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Abstract: Spikes frequently occur in power quality (PQ) disturbance signals due to various causes1

such as switching of the inductive loads and the energization of the capacitor bank. Such signals are2

difficult to analyze using existing time-frequency (TF) methods as these signals have two orthogonal3

directions in a TF plane. To address this issue, this paper proposes an adaptive TF distribution (TFD)4

for the analysis of PQ signals. In the proposed adaptive method, the smoothing kernel’s direction5

is locally adapted based on the direction of energy in the joint TF domain, and hence an improved6

TF resolution can be obtained. Furthermore, the performance of the proposed adaptive technique7

in analyzing electrical PQ is thoroughly studied on both synthetic and real world electrical power8

signals with the help of extensive simulations. The simulation results (specially for empirical data)9

indicate that the adaptive TFD method achieves high energy concentration in the TF domain for10

signals composed of tones and spikes. Moreover, the local adaptation of smoothing kernel in the11

adaptive TFD enables the extraction of TF signature of spikes from TF images, which further helps12

in measuring the energy of spikes in a given signal. This new measure can be used to both detect13

the spikes as well as to quantify the extent of distortion caused by the spikes in a given signal.14

Keywords: Time-Frequency, power quality, power signals, smoothing, distribution.15

1. Introduction16

Electric power quality (PQ) is a broad term which covers various aspects in the areas concerning17

electrical power transmission to its distribution to consumers. Different types of PQ issues are18

usually encountered in power systems including the voltage sag, swell, harmonics and transients.19

All these PQ issues arise due to the non-linear behavior of load on the transmission distribution20

system. These disturbing loads cause a deviation in the voltage and current waveforms which lead21

to significant degradation in the performance of power systems. Besides, there are multiple sources22

of different PQ disturbances appearing simultaneously, thus making it a challenging task to detect23

them individually. PQ also affects the performances of end user equipments which are connected to24

the power system. Due to such degradation in the performance of electric power systems, PQ has25

become a major area of concern for the utility companies. In order to improve the PQ, utilities must26

first record the information about the statistical behavior of the voltage and current in a power system27

and subsequently analyze that information for the occurrence of disturbance in order to avoid any28
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damage to the equipment. These requirements have sparked a lot of interest in the development of29

signal processing algorithms for the analysis of electrical PQ [1–9].30

Due to non-stationary characteristics of power signals, time-frequency (TF) signal processing31

techniques are preferred tools for both analysis and the automated classification of these signals32

[10]. TF signal analysis methods can be broadly categorized into linear methods and quadratic33

methods [10]. Linear methods such as short time-Fourier transform are simple to implement, but34

suffer from low resolution [10]. Quadratic TF methods, on the other hand, offer relatively higher35

TF resolution as compared to the linear TF methods. The Wigner Villie distribution (WVD) is the36

underlying TF distribution (TFD) for all quadratic TFDs. It provides ideal energy concentration for37

mono-component signals but suffers from cross-term interference for multi-component signals [11].38

The effects of cross-terms can be reduced by employing a two dimensional (2D) smoothing kernel,39

but this also degrades the energy concentration of auto-terms [12]. Another alternative method for40

reducing cross-terms in the WVD is to compute the Gabor Wigner transform, which is defined as the41

multiplication of Gabor transform with the WVD [13]. This Gabor Wigner transform provides the42

combined advantages of both the WVD and short time-Fourier transform, by offering high energy43

concentration of auto-terms and by also removing cross-terms.44

Spikes/transients are frequently observed in electrical PQ signals. They are caused by switching45

of high inductive loads, and due to capacitor bank energization [14]. When an electric spike occurs,46

high surge of voltage/current passes through electric equipment and can cause damage to electric47

appliances. Specifically, transients/spikes can cause electrical devices to operate erratically, such as48

micro-jogging in motors and it may also lead to a failure of the lighting equipment. Therefore, it is49

imperative to detect the power quality issues [15–18].50

Multi-resolution signal analysis methods such as the S-transform and the Hilbert transform are51

also commonly used for the analysis and classification of PQ signals [19],[20],[21]. S-transform is52

particularly useful for the analysis of signals with spikes as the shape of its analysis window is53

frequency dependent. It provides high energy concentration for signals composed of spikes and54

low frequency content. The Hilbert-Huang transform is also an effective tool for the analysis of55

non-stationary signals [22]. However, it is only suitable for signals that can be modelled as amplitude56

modulated and frequency modulated signals.57

Recently, an adaptive time frequency based method (ADTFD) has been proposed which adapts58

the direction of smoothing kernel locally on point-by-point basis for the analysis and the parameter59

estimation of frequency modulated signals [23,24]. This method outperforms other TFD in terms60

of its ability to resolve closely placed signal components and has found applications in areas such61

as pattern recognition, direction of arrival estimation and signal classification [25,26]. The ADTFD62

method, however, focuses mainly on the analysis of non-stationary frequency modulated signals. For63

such signals, the direction of smoothing kernel can be from the set of all possible directions (covering64

the whole range of θ) in the TF plane. In this work, our focus has been on the PQ disturbance signals65

where spikes and sinusoids are the main disturbances. Therefore, we have modified the method66

given in [23,24] so that it could be effectively used for the detection of spikes in the PQ signals. That67

is achieved by limiting the directions of the smoothing kernel to only two angles, θ = 0 and θ = 9068

degrees, which correspond to the horizontal and vertical axes of the TF plane where sinusoids and69

spikes reside respectively. The performance of the proposed method is compared against the state70

of the art TF based methods in terms of its ability to analyse PQ signals. Finally, a new metric is71

presented which can be used to separate the signature of spikes from that of the tones in the PQ72

signals.73

The rest of this paper is organized as follows: signal model for the PQ signals is described in74

Section II. Section III presents a review of the commonly used time-frequency methods and discusses75

the drawbacks of these methods for analyzing PQ signals. Section IV discusses the proposed76

adaptive TFD method in consideration for the analysis of the PQ signals. A detailed numerical77

analysis considering both synthetic and real world electrical signals is presented in Section V. Finally,78
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concluding remarks on the proposed technique and the obtained simulation results are presented in79

Section VI.80

2. Signal Model for Power Quality Signals81

A PQ signal without any distortion is a pure tone (i.e., sinusoid), which can be expressed as82

x(t) = cos(2π f0t), (1)

where f0 is the fundamental frequency of a signal. The PQ signals are sometimes corrupted by the83

harmonics related to the fundamental frequency and can be represented as84

x(t) =
N

∑
k=1

cos(2πk f0t). (2)

In some cases, a PQ signal is corrupted by sudden transients or spikes. Therefore, a more general85

model of PQ can be written as86

x(t) =
N

∑
k=1

cos(2πk f0t) +
M

∑
k=1

δ(t− Tk), (3)

where δ(t − Tk) is an impulse shifted at Tk seconds in time. One such PQ signal obtained by the87

combination of tones and impulses is illustrated in Fig. 1.88

3. Review of Time-frequency distributions89

3.1. Quadratic Time-Frequency Distributions90

The WVD is a core distribution of the quadratic class of TFDs. It can be obtained by taking91

Fourier transform of the instantaneous auto-correlation function in the following way [12]92

Wz(t, f ) =
∫

w(τ) z(t +
τ

2
) z∗(t− τ

2
) e−j2π f τ dτ, (4)

where w(τ) is a time lag window, z(t) is the analytic associate of a real signal s(t), and Wz(t, f ) is the93

WVD. The problem with the WVD is that it suffers from cross-terms interference for multi-component94

signals due to its quadratic nature [12]. Cross-terms have oscillatory characteristics and the rate of95

oscillation depends on the distance between two auto-terms [11]. The cross-terms of the WVD are96

suppressed by employing a 2D smoothing kernel [12]. All TFDs belonging to the quadratic class,97

including the Spectrogram, can be obtained by smoothing the WVD as follows98

ρ (t, f ) = γ (t, f ) ∗∗
(t, f )

Wz (t, f ) , (5)

where ρ (t, f ) is a quadratic TFD, γ (t, f ) is a 2D smoothing filter, ∗∗
(t, f )

represents 2D convolution along99

time and frequency axes.100

Quadratic TFDs suffer from inherent compromise between suppression of cross-terms and the101

energy concentration of auto-terms. Intensive smoothing results in almost removal of cross-terms,102

e.g., in case of Spectrogram. However, such smoothing results in blurring of auto-terms thus affecting103

the resolution capability of a quadratic TFD. Previous studies have shown that separable kernel TFDs,104

i.e., TFDs whose smoothing kernel can be represented as the product of two smoothing functions:105

γ (t, f ) = g(t)G( f ), offer better compromise in cross-term suppression and auto-term preservation106

[12]. This gain is achieved due the flexibility to independently adjust the smoothing along time and107

frequency axes, which is not available in case of the commonly used Spectrogram [12].108
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3.2. Linear Short Time Fourier Transform109

One alternative to the quadratic class of TFDs is linear time-frequency representations. One110

popular distribution of this class is short time-Fourier transform and is defined as:111

STFT(t, f ) =
∫

w(τ)z(t + τ)e−j2π f τ dτ, (6)

where w(τ) is an analysis window. The short time-Fourier transform is a linear method. Hence, it112

does not suffer from the cross-term interference problem commonly observed in quadratic methods.113

The performance of this transform depends on the selection of an analysis window [10]. A wide114

window offers good resolution along the frequency axis but poor resolution along the time axis;115

while a narrow window provides good resolution along the time axis and poor resolution along the116

frequency axis [10]. This limitation can be overcome to an extent by using the wavelet transform117

[10], that offer high resolution along time and frequency axes for higher and lower frequencies,118

respectively. However, the performance of the wavelet transform also depends on the selection119

of mother wavelet that needs to be optimized manually for each signal to obtain an optimal120

performance.121

In case of power quality disturbance signals, we can have both spikes and tones in a single122

composite signals. For such signals, it is impossible to select a single window that achieves high123

energy concentration for both spikes and tones. A short window would result in good energy124

concentration of the spikes but would deteriorate the energy concentration of the tones and vice125

versa.126

3.3. Gabor Wigner Transform: A Combination of Linear and Quadratic Methods127

The short time-Fourier transform does not suffer from cross-term interference problem but128

suffers from poor energy concentration of auto-terms. On the other hand, the WVD offers high129

energy concentration of auto-terms but suffers from cross-term interference problem. One way to130

combine the advantages of linear and quadratic time-frequency method, i.e., to obtain a TFD with131

high energy concentration of auto-terms with the elimination of cross-terms is to simply multiply132

a short time-Fourier transform with the WVD [13]. The TFD obtained as a multiplication of short133

time-Fourier transform and WVD is called the Gabor Wigner transform (GWT) and is defined as [13]:134

GWT (t, f ) = GT (t, f )Wz (t, f ) , (7)

where GT (t, f ) is simply a short time-Fourier transform with a Gaussian window. The GWT has135

emerged as a powerful tool for the analysis of a number of real-life signals due to its ability to achieve136

high energy concentration of auto-terms with significant cross-term suppression including power137

quality disturbance signals [8,27].138

The Gabor Wigner transform, however, fails to achieve optimal energy concentration in the139

situations when auto-terms overlap with cross-terms [28,29]. Such a situation emerges when signal140

components have very close components that ordinary short time Fourier transform fails to resolve.141

In the case of PQ signals, such a situation appears when a given signal is corrupted by a train of142

closely spaced spikes.143

4. Proposed Methodology144

This section presents the proposed method for the analysis of power quality signals.145

4.1. Adaptive TFD for PQ Signals146

An adaptive time frequency distribution for the analysis of power quality signals is presented in147

this subsection. This method suppresses the interference terms of the WVD using adaptive directional148

smoothing. Note that any quadratic TFD can be selected for the adaptive method, but we have149
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selected the WVD due its high resolution. Furthermore, this method exploits the fact that aligning150

the smoothing kernel in parallel to the direction of auto-terms can lead to a high resolution TF151

representation [30]. Such TFDs with the directional smoothing kernels can be expressed as [30]:152

ρ (t, f ) = γθ (t, f ) ∗∗
(t, f )

Wz (t, f ) , (8)

where γθ is a kernel whose direction depends on angle θ. Such TFDs achieve good performance153

for signals having one direction of energy distribution in the TF domain [30]. This global alignment154

of the smoothing kernel is not possible for the PQ spike signals as they can have two orthogonal155

directions: one parallel to the time-axis due to sinusoidal nature of power signals and other parallel156

to the frequency axis due to spikes. For such signals, the smoothing kernel’s direction should be157

adapted locally as [24]158

ρ (t, f ) = γθ(t, f ) (t, f ) ∗∗
(t, f )

Wz (t, f ) , (9)

where θ (t, f ) denotes the direction angles which have been adapted locally based on the input signal159

characteristics. In general, the PQ signals are usually modeled either as the summation of pure tones160

or the summation of tones and spikes. Therefore, the cross-terms appearing in the WVD of PQ signals161

possess the following characteristics:162

1. Cross-terms appear as ridges in the joint TF domain with their major axis being parallel to the163

direction of their oscillation [12].164

2. The direction of cross-terms’ oscillation, caused by the interaction of tones (fundamental165

frequency) and harmonics, is parallel to the time axis.166

3. The direction of cross-terms’ oscillation, caused by the interaction of spikes, is parallel to the167

frequency axis.168

Note that the last two observations can be deduced from the established mathematical fact that169

the direction of cross-terms’ oscillation is orthogonal to the direction of a line joining components170

[11]. These observations indicate that the smoothing kernel should be adapted along the following171

two directions: 1) along the direction parallel to the time axis to suppress the cross-terms appearing172

due to tones, 2) along the direction parallel to the frequency axis to suppress cross-terms appearing173

due to spikes. This implies that the smoothing kernel should be aligned locally with the cross-terms’174

major-axis at each TF point, which is the same direction as of the cross-terms’ oscillation. If we use175

the absolute value of a WVD, the oscillatory characteristics of the cross-terms are removed. Then, the176

smoothing kernel’s direction for each point in the TF plane is obtained by maximizing its correlation177

with the absolute value of the WVD as follows [24]178

θ(t, f ) = arg max
θ

∣∣∣∣|Wz(t, f )| ∗∗
(t, f )

γθ(t, f )
∣∣∣∣ . (10)

The above equation needs to be optimized only for two values of θ that are θ = 0 and θ = π/2 as179

the cross-terms are either parallel to the frequency or the time axis. Once θ(t, f ) is estimated, we can180

obtain the adaptive TFD using the (9).181

For the selection of the smoothing kernel, we use double derivative directional Gaussian kernel182

in this study, which is defined as:183

γθ(t, f ) (t, f ) =
ab
2π

d2

d f 2
θ

e−a2t2
θ−b2 f 2

θ , (11)

where tθ = t cos(θ) + f sin(θ), fθ = −t sin(θ) + f cos(θ), θ is the rotation angle with respect to the184

time-axis, γθ(t, f ) (t, f ) is the directional Gaussian filter. The parameter a controls the smoothing of185

filter along the major axis while the parameter b controls the smoothing along the minor axis. Usually186
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Figure 1. A synthetic PQ signal having both tones and spikes.

a is assigned a small value to have extensive smoothing along the major axis of cross-terms and b is187

assigned a large value to have less intensive smoothing along the minor axis to avoid the merging of188

close signal components [24]. Further details regarding the automatic optimization of parameters can189

be found in [23]. The main features of the employed kernel are highlighted below.190

1. It has a low pass characteristics response when it is aligned in parallel to ridges, that is, along191

the major axis of auto- or cross-terms. This low pass characteristics results in the reduction of192

cross-terms and signal to noise ratio enhancement of auto-terms.193

2. The response of this kernel becomes zero when it becomes orthogonal to the major axis of194

auto-terms. This characteristics of the smoothing kernel avoids spreading of signal energy for195

TF points where no signal is present.196

4.2. Feature Extraction Using the Adaptive TFD197

The key advantages of the adaptive TFD are: 1) it allows high energy concentration for both198

spikes and tones, 2) it can be used to detect spikes in a given PQ signal, by retaining TF points for199

which the direction of smoothing kernel is π/2. Let us define a spike TF image that retains only those200

points that are parallel to the direction of spikes in the following way201

ρs(t, f ) =

{
ρ(t, f ) ; θ(t, f ) = π

2 ,
0 ; otherwise.

(12)

where ρs(t, f ) is a spike TF image.202

Similarly, we can define a tone TF image that retains only those points that are parallel to the203

direction of tones as follows204

ρT(t, f ) =

{
ρ(t, f ) ; θ(t, f ) = 0,
0 ; otherwise.

(13)

where ρT(t, f ) is a tone TF image.205

Based on the energy of TFDs of these two images, we can compute the ratio of power consumed206

in spikes versus the power consumed in delivering power at 50 Hz along with the harmonics.207

Er =
∫ ∫

ρs(t, f )
ρT(t, f )

dt d f , (14)

where Er represents the ratio of energy consumed in spikes to the energy consumed in tones.208
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 2. TF plots of the synthetic signal, given by (15), (a) Spectrogram (hamming window of length
45), (b) Reassigned Spectrogram. (c) MBD (β = 0.1 and lag window of length 64), (d) Gabor Wigner
transform (Gabor transform of window length 45 is used), (e) The adaptive TFD (a = 3 and b = 8), (f)
The S-transform.
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(a)

(b)

Figure 3. Separation of TF representations of tone and spike using direction of signal energy (a) TF
representation of tone, (b) TF representation of spikes.

5. Numerical Analysis209

To demonstrate the efficacy of the adaptive TFD method in analyzing electrical PQ, extensive210

simulations for both synthetic and real world electrical power signals are performed.211

5.1. Synthetic Signals212

Let us simulate a scenario when a given signal has both tones and spikes.213

s(t) = stone + sspike, (15)

where the tone part is defined as,214

stone = cos(100πt), (16)

and the spike part is given as,

sspike =
N

∑
k=0

δ(t− kT), (17)

where T = 1/32s. The given signal was sampled at 1024 Hz. The time-domain representation of the215

signal is illustrated in Fig. 1.216

The signal was analyzed using the state of the art TFDs including the Spectrogram, reassigned217

Spectrogram [31], modified B distribution a Separable kernel TFD [12], Gabor Wigner Transform [13]218

(or marked WVD), S-transform and the proposed adaptive method; the TF plots obtained from all219

those methods are shown in Fig. 2. It is observed that the Spectrogram and reassigned Spectrogram220

fail to concentrate signal energy for spikes due to its poor energy concentration. The WVD is hard to221
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Figure 4. A synthetic PQ signal composed of two tones and spikes.

interpret due to the presence of cross-terms. The MBD suppresses cross-terms to certain extent, but it222

is difficult to separate cross-terms from spikes. The Gabor Wigner transform fails to clearly represent223

spikes due to overlapping of auto-terms and cross-terms in the WVD.224

The S-transform due to its frequency dependent analysis window and the adaptive TFD, due225

to its locally adaptive smoothing kernel, achieves high concentration of energy for the given signal.226

Another benefit of the proposed approach is that it can separate TF signatures of spikes and tones227

using (12) and (13), as indicated in Fig. 3.228

In order to demonstrate the performance of the proposed method on a more complicated and229

practical scenario, we consider a signal consisting f multiple tones in addition to spikes at random230

and multiple instances. Let us denote such a signal by s(t) which is given by231

s(t) = stone + sspike, (18)

where the tone part is defined as

stone = cos(100πt) + cos(200πt), (19)

and the spike part is given as

sspike =
N

∑
k=0

δ(t− kT), (20)

where T = 1
24 s. The given signal was sampled at 1024 Hz. The time-domain representation of232

the signal is illustrated in Fig. 4. The signal was analyzed using the same set of TFDs that were233

used in the earlier example; the TF plots obtained from all those methods are shown in Fig. 5. It234

is observed that the spectrogram and reassigned spectrogram fails to concentrate signal energy in235

the case of spikes. The MBD is hard to interpret due to the presence of cross-terms. The Gabor236

Wigner transform fails to clearly represent spikes due to overlapping of auto-terms and cross-terms237

in the WVD. The S-transforms achieves high energy concentration for spikes but fails to achieve high238

energy concentration for tones. The TFD spectrogram obtained from the proposed method, however,239

not only resolves close tones but achieves a clear representation of spikes (Fig. 5(e)).240

5.2. Real World Signals241

Let us now repeat the above experiment for a real world power signal acquired from the242

soldering iron. The signal is sampled at 2500Hz and the total duration of signal is 0.1s. The243

time-domain representation of the signal given in Fig. 7 indicates that the signal has both sinusoidal244

and spiky characteristics. The given signal is analyzed from the same set of TFDs that were used in245

the earlier experiment as shown in Fig. 6. The Spectrogram results in a blurred TF representation.246

The reassigned Spectrogram fail to concentrate energy for spikes. The poor performance of the WVD,247
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 5. TF plots of the synthetic signal, given by (18), (a) Spectrogram (hamming window of length
45), (b) Reassigned Spectrogram, (c) MBD (β = 0.1 and lag window of length 64), (d) Gabor Wigner
transform (Gabor transform of window length 45 is used), (e) The adaptive TFD (a = 3 and b = 8), (f)
The S-transform
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(a)

(b)

(c)

(d)

(e)

(f)
Figure 6. TF plots of a real world signal acquired from iron having spikes.(a) Spectrogram (hamming
window of length 45). (b) Reassigned Spectrogram. (c) MBD (β = 0.1 and lag window of length 64).
(d) Gabor Wigner transform (Gabor transform of window length 45 is used). (e) The adaptive TFD
(a = 3 and b = 8). (f) The S-transform.



Version October 18, 2016 submitted to Energies 12 of 14

Figure 7. A real world PQ signal showing both tones and spikes.

MBD and Spectrogram is due to their fixed smoothing kernels that cannot be adapted locally. The248

Gabor Wigner transform, which is otherwise a useful tool for PQ signals also fails to achieve high249

energy concentration. The poor performance of the Gabor Wigner transform is due to the overlapping250

of cross-terms with auto-terms in the WVD. The proposed TFD due to its local adaptation achieves251

high energy concentration for all signal components. Similarly, the S-transform due to frequency252

dependent window adaptation achieves good energy concentration for both tone and spikes.253

Experimental results confirm that the adaptive TFD and S-transform outperforms its254

counterparts in terms of preservation of signal energy for both spikes and tones. However, the255

adaptive TFD provides additional benefit, i.e. using (12) and (13), we can separately observe TF256

points belonging to tones and spikes as illustrated in Fig. 8. The ratio of spike energy versus tone257

energy for this experiment is now obtained as: 0.538. This ratio can also stand as an unanimous258

quantifier to measure the distribution of energy along spikes for the monitoring of PQ signals.259

6. Conclusions260

An effective method for the analysis of PQ signals with spiky characteristics has been developed.261

Extensive computer simulations have been performed to study the performance of the proposed262

technique in analyzing electrical PQ on both synthetic and real world electrical power signals. The263

proposed method has been observed to outperform the existing signal analysis techniques including264

Gabor Wigner transform in terms of its ability to give a clear representation for both spikes and265

tones. Based on the proposed analysis, it has been concluded that the ratio between the signal energy266

consumed in spikes and the tone energy is a useful quantifier for the effective monitoring of PQ in267

electrical power signals. That feature can be integrated with the rest of the features developed as part268

of other studies for the automatic classification of PQ signals.269
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(a)

(b)

Figure 8. Separation of TF representation of tones and spikes using the direction of signal energy (a)
TF representation of tones, (b) TF representation of spikes.
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