑥 and 𝑏(𝑥) = 2𝑥4+3𝑥2+2𝑥
the resulting matrix can be represented as the following matrix 𝑀 ′ over F23 :

𝑀 ′ =

[︂
2 5
1 2

]︂
.

Interestingly, 𝑀 ′ is an involution which, because of the symmetry of our de-
composition, makes the whole S-Box involutive too! The matrix 𝑀 ′ can moreover

10

ℐ
ℐ

5 5
𝑧

𝑞1

𝑀𝑈

𝑞−1

𝑧

5 5

ℐ
ℐ

𝑇
𝑈

(a) Joining the decompo-
sitions of 𝑇 and 𝑈 .

ℐ

ℐ
5 5

𝑀

5 5

ℐ
ℐ

(b) Merging linear layers.

ℐ
ℐ

𝑎 𝑎

𝑀

𝑏 𝑏

ℐ
ℐ

(c) Allowed transforma-
tions.

Fig. 7: Simplifying the middle affine layer. The linear mappings in the dotted
area in Figure 7a form the linear layer 𝑀 .

be decomposed into a 2-round Feistel Network with finite field multiplications
by 2 as Feistel functions. We deduce the final decomposition from this final
observation and describe it in the following theorem.

Theorem 1. There exist linear bijections 𝐴 and 𝐵 such that the Dillon 6-bit
permutation is equal to

𝑆0(𝑥) = 𝐵(𝑆ℐ(𝐴(𝑥) ⊕ 9) ⊕ 4,

where the output of 𝑆ℐ(ℓ||𝑟) is the concatenation of two bivariate polynomials of
F2[𝑋]/(𝑋3 + 𝑋 + 1), namely 𝑆𝐿

ℐ (ℓ, 𝑟) and 𝑆𝑅
ℐ (ℓ, 𝑟). These are equal to{︃

𝑆𝑅
ℐ (ℓ||𝑟) = (𝑟6 + ℓ)6 + 2 𝑟,

𝑆𝐿
ℐ (ℓ||𝑟) =

(︀
𝑟 + 2𝑆𝑅

ℐ (ℓ||𝑟)
)︀6

+ 𝑆𝑅
ℐ (ℓ||𝑟)6.

A picture representing a circuit computing 𝑆ℐ is given Figure 8.

For the sake of completeness, we give the matrices of the linear permutations 𝐴
and 𝐵:

𝐴 =

⎡⎢⎢⎢⎢⎢⎢⎣
1 1 0 1 0 1
1 1 1 1 0 0
1 0 0 0 0 0
0 0 0 1 0 1
0 0 0 1 0 0
0 0 0 1 1 0

⎤⎥⎥⎥⎥⎥⎥⎦ , 𝐵 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 1 1 0 1
0 0 0 0 0 1
0 0 1 1 1 0
0 0 0 1 1 1
0 0 1 0 1 0
1 0 1 1 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ .

11

ℐ
ℐ

⊙2

⊕

⊕

ℐ
ℐ

⊙
2

⊕

⊕

Fig. 8: The APN involution 𝑆ℐ , where ℐ denotes the inverse in the finite field
F23 with the irreducible polynomial 𝑋3 + 𝑋 + 1, i.e. the monomial 𝑥 ↦→ 𝑥6.

3 Analysing Our Decomposition

In this section, we study the structure of the 6-bit APN permutation we derived
from the Dillon S-Box in Section 2. We start with a description of its crypto-
graphic properties in Section 3.1. Then, we generalize this structure into the But-
terfly structure (see Section 3.2). We investigate how 3-bit affine permutations
propagate through the different components of our decomposition in Section 3.3
and then we use this information to deduce how much freedom we have when
choosing the different components of the permutation (see Section 3.4).

We discover some new relations between the APN permutation, the Kim
function and the cube mapping over F26 in Section 3.5. Furthermore, we de-
scribe some simple univariate representations of the structure in Section 3.6. We
have also noticed that 𝑆ℐ is CCZ-equivalent to the concatenation of two bent
functions. However, because it could not produce any new 6-bit APN permuta-
tions, we discuss it in Appendix A.1.

3.1 Cryptographic Properties

The first consequence of our decomposition is the surprising observation that
the 6-bit APN permutation is affine-equivalent to an involution. To the best of
our knowledge, this was not known.

The permutation 𝑆ℐ is obviously APN due to how it was obtained, so that
the highest differential probability is equal to 2/64 = 2−5. The Jackson Pollock
representation of the DDT of Swap ∘ 𝑆ℐ ∘ Swap, where Swap is a simple branch
swap, is provided in Figure 9a. The LAT of 𝑆ℐ contains6, in absolute value,
only 3 different coefficients: 945 occurrences of 0, 2688 occurrences of 4 and 336
occurrences of 8 (see Figure 9b). Its maximum linear bias is thus 8/32 = 2−2.
The left half of its output bits have algebraic degree 4 and those on the right
half have algebraic degree 3.

6 As 𝑆ℐ is a permutation, we ignore the first line and the first column of its LAT.

12

(a) DDT of Swap ∘𝑆ℐ ∘Swap (white: 0,
black: 2).

(b) LAT of 𝑆ℐ (white: 0, grey: 4, black: 8).

Fig. 9: The Jackson Pollock representation of the DDT and LAT of 𝑆ℐ .

3.2 The Butterfly Structure

As described above, the output of our 6-bit APN permutation 𝑆ℐ is the concate-
nation of two bivariate polynomials of F23 . We define the keyed permutation 𝑅𝑘

of F23 with a key in F23 as

𝑅𝑘(𝑥) = (𝑥 + 2𝑘)6 + 𝑘6,

where 𝑅𝑘 is indeed a permutation affine equivalent to the inverse function 𝑥 ↦→
𝑥6. In fact, its inverse 𝑅−1

𝑘 such that 𝑅−1
𝑘 (𝑅𝑘(𝑥)) = 𝑥 is equal to 𝑅−1

𝑘 = (𝑥 +
𝑘6)6 + 2𝑘. Using this keyed permutation and its inverse, it is easy to express 𝑆ℐ
(see also Figure 10a):

𝑆ℐ(ℓ||𝑟) = 𝑅𝑅−1
𝑟 (ℓ)(𝑟) || 𝑅−1

𝑟 (ℓ).

Using this representation, we show that 𝑆ℐ is CCZ-equivalent to a quadratic
function with a very similar structure. First, we recall the definition of CCZ-
equivalence (where CCZ stands for Carlet-Charpin-Zinoviev [13]) as it is defined
e.g. in [14].

Definition 1 (CCZ-equivalence). Let 𝑓 and 𝑔 be two functions mapping F2𝑛

to itself. They are said to be CCZ-equivalent if the sets {(𝑥, 𝑓(𝑥)) | 𝑥 ∈ F2𝑛}
and {(𝑥, 𝑔(𝑥)) | 𝑥 ∈ F2𝑛} are affine equivalent. In other words, they are CCZ-
equivalent if and only if there exists a linear permutation 𝐿 of (F2𝑛)2 such that{︀

(𝑥, 𝑓(𝑥)),∀𝑥 ∈ F2𝑛
}︀

=
{︀
𝐿 (𝑥, 𝑔(𝑥)) ,∀𝑥 ∈ F2𝑛

}︀
.

For example, a permutation is CCZ-equivalent to its inverse. As is shown in
Proposition 2 of [15], CCZ-equivalence preserves both the differential uniformity
and the Walsh spectrum (i.e. the distribution of the coefficients in the LAT).

13

Lemma 2. The permutation 𝑆ℐ is CCZ-equivalent to the quadratic function
𝑄ℐ : F6

2 → F6
2 obtained by concatenating two bivariate polynomials of F23 :

𝑄ℐ(ℓ||𝑟) = 𝑅𝑟(ℓ)||𝑅ℓ(𝑟).

A representation of 𝑄ℐ is given Figure 10b.

𝑅−1

𝑅

(a) The permutation 𝑆ℐ .

𝑅 𝑅

(b) The function 𝑄ℐ .

Fig. 10: Two CCZ-equivalent APN functions of F6
2.

Proof. The functional graph of the function 𝑄ℐ is the following set:

{
(︀
𝑥||𝑦, 𝑅𝑦(𝑥)||𝑅𝑥(𝑦)), ∀𝑥||𝑦 ∈ F6

2},

in which we can replace the variable 𝑥 by 𝑧 = 𝑅𝑦(𝑥) so that 𝑥 = 𝑅−1
𝑦 (𝑧) as 𝑅𝑘

is invertible for all 𝑘. We obtain a new description of the same set:

{
(︀
𝑅−1

𝑦 (𝑧)||𝑦, 𝑧||𝑅𝑅−1
𝑦 (𝑧)(𝑦)), ∀𝑧||𝑦 ∈ F6

2}.

As the function 𝜇 : (F6
2)2 → (F6

2)2 with 𝜇(𝑥||𝑦, 𝑎||𝑏) = (𝑎||𝑦, 𝑏||𝑥) is linear, this
graph is linearly equivalent to the following one:

{
(︀
𝑧||𝑦, 𝑅𝑅−1

𝑦 (𝑧)(𝑦))||𝑅−1
𝑦 (𝑧), ∀𝑧||𝑦 ∈ F6

2},

which is the functional graph of 𝑆ℐ : the two functions are CCZ-equivalent. ⊓⊔

Definition 2 (Butterfly Structure). Let 𝛼 be in F2𝑛 , 𝑒 be an integer such
that 𝑥 ↦→ 𝑥𝑒 is a permutation of F2𝑛 and 𝑅𝑘[𝑒, 𝛼] be the keyed permutation

𝑅𝑘[𝑒, 𝛼](𝑥) = (𝑥 + 𝛼𝑘)𝑒 + 𝑘𝑒.

We call Butterfly Structures the functions of (F2𝑛)2 defined as follows:

– the Open Butterfly with branch size 𝑛, exponent 𝑒 and coefficient 𝛼 is the
permutation denoted H𝛼

𝑒 defined by:

H𝛼
𝑒 (𝑥, 𝑦) =

(︀
𝑅−1

𝑅𝑦 [𝑒,𝛼](𝑥)
(𝑦), 𝑅𝑦[𝑒, 𝛼](𝑥)

)︀
,

– the Closed Butterfly with branch size 𝑛, exponent 𝑒 and coefficient 𝛼 is the
function denoted V𝛼

𝑒 defined by:

V𝛼
𝑒 (𝑥, 𝑦) =

(︀
𝑅𝑦[𝑒, 𝛼](𝑥), 𝑅𝑥[𝑒, 𝛼](𝑦)

)︀
.

14

𝑥𝑒

𝑥1/𝑒

⊙
𝛼

⊕

⊕

𝑥𝑒

𝑥𝑒

⊙
𝛼

⊕

⊕

(a) Open (bijective) butterfly H𝛼
𝑒 .

⊙
𝛼

⊕

𝑥𝑒

𝑥𝑒 ⊕

⊙
𝛼

⊕

𝑥𝑒

𝑥𝑒 ⊕

(b) Closed (non-bijective) butterfly V𝛼
𝑒 .

Fig. 11: The two types of butterfly structure with coefficient 𝛼 and exponent 𝑒.

Furthermore, the permutation H𝛼
𝑒 and the function V𝛼

𝑒 are CCZ-equivalent.

Pictures representing such functions are given in Figure 11. Our decomposition
of the 6-bit APN permutation and its CCZ-equivalent function have butterfly
structures: 𝑆ℐ = H2

6 and 𝑄ℐ = V2
6 . In fact, the proof of the CCZ-equivalence

of open and closed butterfly is identical to that of Lemma 2. The properties of
such structures for 𝑛 > 3 are studied in Section 4.1, in particular in Theorem 4.
In this section, we focus on the case 𝑛 = 3.

3.3 Propagation of Affine Mappings through the Components

As we have seen, affine-equivalence and CCZ-equivalence are key concepts in
our analysis of 𝑆ℐ . In this context, it is natural to extend our analysis not only
to outer affine layers applied before and after the permutation but also to the
inner affine permutation itself: what modifications can we make to this function
while preserving the APN property of the structure? In this section, we study
the “propagation” of affine layers in the sense defined below. Our study will show
some interesting properties of the structure and why changing some components
can lead to an affine equivalent structure.

Definition 3 (Propagation of Affine Layers). We say that an affine trans-
formation 𝐴 propagates through a component 𝐶 if there exists an affine trans-
formation 𝐴′ such that 𝐶 ∘𝐴 = 𝐴′ ∘ 𝐶.

Note that this definition is another way of looking at self-equivalence: indeed,
𝐶 ∘𝐴 = 𝐴′ ∘ 𝐶 is equivalent to 𝐶 = 𝐴′−1 ∘ 𝐶 ∘𝐴.

Theorem 2. Consider the two permutations of F6
2 with structures shown in

Figure 12, where 𝐴,𝐵 : F3
2 → F3

2 are some linear bijections,

𝑀 =

[︂
𝑝 𝑞
𝑟 𝑠

]︂
is an invertible matrix operating on column-vectors, 𝑝, 𝑞, 𝑟, 𝑠 are 3 × 3 sub-
matrices over F2 and 𝑎, 𝑏, 𝑐, 𝑑 are constants of F23 . Assume also that 𝑞 is in-
vertible. Then both structures are affine-equivalent for any choice of 𝑀 (with 𝑞

15

invertible) and constants. As a consequence, all such structures are in the same
affine-equivalence class.

ℐ
ℐ

𝑀

ℐ
ℐ

ℐ
ℐ

a b

𝐴 𝐴

𝑀

𝐵 𝐵
c d

ℐ
ℐ

Fig. 12: Affine equivalent structures.

Proof. We start by proving that adding constants 𝑎, 𝑏, 𝑐, 𝑑 as described in Fig-
ure 12 leads to affine-equivalent permutations. For now, we assume that 𝐴 and
𝐵 are the identity. First, we modify the constants without modifying the func-
tion to move them to the right branches only. To do this, we move 𝑎 through
the linear layer 𝑀 and modify 𝑏 in such a way that 𝑐 cancels out. The differ-
ence required, 𝑥 = 𝑏′ ⊕ 𝑏, is a solution to the equation 𝑝(𝑎) ⊕ 𝑞(𝑥) = 𝑐, so that
𝑥 = 𝑞−1(𝑝(𝑎) ⊕ 𝑐) and 𝑥 always exists since 𝑞 is invertible. Thus, for

𝑏′ = 𝑏⊕ 𝑥 = 𝑏⊕ 𝑞−1(𝑝(𝑎) ⊕ 𝑐),

𝑑′ = 𝑑⊕ 𝑟(𝑎) ⊕ 𝑠(𝑥) = 𝑑⊕ 𝑟(𝑎) ⊕ 𝑠(𝑞−1(𝑝(𝑎) ⊕ 𝑐)),

constructions with the structure described in Figure 13a and 13b are functionally
equivalent.

𝑎 𝑏

𝑀
𝑐 𝑑

(a)

𝑏′

𝑀

𝑑′

(b)

𝑑′

ℐ

(c)

ℐ
𝑖𝑑′

𝑑′

(d)

Fig. 13: How the xors around the central linear layer are affine equivalent to
outer linear layers.

The xors remaining on the right branches propagate through the Feistel func-
tion ℐ and are equivalent to particular outer affine transformations. Note that

16

in F23 we have7

ℐ(𝑥 + 𝑑′) = (𝑥 + 𝑑′)6 = 𝑥6 + 𝑑′2𝑥4 + 𝑑′4𝑥2 + 𝑑′6 = ℐ(𝑥) + 𝑖𝑑′(𝑥),

where 𝑖𝑑′(𝑥) = 𝑑′2𝑥4 + 𝑑′4𝑥2 + 𝑑′6 is an affine function and can be seen as an
additional Feistel round. The propagation of the xor with 𝑑′ is illustrated on
Figure 13c and 13d: the functions described on both figures are functionally
equivalent. The case with 𝑏′ is symmetrical.

We have now showed that the xors 𝑎, 𝑏, 𝑐, 𝑑 can be removed and the resulting
S-Box stays in the same affine equivalence class. Since the equivalence relation is
symmetric, we can also modify the constants to arbitrary values. We now move
on to studying the impact of branch-wise affine permutations.

It is sufficient to show how the two applications of 𝐵 propagate through the
bottom field inverses, the case of 𝐴 being symmetric. We start by analyzing
propagation through a single inverse function (see Figure 14).

In the case when the input transformation is linear (when 𝑐 = 0), it is easy to
see that if the equivalent output transformation is affine, then it is actually linear,
since 𝐵(0) = ℐ(0) = 0. By exhaustively checking all linear 3-bit permutations 𝐵
we found that the only functions which propagate in such way are 21 functions
of the form 𝑥 ↦→ 𝜆𝑥2𝑒 , where 𝑒 ∈ {0, 1, 2}, 𝜆 ∈ F23 , 𝜆 ̸= 0. This propagation is
quite obvious since (𝜆𝑥2𝑒)6 = 𝜆6(𝑥6)2

𝑒

.
The more interesting case is when the input transformation is affine. By ex-

haustive search we found that any linear bijection 𝐵 propagates through the
field inverse in F23 , but only together with a particular 𝐵-dependent xor con-
stant. That is, for any linear bijection 𝐵 there exists a constant 𝑐 such that
ℐ(𝐵(𝑥) + 𝑐) = 𝐵′(ℐ(𝑥)) + 𝑐′ for some linear bijection 𝐵′ and constant 𝑐′, i.e. the
affine function 𝐵(𝑥) + 𝑐 propagates through the inverse function in the affine
way (see Figure 14b).

𝑏

ℐ
≈

ℐ

𝑏′

(a) Linear.

𝑏
𝑐

ℐ
≈

ℐ

𝑏′

𝑐′

(b) Affine.

Fig. 14: Propagation of linear/affine permutation through the field inverse.

Note that after applying the linear bijections 𝐴 and 𝐵 the top right submatrix
of 𝑀 becomes 𝐵 × 𝑞 × 𝐴 and is still invertible, therefore the part of theorem
about constant addition, which we already proved, is still applicable. Hence for

7 For larger fields the inverse function does not satisfy the property and therefore such
propagation is impossible. An anonymous reviewer pointed out that this works in
F23 because the inverse function there has boolean algebraic degree 2 and therefore
its derivative is linear.

17

any linear mappings 𝐴,𝐵 we can add the xor constants required for propagation
of 𝐴,𝐵. Let 𝑥, 𝑦 be the values on the left and right branches respectively after
applying the linear layer 𝑀 . Then the left half of the output is equal to

𝑥′ = ℐ(𝐵(𝑥)+𝑐)+ℐ(𝐵(𝑦)+𝑐) = 𝐵′(ℐ(𝑥))+𝑐′+𝐵′(ℐ(𝑦))+𝑐′ = 𝐵′(ℐ(𝑥)+ℐ(𝑦)),

and the right half is simply 𝑦′ = 𝐵(𝑥) + 𝑐. The procedure is shown in Figure 15.
⊓⊔

𝑀

𝐵 𝐵

ℐ
ℐ

𝑀
𝑥 𝑦

𝐵 𝐵
𝑐 𝑐

ℐ
ℐ

𝑥′ 𝑦′

𝑀
𝑥 𝑦

ℐ
ℐ

𝐵′ 𝐵
𝑐

𝑥′ 𝑦′

Fig. 15: Propagation of affine mappings through the inverses. The dashed area
contains the outer affine parts.

Theorem 2 shows an interesting property of the field inverse in F23 : all lin-
ear bijections propagate through it together with some xor constant. We have
checked all nonlinear exponent functions in F2𝑛 for 𝑛 = 4, 5, 6, 7 and none of
them has this property. By using self-equivalence algorithm from [11] we found
that in these fields the only affine transformations which propagate through such
nonlinear monomial functions are the linear mappings of the form 𝑥 ↦→ 𝜆𝑥2𝑒 ,
where 𝑒 ∈ [0, 𝑛− 1], 𝜆 ∈ F2𝑛 , 𝜆 ̸= 0.

In our decomposition the central linear layer is a 2-round Feistel Network
where the round function 𝜎 is multiplication by 2 in the finite field defined by
a particular polynomial (see Figure 16a). By applying linear transformations
around as in Theorem 2 we obtain an affine equivalent S-Box. We can move
the linear functions 𝑎 through the linear Feistel network, such that the round
functions are modified and the linear functions 𝑎 merge with the linear functions
𝑏 as shown in Figures 16b and 16c. Since by Theorem 2 the outer linear function
𝑏 ∘ 𝑎 can be omitted, we conclude that 𝜎 may be replaced by 𝑎−1 ∘ 𝜎 ∘ 𝑎 for
arbitrary linear permutation 𝑎. By exhaustively checking 𝑎−1 ∘ 𝜎 ∘ 𝑎 for all 𝑎 we
found that there are 24 unique variants of 𝜎. In particular, in the field defined by
the irreducible polynomial 𝑋3 +𝑋 + 1 the allowed multiplications by a constant
𝛼 are when 𝛼 ∈ {2 , 4 , 6}, where the latter two are obtained from 𝜎(𝑥) = 2𝑥 by
setting 𝑎(𝑥) = 𝑥2 and 𝑎(𝑥) = 𝑥4. In the field defined by the other irreducible
polynomial 𝑋3 + 𝑋2 + 1 such constants become 𝛼 ∈ {3 , 5 , 6}. We note that all
these elements can be unambiguously defined by the conditions Tr(𝛼) = 0, 𝛼 ̸= 0
in both fields.

18

𝜎

𝜎

(a) The linear layer
from the decomposi-
tion

𝑎 𝑎

𝜎

𝜎

𝑏 𝑏

(b) Applying arbitrary
linear bijections 𝑎 and 𝑏.

𝑎𝜎𝑎−1

𝑎𝜎𝑎−1

𝑎 𝑎

𝑏 𝑏

(c) Moving the linear func-
tions 𝑎 down.

Fig. 16: Propagation of the linear function 𝑎 through the middle linear layer.

3.4 Replacing Components

It is natural to ask how unique are the components of the decomposition; can
we get a different APN permutation by changing the central linear layer or the
inverse functions?

We made an exhaustive8 search for an invertible matrix such that when it
is used as the middle linear layer in our decomposition, the resulting S-Box is
an APN permutation. All the APN permutations we found are CCZ-equivalent
to the original S-Box. However not all of them are affine-equivalent to it. By
studying the new matrices we found that all of them can be obtained by using
transformations from Theorem 2 together with swaps applied before and/or after
the linear layer. All four different combinations of swaps result in four S-Boxes
from distinct affine-equivalence classes (see Figure 17). However they form two
pairs of EA-equivalent S-Boxes: Figure 17a and 17c, Figure 17b and 17d. The
proof for EA-equivalence is given in Appendix A.2. Note that the function shown
in Figure 17c is the inverse of the function from Figure 17b and both functions
from Figures 17a and 17d are involutions. Whether all four functions are EA-
equivalent remains an open question.

We also made an exhaustive search of all 3-bit permutations and tried to use
them instead of the field inverses. A non-involutive function has to be inverted in
one of the places, as in the butterfly construction we introduced in Section 3.2.
It turns out that the set of all 3-bit permutations for which the respective S-Box
is an APN permutation is exactly the set of all 3-bit APN permutations. It is not
surprising because all 3-bit APN permutations are in the same affine equivalence
class. By using Theorem 2 and by applying some outer affine transformations
we can easily replace the field inverses with arbitrary affine-equivalent functions
and therefore with arbitrary 3-bit APN permutation. It follows that the two
APN permutations at the top and the two APN permutations at the bottom
may be different and the resulting S-Box will still be an APN permutation. We

8 Actually we optimized the search by utilizing the equivalence classes given by The-
orem 2.

19

ℐ
ℐ

𝛼

𝛼
ℐ

ℐ

(a) No swaps.

ℐ
ℐ

𝛼

𝛼
ℐ

ℐ

(b) Swap after.

ℐ
ℐ

𝛼

𝛼
ℐ

ℐ

(c) Swap before.

ℐ
ℐ

𝛼

𝛼
ℐ

ℐ

(d) Both swaps.

Fig. 17: Four APN permutations from different affine-equivalence classes, ob-
tained by adding swaps before and/or after the central linear layer.

also note that one of the 3-bit APN permutations is such that its DDT and LAT
are identical up to the signs in the LAT. It is the S-Box used in the block cipher
3-way [16].

As a summary of our observations we give the following theorem:

Theorem 3 (A Family of 6-bit APN Permutations). The 6-bit permuta-
tion described by Dillon et al. in [5] is affine equivalent to the involution built
using the structure described in Figure 1, where ⊙ denotes multiplication in the
finite field 𝐺𝐹 (23), 𝛼 ̸= 0 is such that Tr(𝛼) = 0 and 𝒜 denotes any 3-bit APN
permutation.

3.5 Relations with the Kim and the Cube functions

It is suggested in [11] to count the number of pairs of affine permutations 𝐴,𝐵
such that 𝑆𝐼 = 𝐵∘𝑆𝐼 ∘𝐴 as a measure of the symmetries inside 𝑆ℐ . An algorithm
performing this task is also provided. Using it, we have found that there are only
7 such pairs (including the pair of identity mappings). This property is preserved
by affine transformations and the number could therefore be obtained without
our decomposition. However, for the S-Box 𝑆ℐ , these 7 pairs of transformations
have a simple description:

𝑆ℐ(𝜆𝑥, 𝜆−1𝑦) = (𝜆, 𝜆−1) ⊗ 𝑆ℐ(𝑥, 𝑦) for all 𝜆 ∈ F*
23 , (2)

where “⊗” is such that (𝑎, 𝑏) ⊗ (𝑐, 𝑑) = (𝑎𝑐, 𝑏𝑑). In other words, multiplying
the inputs by 𝜆 and 𝜆−1 is equivalent to multiplying the outputs by the same
values. As we have shown in Section 3.3, there are more symmetries inside the
structure.

An anonymous reviewer pointed out that the observed property is quite sim-
ilar to that of “Kim mapping”, a non-bijective quadratic APN function from
which Dillon et al. [5] obtained the APN permutation by applying transfor-
mations preserving CCZ-equivalence. The Kim function is defined over F26 as
𝑘(𝑥) = 𝑥3 + 𝑥10 + 𝑢𝑥24, where 𝑢 is some primitive element of F26 . It is pointed

20

in [5] that the following holds:

𝑘(𝜆𝑥) = 𝜆3𝑘(𝑥) for all 𝜆 ∈ F23 . (3)

We found experimentally that the Kim mapping is actually affine-equivalent
to all Closed Butterflies V𝛼

𝑒 with 𝑛 = 3, 𝑒 ∈ {3, 5, 6}, 𝑇 𝑟(𝛼) = 0 and 𝛼 ̸= 0. In
particular, it is affine-equivalent to the function 𝑄ℐ = V2

6 described before.
The property that 𝑘(𝜆𝑥) = 𝜆3𝑘(𝑥) for all 𝜆 ∈ F23 can be nicely translated to

V𝛼
𝑒 structure (when 𝛼 ̸= 0). Indeed, it is easy to see that the following holds:

V𝛼
𝑒 (𝜆𝑥, 𝜆𝑦) = (𝜆𝑒, 𝜆𝑒) ⊗ V𝛼

𝑒 (𝑥, 𝑦) for all 𝜆 ∈ F23 . (4)

In particular, setting 𝑒 = 3 and 𝛼 such that V𝛼
𝑒 is affine-equivalent to the Kim

mapping leads to a branch-wise variant of the property from Equation 3.
Similarly, the Open Butterflies H𝛼

𝑒 exhibit the following property:

H𝛼
𝑒 (𝜆𝑒𝑥, 𝜆𝑦) = (𝜆𝑒, 𝜆) ⊗ H𝛼

𝑒 (𝑥, 𝑦) for all 𝜆 ∈ F23 . (5)

Relations with the cube function. While V𝛼
𝑒 is an interesting decomposition

of the Kim function (when 𝑇𝑟(𝛼) = 0, 𝛼 ̸= 0), we also found a very similar de-
composition for the cube function over F26 , which is also a quadratic APN func-
tion. Recall that the closed butterfly V𝛼

3 maps (𝑥, 𝑦) to 𝑅𝑘𝑖𝑚(𝑥, 𝑦)||𝑅𝑘𝑖𝑚(𝑦, 𝑥),
where

𝑅𝑘𝑖𝑚(𝑥, 𝑦) = (𝑥 + 𝛼𝑦)3 + 𝑦3.

We have found that changing 𝑅𝑘𝑖𝑚 to

𝑅𝑐𝑢𝑏𝑒(𝑥, 𝑦) = (𝑥 + 𝛼𝑦)3 + 𝑥3 + 𝛼𝑦3 (6)

leads to a function affine-equivalent to the cube function over F26 . We describe
the way we found this decomposition in Appendix A.4.

Let

𝑃𝑘𝑖𝑚(𝑥, 𝑦) = 𝑅𝑘𝑖𝑚(𝑥, 𝑦)||𝑅𝑘𝑖𝑚(𝑦, 𝑥), (7)

𝑃𝑐𝑢𝑏𝑒(𝑥, 𝑦) = 𝑅𝑐𝑢𝑏𝑒(𝑥, 𝑦)||𝑅𝑐𝑢𝑏𝑒(𝑦, 𝑥), (8)

𝑃3(𝑥, 𝑦) = 𝑥3||𝑦3. (9)

As was shown before, 𝑃𝑘𝑖𝑚 and 𝑃𝑐𝑢𝑏𝑒 are affine-equivalent respectively to the
kim and the cube mappings over F26 . Using Equation 6, it is easy to show that
𝑃𝑘𝑖𝑚 ∘𝑃3 and 𝑃𝑐𝑢𝑏𝑒 ∘𝑃3 are EA-equivalent. This fact is interesting since the kim
and the cube functions themselves are not even CCZ-equivalent. To prove the
EA-equivalence, consider the function graphs 𝛤𝑃𝑘𝑖𝑚

and 𝛤𝑃𝑐𝑢𝑏𝑒
:

𝛤𝑃𝑘𝑖𝑚
= {(𝑥1/3||𝑦1/3, 𝑅𝑘𝑖𝑚(𝑥, 𝑦)||𝑅𝑘𝑖𝑚(𝑦, 𝑥)) | 𝑥, 𝑦 ∈ F23},

𝛤𝑃𝑐𝑢𝑏𝑒
= {(𝑥1/3||𝑦1/3, 𝑅𝑐𝑢𝑏𝑒(𝑥, 𝑦)||𝑅𝑐𝑢𝑏𝑒(𝑦, 𝑥)) | 𝑥, 𝑦 ∈ F23}.

21

Note that 𝑅𝑐𝑢𝑏𝑒(𝑥, 𝑦) = 𝑅𝑘𝑖𝑚(𝑥, 𝑦) + (𝑥3 + (𝛼 + 1)𝑦3) and 𝑥3 + (𝛼 + 1)𝑦3 is a
linear function of the input since the monomials 𝑥 ↦→ 𝑥1/3 and 𝑥 ↦→ 𝑥3 of F23

are linear-equivalent. This concludes the proof.
It is worth noting that the functions 𝑃𝑘𝑖𝑚 ∘ 𝑃3 and 𝑃𝑐𝑢𝑏𝑒 ∘ 𝑃3 are also CCZ-

equivalent to the monomial 𝑥 ↦→ 𝑥15 of F26 . Moreover, the latter is actually
affine-equivalent to 𝑃3 ∘ 𝑃𝑐𝑢𝑏𝑒 (and not to 𝑃𝑐𝑢𝑏𝑒 ∘ 𝑃3).

We also note that, in a particular field basis, the univariate polynomial 𝑞(𝑥)
of 𝑃3 is equal to 𝑞(𝑥) = 𝑥24 + 𝑥10 + 𝑥3 (note the difference with 𝑘𝑖𝑚(𝑥) =
𝑢𝑥24+𝑥10+𝑥3). The previously described facts can be rephrased in the univariate
form. In particular, the mappings 𝑥 ↦→ 𝑘𝑖𝑚(𝑥24+𝑥10+𝑥3), 𝑥 ↦→ (𝑥24+𝑥10+𝑥3)3

and 𝑥 ↦→ 𝑥15 are CCZ-equivalent.

3.6 Univariate Polynomial Representations

In this section we describe several univariate polynomial representations of APN
permutations from the affine-equivalence classes described in Section 3.4. We
obtained them by interpolating the structures from previous sections in various
bases relying on the field decomposition F26 ≃ (F23)2. All polynomials described
in this section are specified over F26 and 𝑤 is a primitive element such that
𝑤 = 𝑋 in F2 [𝑋]/(𝑋6 + 𝑋4 + 𝑋3 + 𝑋 + 1).

In [5], Dillon et al. represented the APN permutation as a univariate polyno-
mial over F26 with 52 nonzero coefficients. Using our decomposition, we managed
to find an APN permutation whose univariate polynomial has only 25 terms. The
following polynomial is an APN permutation:

𝑔(𝑥) = 𝑥58 + 𝑥51 + 𝑥44 + 𝑥37 + 𝑤27𝑥36 + 𝑤38𝑥32 + 𝑥30

+ 𝑤53𝑥28 + 𝑤7𝑥25 + 𝑤51𝑥24 + 𝑥23 + 𝑤53𝑥21 + 𝑤7𝑥18 + 𝑤24𝑥17

+ 𝑤7𝑥16 + 𝑤46𝑥14 + 𝑤7𝑥11 + 𝑤4𝑥10 + 𝑥9 + 𝑤22𝑥8 + 𝑤46𝑥7

+ 𝑤3𝑥4 + 𝑤50𝑥3 + 𝑤56𝑥2 + 𝑤52𝑥.

Note that the exponents of 𝑥 with coefficient 1 form almost full arithmetic pro-
gression with step 7 .

Originally, the APN permutation was obtained as a composition 𝑔 = 𝑓2∘𝑓−1
1 ,

where 𝑓1(𝑥) and 𝑓2(𝑥) contain 18 monomials each (as given in [5]). We have
found a variant with much simpler polynomials. The function 𝑔 is still an APN
permutation if 𝑓1 and 𝑓2 as defined in [5] are replaced by the following two
functions:

𝑓1(𝑥) = 𝑤11𝑥34 + 𝑤53𝑥20 + 𝑥8 + 𝑥,

𝑓2(𝑥) = 𝑤28𝑥48 + 𝑤61𝑥34 + 𝑤12𝑥20 + 𝑤16𝑥8 + 𝑥6 + 𝑤2𝑥.

Additionally, we found a few other simple representations relying on a com-
position of simple polynomials. Let 𝑔(𝑥) = 𝑖 ∘ 𝑚 ∘ 𝑖−1(𝑥), then 𝑔 is an APN
permutation when

𝑖(𝑥) = 𝑤21𝑥34 + 𝑥20 + 𝑥8 + 𝑥, 𝑚(𝑥) = 𝑤52𝑥8 + 𝑤36𝑥

22

or when

𝑖(𝑥) = 𝑤37𝑥48 + 𝑥34 + 𝑤49𝑥20 + 𝑤21𝑥8 + 𝑤30𝑥6 + 𝑥, 𝑚(𝑥) = 𝑥8.

In these representations, 𝑖 corresponds to the sum of the two inverse functions
ℐ so that 𝑖 and 𝑖−1 are the non-linear parts of the open butterfly. The function
𝑚 corresponds to the central linear layer (including possible branch swaps).

Finally, we observe interesting phenomena when modifying some structure
from Figure 17 by appending field inverse in F23 on the right branches, both
at the top and at the bottom at the same time. This modification is motivated
by the branch asymmetry in Equation 2. First, all representatives of the four
distinct affine-equivalence classes fall in the same linear-equivalence class after
the composition with the field inverses. Second, the resulting permutation has an
interesting univariate polynomial representation 𝑞(𝑥) for a particular field basis.
After simplification, it is equal to:

𝑞(𝑥) = 𝑥50 + 𝑥43 + 𝑥29 + 𝑥15 + 𝑤58𝑥8 + 𝑤𝑥.

Third, it turns out to be CCZ-equivalent to the monomial 𝑥 ↦→ 𝑥15 of F26 . How-
ever, they are not affine-equivalent as 𝑥15 is not a permutation over F26 . We find
noteworthy that 𝑥3 composed with 𝑥5 is CCZ-equivalent to a permutation which
is somewhat related to the APN permutation. Note that these observations are
also linked with the relations between the cube and the kim mappings described
in the previous section.

4 Differentially 4-Uniform Permutations of Larger Blocks

An up to date overview of known APN functions can be found in [14]. As APN
functions operating on an even number of bits are still to be found for even
block sizes larger than 6, differentially 4-uniform permutations have received a
lot of attention from researchers. An obvious example is the inverse function
𝑥 ↦→ 𝑥2𝑛−2 of F2𝑛 studied in the seminal work of Nyberg [4].

However, security against differential cryptanalysis is not sufficient and linear
attack need to be taken into account too. The search can thus be focused on
differentially 4-uniform permutations of 2𝑛 bits with non-linearity 22𝑛−1 − 2𝑛

which is, as far as we know, the best that can be achieved. Whether there
exists functions improving this bound is an open problem (Open Problem 2
in [17]). The same paper also states Open Problem 1: we must find other highly
non-linear differentially 4-uniform functions operating on fields of even degree.
Several papers have then presented constructions for such permutations, for
example using binomials [18] or an APN permutation on F2𝑛+1 for even 𝑛 [19].

In this section, we study the butterfly structure. In Section 4.1, we study
butterflies with 𝛼 ̸= 0, 1 and, in Section 4.2, the case 𝛼 = 1 in which the open
butterfly is functionally equivalent to a 3-round Feistel Network. We show that
these structures are always differentially 4-uniform for block sizes 2𝑛 (𝑛 odd)
and have algebraic degree 𝑛 + 1 (when 𝛼 ̸= 1) and 𝑛 (when 𝛼 = 1) in the
bijective case, 2 otherwise. While we could not prove it in the general case, we
conjecture that they both have non-linearity 22𝑛−1 − 2𝑛.

23

4.1 Butterfly with Non-Trivial 𝛼

Theorem 4 (Properties of the Butterfly Structure). Let V𝛼
𝑒 and H𝛼

𝑒 re-
spectively be the closed and open 2𝑛-bit butterflies with exponent 𝑒 = 3 × 2𝑡 for
some 𝑡, coefficient 𝛼 not in {0, 1} and 𝑛 odd. Then:

– the differential uniformity of both H𝛼
𝑒 and V𝛼

𝑒 is at most 4,
– V𝛼

𝑒 is quadratic, and
– half of the coordinates of H𝛼

𝑒 have algebraic degree 𝑛, the other half have
algebraic degree 𝑛 + 1.

Proof. In this proof, we rely a lot on the univariate degree of a polynomial of
F𝑛
2 . It is different from the algebraic degree: the cube function has univariate

degree 3 and algebraic degree 2.
Differential Properties. As V𝛼

𝑒 and H𝛼
𝑒 are CCZ-equivalent, they have the

same differential uniformity. It is thus sufficient to prove that the one of V𝛼
𝑒

is at most 4. First, note that the functions V𝛼
𝑒 with exponent 3 × 2𝑡 is affine

equivalent to V𝛼
3 which uses the exponent 3 as V𝛼

3 can be obtained simply by

applying the linear permutation 𝑥 ↦→ 𝑥2𝑛−𝑡

on each half of the output of V𝛼
𝑒 .

Thus, it is sufficient to study the case where the exponent is equal to 3.
Let 𝑇𝛼 be the linear permutation of F𝑛

2 × F𝑛
2 defined by the matrix

𝑇𝛼 =

[︂
1 𝛼
𝛼 1

]︂
.

As affine equivalence preserves differential uniformity, we will prove that the
differential uniformity of 𝑃 = 𝑇𝛼 ∘V𝛼

3 is at most equal to 4 and deduce that V𝛼
3

has the same property. The left side of the output of 𝑃 is equal to

𝑃𝐿(𝑥, 𝑦) = 𝑅(𝑥, 𝑦) + 𝛼𝑅(𝑦, 𝑥)

= (𝑥 + 𝛼𝑦)3 + 𝑦3 + 𝛼
(︀
(𝑦 + 𝛼𝑥)3 + 𝑥3

)︀
= 𝑥3(1 + 𝛼 + 𝛼4) + 𝑦3(1 + 𝛼 + 𝛼3) + 𝑥2𝑦(𝛼 + 𝛼3)

and the right side to

𝑃𝑅(𝑥, 𝑦) = 𝑅(𝑦, 𝑥) + 𝛼𝑅(𝑥, 𝑦)

= 𝑦3(1 + 𝛼 + 𝛼4) + 𝑥3(1 + 𝛼 + 𝛼3) + 𝑥𝑦2(𝛼 + 𝛼3).

To simplify expressions, we use the notation 𝛽 = 𝛼3+𝛼. Note that for the values
of 𝛼 we are interested in, namely 𝛼 ̸= 0, 1, it holds that 𝛽 ̸= 0.

By definition of differential uniformity, the differential uniformity of 𝑃 is at
most 4 if and only if the following system has at most 4 solutions for any 𝑎, 𝑏, 𝑐, 𝑑
(unless 𝑎 = 𝑏 = 0): {︃

𝑃𝐿(𝑥, 𝑦) + 𝑃𝐿(𝑥 + 𝑎, 𝑦 + 𝑏) = 𝑐

𝑃𝑅(𝑥, 𝑦) + 𝑃𝑅(𝑥 + 𝑎, 𝑦 + 𝑏) = 𝑑,

24

which is equivalent to{︃
(𝑎𝑥2 + 𝑎2𝑥)(1 + 𝛼 + 𝛼4) + (𝑏𝑦2 + 𝑏2𝑦)(1 + 𝛽) + (𝑏𝑥2 + 𝑎2𝑦)𝛽 = 𝑐 + 𝑃𝐿(𝑎, 𝑏)

(𝑏𝑦2 + 𝑏2𝑦)(1 + 𝛼 + 𝛼4) + (𝑎𝑥2 + 𝑎2𝑥)(1 + 𝛽) + (𝑏2𝑥 + 𝑎𝑦2)𝛽 = 𝑑 + 𝑃𝑅(𝑎, 𝑏).

If 𝑎 = 0 then the second line of the system yields the sum of a univariate degree
2 polynomial in 𝑦 with 𝑏2𝛽𝑥. As 𝑏 ̸= 0 (recall that 𝑎 = 𝑏 = 0 is impossible), we
deduce that 𝑥 is equal to a univariate degree 2 polynomial in 𝑦 and replace it
by this expression in the first equation. We obtain an equation with univariate
degree 4 only in 𝑦 with at most 4 solutions, for each of which we deduce a unique
value 𝑥. Hence, the system has at most 4 solutions. The case 𝑏 = 0 is treated
similarly.

We now suppose 𝑎 ̸= 0 and 𝑏 ̸= 0. We replace the left side of the first line ℓ1
by a linear combination of the left sides of the two equations: ℓ1 := 𝑎𝑏2ℓ1+𝑎2𝑏ℓ2.
This quantity is a degree one bivariate polynomial with variables 𝑋 = 𝑎𝑥2 +𝑎2𝑥
and 𝑌 = 𝑏𝑦2 + 𝑏2𝑦 so that we can write ℓ1 = 𝛾0𝑋 +𝛾1𝑌 = 𝜖, where 𝜖 is obtained
by computing the same linear combination on the right side of the equations.
If 𝛾0 = 0 then ℓ1 actually is a degree 2 equation in 𝑦. For each of its at most
2 solutions, we obtain a degree 2 equation in 𝑥 in ℓ2 with at most 2 solutions.
Hence, the total number of solutions is at most equal to 4. The case 𝛾1 = 0 is
identical.

We now suppose 𝛾0 ̸= 0 and 𝛾1 ̸= 0. Using that 𝛾0𝑋 + 𝛾1𝑌 = 𝜖, we deduce
that (𝑎𝑥2 + 𝑎2𝑥) =

(︀
𝜖+ (𝑏𝑦2 + 𝑏2𝑦)𝛾1

)︀
/𝛾0. We can therefore replace (𝑎𝑥2 + 𝑎2𝑥)

by this quantity in the second equation which becomes the sum of a degree 2
equation in 𝑦 with a degree 1 term in 𝑥. As before, we deduce an expression of
𝑥 as a degree 2 polynomial in 𝑦 and replace it by this polynomial in the other
equation. Hence, the initial system has as many solutions as an equation with
univariate degree 4, i.e. at most 4.

Therefore, 𝑃 (𝑥, 𝑦) +𝑃 (𝑥+𝑎, 𝑦+ 𝑏) = (𝑐, 𝑑) has at most 4 solutions, meaning
that the differential uniformity of 𝑃 is at most 4.

Algebraic Degrees. As the left and right side of V𝛼
𝑒 (𝑥, 𝑦) are equal to, re-

spectively, (𝑥 + 𝛼𝑦)3 + 𝑦3 and (𝑦 + 𝛼𝑥)3 + 𝑥3, it is obvious that it is quadratic
(recall that the algebraic degree of the univariate polynomial 𝑥 ↦→ 𝑥𝑒 of F𝑛

2 is
the Hamming weight of the binary expansion of 𝑒).

Consider now the open butterfly H𝛼
𝑒 . For the sake of simplicity, we treat the

case 𝑒 = 3; other cases yield identical proofs. The right side of the output of
such an open butterfly is equal to (𝑥+𝛼𝑦3)1/3 +𝛼𝑦, where 𝑥||𝑦 is the input. We
deduce from Theorem 1 of [20] (or equivalently from Proposition 5 of [4]) that
the inverse of 3 modulo 2𝑛 − 1 for odd 𝑛 is

1/3 ≡
(𝑛−1)/2∑︁

𝑖=0

22𝑖 mod 2𝑛 − 1,

which implies in particular why the algebraic degree of 𝑥 ↦→ 𝑥1/3 is equal to (𝑛+

1)/2. We deduce from this expression that (𝑥+𝛼𝑦3)1/3 is equal to
∏︀(𝑛−1)/2

𝑖=0 (𝑥+

25

𝛼𝑦3)2
2𝑘

. This sum can be developed as follows:

(𝑥 + 𝛼𝑦3)1/3 =
∑︁

𝐽⊆[0,(𝑛−1)/2]

∏︁
𝑗∈𝐽

𝛼22𝑗𝑦32
2𝑗

⏟ ⏞
deg<2|𝐽|

∏︁
𝑗∈𝐽

𝑥22𝑗

⏟ ⏞
deg=(𝑛+1)/2−|𝐽|

,

where 𝐽 is the complement of 𝐽 in [0, (𝑛 − 1)/2], i.e. 𝐽 ∩ 𝐽 = ∅ and 𝐽 ∪ 𝐽 =
[0, (𝑛− 1)/2]. The algebraic degree of each term in this sum is at most equal to
|𝐽 | + (𝑛 + 1)/2. If 𝐽 = ∅ then 𝑥 is absent from the term so that the maximum

algebraic degree is 𝑛. If 𝐽 = {𝑗} for some 𝑗, then the term is equal to (𝑥𝑦−1)2
2𝑗

(we omit the constant factor) which has algebraic degree 1 + (𝑛 − 1) = 𝑛. If
|𝐽 | < (𝑛− 1)/2, then the whole degree is smaller than 𝑛. Thus, the right side of
the output has an algebraic degree equal to 𝑛.

The left side is equal to(︁
𝑦 + 𝛼

(︀
(𝑥 + 𝛼𝑦3)1/3 + 𝛼𝑦

)︀)︁3
+
(︀
(𝑥 + 𝛼𝑦3)1/3 + 𝛼𝑦

)︀3
.

The terms of highest algebraic degree in this equation are of the shape 𝑦2(𝑥 +
𝛼𝑦3)1/3 and 𝑦(𝑥 + 𝛼𝑦3)2×1/3. Because of what we established above, we have:

𝑦2(𝑥 + 𝛼𝑦3)1/3 =
∑︁

𝐽⊆[0,(𝑛−1)/2]

𝑦2 ×
∏︁
𝑗∈𝐽

𝛼22𝑗𝑦3×22𝑗

⏟ ⏞
deg<2|𝐽|+1

∏︁
𝑗∈𝐽

𝑥22𝑗

⏟ ⏞
deg=(𝑛+1)/2−|𝐽|

,

so that the algebraic degree of this term is at most equal to |𝐽 |+(𝑛+1)/2+1 ≤
𝑛 + 1. If 𝐽 = [0, (𝑛 − 1)/2] ∖ {𝑗} for some 𝑗, then the algebraic degree of the
expression is (1 + (𝑛 − 1)/2) + (𝑛 + 1)/2 = 𝑛 + 1, meaning that this bound is
reached. The terms 𝑦(𝑥 + 𝛼𝑦3)2/3 are treated similarly. Hence, the left side of
the output has algebraic degree 𝑛 + 1. ⊓⊔

This proof lead us to some interesting observations.

Remark 1. The proof relies on the study of 𝑇𝛼 ∘ V𝛼
𝑒 which, for 𝑛 = 3, has as

its output the concatenation of 𝑏(𝑥, 𝑦) and 𝑏(𝑦, 𝑥) for a bent function 𝑏 with a
Maiorana-MacFarland structure. We provide further analysis for this observation
in Section A.1. We also note that the idea of building APN or differentially 4-
uniform functions by concatenating two functions, at least one of which is bent,
was discussed by Carlet in [21].

We have also studied the butterfly structure experimentally. While we could
not find a pair (𝑒, 𝛼) for which a butterfly is APN for 𝑛 > 3, we did notice a
variation in the distribution of 0, 2 and 4 in their DDT. It is therefore possible
that APN butterflies exist but not for 𝑛 = 5, 7. Moreover, butterflies are never
differentially 4-uniform for 𝑛 = 4, 8, 10. However, the case 𝑛 = 6 yields the
following proposition.

26

Proposition 1. If 𝑛 = 6, then there exists 𝛼 such that H𝛼
5 is a 12-bit permu-

tation that is differentially 4-uniform. In fact, all of the coefficients in its DDT
are in {0, 4}. Its non-linearity is 1920 = 22𝑛−1 − 2𝑛+1.

A natural generalization would be to have the same result for 𝑒 = 5 whenever
𝑥 ↦→ 𝑥5 is a permutation. However, we found experimentally that this result
does not hold for 𝑛 = 10, although 𝑥 ↦→ 𝑥5 is a permutation of F210 . We note
also that, unlike in Theorem 4, Proposition 1 does not hold for all values of 𝛼
but only for few of those.

We also found experimentally that the maximum LAT coefficient of a but-
terfly structure operating on 2𝑛 bits is equal to 2𝑛 for 𝑛 = 3, 5, 7. This implies
that the non-linearity of the butterfly structure is “optimal” in the sense that
no known permutations of a field of size 2𝑛 have a non-linearity higher than
22𝑛−1−2𝑛. It is however not known if this bound holds for all permutations (see
Open Problem 2 in [17]).

Proposition 2. The non-linearity of a butterfly structure operating on 2𝑛 bits
is equal to 22𝑛−1 − 2𝑛 for 𝑛 = 3, 5, 7.

We conjecture that this proposition is true for every odd 𝑛.

4.2 Feistel Network (𝛼 = 1)

If we set 𝛼 = 1 in an open butterfly structure, the resulting permutation is
functionally equivalent to a 3-round Feistel Network with round functions 𝑥 ↦→
𝑥𝑒, 𝑥 ↦→ 𝑥1/𝑒 and 𝑥 ↦→ 𝑥𝑒, as described in Figure 18. We denote such a Feistel
Network F𝑒. We note that the closed butterfly V1

𝑒 has a structure reminiscent of
a Lai-Massey round (see Figure 18c).

𝑥𝑒

𝑥1/𝑒

⊕

⊕

𝑥𝑒

𝑥𝑒

⊕

⊕

(a) Open butterfly H1
𝑒 .

𝑥𝑒⊕

𝑥1/𝑒 ⊕

𝑥𝑒⊕

(b) F𝑒 (note F𝑒 = H1
𝑒).

𝑥𝑒 𝑥𝑒 𝑥𝑒

⊕

⊕⊕

(c) Closed butterfly V1
𝑒 .

Fig. 18: The equivalence between H1
𝑒 and F𝑒.

In [22], Li and Wang proved that the 2𝑛-bit Feistel Networks F𝑒 with 𝑒 =
2𝑘+1 and odd 𝑛 such that 𝑔𝑐𝑑(𝑛, 𝑘) = 1 have very good cryptographic properties:

1. the differential spectrum of F𝑒 is equal to {0, 4};
2. the non-linearity of F𝑒 is the best known and is equal to 22𝑛−1 − 2𝑛;

27

3. the algebraic degree of F𝑒 is equal to 𝑛.

Note that the butterfly structures from Theorem 4 have degree 𝑛+ 1 on half
of the coordinates. We have proved that F3 has degree 𝑛 on all coordinates. Due
to restrictions on the page count, the proof is in the supplementary material (see
Appendix A.3).

Remark 2. The proof for the algebraic degree of the left side of F3 relies on
particular cancellation occurring in the sum 𝑦2(𝑥 + 𝑦3)1/3 + 𝑦(𝑥 + 𝑦3)2/3. Such
cancellations do not occur when 𝛼 ̸= 1 as the terms in the corresponding sum are
preceded by different coefficients which are both functions of 𝛼. This explains
why the algebraic degree of F3 and the open butterfly structure with 𝛼 ̸= 1 are
different.

We also note that the monomial 𝑥 ↦→ 𝑥5 in F22𝑛 shares the same differential
and linear properties. In [22] it is mentioned that for 𝑛 = 3 the Feistel Network
F3 is CCZ-equivalent to the monomial 𝑥 ↦→ 𝑥5. We observe that the closed
butterfly V1

5 , which is CCZ-equivalent to F5, is actually linear-equivalent to the
monomial 𝑥 ↦→ 𝑥5 over F22𝑛 for all odd 𝑛 ≥ 3. We state the generalized result in
the following theorem.

Theorem 5. Let 𝑛 ≥ 3 be an odd integer and 𝑒 = 22𝑘 + 1 for some positive
integer 𝑘. Then the closed 2𝑛-bit butterfly V1

𝑒 is linear-equivalent to the monomial
𝑥 ↦→ 𝑥𝑒 of F22𝑛 .

Corollary 1. Let 𝑛 ≥ 3 be an odd integer and 𝑒 = 22𝑘 + 1 for some positive
integer 𝑘, such that the monomial 𝑥 ↦→ 𝑥𝑒 defines a permutation of F22𝑛 . Then
the 2𝑛-bit Feistel Network F𝑒 is CCZ-equivalent to this permutation.

Proof. We represent an element 𝑥 of F22𝑛 as a linear polynomial 𝑥 = 𝑎𝑢+ 𝑏 over
F2𝑛 with multiplication modulo the irreducible polynomial 𝑢2 +𝑢+ 1. Note that

𝑢2 = 𝑢+ 1, 𝑢4 = 𝑢, . . . , 𝑢22𝑘 = 𝑢, 𝑢22𝑘+1 = 𝑢+ 1. Then, by linearity of 𝑥 ↦→ 𝑥𝑒−1:

𝑥𝑒 = (𝑎𝑢 + 𝑏)𝑒 = 𝑎𝑒𝑢𝑒 + 𝑎𝑒−1𝑢𝑒−1𝑏 + 𝑎𝑢𝑏𝑒−1 + 𝑏𝑒

= (𝑎𝑒 + 𝑎𝑒−1𝑏 + 𝑎𝑏𝑒−1)𝑢 + 𝑎𝑒 + 𝑏𝑒

= (𝑏𝑒 + (𝑎 + 𝑏)𝑒)𝑢 + 𝑎𝑒 + 𝑏𝑒.

Note that (𝑎𝑢 + 𝑏) ↦→ ((𝑎 + 𝑏)𝑢 + 𝑎) is a linear mapping. Therefore (𝑎𝑢 + 𝑏) ↦→
(𝑎𝑢 + 𝑏)𝑒 is linear-equivalent to

(𝑎𝑒 + (𝑎 + 𝑏)𝑒)𝑢 + 𝑏𝑒 + (𝑎 + 𝑏)𝑒.

This expression is exactly the same as in the closed butterfly:

V1
𝑒(𝑎||𝑏) = (𝑎𝑒 + (𝑎 + 𝑏)𝑒||𝑏𝑒 + (𝑎 + 𝑏)𝑒)).

Finally, V1
𝑒 is CCZ-equivalent to H1

𝑒 = F𝑒 whenever 𝑥 ↦→ 𝑥𝑒 defines a permuta-
tion. ⊓⊔

28

5 Implementing 6-bit APN Permutations

We can use the open butterfly structure to efficiently implement 6-bit APN
permutations in both a bit-sliced fashion for use in software and in hardware.
In this section, we explore this idea and provide an S-Box 𝐴o which is affine
equivalent to H2

3 and for which there exists such efficient implementation.

5.1 Efficient Bit-Sliced Implementations

Starting from the algebraic normal forms of the operations used to compute H2
3 ,

it is easy to write a first naive bitsliced implementation (see Appendix A.5)
This implementation can be optimized by using Boolean algebra and remov-

ing the linear component of 𝑥 ↦→ 𝑥3 in the first and last steps. Doing this is equiv-
alent to applying an affine permutation before and after the H2

3 to obtain a new
permutation 𝐴o. This operation preserves the differential and linear property of
the permutation while also keeping the property that 𝐴−1

o = Swap6 ∘𝐴o ∘Swap6,
where Swap6 simply swaps the two 3-bit branches. The bitsliced implementation
of this simplified S-Box is given in Algorithm 1 and its look-up table in Table 5.

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .a .b .c .d .e .f

0. 0 1d 6 3f 3c 3b 31 12 22 35 17 2c 16 33 30 39

1. 2d a 38 2b 1 4 2f 1e 3 34 2e 25 27 1a 29 28

2. 2a 7 14 3d 36 19 b 20 3e d 37 8 1b 2 9 1c

3. 10 1f 21 3a 26 13 24 5 c f 11 e 23 32 15 18

Table 5: The look-up table of 𝐴o in hexadecimal, e.g. 𝐴o(0x32) = 0x21.

Algorithm 1 An optimised bitsliced implementation of an S-Box affine-
equivalent to the open butterfly with 𝛼 = 2 , 𝑒 = 3.

function 𝐴o(𝑋0, ..., 𝑋5)
1 . 𝑡 = (𝑋5 ∧𝑋3)
2 . 𝑋0 ⊕= 𝑡⊕ (𝑋5 ∧𝑋4)
3 . 𝑋1 ⊕= 𝑡
4 . 𝑋2 ⊕= (𝑋4 ∨𝑋3)
5 . 𝑡 = (𝑋1 ∨𝑋0)
6 . 𝑋0 ⊕= (𝑋2 ∧𝑋1)⊕𝑋4

7 . 𝑋1 ⊕= (𝑋2 ∧𝑋0)⊕𝑋5 ⊕𝑋3

8 . 𝑋2 ⊕= 𝑡⊕𝑋3

9 . 𝑋3 ⊕= 𝑋1

10 . 𝑋4 ⊕= 𝑋2 ⊕𝑋0

11 . 𝑋5 ⊕= 𝑋0

12 . 𝑢 = 𝑋3

13 . 𝑡 = 𝑋4

14 . 𝑋3 ⊕= 𝑡
15 . 𝑋3 = 𝑋3 ∧𝑋5 ⊕ 𝑡
16 . 𝑋4 ⊕= ((¬𝑋5) ∧ 𝑢)
17 . 𝑋5 ⊕= (𝑡 ∨ 𝑢)
18 . 𝑡 = (𝑋2 ∧𝑋0)
19 . 𝑋3 ⊕= 𝑡⊕ (𝑋2 ∧𝑋1)
20 . 𝑋4 ⊕= 𝑡
21 . 𝑋5 ⊕= (𝑋1 ∨𝑋0)

end function

29

5.2 Hardware Implementation

Our decompositions also eases the hardware implementation of these S-Boxes.
To illustrate this, we simulated the circuit computing these functions in three
different ways. First, we simply gave the look-up table to the software9 and let
it find the best implementation it could (no decomposition case). Then, we fed
it our decomposition of the different structures (decomposed case).

The optimization performed by the software is done for two competing crite-
ria. The first is the area which simply corresponds to the physical space needed
to implement the circuit using the logical gates available. The second is the prop-
agation time, i.e. the delay necessary for the electronic signal to go through the
circuit implementing the S-Box and to stabilize itself to the output value.10

For each function, we repeated the experience several times using different
periods for the clock cycles: when the period is maximum, priority is given to
optimizing the area and, as the period decreases, the priority shifts toward the
propagation time. The results are given in Table 6.

Base Decomposed

S-Box Period (ns) 𝑎 𝑑 𝑎×𝑑 𝑎 𝑑 𝑎×𝑑

H2
3

100 799 56.42 45 079.58 414 39.31 16 274.34

20 827 19.75 16 333.25 404 18.7 7554.8

10 928 9.81 9103.68 431 9.76 4206.56

5 1062 4.81 5108.22 569 4.81 2736.89

𝐴o

100 774 53.13 41 122.62 384 42.01 16 131.84

20 812 19.3 15 671.6 384 15.43 5925.12

10 869 9.63 8368.47 382 9.77 3732.14

6 1041 5.8 6037.8 464 5.8 2691.2

Table 6: Results on the hardware implementation of our S-Boxes. The area 𝑎 is
in (𝜇𝑚)2, the delay 𝑑 is in 𝑛𝑠 and 𝑎× 𝑑 is their product.

As we can see, the knowledge of the decompositions always allows a more
efficient implementation: regardless of what the main optimisation criteria is,
both the area and the delay are decreased.

6 Conclusion

We have identified a decomposition of the 6-bit APN permutation published
by Dillon et al. [5] and found it to be affine equivalent to an involution. We

9 We used the digital cell library SAED90n-1P9M in the “normal 𝑉𝑡, high temperature,
nominal voltage” corner.

10 We also considered implementing the cube function using finite field arithmetic but
could not easily improve our results.

30

generalized the structure found to larger block sizes, although we could only
prove its being differentially 4-uniform in those cases. We also deduced efficient
implementation of 6-bit APN permutations in both a bit-sliced fashion and in
hardware.

Our work also raised the following open questions.

Open Problems (On the properties of Butterfly Structures).

1. Is there a tuple 𝑛, 𝑒, 𝛼 where 𝑛 > 3 and 𝑒 are integers, and 𝛼 is a finite field
element such that H𝛼

𝑒 operating on (F2𝑛)2 is APN?
2. Is it true that the non-linearity of a butterfly structure on 2𝑛 bits with

𝛼 ̸= 0, 1 and 𝑛 odd is always 22𝑛−1 − 2𝑛?

7 Acknowledgements

We thank the anonymous reviewers for their helpful comments. We also thank
Yann Le Corre for studying the hardware implementation of the permutation as
well as Yongqiang Li for pointing out reference [22]. The work of Léo Perrin is
supported by the CORE ACRYPT project (ID C12-15-4009992) funded by the
Fonds National de la Recherche (Luxembourg). The work of Aleksei Udovenko is
supported by the Fonds National de la Recherche, Luxembourg (project reference
9037104).

References

1. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. Jour-
nal of CRYPTOLOGY 4(1) (1991) 3–72

2. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Advances in Cryp-
tology – EUROCRYPT’93, Springer (1994) 386–397

3. Daemen, J., Rijmen, V.: The design of Rijndael: AES-the advanced encryption
standard. Springer (2002)

4. Nyberg, K.: Differentially uniform mappings for cryptography. In: Advances in
cryptology — Eurocrypt’93, Springer (1994) 55–64

5. Browning, K., Dillon, J., McQuistan, M., Wolfe, A.: An APN permutation in
dimension six. Finite Fields: theory and applications 518 (2010) 33–42

6. Bilgin, B., Bogdanov, A., Knežević, M., Mendel, F., Wang, Q.: Fides: Lightweight
Authenticated Cipher with Side-Channel Resistance for Constrained Hardware. In:
Cryptographic Hardware and Embedded Systems - CHES 2013: 15th International
Workshop, Santa Barbara, CA, USA, August 20-23, 2013. Proceedings. Springer
Berlin Heidelberg, Berlin, Heidelberg (2013) 142–158

7. Biryukov, A., Perrin, L., Udovenko, A.: Reverse-Engineering the S-Box of Stree-
bog, Kuznyechik and STRIBOBr1. In: Advances in Cryptology-Eurocrypt 2016,
Springer (2016) 372–402

8. Biryukov, A., Perrin, L.: On Reverse-Engineering S-Boxes with Hidden Design
Criteria or Structure. In Gennaro, R., Robshaw, M., eds.: Advances in Cryptology
– CRYPTO 2015. Volume 9215 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg (2015) 116–140

31

9. Bogdanov, A., Leander, G., Nyberg, K., Wang, M.: Integral and multidimensional
linear distinguishers with correlation zero. In Wang, X., Sako, K., eds.: Advances
in Cryptology – ASIACRYPT 2012. Volume 7658 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg (2012) 244–261

10. Biryukov, A., Shamir, A.: Structural cryptanalysis of SASAS. In Pfitzmann, B.,
ed.: Advances in Cryptology – EUROCRYPT 2001. Volume 2045 of Lecture Notes
in Computer Science. Springer Berlin Heidelberg (2001) 395–405

11. Biryukov, A., De Cannière, C., Braeken, A., Preneel, B.: A Toolbox for Crypt-
analysis: Linear and Affine Equivalence Algorithms. In Biham, E., ed.: Advances
in Cryptology — EUROCRYPT 2003. Volume 2656 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg (2003) 33–50

12. Developers, T.S.: SageMath, the Sage Mathematics Software System (Version 7.1).
(2016) http://www.sagemath.org.

13. Carlet, C., Charpin, P., Zinoviev, V.: Codes, bent functions and permutations
suitable for DES-like cryptosystems. Designs, Codes and Cryptography 15(2)
(1998) 125–156

14. Blondeau, C., Nyberg, K.: Perfect nonlinear functions and cryptography. Finite
Fields and Their Applications 32 (2015) 120 – 147 Special Issue : Second Decade
of {FFA}.

15. Budaghyan, L., Carlet, C., Pott, A.: New classes of almost bent and almost perfect
nonlinear polynomials. IEEE Transactions on Information Theory 52(3) (2006)
1141–1152

16. Daemen, J., Govaerts, R., Vandewalle, J.: A new approach to block cipher design.
In: Fast Software Encryption: Cambridge Security Workshop Cambridge, U. K.,
December 9–11,1993 Proceedings. Springer Berlin Heidelberg, Berlin, Heidelberg
(1994) 18–32

17. Bracken, C., Leander, G.: A highly nonlinear differentially 4 uniform power map-
ping that permutes fields of even degree. Finite Fields and Their Applications
16(4) (2010) 231–242

18. Bracken, C., Tan, C.H., Tan, Y.: Binomial differentially 4 uniform permutations
with high nonlinearity. Finite Fields and Their Applications 18(3) (2012) 537–546

19. Li, Y., Wang, M.: Constructing differentially 4-uniform permutations over GF(22𝑚)
from quadratic APN permutations over GF(22𝑚+1). Designs, Codes and Cryptog-
raphy 72(2) (2014) 249–264

20. Kyureghyan, G.M., Suder, V.: On inverses of APN exponents. In: Information
Theory Proceedings (ISIT), 2012 IEEE International Symposium on, IEEE (2012)
1207–1211

21. Carlet, C.: Relating three nonlinearity parameters of vectorial functions and build-
ing APN functions from bent functions. Designs, Codes and Cryptography 59(1)
(2011) 89–109

22. Li, Y., Wang, M.: Constructing S-boxes for Lightweight Cryptography with Feistel
Structure. In: CHES, Springer (2014) 127–146

A Supplementary Material

A.1 Bent Sub-Components

In this section we show that the keyed permutation 𝑅𝑘[3, 𝛼](𝑥) = (𝑥+𝛼𝑘)3+𝑘3 of
F23 from Section 3.2 can be expressed using a single bent function. For simplicity,

32

we will denote 𝑅(𝑥, 𝑘) = 𝑅𝑘[3, 𝛼](𝑥) and consider that Tr(𝛼) = 0 and 𝛼 ̸= 0 to
ensure that V𝛼

3 is APN. Let 𝑏 be the function from F23 × F23 → F23 defined by:

𝑏(𝑥, 𝑦) = 𝑥3 + 𝛼𝑥2𝑦.

Then 𝑅(𝑥, 𝑦) = 𝑥3 + 𝛼𝑥2𝑦 + 𝛼2𝑥𝑦2 + (𝛼3 + 1)𝑦3 can be simplified using 𝑏:

𝑅(𝑥, 𝑦) = (𝑥3 + 𝛼𝑥2𝑦) + 𝛼(𝛼𝑥𝑦2 + 𝑦3) = 𝑏(𝑥, 𝑦) + 𝛼𝑏(𝑦, 𝑥), (10)

because 𝛼3+1 = 𝛼, which follows from Tr(𝛼) = 𝛼(𝛼3+𝛼+1) = 0 and 𝛼 ̸= 0. Note
that 𝑏(𝑥, 𝑦) is a bent function following the Maiorana-McFarland construction.
Using Equation (10), we deduce that V𝛼

3 is affine-equivalent to the function
𝐵 : (𝑥||𝑦) ↦→ 𝑏(𝑥, 𝑦)||𝑏(𝑦, 𝑥) (see Figure 19c). More precisely, V𝛼

3 = 𝑡𝛼 ∘𝐵 where
𝑡𝛼 corresponds to the matrix 𝑇𝛼 over F23 :

𝑇𝛼 =

[︂
1 𝛼
𝛼 1

]︂
.

𝑅 𝑅

(a) Closed Butterfly V𝛼
3 .

𝑏 𝑏

𝑇𝛼

(b) Closed Butterfly V𝛼
3 .

𝑏 𝑏

(c) The function 𝐵.

Fig. 19: The relation between the APN function V𝛼
3 and the bent function 𝑏.

We have established that 𝑆ℐ is CCZ-equivalent to V𝛼
3 and, by transitivity,

CCZ-equivalent to the concatenation of (𝑥, 𝑦) ↦→ 𝑏(𝑥, 𝑦) and (𝑥, 𝑦) ↦→ 𝑏(𝑦, 𝑥)
for a bent function 𝑏. Could 𝑏 be replaced by another bent function while still
retaining the APN property? We consider Maiorana-McFarland bent functions
which are built as follows:

𝑏′(𝑥, 𝑦) = ℎ(𝑥) + 𝜋(𝑥) · 𝑙(𝑦), (11)

where ℎ is a function, 𝜋 is a permutation and 𝑙 is a linear permutation. For which
such 𝑏′ the function 𝑃 : (𝑥, 𝑦) ↦→ 𝑏′(𝑥, 𝑦)||𝑏′(𝑦, 𝑥) is APN? We will partition such
𝑏′ into AE-equivalence classes and check for one representative in each class. The
rest of this sub-section describes how this partition works as well as our results.

By definition, 𝑃 is APN if and only if the following system has at most 2
solutions for any 𝑎, 𝑏, 𝑐, 𝑑 in F2 (unless 𝑎 = 𝑏 = 0):{︃

𝑃 (𝑥, 𝑦) + 𝑃 (𝑥 + 𝑎, 𝑦 + 𝑏) = 𝑐,

𝑃 (𝑦, 𝑥) + 𝑃 (𝑦 + 𝑏, 𝑥 + 𝑎) = 𝑑,

33

which is equivalent to{︃
ℎ(𝑥) + ℎ(𝑥 + 𝑎) + 𝜋(𝑥) · 𝑙(𝑦) + 𝜋(𝑥 + 𝑎) · 𝑙(𝑦 + 𝑏) = 𝑐,

ℎ(𝑦) + ℎ(𝑦 + 𝑏) + 𝜋(𝑦) · 𝑙(𝑥) + 𝜋(𝑦 + 𝑏) · 𝑙(𝑥 + 𝑎) = 𝑑.
(12)

In the case where 𝑏 = 0 and 𝑎 ̸= 0, the second equation implies 𝑦 = 𝜋−1 (𝑑/𝑙(𝑎)).
Therefore, there is exactly one possible value for 𝑦 in this case. Note that when
𝑑 goes over all possible values, 𝑦 and 𝑙(𝑦) take all possible values too. Then the
first line of Equation (12) can be written as:

ℎ(𝑥) + 𝑡× 𝜋(𝑥) + ℎ(𝑥 + 𝑎) + 𝑡× 𝜋(𝑥 + 𝑎) = 𝑐, (13)

where 𝑡 = 𝑙(𝑦) is a 𝑦-dependent constant. We need this equation to have at most
two solutions in 𝑥 for all constants 𝑐, 𝑡 and nonzero 𝑎. This is equivalent to saying
that 𝑟𝑡(𝑥) = ℎ(𝑥) + 𝑡 ·𝜋(𝑥) is APN for all 𝑡. Setting 𝑡 = 0 leads to the constraint
that ℎ is APN. Note that if ℎ is APN and 𝜋(𝑥) is affine then 𝑟𝑡(𝑥) is APN for
all 𝑡 as 𝑟𝑡 is then EA-equivalent to ℎ.

We use this observation to optimize a search for such functions 𝑏′ : F26 → F23 .
We also use the fact that EA-equivalence preserves the property of being APN.
This allows us to reduce the number of candidates for ℎ: for any ℎ0 there exists
an affine mapping 𝐴 such that ℎ1(𝑥) = ℎ0(𝑥) + 𝐴(𝑥) is such that ℎ1(0) = 0
and ℎ1(2𝑖) = 0 for 𝑖 in [0, 2]. We found out that, up to this equivalence, there
are only 168 APN functions in F23 . Using exhaustive search we found that, for
all pairs (ℎ, 𝜋) satisfying Equation (13), 𝜋 is always affine. Note that setting
𝜋′(𝑥) = 𝜋(𝑥) + 𝜋(0) is equivalent to adding 𝜋(0) · 𝑙(𝑦) to the function 𝑏′. Such
addition preserves the EA-equivalence and therefore we can consider only linear
𝜋. There are 168 linear mappings over F23 : by checking all 1683 candidates for
(ℎ, 𝜋, 𝑙) we found all bent functions 𝑏′ of the form given in Equation (11) such
that the function 𝑃 (𝑥, 𝑦) = 𝑏′(𝑥, 𝑦)||𝑏′(𝑦, 𝑥) is APN. All such functions 𝑃 are
non-bijective and CCZ-equivalent to the known 6-bit APN permutation.

A.2 Proof of EA-equivalence of S-Boxes with swaps.

Here we will prove EA-equivalence of functions from Figure 20a and 20b, and
EA-equivalence of functions from Figure 20c and 20d.

Proof. First we will prove that functions from Figure 20a and 20b are EA-
equivalent. Consider the intermediate values 𝑥, 𝑎, 𝑏 as shown on the figures. The
second function can be obtained from the first by swapping 𝑎 and 𝑏 before
applying the last two field inverses. The sum of the field inverses does not change
when the inputs are swapped, therefore we need to prove that changing 𝑏 to 𝑎
on the right half of the output results in EA-equivalence. To do this, we show
that 𝑎 is a linear function of the right input half 𝑥 and the right output half 𝑏.
Indeed, 𝑎 = 𝑥 + 𝛼 · 𝑏.

Now we prove EA-equivalence of functions from Figure 20c and 20d. Consider
the intermediate values 𝑥, 𝑡, 𝑐, 𝑑 as shown on the figures. The second function can

34

be obtained from the first by swapping 𝑐 and 𝑑 before applying the last two field
inverses. Similarly, we need to show that 𝑐 is a linear function of 𝑥 and 𝑑. Note
that 𝛼 · 𝑡 = 𝑥 + 𝑑 and 𝑐 = 𝑡 + 𝛼 · 𝑑. Therefore, 𝑐 = 𝛼−1 · (𝑥 + 𝑑) + 𝛼 · 𝑑. ⊓⊔

𝑥
ℐ

ℐ
𝛼

𝛼𝑎 𝑏

ℐ
ℐ

(a)

𝑥
ℐ

ℐ
𝛼

𝛼𝑏 𝑎

ℐ
ℐ

(b)

𝑥
ℐ

ℐ
𝑡 𝛼

𝛼𝑐 𝑑

ℐ
ℐ

(c)

𝑥
ℐ

ℐ
𝑡 𝛼

𝛼𝑑 𝑐

ℐ
ℐ

(d)

Fig. 20: Four APN permutations from different affine-equivalence classes, ob-
tained by adding swaps before and/or after the central linear layer.

A.3 Proof of the Properties of the Feistel Network

Here we prove that the Feistel Network F3 has degree 𝑛 on all coordinates.

Proof. The right side of the output of the Feistel Network is equal to (𝑥+𝑦3)1/3+
𝑦, where 𝑥||𝑦 is the input. Using the representation of the Feistel Network as an
open butterfly with 𝛼 = 1, we can simply reuse the proof used to establish the
algebraic degree of that structure. However, the situation is different on the left
side: while it had algebraic degree 𝑛+ 1 in the open butterfly construction with
𝛼 ̸= 0, 1, it has algebraic degree 𝑛 when 𝛼 = 1. To prove this, we will show that
all terms of algebraic degree 𝑛 + 1 in the expression of the left side essentially
cancel each other out.

The value on the left side has the algebraic degree of
(︀
(𝑥+𝑦3)1/3+𝑦

)︀3
, which

is equal to 𝑥 + 𝑦2(𝑥 + 𝑦3)1/3 + 𝑦(𝑥 + 𝑦3)2/3. Our aim is thus to show that the
sum of all the terms of degree 𝑛+ 1 in the following expression has an algebraic
degree at most equal to 𝑛:

𝐿(𝑥, 𝑦) = 𝑦2(𝑥 + 𝑦3)1/3 + 𝑦(𝑥 + 𝑦3)2/3.

We re-use the expression of (𝑥+ 𝑦3)1/3 we derived in the proof of Theorem 4
using Theorem 1 of [20], namely:

(𝑥 + 𝑦3)1/3 =
∑︁

𝐽⊆[0,(𝑛−1)/2]

∏︁
𝑗∈𝐽

𝑦32
2𝑗 ∏︁

𝑗∈𝐽

𝑥22𝑗 ,

35

and recall further that the only terms of degree 𝑛 in this sum correspond to the
cases where 𝐽 = [0, (𝑛 − 1)/2]∖{𝑘} for some 𝑘. The expression of such terms of
maximum algebraic degree, which we denote 𝑚𝑘(𝑥, 𝑦), is as follows:

𝑚𝑘(𝑥, 𝑦) = 𝑥22𝑘
(𝑛−1)/2∏︁
𝑗=0,𝑗 ̸=𝑘

𝑦3×22𝑘 =
𝑥22𝑘

𝑦3×22𝑘

(𝑛−1)/2∏︁
𝑗=0

𝑦3×22𝑘 = 𝑦
(︀ 𝑥
𝑦3
)︀22𝑘

.

We deduce that 𝐿(𝑥, 𝑦) has algebraic degree 𝑛 + 1 if and only if the following
sum has algebraic degree 𝑛 + 1:

𝐿𝐻(𝑥, 𝑦) =

𝑛−1∑︁
𝑘=0

𝑦2𝑚𝑘 + 𝑦𝑚2
𝑘 = 𝑦3

(︃
𝑛−1∑︁
𝑘=0

𝑚𝑘

𝑦
+
(︀𝑚𝑘

𝑦

)︀2)︃
.

Observe now that (𝑚𝑘/𝑦)4 = 𝑚𝑘+1/𝑦. Let us express 𝐿𝐻(𝑥, 𝑦)2 using this infor-
mation:

𝐿𝐻(𝑥, 𝑦)2 = 𝑦6

(︃
𝑛−1∑︁
𝑘=0

(︀𝑚𝑘

𝑦

)︀2
+
(︀𝑚𝑘

𝑦

)︀4)︃
= 𝑦6

(︃
𝑛−1∑︁
𝑘=0

(︀𝑚𝑘

𝑦

)︀2
+
(︀𝑚𝑘

𝑦

)︀)︃
.

This expression is equal to 𝑦3𝐿𝐻(𝑥, 𝑦), meaning that 𝐿𝐻(𝑥, 𝑦)2 = 𝑦3𝐿𝐻(𝑥, 𝑦).
Hence, either 𝐿𝐻(𝑥, 𝑦) = 0 or 𝐿𝐻(𝑥, 𝑦) = 𝑦3. Either way, its algebraic degree
is strictly smaller than 𝑛 + 1, so that the left side of the output of the Feistel
Network studied has algebraic degree 𝑛. ⊓⊔

A.4 Decomposing the Cube function

After we found the decompositions of the Kim mapping and the Dillon permu-
tation as closed and open butterflies respectively, we were interested in whether
another APN functions can be “opened” in a similar manner. Note that in [5]
all known 6-bit APN functions were checked for having similar double simplex
codes and the result was negative. However it is still interesting to see whether
there is at least some structural similarity.

Recall that V𝛼
3 (𝑥, 𝑦) = 𝑅𝑘𝑖𝑚(𝑥, 𝑦)||𝑅𝑘𝑖𝑚(𝑦, 𝑥) where

𝑅𝑘𝑖𝑚(𝑥, 𝑦) = (𝑥 + 𝛼𝑦)3 + 𝑦3

and V𝛼
3 is affine-equivalent to the Kim function when 𝑇𝑟(𝛼) = 0, 𝛼 ̸= 0. Note

that 𝑅𝑘𝑖𝑚(·, 𝑦) is a permutation of F23 for all fixed 𝑦 (we call such permutation
a keyed permutation). If we are looking for a similar structure in some APN
function 𝑓 , it is natural to assume that it may be hidden by some affine layers.
One necessary condition for the existence of such a structure is the presence
of balanced components. More precisely, there must be at least 3 disjoint sets
of balanced components such that in each set the corresponding masks form
a linear subspace of dimension 3. Two of these subspaces would correspond to
output bits of the expected keyed permutations. The third one would correspond
to the sum of these permutations as it is also balanced.

36

We checked the Kim mapping for such balanced subspaces and, unsurpris-
ingly, we found that there are exactly 3 of them as expected. However we were
surprised to find that the cube mapping over F26 also has 3 such subspaces! Un-
fortunately, none of the corresponding functions is affine-equivalent to a keyed
permutation. Still, we were interested in decomposing these functions and finding
the difference with the keyed permutations from the Kim mapping.

There are 3 balanced subspaces in the Kim function with known structure
and another 3 balanced subspaces in the cube function. First we checked which of
the corresponding functions are affine-equivalent using the algorithm from [11].
The results were interesting: the two functions obtained from the Kim mapping,
which correspond to 𝑅𝑘𝑖𝑚(𝑥, 𝑦) and 𝑅𝑘𝑖𝑚(𝑦, 𝑥), are affine-equivalent as expected
(they only differ by a prepended branch swap). However, the other four are all
pairwise affine-equivalent! That is, the three functions corresponding to the three
balanced subspaces in the cube mapping, are all affine-equivalent to

𝑅𝑘𝑖𝑚(𝑥, 𝑦)+𝑅𝑘𝑖𝑚(𝑦, 𝑥) = 𝛼3(𝑥3+𝑦3)+(𝛼+1)𝛼𝑥𝑦(𝑥+𝑦) = 𝛼3(𝑥3+𝑦3+𝛼𝑥𝑦(𝑥+𝑦))

and therefore affine-equivalent to

𝑓(𝑥, 𝑦) = 𝑥3 + 𝑦3 + 𝛼𝑥𝑦(𝑥 + 𝑦) = 𝛼(𝑥 + 𝑦)3 + (𝛼 + 1)(𝑥3 + 𝑦3).

We guessed that the function 𝑓 ′ for which 𝑓 ′(𝑥, 𝑦)||𝑓 ′(𝑦, 𝑥) is affine-equivalent
to the cube function is of the form

𝑓 ′(𝑥, 𝑦) = (𝑥 + 𝑎𝑦)3 + 𝑏𝑥3 + 𝑐𝑦3

for some 𝑎, 𝑏, 𝑐 ∈ F23 . We made an exhaustive search and found that for example
setting 𝑎 = 𝛼, 𝑏 = 1, 𝑐 = 𝛼 with 𝑇𝑟(𝛼) = 0, 𝛼 ̸= 0 leads to positive result. That
is, for

𝑅𝑐𝑢𝑏𝑒(𝑥, 𝑦) = (𝑥 + 𝛼𝑦)3 + 𝑥3 + 𝛼𝑦3 = 𝑦3 + 𝛼𝑥𝑦(𝑥 + 𝛼𝑦)

the cube function in F26 is affine-equivalent to the function 𝑅𝑐𝑢𝑏𝑒(𝑥, 𝑦)||𝑅𝑐𝑢𝑏𝑒(𝑦, 𝑥)
mapping (F23)2 to itself.

37

A.5 Implementation

function algebraic normal form

𝑦 = 𝑥3

𝑦0 = 𝑥0𝑥1 ⊕ 𝑥0𝑥2 ⊕ 𝑥1 = 𝑥0(𝑥1 ⊕ 𝑥2)⊕ 𝑥1

𝑦1 = 𝑥0𝑥2 ⊕ 𝑥1 ⊕ 𝑥2 = 𝑥0(𝑥2 ⊕ 1)⊕ 𝑥1

𝑦2 = 𝑥1𝑥2 ⊕ 𝑥0 ⊕ 𝑥1 ⊕ 𝑥2 = (𝑥0 ⊕ 1)⊕ (𝑥1 ⊕ 1)(𝑥2 ⊕ 1)

𝑦 = 2 ⊙ 𝑥

𝑦0 = 𝑥1

𝑦1 = 𝑥0 ⊕ 𝑥2

𝑦2 = 𝑥2

𝑦 = 𝑥5

𝑦0 = 𝑥0𝑥1 ⊕ 𝑥2

𝑦1 = 𝑥0𝑥1 ⊕ 𝑥0𝑥2 ⊕ 𝑥1 = 𝑥0(𝑥1 ⊕ 𝑥2)⊕ 𝑥1

𝑦2 = 𝑥1𝑥2 ⊕ 𝑥0 ⊕ 𝑥1 ⊕ 𝑥2 = (𝑥0 ⊕ 1)⊕ (𝑥1 ⊕ 1)(𝑥2 ⊕ 1)

Table 7: The algebraic normal form of the sub-functions used to compute H2
3 .

Algorithm 2 A naive bitsliced implementation of the open butterfly H2
3 .

function 𝐵naive(𝑋0, ..., 𝑋5)
◁ 𝑅 ⊕= 𝐿3

1. 𝑋0 ⊕= (𝑋5 ∧ (𝑋4 ⊕𝑋3))⊕𝑋4

2. 𝑋1 ⊕= (¬𝑋5 ∧𝑋3)⊕𝑋4

3. 𝑋2 ⊕= (𝑋4 ∧ ¬𝑋3)⊕ (¬𝑋5)
◁ 𝑅 = 𝑅5

4. 𝑡 = (¬𝑋1) ∧ (¬𝑋0)
5. 𝑋0 ⊕= 𝑋2 ∧𝑋1

6. 𝑋1 ⊕= 𝑋2 ∧𝑋0

7. 𝑋2 ⊕= ¬𝑡
◁ 𝑅 ⊕= 𝛼 · 𝐿

8. 𝑋0 ⊕= 𝑋4

9. 𝑋1 ⊕= 𝑋5 ⊕𝑋3

10. 𝑋2 ⊕= 𝑋3

◁ 𝐿 ⊕= 𝛼 ·𝑅

11. 𝑋3 ⊕= 𝑋1

12. 𝑋4 ⊕= 𝑋2 ⊕𝑋0

13. 𝑋5 ⊕= 𝑋0

◁ 𝐿 = 𝐿3

14. 𝑢 = 𝑋3

15. 𝑡 = 𝑋4

16. 𝑋4 ⊕= ((¬𝑋5) ∧𝑋3)
17. 𝑋3 = (𝑋5 ∧ (𝑢⊕ 𝑡))⊕ 𝑡
18. 𝑋5 ⊕= ¬(¬𝑡 ∧ ¬𝑢)

◁ 𝐿 ⊕= 𝑅3

19. 𝑋3 ⊕= (𝑋2 ∧ (𝑋1 ⊕𝑋0))⊕𝑋1

20. 𝑋4 ⊕= (¬𝑋2 ∧𝑋0)⊕𝑋1

21. 𝑋5 ⊕= (¬𝑋1 ∧ ¬𝑋0)⊕ (¬𝑋2)
end function

38

	Cryptanalysis of a Theorem: Decomposing the Only Known Solution to the Big APN Problem (Full Version)

