
Accessing Inaccessible Android APIs:
An Empirical Study

Li Li, Tegawendé F. Bissyandé, Yves Le Traon, Jacques Klein
Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg, Luxembourg

{li.li, tegawende.bissyande, yves.letraon, jacques.klein}uni.lu

Abstract—As Android becomes a de-facto choice of develop-
ment platform for mobile apps, developers extensively leverage its
accompanying Software Development Kit to quickly build their
apps. This SDK comes with a set of APIs which developers may
find limited in comparison to what system apps can do or what
framework developers are preparing to harness capabilities of
new generation devices. Thus, developers may attempt to explore
in advance the normally “inaccessible” APIs for building unique
API-based functionality in their app.

The Android programming model is unique in its kind. Inac-
cessible APIs, which however are used by developers, constitute
yet another specificity of Android development, and is worth
investigating to understand what they are, how they evolve
over time, and who uses them. To that end, in this work, we
empirically investigate 17 important releases of the Android
framework source code base, and we find that inaccessible APIs
are commonly implemented in the Android framework, which are
further neither forward nor backward compatible. Moreover, a
small set of inaccessible APIs can eventually become publicly
accessible, while most of them are removed during the evolution,
resulting in risks for such apps that have leveraged inaccessible
APIs. Finally, we show that inaccessible APIs are indeed accessed
by third-party apps, and the official Google Play store has
tolerated the proliferation of apps leveraging inaccessible API
methods.

I. INTRODUCTION

Any piece of successful software will inevitably be main-
tained [1]. This law of software evolution applies well today to
the Android ecosystem where the Software Development Kit
(SDK) provided by Google for app developers is ever evolving
to optimize key Application Programming Interfaces (APIs)
and take into account new hardware capabilities. Adaptations
of the SDK are even key in the strategy for attracting devel-
opers by regularly exposing functionalities for harnessing new
hardware capabilities and satisfying end-user requirements for
fancy functionalities. This strategy is paying on Android where
developers have now contributed with over 2 millions mobile
apps [2] in the Google Play official market alone, the largest
software distribution platform ever built.

In a development environment, which integrates an Android
SDK, provides the library android.jar which exposes a set of
APIs for exploiting the capabilities of the Android operating
system. Once developed, apps are packaged and installed on
devices, the referred APIs now point to implementations in the
framework.jar library. Although both libraries are built from
the same source code, the runtime library (i.e., framework.jar)
is much richer than the development library (i.e., android.jar)

android.jar framework.jar

Android Framework Source Code

Normal
APIs

Inaccessible
APIs

Development Env. Runtime Env.

public
release

platform
release

Fig. 1: The release mechanism of Android SDKs.

as it includes a set of APIs which are inaccessible for the
development of third party apps as illustrated in Figure 1.

Inaccessible APIs are however widespread in the source
code base of Android and come in two forms: 1) Internal
APIs located in the package com.android.internal are
reserved to system apps, whose development is more rigorous,
giving them access to sensitive resources, e.g., low level access
to hardware. 2) Hidden APIs are scattered across the source
code as a collection of classes marked with the javadoc @hide
annotation. These are often deemed not stable enough to be
promoted or are still subject to invasive changes in future
releases. It is no longer a secret in the Android development
community that inaccessible APIs are key to getting a compet-
itive edge for creating some unique API-based functionality in
mobile apps [3]. For example, in early adoption of Android
apps, game box manufacturers have attempted to build apps
that allowed user devices to be used as joysticks via Bluetooth
connection. Developers thus had to experiment with hidden
APIs for automated pairing as we will discuss in Section II.

To access inaccessible APIs, developers can build a custom
development SDK library where internal and hidden APIs are
included. This solution however presents a risk that the frame-
work library shipped with user devices mismatches developer
SDK library, leading to runtime application crashes. A second
option is to rely on reflection techniques to invoke the available
APIs at runtime. This option allows to take into account the
cases where the API is unavailable. Unfortunately, the use of
reflection challenges static analyses of app code [4].

Because APIs are the main building blocks of applications
that interface with core systems such as the Linux kernel, the
Android framework, or the Eclipse IDE, their design and im-
plementation as well as their evolution may have a substantial
impact on the ecosystem. Previous studies have indeed shown

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/78371334?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

for example that building Linux APIs with implicit usage
preconditions may lead to safety holes [5], [6]. Stability of
Java APIs has also been found to be problematic [7]. Finally,
the usage of unstable, discouraged and unsupported APIs of
the Eclipse platform have been extensively investigated in
recent work [8]–[10]. In this work, we focus on the Android
ecosystem who has witnessed recently a rapid growth in terms
of developers and applications. We study inaccessible APIs to
quantify the risks that they pose in terms of the impact of their
evolution, the sensitivity of the features that they offer access
to, and how prevalent is the use of such APIs in market apps.
This study is a first step towards understanding the necessity
and impact of inaccessible APIs in the Android ecosystem.
The findings of this study may also raise concerns to the
development community as well as to Android framework
management team.

Android inaccessible APIs are similar to the notion of pri-
vate APIs [11] in the iOS world with the difference that apps
using private APIs in iOS will be banned from the Apple store
during app review, whereas Android apps using inaccessible
APIs are tolerated on the Google Play store. This difference
motivates the need to study Android inaccessible APIs where
there is a mismatch in which APIs are available at development
time and which can actually be invoked at runtime. In this
paper, we propose to empirically investigate such APIs, and
propose research questions around the significance of the
presence of inaccessible APIs in the SDK, their impact on
Android programming w.r.t. the resources they allow access
to (e.g., sensitivity) and the stability of their implementation,
as well as their adoption by the development community.
Eventually, we summarize, based on the empirical findings,
the exploratory implications we could learn from the evolution
of inaccessible APIs.

Significance. What is the proportion of inaccessible APIs
in the Android framework?:

RQ1 – What is the evolution trend over time of inaccessi-
ble APIs?

RQ2 – Will inaccessible Android APIs be removed in their
subsequent releases? If yes, how often?

RQ3 – For how long are inaccesible APIs kept in the
framework?

Impact. Are inaccessible APIs reliable for production
development?:

RQ4 – What sensitive resources are accessed by inacces-
sible APIs?

RQ5 – How stable are the implementation of inaccessible
APIs?

RQ6 – Do hidden APIs ever become openly available for
use in the SDK?

Adoption. How prevalent is the use of inaccessible APIs
in the community?:

RQ7 – To what extent are inaccessible APIs being lever-
aged by app developers?

RQ8 – Is the use of inaccessible APIs similar across
malicious and benign apps?

RQ9 – Is there any framework that ease the access of
inaccessible APIs?

RQ10 – Is there any correlation between the publication of
a hidden API and the number of apps using it?

II. BACKGROUND

Android apps are written in the Java programming language
on traditional desktop computing platforms. To compile their
code for execution by the Android runtime system, developers
are provided with a development kit that includes tools that
can be used in command line or via a GUI integrated with
an Integrated Development Environment (Eclipse ADT, or
Android Studio built on IntelliJ IDEA by JetBrains).

The Android SDK includes a device emulator, a debugger,
libraries exposing functionalities of the Android platform as
well as various code examples and documentation. Mainte-
nance of the Android SDK goes hand in hand with the overall
Android platform development. Thus, the SDK library classes
evolve to support most recent devices but may also include
older versions of the Android platform for testing apps on
older devices.

A. Android API levels

Android uses API levels to manage app compatibility
across different versions of the runtime system. Indeed, as
the Android platform evolves to include new features and
address new hardware requirements, new Android versions
are released with each version being assigned a unique integer
identifier, called API level. In practice, each release of Android
is referred to multiple names: (1) its version number (e.g.,
Android 4.4); (2) its API level (e.g., API level 19); and (3) a
name of sweet (e.g., KitKat). Figure 2 overviews the adoption
of API levels by millions of Android-powered devices using
Google Play official store as of March 2016 [12].

GingerBread
2.6%

Level 10, Feb. 2011, 2.6%,

API Level 15, Dec. 2011, 2.3%
IceCream Sandwich

2.3%

Jelly Bean
22.3%

Level 16, Jul. 2012, 8.1%
Level 17, Nov. 2012, 11%
Level 18, Jul. 2013, 3.2%

Level 19, Oct. 2013, 34.3%
Kitkat
34.3%

Lollipop
36.1%

Level 21, Nov. 2014, 16.9%
Level 22, mar. 2015, 19.2%

API 23, Oct. 2015, 2.3%
Marshmallow

2.3%

Fig. 2: Distributions of API levels supported by Android-powered
devices (Versions with less than 1% are not shown).

It is noteworthy that, approximately every 6 months, the API
level is upgraded, suggesting substantial updates in the API
set provided to Android developers. In any case, at a given
time, each Android device supports exactly one API level
which represents the version of the libraries that developer
apps can invoke at runtime. The API level is even used
to determine whether an application is compatible with an
Android framework version prior to installing the application
on the device. Thus, when developers build their apps, they can
specify in the Manifest file included in the Android package
(apk) the target API level that the app is built to run on as

well as the minimum API that is required to run the app and
the maximum API level on which the app can run. These
values help the SDK tools warn developers on the use of
APIs. The flexibility of supporting a range of API levels is
further put in place to ensure a larger compatibility of apps
with devices in the wild. Unfortunately, when developers use
inaccessible APIs from a given API level, they bet on the
availability of the necessary libraries on user device. This
device however may be running with a different API level
that falls within the supported range but where maintenance
efforts have extensively changed/dropped the accessed APIs.
Let us assume that a given app uses hidden API getUserId(int)
of class android.content.pm.PackageManager from Android
SDK with API level 14. The developer has fixed to the app
the minimum, target and maximum API levels to 13,15,16
respectively. Once uploaded on the market, the app may be
installed on devices running a platform version of Android at
various API levels. Unfortunately, the hidden API is available
at runtime only on devices with API level ranging from 14 to
15. As a consequence, the app cannot be executed on devices
with API level 13 and 16.

B. Motivating examples

Third party apps developed based on the Android SDK are
normally restricted in the set of APIs that they can use to
interact with Android runtime libraries. Listing 1 showcases
three methods which are available in the source code of the
Android SDK, but which cannot be used in the normal settings
of an Android development environment.

The first method, isRoamingBetweenOperators(), is a
method located within a package whose code is reserved to
system apps. This method is used to activate roaming on GSM
networks. On purpose, we illustrate an inaccessible API with
a Java private qualifier to further show how this restriction
can be bypassed via reflection and used as an API. This
internal API was introduced since API level 4.

The second and third methods, createBond() and setTrust(),
which are annotated with @hide, are not available within the
compiled development library of the SDK. These Bluetooth
APIs allows to directly pair the Android device with a remote
device. Both of them were introduced in API level 5 and later
removed after API level 19 and 21, respectively. Actually,
unlike setTrust(), which was removed from the source code,
createBond() was disclosed to public (i.e., @hide annotation
is removed), making it directly accessible for third-party apps.

We now discuss the case of two real-world Android apps
distributed via the official Google Play store which use the
above illustrated APIs. The first app, Gravity Xbox - Tweek
box (com.ceco.gm2.gravitybox), is an advertizing app that can
inject code into any app, including system services. In the
excerpt of Listing 2, the app reflectively finds and calls the
private internal API method discussed above. After submitting
this app to VirusTotal, we see that 8 anti-virus engines flag it
as malicious. This app has also been removed from the app
store [13].

1 //Internal API
2 package package com.android.internal.telephony.gsm;
3 final class GsmServiceStateTracker extends

ServiceStateTracker {
4 /**Set roaming state when the first parameter is true*/
5 private boolean isRoamingBetweenOperators(boolean,

ServiceState) {}
6 }
7 //Hidden APIs
8 package android.bluetooth;
9 public final class BluetoothDevice implements

Parcelable {
10 /**Start the bonding process with the remote device.
11 * @hide*/
12 public boolean createBond() { }
13 /**Set trust state for a remote device.
14 * @hide*/
15 public boolean setTrust(boolean value) { }
16 }

Listing 1: Examples of internal and hidden APIs.

1 r2 = findClass("com.android.internal.telephony.gsm.
GsmServiceStateTracker", null);

2 r3 = newarray (java.lang.Object)[3];
3 r3[0] = Class.TYPE;
4 r3[1] = "android.telephony.ServiceState";
5 r3[2] = new ModPhone$5(...);
6 findAndHookMethod(r2, "isRoamingBetweenOperators", r3);

Listing 2: Code excerpt from Gravity Xbox - Tweek box
illustrating a reflective access to an internal API at runtime.

The second app, Phonejoy (com.phonejoy.store), is a be-
nign app designed to work with Phonejoy Bluetooth Game
Controllers. To allow a transparent connection – without the
need to request system-level pairing – with an interface-
less remote gaming box, the app directly makes use of the
Bluetooth createBond() and setTrust() hidden APIs discussed.
Listing 3 shows the code excerpt where the hidden API will
be reflectively accessed at runtime.

1 public class com.hellostore.bluetooth.BluetoothDriver {
2 public boolean createBond(BluetoothDevice r1) {
3 r4 = r1.getClass();
4 r5 = r4.getMethod("createBond", null);
5 r6 = r5.invoke(r1, null); }
6 public boolean setTrust(BluetoothDevice r1) {
7 r4 = r1.getClass();
8 r5 = newarray (java.lang.Class)[1];
9 r5[0] = Class.TYPE;

10 r6 = r4.getMethod("setTrust", r5);
11 r7 = newarray (java.lang.Object)[1];
12 r7[0] = Boolean.valueof(1);
13 r9 = r6.invoke(r1, r7); }}

Listing 3: Illustrative example of accessing a hidden API. This
snippet is extracted from app “com.phonejoy.store” (1F6DA3).

Unfortunately, the reflection mechanism as they are used in
the examples above are risky. Indeed, after app distribution
on the store, there is no guarantee on the presence of the
inaccessible APIs in the framework runtime libraries. In the
case of the benign Phonejoy app, this app version remains only
available to older devices supporting lower API levels where
the hidden APIs was still available.

III. STUDY SETUP

To answer the research questions motivating this work we
must collect data on the historical evolution of Android APIs,
infer the feature categories (such as telephony, representing

telephone-related features) they belong to as well as the
permissions that govern them, and check their adoption rate
on a representative set of apps.

A. APIs data collection
Framework code: We refer to the Android framework

project, which as of March 2016, includes 219 revision tags
[14]. Because several revision releases can be made for a
same API level when the changes (e.g., critical bug fixes) do
not significantly change the API set, we consider selecting a
unique release for every API level. Practically, we retain the
latest revision in a given API level. Table I provides details
on the release considered per API version. The source code
base of Android include the history of releases starting from
Android 1.6 (Donut, API level 4). API level 20 is specific to
wearables, and is thus not considered in this study.

TABLE I: List of Android versions considered for investigation. For
each API level, we select the latest revision.

API Release Selected API Release Selected
Level Counts Revision Level Counts Revision

23 31 android-6.0.1 r9 13 1 android-3.2.4 r1
22 35 android-5.1.1 r9 10 8 android-2.3.7 r1
21 11 android-5.0.2 r3 9 2 android-2.3.2 r1
19 24 android-4.4w r1 8 10 android-2.2 r1.3
18 11 android-4.3 r3.1 7 5 android-2.1 r2.1s
17 7 android-4.2 r1 6 1 android-2.0.1 r1
16 11 android-4.1.2 r2.1 5 1 android-2.0 r1
15 7 android-4.0.4 r2.1 4 7 android-1.6 r2
14 4 android-4.0.2 r1

Overall, our study considers 17 versions where the number
of API methods ranges from 51,607 to 223,786 between API
level 4 and API level 23. Fig. 3 further shows the evolution
in quantity of inaccessible and accessible APIs. We note a
significant jump in the number of accessible APIs after API
level 19. While API level 20 is only specific to wearables,
API level 21 brings substantial changes such as the change
from Dalvik to ART as runtime system, the support for 64-bit
CPUs, etc.

0

50000

100000

150000

200000

250000

L4

L5

L6

L7

L8

L9

L1
0

L1
3

L1
4

L1
5

L1
6

L1
7

L1
8

L1
9

L2
1

L2
2

L2
3

Inaccessible Accessible Total

Fig. 3: Trend of API methods exposed in the Android framework.

App code: We leverage the Androzoo repository [15]. We
consider apps where the target API level has been released
in the last 3 years (i.e., above API Level 4). At the time of
experiments, the dataset collected included 23,666 apps (90%
from the official Google Play market, and 10% from alternative
markets such as Anzhi, appChina, etc.). Figure 4 shows how
the dataset spans over several years of app development.

0

1000

2000

3000

4000

5000

6000

7000

20
12

-0
9

20
12

-1
0

20
12

-1
1

20
12

-1
2

20
13

-0
1

20
13

-0
2

20
13

-0
3

20
13

-0
4

20
13

-0
5

20
13

-0
6

20
13

-0
7

20
13

-0
8

20
13

-0
9

20
13

-1
0

20
13

-1
1

20
13

-1
2

20
14

-0
1

20
14

-0
2

20
14

-0
3

20
14

-0
4

20
14

-0
5

20
14

-0
6

20
14

-0
7

20
14

-0
8

Fig. 4: Distribution of the packaging date of our selected apps.

B. Metadata collection

Aside source code data on framework and apps, we also
collect metadata for further characterizing our dataset. First,
we use the PSCout [16] dataset to retrieve which permissions
govern the APIs of the Android framework. Unfortunately,
PSCout only provides API-to-permission mappings for 10
release tags, while two of them are contributed to a same
API level (4.41 and 4.4.4 for level 19), for which we only
consider the latest one for this study. Because of this, in this
work, we take 9 versions of API-to-permission mappings into
consideration, where each mapping represents a different API
level.

Second, for each app considered in this study, we also send
them to VirusTotal [17] to check whether it is malicious or
not. VirusTotal is a free service that hosts over 50 anti-virus
products. In this work, we take a given app as malicious as
long as one of those anti-virus products hosted on VirusTotal
reports it as such.

Third, to harvest the inaccessible APIs that are leveraged
by Android apps, we present in this paper a simple but fast
approach, which first statically extracts all the constant strings
from a given Android app and then we match them with all the
inaccessible APIs. If there is a perfect match (both class and
method name), we select it as a candidate. For further details
on how reflective calls, which are used to access inacessible
APIs, are identified, we refer the reader to our recent work on
taming reflection in Android apps with DroidRA [18].

Finally, we consider a straightforward approach to infer the
features concerned by the APIs. Indeed, we rely on the naming
mechanism of Java packages and the implicit requirement for
them to be “meaningful” to derive the keywords representing
features. To that end, we preprocess the package names to split
them into a set of keywords from which we drop the common
terms such as com, org, android, etc., and directly consider
the remaining keywords as a description of a feature (e.g.,
telephony represent a given feature with its set of classes).

IV. EMPIRICAL FINDINGS

We now report on the findings of our empirical study with
regards to the research questions outline in Section I.

A. Significance of the phenomenon of Inaccesible APIs

Considering the source code base for the different API
levels under study, we investigate the evolution in the number
of Java methods that will be normally inaccessible once the
SDK development library is compiled. Figure 5 shows the
overall trend where hidden methods are found more and more
in the Android framework. Internal methods have also been
increasing until a significant decrease between API level 16
and API level 17. We investigate the reason for this decrease
and found that API level 17 came after a cleanup of telephony-
related internal methods, with a drop from 4,137 methods to
47 methods.

L4 L5 L6 L7 L8 L9 L10 L13 L14 L15 L16 L17 L18 L19 L21 L22 L23
INTERNAL 4122 4317 4352 4352 4552 5209 5294 5994 6497 6678 7091 3946 3774 3168 3879 3936 3717
HIDDEN 516 685 699 658 772 915 951 1205 1558 1602 1860 2072 2280 2621 4334 4503 5008

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

T
he

 n
um

be
r

of
 In

ac
ce

ss
ib

le
 m

et
ho

ds

Fig. 5: Trend of the number of inaccessible (internal + hidden)
methods in Android framework source code base.

In Figure 5, the data accounts for all methods, i.e., those
with Java qualifiers public and private, since all can
be reflectively accessed by third party apps, as illustrated in
Section II-B. Nevertheless, we show in Figure 6 that the ratio
of methods qualified as public is very high, and relatively
stable, among internal and hidden methods. In the remainder
of this paper, we refer to any hidden or internal method as an
API method which is inaccessible.

50%
55%
60%
65%
70%
75%
80%
85%
90%

L4 L5 L6 L7 L8 L9 L10 L13 L14 L15 L16 L17 L18 L19 L21 L22 L23

HIDDEN INTERNAL

Fig. 6: Ratios of inaccessible methods with Java public qualifier.

RQ1: Inaccessible APIs are continuously implemented in
the Android framework code base.

We further investigate whether the addition of new in-
accessible APIs is actually accompanied by a renewal of
existing ones. To that end we conduct two studies exploring the
removal rate of inaccessible APIs and the “life expectancy” of
an inaccessible API. For the first study, we perform pairwise
comparisons between two consecutive API level releases of
the Android framework. Table II indicates that, at every new
release, some API methods are removed from the framework

code base. The rate of inaccessible API removals range
between 0.09% and 62.91% for internal API methods and
between 0 and 15.56% for hidden API methods.

TABLE II: The number of removed inaccessible APIs for each
update.

Update Internal Hidden Total Update Internal Hidden Total
L4 → L5 179 36 215 L14 → L15 37 17 54
L5 → L6 4 0 4 L15 → L16 228 188 416
L6 → L7 6 54 60 L16 → L17 4461 215 4676
L7 → L8 165 80 245 L17 → L18 386 126 512
L8 → L9 354 8 362 L18 → L19 998 89 1087
L9 → L10 35 10 45 L19 → L21 353 245 598
L10 → L13 599 148 747 L21 → L22 66 144 210
L13 → L14 306 80 386 L22 → L23 960 346 1306

RQ2: There is no guarantee of forward compatibility when
using inaccessible APIs

10898

9145

7362

6559

5449
4934

3902
3247 3049 2928 2617

242 201 184 127 114
0

2000

4000

6000

8000

10000

12000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Fig. 7: Life expectancy of inaccessible APIs. Age corresponds to the
number of API level generations before an API method is removed
from the code base.

To compute the life expectancy of inaccessible APIs for the
second study, we check their ages when they are removed, i.e.,
the number of releases they survive on before being dropped
from the framework code base. We observe from the results in
Fig. 7 that most inaccessible API methods are removed early
after being introduced. Over 56% of inaccessible API methods
are removed on the subsequent update. In comparison only
9% of public accessible API methods are removed after one
update. If we consider the methods that are still remaining
in the framework since the beginning of Android, after 16
updates, there are only 2% (i.e., 114) of inaccessible methods,
whereas 44% of public accessible methods have stayed. Ac-
cording to these numbers, it is clear that the public accessible
APIs are more stable than inaccessible ones. However, over
50% of public accessible APIs are removed has also surprised
us, as we would expect that most of them need to stay in the
framework, in order to keep apps being backward-compatible.

We further look into this problem and find that Google
has introduced the so-called “support libraries” to solve the
backward-compatible problem [19]. More specifically, when
a feature F is no longer supported in the framework base
code, its implementing code is simply removed from the code
base. However, for some reasons, developers may still want
to support F for old Android versions. In this case, they have
to integrate a supporting library (e.g., a frequently used one is

android.support.v4) into their apps’ code, which contains the
implementing code of F that has previously been removed
from the framework base. Since the supporting library code
will be released along with the app code, the old-fashioned
features will work fine even if the running framework does
not support them anymore.

RQ3: The turn-over of inaccessible APIs is very high,
most of them being removed from the framework after a
few version updates.

B. Potential Impact of the use of Inaccessible APIs

We now investigate which features of Android system are
concerned with the prevalence of inaccessible APIs. Table III
summarizes top different features where the implementation of
inaccessible APIs are manipulated (i.e., either added, removed
or updated). We note that telephony-related inaccessible API
methods are the most updated over time.

TABLE III: Added, updated, and removed features of each SDK
update.

Update added updated removed
L4 → L5 webkit telephony, cdma gsm
L5 → L6 SlidingTab, DigitalClock widget view, telephony
L6 → L7 SignalStrength, widget, view - webkit, telephony, WebSettings
L7 → L8 util, content telephony widget, vcard
L8 → L9 policy, telephony, sip - awt, location, AndroidGraphics2D

L9 → L10 GsmSmsCbTest telephony, nfc policy
L10 → L13 view, widget telephony gsm, stk
L13 → L14 widget telephony, view policy
L14 → L15 gsm, UsimDataDownloadCommands telephony policy, ArrayListCursor
L15 → L16 widget, view telephony webkit, net
L16 → L17 policy, keyguard, keyguard obsolete - telephony, gsm, cdma
L17 → L18 util policy, view keyguard obsolete
L18 → L19 os policy keyguard, PagedView
L19 → L21 renderscript widget ActionBarImpl
L21 → L22 widget telephony, TelephonyManager SubscriptionManager
L22 → L23 os policy, widget PhoneWindowManager

Another means for characterizing the implications and im-
pact of the use of inaccessible APIs is to investigate the
permissions that govern them. Figure 8 shows how inaccessi-
ble APIs are increasingly protected by permissions. In recent
versions of the Android framework, we see that around 25% of
inaccessible API methods are guarded by system permissions
while it is the case for only less than 10% of openly accessible
API methods.

0%
5%

10%
15%
20%
25%
30%
35%
40%

L8 L10 L13 L14 L16 L17 L19 L21 L22

Inaccessible Accessible

Fig. 8: Ratios of inaccessible and accessible API methods whose
access is protected by Android system permissions.

We further look at the top permissions requested for in-
accessible API methods in each API level. Findings in Ta-

ble IV are noteworthy since some of the top permissions,
namely DUMP and MODIFY_PHONE_STATE, are also marked
in Android documentation as “Not for use by third-party
applications” [20].

TABLE IV: Permissions required for using inaccessible APIs.

API PSCout Total Distinct Top 2
Level Version Permissions Permissions Permissions

L8 mapping 2.2.3 1,410 29 WAKE LOCK, MODIFY PHONE STATE
L10 mapping 2.3.6 1,696 35 WAKE LOCK, BROADCAST STICKY
L13 mapping 3.2.2 2,249 35 WAKE LOCK, BROADCAST STICKY
L14 mapping 4.0.1 2,605 38 WAKE LOCK, MODIFY PHONE STATE
L16 mapping 4.1.1 1,128 16 DUMP, READ PHONE STATE
L17 mapping 4.2.2 864 8 DUMP, INTERNET
L19 mapping 4.4.4 760 7 DUMP, INTERACT ACROSS USERS
L21 mapping 5.0.2 948 7 DUMP, INTERACT ACROSS USERS
L22 mapping 5.1.1 938 7 DUMP, INTERACT ACROSS USERS

Finally, we check whether the set of permissions requested
for inaccessible API methods is requested in the same pro-
portion for accessible API methods. In this experiment, we
only concern the API methods implemented in the Android
release for API level 16 (i.e., android-4.1.1), which is the
release with the highest number of inaccessible methods. In
this release, there are 71 permissions in total. All of these
permissions have been required by accessible APIs, while only
16 (23%) of them are required by inaccessible APIs. This huge
difference suggests that there are only a specific set of features
of resources that are interested by inaccessible APIs (i.e., for
system apps).

RQ4: Inaccessible APIs only access a specific set of
features of resources, comparing to accessible APIs.

To study the overall stability of inaccessible API imple-
mentations we leverage the ChangeDistiller [21] tool on the
source code of the framework. We record changes at the
method level between releases of API levels. Figure 9 provides
the change rates between consecutive releases of methods.
We differentiate hidden methods and internal methods from
openly accessible methods. The histograms highlight the fact
that accessible API methods are significantly less subject to
invasive changes than hidden and internal API methods.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

L4->
L5

L5->
L6

L6->
L7

L7->
L8

L8->
L9

L9->
L10

L10
->L13

L13
->L14

L14
->L15

L15
->L16

L16
->L17

L17
->L18

L18
->L19

L19
->L21

L21
->L22

L22
->L23

Internal Hidden Accessible

Fig. 9: Change rate comparison between inaccessible and accessible
APIs. Hidden and Internal are the higher in 8 and 5 cases respectively,
while Accessible is only in 3 cases.

Since ChangeDistiller is a semantic differencer, its out-
put lists semantic change actions applied from one version
to another. Most changes of inaccessible API methods are

about adding (statement insert), removing (statement delete),
modifying (statement update) and moving statements (state-
ment parent change). Figure 10 enumerates top 20 change
types and the number of times they have occurred during
inaccessible API method evolutions.

1528
1736
1792
1995
3171
4288
4930
5632
6302
6517
6754
7736

10076
13631

16734
20347
21972

35684
71413

98022

0 20000 40000 60000 80000 100000 120000

PARAMETER_TYPE_CHANGE
COMMENT_MOVE

DOC_INSERT
PARAMETER_DELETE

ALTERNATIVE_PART_DELETE
ALTERNATIVE_PART_INSERT

PARAMETER_INSERT
COMMENT_DELETE

DOC_UPDATE
REMOVED_FUNCTIONALITY

REMOVED_OBJECT_STATE
COMMENT_INSERT

CONDITION_EXPRESSION_CHANGE
STATEMENT_ORDERING_CHANGE

ADDITIONAL_OBJECT_STATE
ADDITIONAL_FUNCTIONALITY
STATEMENT_PARENT_CHANGE

STATEMENT_UPDATE
STATEMENT_DELETE
STATEMENT_INSERT

Fig. 10: Top 20 change types of inaccessible methods.

RQ5: Overall inaccessible APIs, internal as well as hidden,
are more unstable than accessible APIs.

Finally we consider the evolution of inaccessible API meth-
ods to compare their probability of being removed against
their probability of becoming accessible. We focus on hidden
API methods as they are the most susceptible of later being
disclosed when they become stable. Figure 11 illustrates the
total number of inaccessible methods removed from the code
base against the number of those that have been disclosed for
normal access. From one API level to the next, hidden API
methods are more removed than made fully accessible.

36

0

54
80

8 10

148

80

17

188
215

126

89

245

144

346

15
0

51

15
0 0

20 15 9
32 33

7
24 35 29

97

0

50

100

150

200

250

300

350

400

L4->
L5

L5->
L6

L6->
L7

L7->
L8

L8->
L9

L9->
L10

L10
->L13

L13
->L14

L14
->L15

L15
->L16

L16
->L17

L17
->L18

L18
->L19

L19
->L21

L21
->L22

L22
->L23

Total Removed Become Accesssible

Fig. 11: Total removed hidden APIs VS. Disclosed hidden APIs.

RQ6: It’s more likely for an inaccessible API method to
be removed at the release of a new API level, than to be
made officially accessible in the compiled SDK development
library.

C. Adoption of inaccessible APIs by third-party app develop-
ers

We have found that 5.4% (i.e., 1269) third-party apps of
our dataset exploit inaccessible API methods in their code.

965 (i.e., 76%) of these apps were even distributed in the
official Google Play market. We note the readers that our
selected dataset is initially composed with 90% of Google
Play apps. The 14% (i.e., 90%-76%) decreasing indicates that
apps from the alternative markets (appChina, Anzhi, etc.) are
more favorable to access inaccessible APIs, comparing to such
ones that are distributed through Google Play store.

Figure 12 provides a boxplot of the number of inaccessible
methods used per app for the 1,269 apps. On average, each
app uses 3.13 inaccessible methods with a median value of 2.

1 2 3 4 5 6 7 8

Times

mean=3.13 times

Fig. 12: Number of inaccessible methods used in apps that exploit
such API methods.

RQ7: The official Google Play store maintainers during
app reviews has somehow allowed the proliferation of apps
leveraging inaccessible API methods in their code.

We further investigate the likelihood of a malicious app
to use inaccessible API in comparison with benign apps.
We found that 9% of the malicious1 apps in our dataset
actually use inaccessible methods, while this is the case for
only 5% of benign apps. Figure 13 summarizes the top used
API methods by malicious apps and benign apps. We note
that, aside from the Bluetooth Headset priority settings API
methods, top methods used in malicious apps discriminate
from top methods used in benign apps. Benign apps mostly
use inaccessible methods related to view functionalities.

RQ8: Inaccessible APIs with specific permission require-
ments leveraged by malicious apps are not always the same
as those used by benign apps.

During our investigation on inaccessible APIs, we have
found that some apps are actually leveraging a framework
called Xposed [22] to ease the implementation of accessing
inaccessible APIs. The Xposed Framework is proposed to
change the behavior of the system (e.g., through system-level
inaccessible APIs) without installing a new custom ROM,
which is the only way to achieve that kind of functionality
previously. In order to support customized features for third-
party apps, Xposed framework implements a module system,
where each module corresponds to a feature that developers
can choose. As an example, in Listing 2, the internal method
isRoamingBetweenOperators() is actually accessed by a mod-
ule of the Xposed framework.

In our experiments, we have found 168 apps that leverage
Xposed framework for inaccessible APIs. Among the 168

1We consider an app to be malicious when a single antivirus engine from
VirusTotal has flagged it as such.

15

16

18

18

27

27

29

31

32

32

0 5 10 15 20 25 30 35

com.android.internal.policy.PolicyManager.makeNewLayoutInflater

android.media.AudioManager.isSilentMode

android.webkit.WebSettings.getProperty

android.webkit.WebSettings.setProperty

android.bluetooth.BluetoothHeadset.connect

android.bluetooth.BluetoothHeadset.disconnect

android.content.res.AssetManager.addAssetPath

android.net.http.HttpResponseCache.update

android.bluetooth.BluetoothHeadset.getPriority

android.bluetooth.BluetoothHeadset.setPriority

(a) Malicious.

56

70

70

78

209

210

215

215

242

332

0 50 100 150 200 250 300 350

android.webkit.WebSettings.getProperty

android.view.View.dispatchFinishTemporaryDetach

android.view.View.dispatchStartTemporaryDetach

android.os.AsyncTask.init

android.bluetooth.BluetoothHeadset.disconnect

android.bluetooth.BluetoothHeadset.connect

android.bluetooth.BluetoothHeadset.getPriority

android.bluetooth.BluetoothHeadset.setPriority

android.view.View.debug

android.view.View.getDisplayList

(b) Benign.

Fig. 13: The top 10 used inaccessible APIs methods by our dataset apps.

apps, 13 of them are malicious while the majority remaining
155 apps are benign, suggesting that Xposed framework is not
dedicated to malicious apps, and tweaking the system (or app)
behaviors are also a choice for legitimated apps.

RQ9: Both malicious and benign apps are willing to use
generic framework to ease the implementation of accessing
inaccessible APIs.

We now consider the last research question to investigate
whether developers happen to use inaccessible APIs that are
likely to be openly accessible later. Fig. 14 represents two box-
plots: one related to the number of inaccessible API methods
invoked by third-party apps which then becomes accessible;
another one related to the number of inaccessible API methods
invoked by third-party apps which remains inaccessible. In the
first case, the median value is 1, whereas in the second case,
the median value is 3.

0 5 10 15 20

0 5 10 15 20

Fig. 14: Boxplot on the number of apps using inaccessible APIs that
are disclosed to be accessible (the above one) and are remained to
be inaccessible (the bottom one).

RQ10: Third-party app developers do not appear to take
into consideration whether an inaccessible API will become
accessible in future releases before using it. Instead, they are
simply interested in harnessing immediately the potential of
some sensitive APIs.

V. WHAT ALL THIS MEANS

We now discuss the exploratory implication of the evolution
of inaccessible APIs that our community could observe based
on this study. Section V-A focuses on the app development

and distribution model aspects, while Section V-B focuses on
the developer behaviour aspect.

A. App development and distribution model

a) the open source model of Android development creates
the opportunity for third-party app developers to see how the
code base evolves, and what features are available for system
apps. This in turn incites developers to search for ways to
leverage all APIs, whether allowed or not. Indeed, as our study
has shown, inaccessible APIs are widely used by third party
apps, although they are only published in the code base (not in
the API reference list). On the other hand, since Google open-
sourced the implementation of Android around 2009, there are
opportunities for any third-party developer to contribute to the
framework code base with new features and bug fixes that
will maintain it as a leading development platform for mobile
devices

b) Java and Dalvik bytecode format makes it easy for
developers to explore SDK library code compiled in Java
classes as well as system apps. There are even a number of
well know tools such as Soot [23] and dex2jar which allow
the translation of Android app bytecode into Java.

c) Java reflection, as already pointed out in several works,
remains challenging for static analysis [24], [25]. All data
in this study on the adoption of inacessible APIs by market
apps are extracted from the detection of reflective calls using
constant string analysis. Thus, in order to facilitate the analysis
of inaccessible APIs, there is a need to tackle reflection for An-
droid apps. To the best of our knowledge, however, reflection
has not yet been fully investigated in static analysis approches.
Recently, Barros et al. [26] proposed a strategy within their
Checker framework [27] to extract reflection-related values for
Android apps. We have also recently proposed an approach
based on modeling reflection as a constant propagation prob-
lem [18]. This approach however still presents limitations.
Therefore, researchers in the community should be encouraged
to put more effort on solving reflection problems and thus to
benefit the systematic analysis of inaccessible APIs.

d) App review is not strict, even on the official market.
For instance, we found a large number of apps using inac-
cessible APIs which are governed by permissions that are
clearly described as “not for use by third-party apps”. As
a comparison, Apple has released a vetting system to keep

apps from using “private” APIs that access to sensitive user
information. Considering the rigour by iOS app reviewers to
ban apps violating the rules, and the performance in terms of
malicious app removal, we advocate for more strict reviews
on Android markets to limit the use of inaccessible APIs. We
believe this is one of the first essential steps towards building
a safer Android ecosystem.

B. Developer behaviours

a) Use of inaccessible API is for short-term benefits. In the
realm of mobile development, the multitude of apps offering
the same services pushes app developers to take risks and seek
the immediate rewards of building fancy functionality based
on unstable, unreliable, and short-lived APIs (cf. RQ.10).

b) The usage of Inaccessible APIs can be learned from
others. Since there is no “official” documentation on how to
use inaccessible APIs, we are interested in how developers
obtain the skills of accessing inaccessible APIs. To this end,
we take each inaccessible API as a feature, which result in
341 features for every app. Then, we cluster them through the
Expectation-maximization (EM) algorithm [28], in an attempt
to investigate if there are correlations in terms of the usage of
inaccessible APIs among Android apps. As a result, our dataset
are categorized into 9 clusters, where each of them shows a
set of apps that share similar usage of inaccessible APIs. As
an example, the biggest cluster contains 944 apps, and all of
them have used the same four inaccessible APIs, which are
connect(), setPriority(), disconnect(), and getPriority() of class
android.bluetooth.BluetoothHeadset. This clustering suggests
that an experience in how to connect a bluetooth headset
to Android devices programmatically has been systematically
reused in hundreds of apps, without any documentation being
available for this task in the Android community.

VI. THREATS TO VALIDITY

First, our empirical findings are dependent on the validity of
the meta data that we collected as introduced in Section III-B.
For example, our permission-related findings are relying on
PSCout’s results. Although PSCout’s results have been widely
used, we have found that there are some strange behaviors
among their evolution. For example, as what we show in
Table IV, the results before and after L16 are quite different,
suggesting a potential bias due to tool malfunctioning errors.

Second, our findings are based on a selected subset of
releases of the Android framework source code base. The se-
lection introduces threats into the external validity, making our
results potentially not representative for the whole evolution
of Android framework base. To mitigate this threat, we have
taken into account nearly all the API levels of releases.

Third, our study on apps that use inaccessible APIs is based
on the constant strings that we can harvest from the apps,
which may cause false positives (the found class/method name
may not really be used in practice) and false negatives (i.e., our
results may not represent the full list of accessed inaccessible
APIs). Regarding false positives, we have manually sampled

20 apps and found that all of them have really accessed inac-
cessible APIs either through reflection or Xposed framework.
Regarding false negatives, to the best of our knowledge, we
believe our results can be improved by a thorough analysis on
the usage of reflective calls in Android apps [18], [29].

Forth, our app-based investigation is based on all the
code, including common libraries. As shown in our previous
work [30], the fact that common libraries are pervasive in
Android apps may impact our findings. Filtering out such
libraries could improve our results, we thus leave this part
as future work.

Finally, since our empirical study is conducted purely on
software artifacts (either framework base or apps), our findings
are supported by analyzing those artifacts alone and thus may
not reflect the opinions of developers. To mitigate this, in
our future work, we plan to contact developers for a more
comprehensive understanding on their motivation of using
inaccessible APIs.

VII. RELATED WORK

To the best of our knowledge, we are the first to investigate
the evolution of inaccessible Android APIs. However, there are
several works that have studied the general Android APIs. In
this section, we summarize them through permission, evolu-
tion, and documentation directions. In the end of this section,
we also discuss some related works tackling inaccessible APIs
in the iOS system.

API Permission. As an example, research works [16],
[31], [32] have investigated the mappings between Android
APIs and their permissions. As an example, Bartel et al. [31]
statically analyzing the framework source code base to extract
the mapping, in which they have introduced an advanced
class-hierarchy and field-sensitive set of analyses. Instead
of analyzing the framework code statically, Felt et al. [32]
presents a tool called Stowaway that leverages an automated
testing approach to dynamically extract the API to permission
mappings. Unlike the previously approaches, Au et al. [16]
present a tool called PSCout, which builds the mapping
through analyzing the Android permission specifications. All
of these approaches have built a mapping from APIs to
permissions and shown that it was quite common for Android
apps to be granted more permissions than they actually needed,
which are known as “permission gap”.

API Evolution. API evolution is a frequently researched
topic in the software maintenance field [33], [34]. McDonnell
et al. [35] have performed an empirical study on API stability
and adoption in Android, in which they show that Android
is evolving fast at a rate of 115 API updates per month on
average, while the average time taken to adopt new versions
is much longer comparing to fast evolving APIs. Linares et
al. [36], [37] investigated the relationships between the success
of Android apps and the SDK API changes. They empirically
found that more successful Android apps generally use APIs
that are less change-prone. In another direction, Linares et
al. have also shown that SDK API changes will trigger more
stack overflow discussions [38]. Our findings on inaccessible

APIs are overall in line with their findings, as the change
of inaccessible APIs may cause serious crashes, which will
consequently impact the app’s success and also prompt more
discussions on social medias.

API evolution has also been studied for many other plat-
forms. For example, Jezek et al. [7] investigated the API
changes and their impacts for Java programs. They have found
that API instability is common and will eventually cause
problems. As shown by Mastrangelo et al., although Java is a
relatively safe language, it does also support unsafe features
to go around its safety guarantees [39]. Hora et al. have also
studied how developers react to API evolution for the Pharo
system. Their findings further confirm that API evolution can
have a large impact on a software ecosystem in terms of
client systems, methods, and developers. Finally, Businge et
al. have performed several empirical investigations [8]–[10] on
the usage of unstable, discouraged and unsupported APIs of
the Eclipse platform, which shows that ill-designed APIs are
quite common in big systems.

API Documentation. Wang et al. [40] investigated the ob-
stacles of using Android APIs through analyzing API-related
posts regarding Android development from Stack Overflow, a
Q&A web site. Parnin et al. [41] also based on Stack Overflow
to investigate how these kind of Q&A web sites facilitate
crowd documentation. Their experimental results show that
the crowd is capable to generate a rich source of content on
the usage of APIs with code examples and discussion that
are actively viewed and used by many developers. Although
Stack Overflow has been shown useful for boosting the uses
of APIs, Subramanian et al. [42], however, have shown that
it could be further improved by linking its results to code
example-based sources such as Github, and thus to enhance
traditional API documentation with up-to-date source code
examples. Linares et al. [43] also performed an empirical study
on the usage of Android APIs. However, instead of focusing on
usage obstacles, they investigated the usage pattern of energy-
greedy APIs, attempting to answer the question whether the
anomalous energy consumption is unavoidable or is due to
sub-optimal usage or choice of APIs. Li et al. [44] empirically
investigated the parameter values of Android APIs. Their ex-
perimental results have shown that actually parameter values,
harvested from a large scale of apps, could be leveraged to
recommend practice usage of APIs.

Inaccessible APIs in iOS system. Like Android, there are
also a batch of inaccessible APIs in the iOS system, which
are usually referred as private APIs. Apple requires every iOS
app to go through a vetting process so as to prevent apps from
using private APIs that access to sensitive user information.
Recent attacks [45], [46] have shown the feasibility of using
private APIs without being detected during Apple’s app review
processes. To this end, Deng et al. [47] introduce an additional
vetting system called iRiS to conquer such attacks, which
leverages a fast static analysis approach to resolve common
API calls and an iterative dynamic analysis approach to further
resolve such APIs that cannot be resolved statically.

In this paper, we have found that, there is probably no

check for using inaccessible APIs in the Android field. As
an example, we have shown previously that some apps ac-
cessed “private” permissions, which are clearly marked in
the document as “Not for use by third-party applications”,
can still be published at Google Play store. Therefore, based
on the successful experience of Apple’s app review process
(although there are several exceptions), we believe that the
Android markets should also learn from Apple and thus to
prevent apps from using inaccessible APIs, as we have already
shown, it is quite risky as well for those apps themselves that
have accessed inaccessible APIs.

Reflection Resolution. As shown in this paper, inaccessible
APIs are mainly accessed through Java reflection, which
by itself has been investigated in several works [48], [49].
Most recently, as a complement of this work, we present
DroidRA [18], [29] to resolve reflective calls of Android apps
through constant string analysis. Regarding Java apps, Bodden
et al. [50] have presented TamiFlex for resolving reflections,
so as to boost static analyses. More recently, Li et al. introduce
a system called SOLAR, which is intended to perform sound
reflection analysis [51].

VIII. CONCLUSION

In this paper, we have performed an empirical study on the
evolution of inaccessible APIs of the Android framework base.
At first, we investigate the significance of the phenomenon
of inaccessible APIs, where we find that inaccessible APIs
are continuously implemented in the Android framework, and
there is actually no guarantee of forward compatibility when
using them. Besides, most inaccessible APIs will be removed
in a few version updates.

Second, we investigate the potential impact of the use of
inaccessible APIs. We have found that comparing to accessible
APIs, inaccessible APIs only access a specific set of features
of resources and are more unstable as well as more likely to
be removed at the release of a new API level, rather than to
be made publicly available in the compile SDK development
library.

Finally, we look into the adoption of inaccessible APIs
by third-party apps. Experimental results show that there are
many apps that are indeed accessing inaccessible APIs and the
usage are quite different between malicious and benign apps.
We have also found that some apps leverage a framework
called Xposed to ease their works of accessing inaccessible
APIs. Besides, it seems that developers are not appear to
taken into account the risks of removes of inaccessible APIs,
but instead, they are interested in harnessing immediately the
potential of inaccessible APIs. Last but not the least, unlike
Apple store, the Google play store does not have a vetting
system for the usage of inaccessible API methods.

ACKNOWLEDGMENTS

This work was supported by the Fonds National de la
Recherche (FNR), Luxembourg, under projects AndroMap
C13/IS/5921289 and Recommend C15/IS/10449467.

REFERENCES

[1] Fred Brooks. Addison-Wesley, 1975.
[2] AppBrain. Number of available android applications.

http://www.appbrain.com/stats/number-of-android-apps, 2015.
Accessed: 2016-08-01.

[3] Code examples using hidden android apis.
http://developer.sonymobile.com/2011/10/28/code-examples-using-
hidden-android-apis/. Accessed: 2016-08-01.

[4] Li Li, Tegawendé F Bissyandé, Mike Papadakis, Siegfried Rasthofer,
Alexandre Bartel, Damien Octeau, Jacques Klein, and Yves Le Traon.
Static analysis of android apps: A systematic literature review. Technical
report, SnT, 2016.

[5] Tegawendé F Bissyandé, Laurent Réveillère, Julia L Lawall, and Gilles
Muller. Diagnosys: automatic generation of a debugging interface to
the linux kernel. In Automated Software Engineering (ASE), 2012
Proceedings of the 27th IEEE/ACM International Conference on, pages
60–69. IEEE, 2012.

[6] Tegawendé F. Bissyandé, Laurent Réveillère, Julia L. Lawall, and Gilles
Muller. Ahead of time static analysis for automatic generation of de-
bugging interfaces to the linux kernel. Automated Software Engineering,
23(1):3–41, 2016.

[7] Kamil Jezek, Jens Dietrich, and Premek Brada. How java apis break–
an empirical study. Information and Software Technology, 65:129–146,
2015.

[8] John Businge, Alexander Serebrenik, and Mark van den Brand. Survival
of eclipse third-party plug-ins. In Software Maintenance (ICSM), 2012
28th IEEE International Conference on, pages 368–377. IEEE, 2012.

[9] John Businge, Alexander Serebrenik, and Mark van den Brand. An-
alyzing the eclipse api usage: Putting the developer in the loop. In
Software Maintenance and Reengineering (CSMR), 2013 17th European
Conference on, pages 37–46. IEEE, 2013.

[10] John Businge, Alexander Serebrenik, and Mark GJ van den Brand.
Eclipse api usage: the good and the bad. Software Quality Journal,
23(1):107–141, 2015.

[11] ios apps caught using private apis.
https://sourcedna.com/blog/20151018/ios-apps-using-private-apis.html.
Accessed: 2016-08-01.

[12] Dashboards android developers. https://developer.android.com/about/
dashboards/index.html. Accessed: 2016-08-01.

[13] Best apps market. http://www.bestappsmarket.com. Accessed: 2016-08-
01.

[14] Android framework classes and services.
https://android.googlesource.com/platform/frameworks/base.git.
Accessed: 2016-08-01.

[15] Kevin Allix, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon.
Androzoo: Collecting millions of android apps for the research commu-
nity. In MSR, 2016.

[16] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. Pscout:
analyzing the android permission specification. In Proceedings of the
2012 ACM conference on Computer and communications security, CCS
’12, pages 217–228, New York, NY, USA, 2012. ACM.

[17] Virustotal. https://www.virustotal.com. Accessed: 2016-08-01.
[18] Li Li, Tegawendé F Bissyandé, Damien Octeau, and Jacques Klein.

Droidra: Taming reflection to support whole-program analysis of android
apps. In The 2016 International Symposium on Software Testing and
Analysis (ISSTA 2016), 2016.

[19] Support library android developers.
https://developer.android.com/topic/libraries/support-library/index.html.
Accessed: 2016-08-01.

[20] Manifest permission android developers.
https://developer.android.com/reference/android/Manifest.permission.html.
Accessed: 2016-08-01.

[21] Beat Fluri, Michael Wursch, Martin PInzger, and Harald C Gall.
Change distilling: Tree differencing for fine-grained source code change
extraction. Software Engineering, IEEE Transactions on, 33(11):725–
743, 2007.

[22] Xposed module repository. http://repo.xposed.info. Accessed: 2016-08-
01.

[23] Patrick Lam, Eric Bodden, Ondrej Lhoták, and Laurie Hendren. The
soot framework for java program analysis: a retrospective. In Cetus
Users and Compiler Infastructure Workshop (CETUS 2011), 2011.

[24] Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, Yves
Le Traon, Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien

Octeau, and Patrick Mcdaniel. IccTA: Detecting Inter-Component
Privacy Leaks in Android Apps. In ICSE, 2015.

[25] Damien Octeau, Somesh Jha, Matthew Dering, Patrick Mcdaniel,
Alexandre Bartel, Li Li, Jacques Klein, and Yves Le Traon. Combining
static analysis with probabilistic models to enable market-scale android
inter-component analysis. In Proceedings of the 43th Symposium on
Principles of Programming Languages (POPL 2016), 2016.

[26] Paulo Barros, René Just, Suzanne Millstein, Paul Vines, Werner Dietl,
Marcelo d’Armorim, and Michael D. Ernst. Static analysis of implicit
control flow: Resolving java reflection and android intents. In Proceed-
ings of the IEEE/ACM International Conference on Automated Software
Engineering, ASE, Lincoln, Nebraska, 2015.

[27] Michael D. Ernst, René Just, Suzanne Millstein, Werner Dietl, Stuart
Pernsteiner, Franziska Roesner, Karl Koscher, Paulo Barros, Ravi Bho-
raskar, Seungyeop Han, Paul Vines, and Edward X. Wu. Collaborative
verification of information flow for a high-assurance app store. In Pro-
ceedings of the 21st ACM Conference on Computer and Communications
Security (CCS), pages 1092–1104, Scottsdale, AZ, USA, November 4–6,
2014.

[28] Tood K Moon. The expectation-maximization algorithm. Signal
processing magazine, IEEE, 13(6):47–60, 1996.

[29] Li Li, Tegawendé F Bissyandé, Damien Octeau, and Jacques Klein.
Reflection-aware static analysis of android apps. In Proceedings of
the 31st IEEE/ACM International Conference on Automated Software
Engineering, Tool Demonstration Track, 2016.

[30] Li Li, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon. An
investigation into the use of common libraries in android apps. In The
23rd IEEE International Conference on Software Analysis, Evolution,
and Reengineering (SANER 2016), 2016.

[31] Alexandre Bartel, Jacques Klein, Martin Monperrus, and Yves Le Traon.
Static analysis for extracting permission checks of a large scale frame-
work: The challenges and solutions for analyzing android. Software
Engineering, IEEE Transactions on, 40(6):617–632, 2014.

[32] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David
Wagner. Android permissions demystified. In Proceedings of the 18th
ACM conference on Computer and communications security, pages 627–
638. ACM, 2011.

[33] Meiyappan Nagappan and Emad Shihab. Future trends in software
engineering research for mobile apps. In The 23rd IEEE International
Conference on Software Analysis, Evolution, and Reengineering (SANER
2016), 2016.

[34] William Martin, Federica Sarro, Yue Jia, Yuanyuan Zhang, and Mark
Harman. A survey of app store analysis for software engineering. RN,
16:02, 2016.

[35] Tyler McDonnell, Bonnie Ray, and Miryung Kim. An empirical study
of api stability and adoption in the android ecosystem. In Software
Maintenance (ICSM), 2013 29th IEEE International Conference on,
pages 70–79. IEEE, 2013.

[36] Mario Linares-Vásquez, Gabriele Bavota, Carlos Bernal-Cárdenas, Mas-
similiano Di Penta, Rocco Oliveto, and Denys Poshyvanyk. Api change
and fault proneness: A threat to the success of android apps. In
Proceedings of the 2013 9th joint meeting on foundations of software
engineering, pages 477–487. ACM, 2013.

[37] Gabriele Bavota, Mario Linares-Vasquez, Carlos Eduardo Bernal-
Cardenas, Massimiliano Di Penta, Rocco Oliveto, and Denys Poshy-
vanyk. The impact of api change-and fault-proneness on the user
ratings of android apps. Software Engineering, IEEE Transactions on,
41(4):384–407, 2015.

[38] Mario Linares-Vásquez, Gabriele Bavota, Massimiliano Di Penta, Rocco
Oliveto, and Denys Poshyvanyk. How do api changes trigger stack
overflow discussions? a study on the android sdk. In proceedings of
the 22nd International Conference on Program Comprehension, pages
83–94. ACM, 2014.

[39] Luis Mastrangelo, Luca Ponzanelli, Andrea Mocci, Michele Lanza,
Matthias Hauswirth, and Nathaniel Nystrom. Use at your own risk: The
java unsafe api in the wild. ACM SIGPLAN Notices, 50(10):695–710,
2015.

[40] Wei Wang and Michael W Godfrey. Detecting api usage obstacles:
A study of ios and android developer questions. In Mining Software
Repositories (MSR), 2013 10th IEEE Working Conference on, pages
61–64. IEEE, 2013.

[41] Chris Parnin, Christoph Treude, Lars Grammel, and Margaret-Anne
Storey. Crowd documentation: Exploring the coverage and the dynamics
of api discussions on stack overflow. Georgia Institute of Technology,
Tech. Rep, 2012.

[42] Siddharth Subramanian, Laura Inozemtseva, and Reid Holmes. Live api
documentation. In Proceedings of the 36th International Conference on
Software Engineering, pages 643–652. ACM, 2014.

[43] Mario Linares-Vásquez, Gabriele Bavota, Carlos Bernal-Cárdenas,
Rocco Oliveto, Massimiliano Di Penta, and Denys Poshyvanyk. Mining
energy-greedy api usage patterns in android apps: an empirical study.
In Proceedings of the 11th Working Conference on Mining Software
Repositories, pages 2–11. ACM, 2014.

[44] Li Li, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon.
Parameter Values of Android APIs: A Preliminary Study on 100,000
Apps. In Proceedings of the 23rd IEEE International Conference on
Software Analysis, Evolution, and Reengineering (SANER 2016), 2016.

[45] Jin Han, Su Mon Kywe, Qiang Yan, Feng Bao, Robert Deng, Debin
Gao, Yingjiu Li, and Jianying Zhou. Launching generic attacks on ios
with approved third-party applications. In Applied Cryptography and
Network Security, pages 272–289. Springer, 2013.

[46] Tielei Wang, Kangjie Lu, Long Lu, Simon P Chung, and Wenke Lee.
Jekyll on ios: When benign apps become evil. In Usenix Security,
volume 13, 2013.

[47] Zhui Deng, Brendan Saltaformaggio, Xiangyu Zhang, and Dongyan Xu.
iris: Vetting private api abuse in ios applications. In Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications
Security, pages 44–56. ACM, 2015.

[48] Karim Ali and Ondřej Lhoták. Averroes: Whole-program analysis
without the whole program. In European Conference on Object-Oriented
Programming, pages 378–400. Springer, 2013.

[49] Yinzhi Cao, Yanick Fratantonio, Antonio Bianchi, Manuel Egele,
Christopher Kruegel, Giovanni Vigna, and Yan Chen. Edgeminer:
Automatically detecting implicit control flow transitions through the
android framework. In NDSS, 2015.

[50] Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati, and Mira
Mezini. Taming reflection: Aiding static analysis in the presence
of reflection and custom class loaders. In Proceedings of the 33rd
International Conference on Software Engineering, pages 241–250.
ACM, 2011.

[51] Yue Li, Tian Tan, and Jingling Xue. Effective soundness-guided
reflection analysis. In International On Static Analysis, pages 162–180.
Springer, 2015.

