
Supporting Change in Product Lines within the Context of
Use Case-Driven Development and Testing

Ines Hajri
(Supervisors: Arda Goknil and Lionel C. Briand)

SnT Centre for Security, Reliability and Trust
University of Luxembourg, Luxembourg

ines.hajri@uni.lu

ABSTRACT
Product Line Engineering (PLE) is becoming a common
practice in industry to enhance product quality, to reduce
development costs, and to improve time-to-market. At the
same time, many development contexts are use case-driven
and this strongly influences their requirements engineering
and system testing practices. In this PhD project, we aim
to achieve automated and effective change management in a
product family within the context of use case-driven devel-
opment and system testing. To this end, we first provide a
modeling method for capturing variability information ex-
plicitly in Product Line (PL) use case and domain models.
Then, we propose an automated configuration approach to
automatically generate Product Specific (PS) use case and
domain models from PL models. In addition, we plan to
provide a change impact analysis approach for PL use case
and domain models and automated regression test selection
for system test cases derived from PL use case models.

CCS Concepts
•Software and its engineering → Software product
lines;

Keywords
Product Line Engineering, Use Case-Driven Development,
Change Impact Analysis, Regression Test Selection

1. INTRODUCTION AND RESEARCH
PROBLEM

Product Line Engineering (PLE) is a crucial practice in
many software development environments where systems are
complex and developed for multiple customers with varying
needs. At the same time, many business contexts are use
case-driven where use cases are the main artifacts driving
requirements elicitation and many other development activ-
ities [29]. This is also the case for our industrial partner

IEE S.A. [1], a leading supplier of embedded systems in
the automotive domain. This PhD project is motivated by
the discussions with IEE which aims to adopt PLE in its
software development practice. The current development
practice at IEE is use case-driven and based on clone-and-
own reuse [10]. IEE starts a new product with an initial
customer. IEE analysts elicit requirements as use case and
domain models. Then, they derive system test cases from
the use case models for the initial customer. For each new
customer of the product, the IEE analysts need to clone the
current models, and negotiate variabilities with the customer
to produce new use case and domain models, and to derive
and select new system test cases from the updated use cases
(i.e., change management for use cases and regression test
selection for system test cases). With such practice, the IEE
analysts loose track of commonalities and variabilities across
products. They, together with the customer, need to evaluate
the entire use cases, domain model and test cases.

The clone-and-own reuse practice is fully manual, error-
prone and time-consuming in industrial settings, which leads
to ad-hoc change management for use cases, domain mod-
els and test cases in the context of product lines since the
variability information is not explicitly represented.

The need for supporting PLE in the context of use case-
driven development and regression test selection has been
already acknowledged in the literature [4, 13, 12, 14, 31].
Most of the existing approaches introduce feature modeling
into practice, including establishing and maintaining traces
between feature models and use case models [16, 15, 19, 20,
11, 3]. Due to limited resources, many software development
companies find such additional traceability and maintainabil-
ity effort to be impractical. In addition, most approaches
do not provide automated support for use case evolution in
a product family in terms of change impact analysis and
system regression testing.

We aim, in this PhD project, to provide automated support
for the change management of use case models and regression
test selection in a product family.

2. RELATED WORK
Many proposed use case-driven configuration approaches [5,

6, 16, 18, 17, 2] require that feature models be traced to
use case diagrams and specifications. The analysts need
to establish traces between feature models and use cases.
The evolution of feature models and use cases also requires
these traces to be maintained manually [7]. There are ap-
proaches [32, 27, 9, 25] that study the evolution of feature
models but they do not address the impact of changes of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/78371292?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


variability information on use case models. In addition, in
many software development environments, such a traceability
and modeling overhead may not be acceptable, as it is the
case at IEE. Most of the regression testing approaches in
the literature focus on changes in design [8, 28], and source
code [24, 26]. In contrast, our PhD project is focused on
system test cases where requirements changes are regression
tested within the context of product lines.

3. PROPOSED SOLUTION
Our goal is to provide approaches and their accompanying

tools to achieve automated, effective change management
and regression test selection for a family of products within
the context of use case-driven development and testing.

To accomplish this goal, our proposal is divided into four
pillars: (1) a modeling method in which variability infor-
mation is explicitly represented in Product Line (PL) use
case diagrams, specifications and domain models without any
feature model, (2) an automated configuration approach to
generate Product Specific (PS) use case and domain models
from PL models and configuration decisions, (3) a change
impact analysis approach for evolving configuration decisions
and for evolving PL models, and (4) an automated regression
test selection approach for a family of products.

4. EXPECTED CONTRIBUTIONS
A product line use case modeling method. Our moti-

vation is to rely, to the largest extent possible, on common
practices to achieve widespread applicability and to mini-
mize the modeling overhead. The method integrates and
builds on existing work and captures variability in PL use
case and domain models at a level of granularity enabling
both precise communication and guidance for the product
configuration. It needs to be supported by a tool which
automatically confirms the consistency of PL use case and
domain models.

A configuration approach for use case-driven devel-
opment. In order to facilitate use case-driven configuration
in industrial practice, the configuration approach should
provide a high degree of automation while the analysts are
interactively guided for their decisions. With the interactive
guidance and the proper tool support, the analysts can make
decisions and resolve decision contradictions, which leads to
the automatic generation of PS use case and domain models.

A change impact analysis approach for PL use case
and domain models. Change can occur both in configu-
ration decisions and variability aspects of PL models. For
decision changes in a product, the impact on other decisions
needs to be assessed and the reconfiguration should be con-
sidered in the PS models. To this end, we plan to develop a
change impact analysis approach to identify impacted con-
figuration decisions and parts of PS models that need to
be reconfigured when the PL models and the configuration
decisions evolve.

A regression test selection approach for product lines.
Regression test selection is a particular application of change
impact analysis, that consists in choosing, from an exist-
ing test set, test cases that can and need to be rerun to
ensure existing, unmodified functionalities are still working
correctly [8]. When requirements evolve in a product family,
the change impact on the execution of system test cases
derived from these requirements need to be assessed. We
plan to provide an automated regression test selection ap-

proach for system test cases derived from use case models.
For system test cases and their traces to use case models,
we plan to rely on the Use Case Modeling for System Tests
Generation approach (UMTG) [29, 30], that automatically
generates executable system test cases from PS use case and
domain models.

5. CURRENT RESULTS
At this stage, the first two pillars have been achieved.
Product line use case modeling method. We proposed,

applied, and assessed the Product line Use case modeling
Method (PUM) to support variability modeling in PL use
case diagrams, specifications, and domain models [21], with-
out making use of feature models, thus avoiding unnecessary
modeling overhead. PUM adopts existing PL extensions for
use case diagrams [23] and domain models [34]. For model-
ing variability in use case specifications, we introduced new
product line extensions for the Restricted Use Case Modeling
method (RUCM) [33]. PUM is supported by a tool relying on
Natural Language Processing (NLP) to check the consistency
of PL use case and domain models.

Use case-driven configuration. We proposed, applied,
and assessed a use case-driven configuration approach based
on our modeling method (PUM) [22]. The approach sup-
ports three activities. First, the analyst is guided to make
configuration decisions in an appropriate order. Second, the
consistency of configuration decisions is ensured by automat-
ically identifying contradicting decisions. Third, PS use case
and domain models are automatically generated from PL
models and configuration decisions. Our approach is sup-
ported by a tool, PUMConf, relying on NLP and integrated
with IBM DOORS.

6. PLAN FOR EVALUATION AND
VALIDATION

We plan to assess the proposed approaches and tools in
terms of feasibility, adoption effort, expressiveness, and com-
parison with current practice. To this end, we rely on report-
ing industrial case studies and questionnaire studies in close
collaboration with our industrial partner IEE. Moreover, we
have delivered tutorials and plan to continue to do so in
order to help IEE adopt the proposed approaches and the
accompanying tools in their development context.

The evaluation started with the first two pillars of our
research program. For instance, we evaluated the feasibil-
ity of our configuration approach in an industrial context
via reporting (i) an industrial case study, i.e., Smart Trunk
Opener (STO) developed by IEE, to demonstrate its feasi-
bility and (ii) the results of a questionnaire based survey at
IEE to investigate how the configuration tool is perceived to
improve industrial practice. Results from the questionnaires
suggest that our approach is practical and beneficial to cap-
ture variability and to configure PS use case and domain
models in industrial settings.

We further plan to conduct an empirical study for our
regression test selection approach and a user study to assess
the practicality and usability of our tools.

Acknowledgments
I gratefully acknowledge my PhD supervisors, Lionel C.
Briand and Arda Goknil, for their guidance and support.
I acknowledge financial support from IEE and FNR under
grants FNR/P10/03 and FNR10045046.



7. REFERENCES
[1] IEE (International Electronics & Engineering) S.A.,

http://www.iee.lu/.

[2] pure::variants, http:
//www.pure-systems.com/pure variants.49.0.html.

[3] M. Alférez, J. Santos, A. Moreira, A. Garcia,
U. Kulesza, J. Araújo, and V. Amaral. Multi-view
composition language for software product line
requirements. In SLE’09, pages 103–122, 2009.

[4] V. Alves, N. Niu, C. Alves, and G. Valença.
Requirements engineering for software product lines: A
systematic review. Information and Software
Technology, 52:806–820, 2010.

[5] R. Bonifácio and P. Borba. Modeling scenario
variability as croscutting mechanisms. In AOSD’09,
pages 125–136, 2009.

[6] R. Bonifácio, P. Borba, and S. Soares. On the benefits
of scenario variability as croscutting. In EA-AOSD’08,
pages 1–6, 2008.

[7] G. Botterweck and A. Pleuss. Evolution of software
product lines. Evolving Software Systems, 2014.

[8] L. C. Briand, Y. Labiche, and S. He. Automating
regression test selection based on UML designs.
Information and Software Technology, 51(1):16–30,
2009.

[9] J. Burdek, T. Kehrer, M. Lochau, D. Reuling,
U. Kelter, and A. Schurr. Reasoning about product-line
evolution using complex feature model differences.
Automated Software Engineering, 2015.

[10] P. Clements and L. Northrop. Software Product Lines:
Practices and Patterns. Addison-Wesley, 2001.

[11] K. Czarnecki and M. Antkiewicz. Mapping features to
models: A template approach based on superimposed
variants. In GPCE’05, pages 422–437, 2005.

[12] E. Engstrom. Regression test selection and product line
system testing. In ICST’10, pages 512–515, 2010.

[13] E. Engstrom and P. Runeson. Software product line
testing - a systematic mapping study. Information and
Software Technology, 53:2–13, 2011.

[14] E. Engstrom, P. Runeson, and M. Skoglund. A
systematic review on regression test selection
techniques. Information and Software Technology,
52(1):14–30, 2010.

[15] M. Eriksson, J. Borstler, and A. Asa. Marrying features
and use cases for product line requirements modeling of
embedded systems. In SERPS’04, pages 73–82, 2004.

[16] M. Eriksson, J. Borstler, and K. Borg. The pluss
approach - domain modeling with features, use cases
and use case realizations. In SPLC’05, pages 33–44,
2005.

[17] M. Eriksson, J. Borstler, and K. Borg. Managing
requirements specifications for product lines - an
approach and industry case study. Journal of Systems
and Software, 82:435–447, 2009.

[18] M. Eriksson, H. Morast, J. Borstler, and K. Borg. The
pluss toolkit - extending telelogic doors and
ibm-rational rose to support product line use case
modeling. In ASE’05, pages 300–304, 2005.

[19] A. Fantechi, S. Gnesi, I. John, G. Lami, and J. Dorr.
Elicitation of use cases for product lines. In PFE’03,
pages 152–167, 2004.

[20] A. Fantechi, S. Gnesi, G. Lami, and E. Nesti. A
methodology for the derivation and verification of use
cases for product lines. In SPLC’04, pages 255–265,
2004.

[21] I. Hajri, A. Goknil, L. C. Briand, and T. Stephany.
Applying product line use case modeling in an
industrial automotive embedded system: Lessons
learned and a refined approach. In MODELS’15, pages
338–347, 2015.

[22] I. Hajri, A. Goknil, L. C. Briand, and T. Stephany.
Configuring use case models in product families.
Software & Systems Modeling, pages 1–33, 2016.

[23] G. Halmans and K. Pohl. Communicating the
variability of a software-product family to customers.
Software & Systems Modeling, 2:15–36, 2003.

[24] M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso,
M. Pennings, S. Sinha, S. A. Spoon, and A. Gujarathi.
Regression test selection for java software. In
OOPSLA’01, pages 312–326, 2001.

[25] A. Pleuss, G. Botterweck, D. Dhungana, A. Polzer, and
S. Kowalewski. Model-driven support for product line
evolution on feature level. Journal of Systems and
Software, 85:2261–2274, 2012.

[26] G. Rothermel, M. J. Harrold, and J. Dedhia.
Regression test selection for c++ software. Software
Testing, Verification and Reliability, 10(2):77–109, 2000.

[27] T. Thum, D. Batory, and C. Kastner. Reasoning about
edits to feature models. In ICSE’09, pages 254–264,
2009.

[28] Y. L. Traon, T. Jeron, J.-M. Jezequel, and P. Morel.
Efficient object-oriented integration and regression
testing. IEEE Transactions on Reliability, 49(1):12–25,
2000.

[29] C. Wang, F. Pastore, A. Goknil, L. C. Briand, and
M. Z. Z. Iqbal. Automatic generation of system test
cases from use case specifications. In ISSTA’15, pages
385–396, 2015.

[30] C. Wang, F. Pastore, A. Goknil, L. C. Briand, and
M. Z. Z. Iqbal. UMTG: a toolset to automatically
generate system test cases from use case specifications.
In ESEC/SIGSOFT FSE’15, pages 942–945, 2015.

[31] S. Wang, S. Ali, A. Gotlieb, and M. Liaaen. Automated
product line test case selection: Industrial case study
and controlled experiment. Software & Systems
Modeling, 2015.

[32] J. White, J. A. Galindo, T. Saxena, B. Dougherty,
D. Benavides, and D. C. Schmidt. Evolving feature
model configurations in software product lines. Journal
of Systems and Software, pages 119–136, 2014.

[33] T. Yue, L. C. Briand, and Y. Labiche. Facilitating the
transition from use case models to analysis models:
Approach and experiments. ACM Transactions on
Software Engineering and Methodology, 22(1), 2013.

[34] T. Ziadi and J.-M. Jezequel. Product line engineering
with the uml: Deriving products. In Software Product
Lines. Springer, 2006.


