
Reflection-Aware Static Analysis of Android Apps

Li Liα, Tegawendé F. Bissyandéα, Damien Octeauβ, Jacques Kleinα

α SnT, University of Luxembourg, Luxembourg
β CSE, Pennsylvania State University, USA

{li.li, tegawende.bissyande, jacques.klein}@uni.lu, octeau@cse.psu.edu

ABSTRACT
We demonstrate the benefits of DroidRA, a tool for taming
reflection in Android apps. DroidRA first statically extracts
reflection-related object values from a given Android app.
Then, it leverages the extracted values to boost the app
in a way that reflective calls are no longer a challenge for
existing static analyzers. This is achieved through a byte-
code instrumentation approach, where reflective calls are
supplemented with explicit traditional Java method calls
which can be followed by state-of-the-art analyzers which
do not handle reflection. Instrumented apps can thus be
completely analyzed by existing static analyzers, which are
no longer required to be modified to support reflection-aware
analysis. The video demo of DroidRA can be found at
https://youtu.be/-HW0V68aAWc

CCS Concepts
•Software and its engineering → Software notations
and tools;

Keywords
Android; Static Analysis; Reflection; DroidRA

1. INTRODUCTION
Many static programming languages support the use of

reflection to allow a program to introspect its own behaviors
at runtime. As an example, reflection is frequently leveraged
by Java testers to access private fields and methods in order
to ensure a high coverage rate. Actually, reflection has been
taken as an advanced feature, because it enables a program
to perform sophisticated operations, which would otherwise
be impossible. Android apps, which are essentially written
through Java, have also extended the ability of leveraging
reflection mechanism and many of them indeed leverage
this feature to achieve advanced functionality, e.g., to access
inaccessible APIs (we will show more legitimate usages in
the next Section).

Unfortunately, reflection has also been leveraged by “bad”
guys to perform malicious behaviors, in an attempt to by-
pass the detection of static analyzers. Indeed, many static
analyzers of Android apps have already been proposed in
the community such as call graph building [1, 2, 3] and
program slicing [4], which are not yet reflection-aware and
thus will inherently yield false negatives. Furthermore, ex-
isting reflection-aware Java-based static analyzers cannot
be simply adapted to tackle Android apps. As an example,
TamiFlex [5], a well-known reflection taming tool that is
designed and implemented for Java apps, cannot be applied
to Android apps.

To the best of our knowledge, except our previous work [6,
7], there is only one work presented by Barros et al. [8], who
proposes a solution for reflection analysis of Android apps.
However, that approach analyzes the source code of Android
apps only which is difficult to obtain for most market apps,
and requires additional developer efforts to annotate certain
code properties. Last but not the least, it does not provide
a way to directly benefit existing static analyzers regarding
its extracted reflection results.

Our objective in this work is thus to bridge the gap between
exploiting the capabilities of state-of-the-art analysis tools
and allowing them to perform whole-program analysis on
apps with reflective calls (in a non-invasive means). This
is done by taming reflection in Android apps in which we
present a tool called DroidRA to 1) statically retrieve all
reflection-relevant values to resolve reflective calls and 2)
add instrumentation code with corresponding Java standard
method calls.

DroidRA is dedicated to support researchers and analysts
to perform reflection-aware static analysis of Android apps.
It is fully automated and is written in Java, which takes
as input an Android app and outputs two artifacts: 1) A
summary of reflection usages (json format) and 2) A new
version of Android app where its reflective calls have been
tamed for static analysis.

As indicated in our research track paper [7], we have made
available online our full implementation as an open source
project, along with the benchmarks and scripts we leveraged
at:

https://github.com/serval-snt-uni-lu/DroidRA

The rest of this paper is organized as follows: Section 2
introduces some background information on reflection usages
in Android apps. Then in Section 3 we detail the design and
implementation of our tool DroidRA, along with a summary
of its evaluations. After that, we show some related works
in Section 4 and then conclude this paper in Section 5.

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

ASE’16, September 3–7, 2016, Singapore, Singapore
ACM. 978-1-4503-3845-5/16/09...
http://dx.doi.org/10.1145/2970276.2970277

756

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/78371338?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://youtu.be/-HW0V68aAWc
https://github.com/serval-snt-uni-lu/DroidRA

1 // Example (1): providing genericity
2 Class collectionClass;
3 Object collectionData;
4 public XmlToCollectionProcessor(Str s, Class c) {
5 collectionClass = c;
6 Class c1 = Class.forName("java.util.List");
7 if (c1 == c) {
8 this.collectionData = new ArrayList ();
9 }

10 Class c2 = Class.forName("java.util.Set");
11 if (c2 == c){
12 this.collectionData = new HashSet ();
13 }}
14
15 // Example (2): maintaining backward compatibility
16 try {
17 Class.forName("android.speech.tts.TextToSpeech");
18 } catch (Exception ex) {
19 //Deal with exception
20 }
21
22 // Example (3): accessing hidden/internal API
23 // android.os.ServiceManager is a hidden class.
24 Class c =

Class.forName("android.os.ServiceManager");
25 Method m = c.getMethod("getService", new Class[]

{String.class});
26 Object o = m.invoke($obj , new String [] {"phone"};
27 IBinder binder = (IBinder) o;
28 // ITelephony is an internal class.
29 //The original code is called through reflection.
30 ITelephony.Stub.asInterface(binder);

Listing 1: Reflection usage in real Android apps.

2. REFLECTION IN ANDROID APPS
Reflection usages. Essentially, Android apps are writ-

ten in Java, for which the reflection mechanism introduced
by Java language is also extended. Our previous work [7]
has shown that reflection is frequently used by Android de-
velopers to 1) provide genericity, e.g., using reflection to
implement generic functions. Example (1) in Listing 1 il-
lustrates a real example on how reflection is leveraged to
achieve this kind of functionality, where a Collection object
is initialized reflectively; 2) maintain backward compatibility,
e.g., ensuring apps that are developed with latest features to
be still executable on old devices, where the latest features
are not yet available. Example (2) in Listing 1 illustrates a
real example, which depends on reflection to check whether
the running Android device supports text-to-speech feature
or not; 3) reinforce app security, e.g., separating the core
functionality of a given app to an independent library, which
can then be loaded dynamically (through reflection) when a
specific rule is reached; and 4) access inaccessible APIs. In
the Android framework base, there are two types of APIs that
are inaccessible by third-party apps, including internal and
hidden APIs. Those inaccessible APIs will not be released to
the Android SDK, namely android.jar that will be used by
developers to implement Android apps. However, those APIs
will be shipped into running Android devices, through frame-
work.jar that will be used to replace android.jar at runtime
to support the execution of Android apps. Within this re-
lease model, inaccessible APIs can be accessed by third-party
apps through reflection, although they are not available in
the developing environment, the final app will work fine in
Android devices. Example (3) in Listing 1 illustrates a real
example showing how inaccessible APIs are leveraged.

Patterns of reflective calls. As a means to build a clear
picture on how reflection is used by developers, so as to tame
reflection for static analysis approaches, we have investigated

the sequences of reflective method calls on randomly selected
500 apps and summarized their common usage patterns. Fig-
ure 1 illustrates the final patterns on the usage of reflective
method calls we build, which is capable to model the most
typical usages of reflective calls. This pattern shows how the
reflection mechanism allows to access methods/fields dynam-
ically. Reflective methods or fields can be leveraged directly
if they are statically declared (solid arrows). Otherwise, they
have to used after an initialization of their classes (dotted
arrows).

Obtain Class

Initialize
Class

Obtain Methods/
Fields from Class

Class c = Class.forName(str);
Class c = loadClass(str);

c.newInstance();
c.getConstructor(Class[]).
 newInstance(obj[]); Access the Class's

Methods/Fields

Method m = c.getMethod();
Field f = c.getDeclaredField();

m.invoke(obj, obj[]);
f.get(obj);
f.set(obj, obj);

Figure 1: Abstract pattern of reflection usage and
some possible examples.

Reflection in malicious vs. benign apps. Given the
potential of using reflection to hide malicious operations,
which could not be statically detected, we investigate whether
reflection usage can constitute in discriminating between ma-
licious and benign apps. We build a basic machine learning
classification scheme with reflective calls as the unique fea-
ture set (e.g., invoke() is considered as a feature). For the
experiments, we use RandomForest ensemble learning algo-
rithm and build our ground truth by leveraging VirusTotal
scanning results1 on the randomly selected 500 apps. 10-Fold
cross validation experiments2 yield a performance of 97.5%
for F-Measure, the harmonic mean of precision and recall.
Although such a high performance can be favored by our
experimental settings, it nonetheless suggests that reflective
calls may constitute a discriminate feature between malware
and goodware.

3. DROIDRA
In this section, we detail the design and implementation

of our tool DroidRA. Figure 2 overviews the working pro-
cess of DroidRA, which contains three phases: 1) Jimple
Preprocessing Phase; 2) Reflection Analysis Phase; and 3)
Booster Phase. In the following of this section, we detail the
implementation of these three phases respectively.

3.1 Phase 1
As the first phase, DroidRA transforms a given Android

app to appropriate Jimple code, in order to support further
reflection analysis. Jimple is selected, because it is presented
as a 3-address representation that has been designed to
simplify analysis and transformation of Java bytecode [10].

At beginning of this phase, DroidRA extracts DEX files
(i.e., the actual app code) from Android apps (cf. step (1.1)).
1
https://www.virustotal.com: we consider an app a to be malicious

if any of the anti-virus products from VirusTotal has flagged it as
malicious. Otherwise a is a benign app.
2
To address the imbalance dataset problem (only 20 out of the 500

apps are malicious), we perform oversampling using SMOTE [9]

757

https://www.virustotal.com

Booster
Jimple*.jimple (a)

*.jimple (b)

*.jimple

(1.2) Soot + Dexpler

(1.3) entry-point
 construction

*.jimple (b)

(3.1) preprocessing

(3.3) rewriting

Jimpleclasses.dex

(1.1) extract DEX files

Phase 3*.jimple*.jimple (b)

COAL Solver

refl.json

.jimple.jimple (c)

(3.2) code
instrumentation

(2.1) reflection
analysis

Phase 1 Phase 2

.jimple.jimple (d)

COAL-based
reflection model

(2.2) improving

Figure 2: Overview of DroidRA.

MD5: b0eea79daa92d90d8d3dd1a644b7edaa
com.miralcestudios.cjsiebl-26.apk/
----AndroidManifest.xml
----classes.dex // the default DEX file
----META-INF/
----res/
----assets/
 ----obmhwzogztvvvhcbd.dat //zip archive
 ----META-INF/
 ----classes.dex //to be dynamically loaded DEX file
 ----dousn //zip archive
 ----META-INF/
 ----classes.dex //to be dynamically loaded DEX file

Figure 3: A real-world example showing the distri-
bution of DEX files in an Android app.

There are two types of DEX files existing in Android apps.
Figure 3 illustrates an example containing both of these
two types. The first type is the default DEX file, namely
classes.dex, which lives in the top-level of a given Android
app3 and applies to every Android app.

The first type is the to-be dynamically loaded DEX file
(also named as classes.dex), as shown in Figure 3, which is
usually hidden in zip files. The name of those zip files will
likely be further obfuscated in order to bypass the detection
of potential analyzers. As an example, there is a file named
obmhwzogztvvvhcbd.dat under the assets directory of app
com.miralcestudios.cjsiebl, which is actually a carrier of a
classes.dex file.

The second type of DEX files could be eventually accessed
through the well-known dynamic code loading (DCL) mecha-
nism. Thus, it is essential to take them into consideration in
order to support whole-program analysis. However, DCL is
yet another challenge for static analysis [11], as some would-
be loaded classes may not exist statically at all, e.g., they can
be downloaded from a server at runtime. DroidRA focuses
on dynamically loaded code that is included in the apk file
and that can be accessed statically.

3
The format of an Android app is actually a compressed Zip archive.

After extracting all the DEX files, in step (1.2), DroidRA
transforms all of them into Jimple code through a tool we
released previously called Dexpler [12], which now has been
integrated into Soot [13]. Soot is a framework for analyzing
and transforming Java/Android apps, which has already been
widely used to analyze, instrument, optimize and visualize
Java/Android apps.

Finally, similar to other static approaches, DroidRA also
needs to start its analysis from a single entry-point method.
Unfortunately, Android apps do not have a well-defined
entry-point method like main() in traditional Java apps. But
instead, they have multiple entry points, where each com-
ponent (as an essential unit that Android apps are made
up of) could be a potential entry point. To mitigate this,
DroidRA constructs a single entry-point method based on all
the aforementioned Jimple code, following the successful ex-
periences that we have learned from our previous work [1, 14,
15, 7]. Given an Android app, DroidRA artificially assembles
a dummy main method, taking into account all components
and their lifecycle methods (e.g., onStart() and callback
methods (e.g., onClick()). This dummy main method will
eventually support static analysis approaches to build an
inter-component control-flow graph and consequently to sup-
port whole-program analysis of Android apps.

3.2 Phase 2
We now detail the second phase of DroidRA. Our reflec-

tion analysis is implemented on top of COAL and COAL
solver [16]. COAL is a composite COnstant propAgation Lan-
guage that is dedicated to specify constant propagation prob-
lems. COAL solver is an inter-procedural, context-sensitive,
flow-sensitive analyzing engine that performs composite con-
stant propagation to solve COAL-modeled constant propaga-
tion problems. As an example, ParamHarver [15] leverages
COAL and COAL solver to harvest parameter values (propa-
gated in an inter-procedural manner) of a given set of Android
APIs.

In Phase 2, we first build a COAL-based reflection model,
and then send it to an improved COAL solver along with the
analyzed Jimple code. As the output, the reflection analysis
result will be presented in a json file named refl.json, which

758

1 TelephonyManager telephonyManager = // default;
2 String imei = telephonyManager.getDeviceId ();
3 Class c =

Class.forName("de.ecspride.ReflectiveClass");
4 Object o = c.newInstance ();
5 Method m = c.getMethod("setIme" + "i",

String.class);
6 m.invoke(o, imei);
7 Method m2 = c.getMethod("getImei");
8 String s = (String) m2.invoke(o);
9 SmsManager sms = SmsManager.getDefault ();

10 sms.sendTextMessage("+49 1234", null , s, null ,
null);

Listing 3: Code excerpt of de.ecspride.MainActivity
from DroidBench’s Reflection3.apk.

then can be leveraged by other static analysis approaches to
support reflection-aware analysis.

COAL-based reflection model. Listing 2 illustrates a
part of our COAL-based reflection analysis model, where
class Method is modeled. For class Method, we define two
string fields for it. Field declaringClass method is used to
represent the class type that a given reflective call belongs
to. Filed name method is used to represent the name of the
reflective call. Based on the method name and its declaring
class name, we are able to uniquely identify the reflectively
called method.

Improvements to the COAL solver. Although COAL
is design to be as generic as possible, it cannot be directly
applied to model and tackle the reflection problem that
DroidRA intends to solve. We thus contribute several im-
provements to the COAL solver to enable the analysis of
reflective calls. Our first improvement is on the COAL lan-
guage itself, we slightly extend it to be able to represent the
query of values of objects on which instance method calls
are made. The second improvement is on the propagating of
values of array objects. Given an array object, we mark it as
containing all element values. With this limited improvement,
our result may not be precise in theory. However, for our tar-
geted method getConstructors(), that we consider typically
only have a few elements, our improvement is able to ensure
that the propagation of constructors is precise enough in
practice. Finally, we have contributed various optimizations
to improve the overall performance of the COAL solver.

3.3 Phase 3
Now, in the last phase, we detail how DroidRA instru-

ments Jimple code towards supporting reflection-aware static
analysis, where reflective calls have been conservatively4

augmented with appropriate standard Java calls.
Let us take Listing 3 as an example to better explain the

idea of Phase 3, where the code snippet is extracted from
an app of DroidBench named Reflection3.apk [1]. Droid-
Bench is a set of hand crafted Android apps for which all
leaks are known in advance. These leaks are used as ground
truth to evaluate how well static and dynamic security tools
such as IccTA [14] and CopperDroid [17] detect data leaks.
The Reflection3 benchmark app has used reflective calls,
which is known to be problematic for many tools, including
FlowDroid [1] and IccTA [14]. In this example, class Reflec-
tiveClass is first retrieved (line 3) and initialized (line 4).
Then, method setImei() is reflectively retrieved and invoked

4
We keep the reflective calls to conserve their initial runtime behav-

iors, while standard calls are injected in the call graph to allow static
exploration.

1 Class c =
Class.forName("de.ecspride.ReflectiveClass");

2 Object o = c.newInstance ();
3 + if (1 == check())
4 + o = new ReflectiveClass ();
5 m.invoke(o, imei);
6 + if (1 == check())
7 + o.setImei(imei);
8 String s = (String) m2.invoke(o);
9 + if (1 == check())

10 + s = (String) o.getImei ();

Listing 5: The boosting results of our motivating
example. ‘+’ indicates the line it appears is newly
injected.

to store the device ID into field imei (lines 5-6). After that,
another reflective method called getImei() is retrieved and
invoked to obtain back the device ID into the current context
(lines 7-8) so that it can be eventually sent outside the device
via SMS to a hard-coded phone number (line 10).

Phase 3 takes as input the output of Phase 2, Listing 4
shows the results reported by DroidRA in Phase 2, which
contain reflection-related target values for two reflective meth-
ods (i.e., invoke()) that we are interested in and that we
have explicitly configured in the COAL model (cf. the query
keyword at line 13 in Listing 2).

Listing 5 shows the instrumentation results of our example
snippet. Given a reflectively accessed class, DroidRA explic-
itly initializes it by calling its construct method (lines 3-4),
which will also be retrieved by our reflection analysis. For
reflective method calls, DroidRA will inject code to simulate
them in a traditional manner. As an example, the state-
ment “m.invoke(o, imei)” (line 5) has been augmented with
“o.setImei(imei)”, where o is an instance of ReflectiveClass
that DroidRA has initialized previously. We note the read-
ers that we have introduced a method called check() whose
implementation will be excluded for static analysis. How-
ever, for runtime execution, check() will always return false,
keeping the newly injected code from being executed, while
for sound static analysis, it allows the path to be explored.

3.4 Summary of Evaluation
We have evaluated DroidRA in four aspects. At first, we

compute the coverage of reflection calls that DroidRA iden-
tifies and inspects. Experiments on 500 randomly selected
apps show that DroidRA is able to correctly resolve 81.2%5

of the targets. Second, we compare DroidRA with a state-of-
the-art approach proposed by Barros et al. [8] (hereinafter
we refer to it as the checker framework) on 10 open-sourced
apps, which are actually used by Barros previously in their
experiments. The results show that DroidRA is able to re-
solve more reflective methods/constructors (e.g., 10 more
constructors on 10 F-Droid apps that are previously used by
Barros), though it does not need the source code of analyzed
apps and additional developers efforts as what checker frame-
work needs. Third, we check whether DroidRA is capable to
support existing static analyzers to build sounder call graphs
of Android apps. To this end, we select Soot static analyzer
to perform our experiments. In the same 500 apps that we
have leveraged in our first evaluation aspect, for each app,

5
The unresolved targets are mainly due to limitations of static anal-

ysis where runtime values cannot be resolved and limitations of the
COAL solver where arrays of objects cannot be fully propagate at
the moment. Other approaches like primo [18] can be leveraged to
facilitate the resolution of those unresolved targets.

759

1 class java.lang.reflect.Method {
2 Class declaringClass_method;
3 String name_method;
4
5 mod gen <java.lang.Class: java.lang.reflect.Method getDeclaredMethod(java.lang.String ,java.lang.Class [])> {
6 -1: replace declaringClass_method;
7 0: replace name_method;
8 }
9 mod gen <java.lang.Class: java.lang.reflect.Method getMethod(java.lang.String ,java.lang.Class [])> {

10 -1: replace declaringClass_method;
11 0: replace name_method;
12 }
13 query <java.lang.reflect.Method: java.lang.Object invoke(java.lang.Object ,java.lang.Object [])> {
14 -1: type java.lang.reflect.Method;
15 }
16 }

Listing 2: The COAL-based reflection analysis model for class java.lang.reflect.Method. Similar specifications
apply for all other reflection classes. mod keyword describes how the method modifies the state of the
program. gen keyword depicts that the method will generate a new object of type Method. query keyword
specifies the point that we would like to obtain the values. Indexes such as -1 and 0 indicate the reference to
the instance on which the method call is made. As an example, statement -1: replace declaringClass_method

at line 6 indicates that the name of the Class object on which the method is called is used as the field
declaringClass_method of the generated object.

1 de.ecspride.MainActivity/void onCreate(android.os.Bundle) : $r8 = virtualinvoke
$r6.<java.lang.reflect.Method: java.lang.Object invoke(java.lang.Object ,java.lang.Object []) >(r19 , $r7)

2 -1 : Value: 1 path values
3 declaringClass_method=de.ecspride.ReflectiveClass , name_method=getImei ,
4
5 de.ecspride.MainActivity/void onCreate(android.os.Bundle) : virtualinvoke r21.<java.lang.reflect.Method:

java.lang.Object invoke(java.lang.Object ,java.lang.Object []) >(r19 , r1)
6 -1 : Value: 1 path values
7 declaringClass_method=de.ecspride.ReflectiveClass , name_method=setImei

Listing 4: The reflection analysis results for the example code shown in Listing 3.

DroidRA improves by 3.8% and 0.6% the number of edges in
the constructed call graph with Spark [19] and CHA [13] re-
spectively. In the last evaluation aspect, we evaluate whether
existing static analyzers can yield reflection-aware results or
not, based on the instrumented app generated by DroidRA.
To this end, we select IccTA [14] static analyzer to conduct
our experiments. We launch IccTA on both benchmark apps
where the reflective calls are known in advance and on real-
world apps. Our experimental results show that in both cases
IccTA is able to report reflection-aware results, thanks to
DroidRA which would otherwise be impossible.

4. RELATED WORK
To the best of our knowledge, we are the first one that

automatically solve the reflection analysis of Android apps
for boosting static analysis approaches. Research on static
analysis of Android apps have shown strong limitations on
taming reflections [20, 21, 22, 2], many of them have even
explicitly acknowledge such limitations [14, 23, 16]

The closest work to ours was concurrently proposed by Bar-
ros et al. [8] within their Checker framework [24]. However,
their work differs from ours in several ways: 1) their approach
focuses on checking information flows from developer’s per-
spective, who has to add annotations in the analyzed source
code. 2) their approach performs intra-procedural type infer-
ences while ours is inter-procedural and context-sensitive. 3)
While both of our approaches perform reflection analysis, our
approach goes one step further to also boost Android apps,
which can directly benefit other static analysis approaches
in an non-invasive manner.

Reflection, by itself, has been investigated by several works

for Java applications. For example, Livshits et al. [25] lever-
ages points-to analysis to estimate the target value of reflec-
tive calls. Bodden [5] et al. present a dynamic approach,
namely TamiFlex, to support static analysis in the presence
of reflections in Java programs. Although Android apps
are written in Java, TamiFlex cannot be simply adapted to
analyze Android apps [26].

Using Instrumentation to strengthen the static analysis of
Java/Android apps is not new [27, 6]. As examples, Stoller
et al. [28] and Artho et al. [29] merge multi-process apps
into a single one through instrumentation for easing other
approaches like software model checking. IccTA [14] in-
struments Android apps to bridge the ICC gaps and thus
to enable inter-component static analysis. AppSealer [30]
instruments Android apps to detect and inject vulnerability-
specific patches, so as to prevent at runtime the component
hijacking attacks.

5. CONCLUSION
To handle reflection for static analysis is an essential step

towards whole-program analysis. Unfortunately, reflection in
Android apps has not been fully investigated by the commu-
nity. To bridge this gap, we thus designed and implemented
a tool called DroidRA, which statically extracts the target
object values of reflective methods (e.g., the name of a reflec-
tive call or the declaring class name of a reflectively accessed
field), in an attempt to have a better understanding on how
reflection is leveraged in a given app. We then present a
booster module, which leverages the previously extracted val-
ues to instrument a given app by representing reflective calls
with traditional Java calls. The instrumented app results

760

in a non-invasive approach, where existing static analysis
approaches, without any modification, can now be directly
benefited to yield reflection-aware results.

6. ACKNOWLEDGMENTS
This work was supported by the Fonds National de la

Recherche (FNR), Luxembourg, under the project AndroMap
C13/IS/5921289.

7. REFERENCES
[1] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric

Bodden, Alexandre Bartel, Jacques Klein, Yves Le Traon,
Damien Octeau, and Patrick McDaniel. Flowdroid: Precise
context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps. In PLDI, 2014.

[2] Li Li, Alexandre Bartel, Jacques Klein, and Yves Le Traon.
Automatically exploiting potential component leaks in
android applications. In TrustCom, 2014.

[3] Yu Feng, Saswat Anand, Isil Dillig, and Alex Aiken.
Apposcopy: Semantics-based detection of android malware
through static analysis. In SIGSOFT FSE, 2014.

[4] Johannes Hoffmann, Martin Ussath, Thorsten Holz, and
Michael Spreitzenbarth. Slicing droids: program slicing for
smali code. In Proceedings of the 28th Annual ACM
Symposium on Applied Computing, pages 1844–1851. ACM,
2013.

[5] Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati,
and Mira Mezini. Taming reflection: Aiding static analysis
in the presence of reflection and custom class loaders. In
ICSE, pages 241–250. ACM, 2011.

[6] Li Li. Boosting static analysis of android apps through code
instrumentation. In The Doctoral Symposium of 38th
International Conference on Software Engineering
(ICSE-DS 2016), 2016.

[7] Li Li, Tegawendé F Bissyandé, Damien Octeau, and Jacques
Klein. Droidra: Taming reflection to support whole-program
analysis of android apps. In The 2016 International
Symposium on Software Testing and Analysis (ISSTA 2016),
2016.

[8] Paulo Barros, René Just, Suzanne Millstein, Paul Vines,
Werner Dietl, Marcelo d’Armorim, and Michael D. Ernst.
Static analysis of implicit control flow: Resolving java
reflection and android intents. In Proceedings of the
IEEE/ACM International Conference on Automated
Software Engineering, ASE, Lincoln, Nebraska, 2015.

[9] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and
W. Philip Kegelmeyer. Smote: synthetic minority
over-sampling technique. Journal of artificial intelligence
research, pages 321–357, 2002.

[10] Raja Vallee-Rai and Laurie J Hendren. Jimple: Simplifying
java bytecode for analyses and transformations. 1998.

[11] Li Li, Tegawendé François D Assise Bissyande, Mike
Papadakis, Siegfried Rasthofer, Alexandre Bartel, Damien
Octeau, Jacques Klein, and Yves Le Traon. Static analysis of
android apps: A systematic literature review. Technical
report, SnT, 2016.

[12] Alexandre Bartel, Jacques Klein, Martin Monperrus, and
Yves Le Traon. Dexpler: Converting android dalvik bytecode
to jimple for static analysis with soot. In SOAP, 2012.

[13] Patrick Lam, Eric Bodden, Ondrej Lhoták, and Laurie
Hendren. The soot framework for java program analysis: a
retrospective. In Cetus Users and Compiler Infastructure
Workshop (CETUS 2011), 2011.

[14] Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques
Klein, Yves Le Traon, Steven Arzt, Siegfried Rasthofer, Eric
Bodden, Damien Octeau, and Patrick Mcdaniel. IccTA:
Detecting Inter-Component Privacy Leaks in Android Apps.
In ICSE, 2015.

[15] Li Li, Tegawendé F Bissyandé, Jacques Klein, and Yves
Le Traon. Parameter Values of Android APIs: A

Preliminary Study on 100,000 Apps. In SANER, 2016.

[16] Damien Octeau, Daniel Luchaup, Matthew Dering, Somesh
Jha, and Patrick McDaniel. Composite constant propagation:
Application to android inter-component communication
analysis. In ICSE, 2015.

[17] Kimberly Tam, Salahuddin J Khan, Aristide Fattori, and
Lorenzo Cavallaro. Copperdroid: Automatic reconstruction
of android malware behaviors. In NDSS, 2015.

[18] Damien Octeau, Somesh Jha, Matthew Dering, Patrick
McDaniel, Alexandre Bartel, Li Li, Jacques Klein, and Yves
Le Traon. Combining static analysis with probabilistic
models to enable market-scale android inter-component
analysis. In POPL, 2016.

[19] Ondřej Lhoták and Laurie Hendren. Scaling java points-to
analysis using spark. In Compiler Construction, pages
153–169. Springer, 2003.

[20] Leonid Batyuk, Markus Herpich, Seyit Ahmet Camtepe,
Karsten Raddatz, Aubrey-Derrick Schmidt, and Sahin
Albayrak. Using static analysis for automatic assessment and
mitigation of unwanted and malicious activities within
android applications. In Malicious and Unwanted Software
(MALWARE), 2011 6th International Conference on, pages
66–72. IEEE, 2011.

[21] Clint Gibler, Jonathan Crussell, Jeremy Erickson, and Hao
Chen. Androidleaks: automatically detecting potential
privacy leaks in android applications on a large scale. In
Proceedings of the 5th international conference on Trust and
Trustworthy Computing, TRUST’12, pages 291–307, Berlin,
Heidelberg, 2012. Springer-Verlag.

[22] Zhemin Yang, Min Yang, Yuan Zhang, Guofei Gu, Peng
Ning, and X Sean Wang. Appintent: Analyzing sensitive
data transmission in android for privacy leakage detection.
In CCS, pages 1043–1054. ACM, 2013.

[23] Wei Yang, Xusheng Xiao, Benjamin Andow, Sihan Li, Tao
Xie, and William Enck. AppContext: Differentiating
Malicious and Benign Mobile App Behavior Under Contexts.
In International Conference on Software Engineering
(ICSE), 2015.

[24] Michael D. Ernst, René Just, Suzanne Millstein, Werner
Dietl, Stuart Pernsteiner, Franziska Roesner, Karl Koscher,
Paulo Barros, Ravi Bhoraskar, Seungyeop Han, Paul Vines,
and Edward X. Wu. Collaborative verification of information
flow for a high-assurance app store. In Proceedings of the
21st ACM Conference on Computer and Communications
Security (CCS), pages 1092–1104, Scottsdale, AZ, USA,
November 4–6, 2014.

[25] Benjamin Livshits, John Whaley, and Monica S Lam.
Reflection analysis for java. In Programming Languages and
Systems, pages 139–160. Springer, 2005.

[26] Yury Zhauniarovich, Maqsood Ahmad, Olga Gadyatskaya,
Bruno Crispo, and Fabio Massacci. Stadyna: Addressing the
problem of dynamic code updates in the security analysis of
android applications. In CODASPY. ACM, 2015.

[27] Steven Arzt, Siegfried Rasthofer, and Eric Bodden.
Instrumenting android and java applications as easy as abc.
In Runtime Verification, pages 364–381. Springer, 2013.

[28] Scott D Stoller and Yanhong A Liu. Transformations for
model checking distributed java programs. In Proceedings of
the 8th international SPIN workshop on Model checking of
software, pages 192–199, 2001.

[29] Cyrille Artho and Pierre-Loic Garoche. Accurate
centralization for applying model checking on networked
applications. In 21st IEEE/ACM International Conference
on Automated Software Engineering (ASE’06), pages
177–188. IEEE, 2006.

[30] Mu Zhang and Heng Yin. Appsealer: Automatic generation
of vulnerability-specific patches for preventing component
hijacking attacks in android applications. In NDSS, 2014.

761

	Introduction
	Reflection in Android Apps
	DroidRA
	Phase 1
	Phase 2
	Phase 3
	Summary of Evaluation

	Related Work
	Conclusion
	Acknowledgments
	References

