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Abstract—We propose a novel approach for enhancing depth videos containing non-rigidly deforming objects. Depth sensors are

capable of capturing depth maps in real-time but suffer from high noise levels and low spatial resolutions. While solutions for

reconstructing 3D details in static scenes, or scenes with rigid global motions have been recently proposed, handling unconstrained

non-rigid deformations in relative complex scenes remains a challenge. Our solution consists in a recursive dynamic multi-frame super-

resolution algorithm where the relative local 3D motions between consecutive frames are directly accounted for. We rely on the

assumption that these 3D motions can be decoupled into lateral motions and radial displacements. This allows to perform a simple

local per-pixel tracking where both depth measurements and deformations are dynamically optimized. The geometric smoothness is

subsequently added using a multi-level L1 minimization with a bilateral total variation regularization. The performance of this method is

thoroughly evaluated on both real and synthetic data. As compared to alternative approaches, the results show a clear improvement in

reconstruction accuracy and in robustness to noise, to relative large non-rigid deformations, and to topological changes. Moreover, the

proposed approach, implemented on a CPU, is shown to be computationally efficient and working in real-time.

Index Terms—Depth enhancement, super-resolution, non-rigid deformations, registration, Kalman filtering, bilateral total variation
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1 INTRODUCTION

SENSING using 3D technologies, structured light cameras
or time-of-flight (ToF) cameras, has seen a revolution in

the past years where sensors such as the Microsoft Kinect
version 1 and 2 are today part of accessible consumer elec-
tronics [1]. The ability of these sensors in directly capturing
depth videos in real-time has opened tremendous possibili-
ties for applications in gaming, robotics, surveillance, health
care, etc. These sensors, unfortunately, have major short-
comings due to their high noise contamination, including
missing and jagged measurements, and their low spatial
resolutions. This makes it impossible to capture detailed 3D
features indispensable for many 3D computer vision algo-
rithms. The face data in Fig. 1a is an example of such chal-
lenging raw depth measurements. Running a traditional
face recognition algorithm on this type of data would result
in a very low recognition rate [2], [3], [4].

Some solutions have been proposed in the literature for
recovering these details but mostly in the context of static 3D
scene scanning, with LidarBoost [5] and its extension [6] and
KinectFusion [7] being the most known methods. The current
major challenge is when the object or objects in the scene are

subject to non-rigid deformations. Indeed, LidarBoost and
KinectFusion are rigid depth fusion approaches, and they
immediately fail in providing any reasonable result on non-
rigidly deforming scenes, the focus of this paper.

In [8], [9], [10], we proposed the UP-SR algorithm, which
stands for Upsampling for Precise Super-Resolution, as the first
dynamic multi-frame depth video super-resolution (SR) algo-
rithm that can enhance depth videos containing non-rigidly
deforming scenes without any prior assumption on the num-
ber of moving objects they contain or on the topology of these
objects. These advantages were possible thanks to a direct
processing on depth maps without using connectivity infor-
mation inherent to meshing as used in subsequent methods,
namely, KinectDeform [11] and DynamicFusion [12]. The UP-
SR algorithm is, however, limited to lateral motions as it only
computes 2D dense optical flow but does not account for the
full motion in 3D, known as scene flow, or the 2.5D motion,
known as range flow. It consequently fails in the case of radial
deformations. Moreover, it is not practical because of a heavy
cumulativemotion estimation process applied to a number of
frames buffered in thememory.

This paper presents a solution that improves over the
UP-SR algorithm by keeping its advantages and solving its
two limitations–not considering 3D motions and using an
inefficient cumulative motion estimation. The proposed
solution is based on the assumption that the 3D motion of a
point can be approximated by decoupling the radial compo-
nent from the lateral ones. This approximation allows
the handling of non-rigid deformations while reducing the
computational complexity associated with an explicit
full 3D motion estimation at each point. Moreover, a recur-
sive depth multi-frame SR is formulated by replacing UP-
SR’s cumulative motion estimation with a point-tracking
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operation locally at each pixel. Similarly to earlier
approaches for a recursive SR [13], [14], [15], [16], we use a
Kalman filter for tracking except that we treat each pixel
separately as opposed to considering the full image. As a
result, the proposed solution efficiently runs multiple Kal-
man filters in parallel on local depth values and on their
radial displacements. A subsequent processing is required in
order to recover the smoothness property of a depth map
and correct the artifacts caused by this per-pixel filtering. To
that end, we propose a multi-level version of the L1 minimi-
zation with a bilateral total variation (BTV) regularization
originally given in [17]. The proposed algorithm leads to a
new approach for estimating range flow by pixel tracking
with a Kalman filter. It is important to note that while this
flow contributes in handling non-rigid deformations in 3D,
the effectiveness of the proposed SR algorithm comes from
how this flow is employed in the UP-SR reconstruction
framework. Indeed, merely applying the estimated range
flow in another depth SR method does not give satisfactory
results. An overview of the proposed algorithm, named
recUP-SR, is given in Fig. 2. A first visual illustration of the
performance of the proposed algorithm on a low quality
depth video of a highly non-rigidly deforming face is given
in Fig. 1e. In summary, the contribution of this paper is a
new mutli-frame depth SR algorithm which has the follow-
ing properties: 1) Accuracy in depth video reconstruction.
2) Robustness to non-rigid deformations and to noise.
3) Robustness to topological changes. 4) Independence of the
number of moving objects in the scene. 5) Real-time imple-
mentation on a CPU. This paper is an extended version

of [18] with additional theoretical details and clarifications
explaining the transition from the earlierUP-SR algorithm to
the recUP-SR algorithm proposed herein, and an extended
explanation of the proposed multi-level iterative deblurring.
A significantly extended experimental part is also provided
containing original analyses based on new results.

The remainder of the paper is organized as follows:
Section 2 gives an overview of the different categories of
depth enhancement approaches and a review of range flow
algorithms. Section 3 formulates the problem of depth video
SR and describes the necessary background on UP-SR. The
proposed recursive depth video SR algorithm is presented
in Section 4. Experimental evaluations are presented and
discussed in Section 5. Finally, the conclusion is given in
Section 6.

2 RELATED WORK

Three categories of approaches for the enhancement of
depth videos containing non-rigid deformations may be dis-
tinguished as detailed below.

2.1 Multi-Modal Fusion Approaches

This category of methods is based on the assumption that
there is a correspondence between the edges of a depth map
and the edges of another modality of a better quality, often
chosen to be a 2D intensity image of the same scene [19],
[20], [21], [22], [23], [24], [26]. Such an image is considered
to be a guidance image whose properties, in terms of struc-
ture, signal to noise ratio (SNR) and resolution, can be

Fig. 1. Results of different SR methods for a scale factor of r ¼ 4 applied to a low resolution dynamic depth video captured with a ToF camera at a
rate of 50 frames per ms. (a) Raw frame, (b) Bicubic interpolation, (c) SISR [31], (d) UP-SR [8], (e) Proposed recUP-SR. Units are in mm.

Fig. 2. Flow chart of recUP-SR: A new multi-frame depth super-resolution algorithm for dynamic depth videos of non-rigidly deforming objects.
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transferred to its corresponding depth map in order to
obtain an enhanced version. Diebel and Thrun proposed the
first work in this category [19]. Their approach consists in a
multiresolutional Markov Random Field (MRF) defined to
integrate both modalities, depth and 2D intensity, and used
to estimate a depth map of the same resolution as the reso-
lution of the intensity image. In 2007, Kopf et al. [20] and
Yang et al. [21] proposed the concept of joint bilateral
upsampling (JBU), which is an adapted version of the bilat-
eral filter [27] for fusing a low resolution (LR) depth map
with a high resolution (HR) 2D image. In [22], [26], the JBU
multi-modal filter was extended to considering not only a
2D image as a guidance image but also the depth map itself.
These weighting-based filters may be viewed as implicit
guided regularization approaches. In an explicit guided reg-
ularization approach, a regularization function that trans-
lates the prior properties of a guidance image is added to a
data fidelity term to form a cost function to be optimized as
in [28], [30]. These more sophisticated approaches are as of
today the most effective ones in the category of multi-modal
fusion. Another variant in this category are methods using
passive stereo imaging in combination with low quality
active depth sensors [23]. However, besides the fact that all
approaches in this category require an additional camera,
they are also highly dependent on the assumption of corre-
spondence between 2D intensity and depth images. This
requires a perfect calibration and synchronization of a
multi-camera system and a perfect data mapping.

2.2 Learning-Based Approaches

The first work in this category is by Mac Aodha et al. known
as patch-based single image SR (SISR) [31]. This method, as
implied by its name, follows a patch-based approach where
an LR patch is reconstructed from a large dictionary of syn-
thetic noise-free HR depth patches. The boundaries of
overlapping patches follow a special treatment to keep
smoothness properties. An important contribution of [31] is
the large database of HR depth maps used to create the dic-
tionary. Hornacek et al. proposed in [32] an adaptation
of [33] to depth maps. The idea there is to run a search for
similar patches only using the repetitive information
already available in the depth map to be enhanced. To com-
pute the similarity between depth patches, the PatchMatch
algorithm by Barnes et al. [34] was redefined in 3D under
invariance to 3D rigid motions. In [35], a patchwork assem-
bly algorithm for depth single image SR was proposed
merging the concept of using a training database [31] and
the concept of self-similarity [32]. The problem was formu-
lated as an MRF optimization which could optionally add
information from an HR 2D intensity image following the
same principle of multi-modal fusion approaches. Another
work at the frontier of the two categories, learning-based
and multi-modal fusion approaches, was proposed earlier
by Li et al. in [36]. The authors proposed to learn a mapping
function between HR 2D patches and their corresponding
LR depth patches using a training database. A sparse cod-
ing algorithm was then used for the final enhancement. The
performance of the methods in this category rely on the
quality of the training database and/or on the repetitive
structure of the input depth map. In general, these condi-
tions are not always available or verified.

2.3 Dynamic Multi-Frame Approaches

Using multiple frames to recover depth details has been suc-
cessful in the case of static scenes or scenes with global rigid
motion [5], [6], [7]. Since these methods and their immediate
derivatives, the real challenge that the research community
has been facing is extending the multi-frame depth enhance-
ment concept to scenes with non-rigid deformations. There
have been few attempts to handle single object scanning
under relative small non-rigidities by replacing a global rigid
registration with a non-rigid alignment [37], [38], [39]. These
techniques, however, cannot handle large deformations, and
are not very practical for real-time applications. Real-time
non-rigid reconstruction approaches have been achieved
with the help of a template which is first acquired then used
for tracking of non-rigidities with a good flexibility [40], [41].
Recently, we have proposed KinectDeform [11], the first non-
rigid version ofKinectFusion. It does not require any template,
and similarly toKinectFusion, provides an enhanced smoother
reconstruction over time with the addition of handling non-
rigid deformations in the scene. KinectDeform has been suc-
cessfully tested on an Asus Xtion Pro Live camera [42], equiv-
alent to Microsoft Kinect structured light version 1. It cannot,
however, perform well on lower resolution, noisier ToF cam-
eras such as the PMDcamboard nano [43]. Indeed, its registra-
tion module requires denser raw acquisitions. DynamicFusion
is another recent non-rigid version of KinectFusion. Thanks to
a GPU implementation, it has been tested on a Kinect camera
in real-time. However, its reconstruction accuracy has not
been evaluated, and it has only been validated visually.More-
over, it builds on the assumption of having only one moving
object in the scene. In addition, its reported limitations are its
sensitivity to complex scenes and scenes with changes in
topology. Also, similarly to KinectDeform, one may suspect
DynamicFusion not to be able to performwell on a lower reso-
lution noisier ToF camera.

The UP-SR algorithm falls under this category of
dynamic multi-frame approaches. Indeed, it exploits the
deformations collected over time in an inverse SR recon-
struction framework. UP-SR was shown in [8] and [10] to
have a higher reconstruction accuracy as compared to rep-
resentative methods from the first and second categories of
depth enhancement methods. Its major drawbacks, how-
ever, are its limitation to lateral motions and its computa-
tional complexity. Using range flow in place of optical flow
is a natural first step towards reconstructing non-lateral,
i.e., radial, local deformations. In what follows, we review
related literature on range flow estimation.

2.4 Range Flow Estimation

In order to handle 3D non-rigid deformations, it is impor-
tant to consider the full 3D motion per pixel or the range
flow. The range flow constraint has been first proposed
in [45], and later appeared in other references [46], [47], [48],
[49]. This constraint is usually used in a variational frame-
work to estimate the range flow. However, estimating a
dense range flow, i.e., a three dimensional vector for each
point is still computationally complex and not achievable in
real-time, at least, not with a sub-pixel accuracy [50]. Using
RGB-D depth cameras has allowed a multi-modal approach
for range flow estimation by defining a global energy func-
tional combining the range flow and the 2D optical flow
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constraints. In addition to the challenge of reducing the
computational complexity, these algorithms have to handle
erroneous measurements of depth sensors such as flying
pixels, and missing and invalid values. A common appro-
ach is to define a smoothness condition to be used as a regu-
larization term in the global optimization [29], [49], [51].
In [52] and [53], a probabilistic approach is followed by
using a particle filter. This concept is the closest to our range
flow estimation where information is recursively propa-
gated to the next frame. Recently, the aTGV-SF algorithm
has been proposed where the flow is directly calculated in
3D by back-projection, resulting in a joint estimation of the
lateral and radial motions [29]. To our knoweledge, this is
reported to be currently the best performing range flow
algorithm in terms of accuracy and runtime. We will use it
as a reference in our evaluation.

As explained in Section 1, the current paper improves
UP-SR. In Section 3, the necessary background on UP-SR is
given after formalizing the problem of multi-frame SR.

3 BACKGROUND AND PROBLEM FORMULATION

The following notation will be adopted: matrices are
denoted by boldface uppercase letters A, and vectors or col-
umn images are denoted by boldface lowercase letters a.
Scalars are denoted by italic letters, a;A. â: estimate of a. ~a:

measured a. ai: element i of a. at: a at time t. a
t0
t1
: registered

a from t1 to t0. a ": upsampled a.

3.1 Multi-Frame Super-Resolution

Let us consider an LR video fgtg acquired with a depth sen-
sor. The captured scene is assumed to be dynamically and
non-rigidly deforming without any assumption on the num-
ber of moving objects. Each LR observation gt is represented

by a column vector of length m corresponding to the lexico-
graphic1 ordering of frame pixels. The objective of depth SR
is to reconstruct an HR depth video fftg using fgtg, where

each frame ft is of length n with n ¼ r2 �m such that r 2 N�

is the SR scale factor. In the classical multi-frame depth SR
problem, in order to reconstruct a given frame ft0 2 fftg,
also known as the reference frame, the N preceding
observed LR frames are used.

An LR observation gt is related to the reference frame
through the following data model

gt ¼ DHMt
t0
ft0 þ nt; t0 � t; (1)

where D is a known constant downsampling matrix of
dimension m� nð Þ. The system blur is represented by the
time and space invariant matrix H. The n� nð Þ matrices

Mt
t0

correspond to the motion between ft0 and gt before

downsampling. The vector nt is an additive white noise at

time instant t. Without loss of generality, both H and Mt
t0

are assumed to be block circulant commutative matrices. As
a result, the estimation of ft0 may be decomposed into two

steps; estimation of a blurred HR image zt0 ¼ Hft0 , followed

by a deblurring step to recover f̂t0 .

The above framework has been first proposed in the case
of static 2D scenes in [17] and for static depth scenes in [44].
In [8] and in [10] it has been extended to dynamic depth
scenes defining the UP-SR algorithm.

3.2 Upsampling for Precise Super-Resolution
(UP-SR)

TheUP-SR algorithm starts by a dense upsampling of all the
LR observations. This is shown to ensure a more accurate
registration of frames. The resulting r2-times upsampled
image is defined as gt "¼ U � gt, where U is the ðn�mÞ
dense upsampling matrix. It is chosen to be the transpose of
the downsampling matrix D. As a result, the product
UD ¼ A gives a block circulant matrix A that defines a new
blurring matrix B ¼ AH. Therefore, the estimation of ft0
goes through the estimation of its new blurred version
zt0 ¼ Bft0 .

In order to estimate zt0 , the N frames preceding gt0 are
required. Every two consecutive frames are related by the
following dynamic model

gtþ1 "¼Mtþ1
t gt " þddtþ1; (2)

where Mtþ1
t is the motion between them. The vector ddtþ1 is

referred to as the innovation image. It contains novel meas-
urements appearing, or disappearing due to occlusions or
large motions. Note that, in the UP-SR framework, the inno-

vation is assumed to be negligible, and the matrix Mtþ1
t is

assumed to be an invertible permutation. It can be estimated
using classical dense 2D optical flow. The elements of the

estimated M̂tþ1
t matrix are 1’s and 0’s, basically indicating

the address of the source pixels in gt " and the address of

the destination pixel in gtþ1 ". This information is equiva-

lent to finding for each pixel position pit ¼ ðxit ; yit Þ;
i ¼ 1; . . . ; n, the horizontal and vertical displacements in
pixels ui

t and vit , respectively. In the continuous case, these

displacements correspond to the lateral motions ðui
t ; v

i
t Þ

where ui
t ¼

dxit
dt and vit ¼

dyit
dt .

The small motions between consecutive frames are then
cumulated, and a frame gt " is registered to the reference
frame gt0 " with the following cumulative motion compen-

sation approach

g
t0
t "¼ M̂

t0
t gt "¼ M̂

t0
t0�1 � � � M̂tþ1

t|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
ðt0�tÞ times

�gt " : (3)

As a result, the original data model in (1) is simplified to
define the following UP-SR data model

g
t0
t "¼ zt0 þ nnt; t0 � t; (4)

where nnt ¼ M̂
t0
t U � nt is an additive noise vector of length n.

It is assumed to be independent and identically distributed.
Using an L1-norm, the blurred estimate ẑt0 is found by

pixel-wise temporal median filtering of the upsampled reg-

istered LR observations fgt0t "g. As a second and final step,

follows an image deblurring to estimate f̂t0 from ẑt0 .

The only considered motions in the UP-SR algorithm
are lateral ones using 2D dense optical flow. Radial

1. Lexicographic ordering: Concatenation of the columns of the
image.
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displacements in the depth direction, often encountered in
depth sequences, are therefore not handled. In order to
address this problem, we propose to consider range flow in
the UP-SR framework.

3.3 Range Flow Approximation

A time-varying depth surfaceZ may be viewed as a mapping
of a pixel position pit ¼ ðxi

t ; y
i
t Þ on the sensor image plane, at a

time instant t, such that pit 7! Zðxit ; yit Þ. The value Zðxi
t ; y

i
t Þ

corresponds to the ith element of the depth image zt written
in lexicographic vector form, that we will denote in what fol-
lows as zit . The deformation of the surface Z from ðt� 1Þ to t

takes the point pit�1 to a new position pit . It may be expressed
through the derivative of Z following the direction of the 3D
displacement resulting in a range flow ðui

t ; v
i
t ; w

i
t Þ where the

radial displacement in the depth direction wi
t ¼

dzit
dt is added

as the third component to the lateral displacement. In this
work, we propose to decouple the estimation of the lateral
motions ðui

t ; v
i
t Þ from the estimation of the radial displace-

mentwi
t . Indeed, depth cameras provide an intensity image at

(2D image in the case of RGB-D sensors, or an amplitude
image in the case of ToF sensors), which makes it possible to
estimate the lateral motions directly using the 2D optical flow
constraint between two consecutive intensity images at�1 and
at. This decoupling approach enables to reduce the complex-
ity, but also to introduce a probabilistic framework that allows
to recursively estimatewi

t and the corrected depth value at the

same point. Once ðui
t ; v

i
t Þ is estimated, we proceed with esti-

matingwi
t under a probabilistic frameworkwherewe account

for radial motion uncertainties.

4 PROPOSED APPROACH

The proposed depth video enhancement approach is based
on an extension of the UP-SR algorithm. As our goal is a
real-time processing, the major difference resides in replac-
ing the cumulation of N frames in UP-SR for processing a
reference frame at time t0, by a recursive processing that
only considers two consecutive frames at ðt� 1Þ and t
where the current frame is to be enhanced each time. The
measurement model for each current frame may be defined
by setting t0 ¼ t in (4), resulting in

~zit :¼ ½gt "�i ¼ zit þ ½nt "�i 8t; (5)

where ½nt "�i is assumed to be zero mean Gaussian with

the variance s2
n, i.e., ½nt "�i 	 Nð0; s2

nÞ. The problem at

hand is then to estimate zit given a noisy measurement ~zit
and an enhanced noise-free depth value zit�1 estimated at
the preceding iteration. The time-deforming depth scene
is viewed as a dynamic system where the state of each
pixel is defined by its depth value and radial displace-
ment. These states are estimated dynamically over time
using a Kalman filter. The UP-SR dynamic model in (2) is
directly used to characterize the dynamic system and
introduce the uncertainties of depth measurements and
radial deformations in one probabilistic framework. The
proposed recursive approach, that we refer to as recUP-
SR, is summarized in the flow chart of Fig. 2. The main
steps are described in what follows.

4.1 Lateral Registration

In order to be able to carry a per-pixel processing, essential
for handling non-rigid deformations, one needs to properly
align these pixels between consecutive frames. This is
achieved by registration through 2D dense optical flow that
estimates the lateral motion between the intensity images
at�1 and at. In the case of RGB-D cameras, these images are
provided directly. Mapping and synchronization have to be
ensured, though, as in [49] and [51]. In the case of ToF cam-
eras, the provided intensity images, known as amplitude
images, can not be used directly. Their intensity values dif-
fer significantly depending on the camera integration time
and on the distance of the scene from the camera; hence, not
verifying the optical flow assumption of brightness consis-
tency. Thus, in order to guarantee an accurate registration,
it is necessary to apply a standardization step similar to the
one proposed in [54] prior to motion estimation, see Fig. 3.
If intensity images are not available, for example when
using synthetic data, the 2D optical flow can be directly esti-
mated using LR raw depth images, but after a denoising
step (e.g., using a bilateral filter). We note that this denois-
ing should only be used in the preprocessing step. The origi-
nal raw depth data is the one to be mapped in the
registration step. In all cases, as for UP-SR, we register the
upsampled versions of the LR images after upscaling
the motion vectors estimated from the LR images. We define
the registered depth image from ðt� 1Þ to t as �ztt�1. Conse-
quently, the radial displacement wi

t may be initialized by
the temporal difference between depth measurements, i.e.,

wi
t 
 ~zit � ½�ztt�1�i: (6)

This first approximation of wi
t is an initial value that

requires further refinement directly accounting for the sys-
tem noise. We propose to do that using a per-pixel tracking
with a Kalman filter as detailed in Section 4.2.

Fig. 3. Correcting amplitude images using a standardization step [54]. (a)
and (b) show the original LR amplitude images for a dynamic scene con-
taining a hand moving towards the camera where the intensity (amplitude)
values differ significantly depending on the object distance from the cam-
era. The corrected amplitude images for the same scene are presented in
(c) and (d), where the intensity consistency is preserved.
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4.2 Refinement by Per-Pixel Tracking

According to the definition of image pixel registration, we
have zit�1 :¼ ½�ztt�1�i. The dynamic model follows from (2) as

zit ¼ zit�1 þ mmi
t 8t; (7)

where mmt is a noisy version of the innovation ddt. Whereas
in UP-SR this innovation is neglected, in recUP-SR it is
assimilated to the uncertainty considered in the dynamic
model. In this work, we assume a constant velocity
model with an acceleration gi

t following a Gaussian dis-

tribution gi
t 	 Nð0; s2

aÞ. As a result, the noisy innovation
maybe expressed as

mmi
t ¼ wi

t�1Dtþ
1

2
gi
tDt

2: (8)

The dynamic model in (7) can then be rewritten as:

zit ¼ zit�1 þ wi
t�1Dtþ 1

2 g
i
tDt

2

wi
t ¼ wi

t�1 þ gitDt

(
: (9)

Considering the following state vector

sit ¼
zit
wi

t

� �
; (10)

where both the depth measurement and the radial displace-
ment are to be filtered, (9) becomes

sit ¼ Ksit�1 þ ggi
t ; (11)

with K ¼ ð 1 Dt
0 1

Þ, and ggi
t ¼ gi

t ð
1
2Dt

2

Dt
Þ is the process noise

which is white Gaussian with the covariance

Q ¼ s2
aDt

2 Dt2=4 Dt=2
Dt=2 1

� �
: (12)

Using standard Kalman equations, the prediction is
achieved as

ŝitjt�1 ¼ Ksit�1jt�1;

P̂i
tjt�1 ¼ KPi

t�1jt�1K
T þQ;

(
(13)

where Pi
t is the error covariance matrix. The error in the pre-

diction of ŝitjt�1 is corrected using the observed measure-

ment ~zit . This error is considered as the difference between
the prediction and the observation, and weighted using the

Kalman gain matrixGi
tjt which is calculated as follows:

Gi
tjt ¼ P̂i

tjt�1b
T bP̂i

tjt�1b
T þ s2

n

� ��1
; (14)

such that the observation vector is b ¼ ð1; 0ÞT . The corrected

state vector sitjt ¼
zitjt
wi

tjt

 !
and corrected error covariance

matrix Pi
tjt are computed as follows:

sitjt ¼ ŝitjt�1 þGi
tjt ~zit � bŝitjt�1
� �

;

Pi
tjt ¼ P̂i

tjt�1 �Gi
tjtbP̂

i
tjt�1:

8<
: (15)

This per-pixel filtering is extended to all the depth frame
resulting in n Kalman filters run in parallel. Each filter
tracks the trajectory of one pixel. At this level, pixel trajecto-
ries are assumed to be independent. The advantage of the
processing per pixel is to reduce all the required matrix
inversions to simple scalar inversions. The burden of tradi-
tional Kalman filter-based SR as in [13] will consequently be
avoided. Moreover, for a recursive multi-frame SR algo-
rithm, instead of using a video sequence of length N to
recover one frame, we use the preceding recovered frame

f̂t�1 to estimate ft from the current upsampled observation
gt ". Furthermore, in order to separate background from
foreground depth pixels, and tackle the problem of flying
pixels, especially around edges, we define a condition for
track re-initialization. This condition is based on a fixed
threshold t such that

Continue the track if j~zit � ẑitjt�1j < t;

New track & spatial median if j~zit � ẑitjt�1j5t:

(

The choice of the threshold value t is related to the type of
the used depth sensor and the level of the sensor-specific
noise. This step is very important for the overall perfor-
mance of recUP-SR. Without it, the temporal filtering would
continue even if the registered pixels from time ðt� 1Þ to t
are not matching (e. g. a background pixel wrongly regis-
tered to a foreground pixel) and hence the outcome of filter-
ing will be completely wrong for the pixel under
consideration at time t. This is an ad hoc solution that pro-
vides satisfactory results for the considered examples.

The assumption of independent trajectories leads to blur-
ring artifacts, and requires a corrective step to bring back
the correlation between neighbouring pixels from the origi-
nal depth surface Z. To that end, we use an L1 minimization
where we propose a multi-level iterative BTV regularization
as detailed in Section 4.3.

4.3 Multi-Level Iterative Bilateral TV Deblurring

Similarly to the UP-SR algorithm, ft is estimated in two
steps; first, finding a blurred version ẑt, which is the result

of Section 4.2. Then the deblurring takes place to recover f̂t
from ẑt. To that end, we apply the following deblurring
framework

f̂t ¼ argmin
ft

�
kBft � ẑtk1 þ �GðftÞ

�
; (16)

where � is a regularization parameter that controls the
amount of regularization needed to recover the original blur
and noise-free frame. The matrix B is the blur matrix intro-
duced in Section 3.2. We choose to use a BTV regularizer [17]
in order to enforce the properties of bilateral filtering on the
final solution [27], [55], [56]. It is a filter that has been shown
to perform well on depth data [20], [21], [22]. Indeed, it is a
filter that smoothes an image while preserving its sharp
edges based on pixel similarities in both the spatial and in
the intensity domains. The BTV regularizer is defined as

GðftÞ ¼
Xp¼P
p¼�P

Xq¼P
q¼0

ajpjþjqj k ft � XpYqft k1 : (17)
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The matrices Xp and Yq are shifting operators which shift
ft by p and q pixels in the horizontal and vertical direc-
tions, respectively. The parameters P defines the size of
the exponential kernel and the scalar a 2�0; 1� is its
base which controls the speed of decay. Minimizing the
cost function in (16) has shown to give good results in
UP-SR [9], [10]; however, unless all the parameters are
perfectly chosen, which is a challenge in itself, the final
result can end up being a denoised and deblurred version
of ft, which is also over-smoothed. This issue has been
addressed by iterative regularization in the case of denois-
ing [57], [58], [59], [60], and in the more general case of
deblurring [61]. In the same spirit, we use an iterative reg-
ularization where we propose to focus on the choice of
the regularization parameter �. Specifically, our deblur-
ring method consists in running the minimization (16)
multiple times where the regularization strength is pro-
gressively reduced in a dyadic way. We define, thus, a
multi-level iterative deblurring with a BTV regularization
such that the solution at level l is

f̂
ðlÞ
t ¼ argmin

f
ðlÞ
t

�
kBfðlÞt � f

ðl�1Þ
t k1 þ

�

2l
GðfðlÞt Þ

�
; with f

ð0Þ
t ¼ ẑt: (18)

Combined with a steepest descent numerical solver, the
proposed solution is described by the following pseudo-
code:

for l ¼ 1; . . . ; L

for k ¼ 1; . . . ;K

f̂
ðl;kÞ
t ¼ f̂

ðl;k�1Þ
t � b BT sign Bf̂

ðl;k�1Þ
t � zt

� �n
þ �

2l

Xp¼P
p¼�PPq¼P

q¼0 a
jpjþjqj I� Y�qX�pð Þ sign f̂

ðl;k�1Þ
t � XpYq f̂

ðl;k�1Þ
t

� �o
end for

zt �f̂ðl;KÞt

end for

The parameter b is an empirically chosen scalar which
represents the step size in the direction of the gradient, I is
the identity matrix, and signð�Þ is the sign function. The
parameter L is the number of levels considered, and K is
the number of iterations for one level. We note that the cor-
rect formulation of the problem at the beginning of Section 4

is to use the final deblurred depth value fit�1 obtained as a

solution of (18) instead of zit�1.

5 EXPERIMENTAL RESULTS

We evaluate the performance of recUP-SR against state-of-
the-art methods and evaluate the impact of each step in the

algorithm. Finally, we give additional examples illustrating
the features of recUP-SR on real data from simple scenes
with one moving object to more complex cluttered scenes
containing multiple moving objects with non-rigid deforma-
tions. Depth videos of dynamic scenes with non-rigid defor-
mations were captured with a ToF camera, PMD camboard
nano [43] or the 3D MLI [65].

5.1 Comparison with State-of-Art Methods

In order to compare our algorithm with state-of-art meth-
ods, we use a scene with a highly non-rigidly moving object.
We use the publicly available “Samba” [62] data. This data
corresponds to a real sequence of a dancing lady scene in
full 3D. This sequence contains both non-rigid radial
motions and self-occlusions, represented by arms and leg
movements, respectively. We use the publicly available
toolbox V-REP [63] to create from the “Samba” data a syn-
thetic depth sequence with fully known ground truth. We
choose to fix a depth camera at a distance of 2 meters from
the 3D scene. Its resolution is 1;0242 pixels. The camera is
used to capture the depth sequence. Then we downsample
the obtained depth sequence with r ¼ 4 and further degrade
it with additive Gaussian noise with standard deviation s

varying from 0 to 50 mm. The created LR noisy depth
sequence is then super-resolved using state-of-art methods:
the conventional bicubic interpolation, UP-SR [8], SISR [31],
and the proposed recUP-SR. Table 1 reports the 3D recon-
struction error of each method at different noise levels.
Then, we compare the accuracy of the reconstructed 3D
super-resolved scene with state-of-art results. The compari-
son is done by back-projecting the reconstructed HR depth
images to the 3D world using the camera matrix and calcu-
lating the 3D Root Mean Squared Error (RMSE) of each
back-projected 3D point cloud with respect to the ground
truth 3D point cloud. The comparison is done at two levels:
(i) Different parts of the reconstructed 3D body, namely,
arm, torso, and leg, and (ii) full reconstructed 3D body. As
expected, by applying the conventional bicubic interpola-
tion method directly on depth images, a large error is
obtained. This error is mainly due to the flying pixels
around object boundaries. Thus, we run another round of
experiments using a modified bicubic interpolation, where
we remove all flying pixels by defining a fixed threshold.
Yet, the 3D reconstruction error is still relatively high across
all noise levels, see Table 1. This is due to the fact that bicu-
bic interpolation does not profit from the temporal informa-
tion provided by the sequence. We observe in Table 1 that
the proposed method provides, most of the time, better
results as compared to state-of-art algorithms. In order to
visually evaluate the performance of the proposed recUP-

TABLE 1
3D RMSE in mm for the Super-Resolved Dancing Girl Sequence Using Different SR Methods

s ¼ 25mm s ¼ 50mm

Arm Torso Leg Full body Arm Torso Leg Full body

Bicubic 10.5 7.5 8.9 8.8 25.2 14.9 13.1 16.5
SISR [31] 9.0 5.6 8.4 6.6 14.1 6.9 9.6 9.7
UP-SR [8], [10] 22.2 15.6 9.3 15.9 29.7 17.4 12.8 23.5
Proposed recUP-SR 9.6 3.6 7.5 6.3 9.9 4.8 8.1 9.5

The SR scale factor is r ¼ 4.
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SR algorithm, we plot the super-resolved results for one
frame of the dancing girl sequence in 3D. We show the
results for the sequence corrupted with s ¼ 30 mm. We
note that recUP-SR outperforms state-of-art methods by
keeping the fine details (e.g., the details of the face). Note
that the UP-SR algorithm fails in the presence of radial
movements and self-occlusions, see black boxes in Fig. 4c.
In contrast, the SISR algorithm can handle these cases, but
cannot keep the fine details due to its patch-based nature,
see Fig. 4d. In addition, a heavy training phase is required
for SISR.

We next compare recUP-SR with multi-modal fusion
approaches. To that end, we use the same moving chairs
data presented in [8] and in [10]. The used setup to capture
this data was an LR ToF camera, the 3D MLI of resolution
(56� 61) [65], mounted in the ceiling at a height of 2.5 m,
and coupled with an HR 2D camera, the Dragonfly2 CCD
camera of resolution (648� 488) from Point Grey. Both cam-
eras looking at the scene of two persons sitting on chairs
sliding in two different directions. In multi-modal fusion
approaches, the HR 2D image is a guidance image used to
enhance the resolution of the LR depth image. We consider
three representative algorithms; the Pixel Weighted Average
Strategy (PWAS) filter [25], and its improved version called
Unified Multi-Lateral (UML) filter [26] which are two fusion
filters based on the concept of bilateral filtering, and the

method of umpsampling using anisotropic Total Generalized
Variation (aTGV) which is based on a global optimization.
The results for one frame are given in Fig. 5. One can see
that PWAS and UML suffer from texture copying from the
2D image while aTGV gives large errors on boundaries. The
result of recUP-SR is cleaner with smooth clear edges and
no texture copied from 2D. It is important to note that
recUP-SR falls under the category of multi-frame SR (Sec-
tion 2). As such, the HR 2D images were not used; instead a
sequence of 30 frames was used to obtain the reported
result. The lateral flow was computed from amplitude
images directly captured by the 3D MLI camera.

5.2 Evaluation of Different Steps

We evaluate the performance of the recUP-SR algorithm at
different levels. First, we show how it is efficient in filtering
both the depth value as well as the radial displacement and
hence the corresponding velocity. Then we evaluate the
range flow estimation, and finally, we show the importance
of deblurring.

5.2.1 Filtering of Depth and Radial Displacement

We start with a simple and fully controlled scene contain-
ing one 3D object moving radially with respect to the cam-
era. The considered object is a synthetic hand. A sequence
of 20 depth frames is captured at a radial distance of 5 cm
between each two successive frames, and with Dt ¼ 0:1 s.
The generated sequence is downsampled with a scale fac-
tor of r ¼ 2, and r ¼ 4, and further degraded with additive
Gaussian noise with a standard deviation s varying from
10 to 80 mm. We then super-resolve the obtained LR noisy
depth sequences by applying the proposed algorithm with
a scale factor of r ¼ 1, r ¼ 2, and r ¼ 4. Obtained results
show that by increasing the scale factor r, a higher 3D error
is introduced as seen in Fig. 6. In the simple case where
r ¼ 1, the SR problem is merely a denoising one, and hence
there is no blur due to upsampling. In contrast, by increas-
ing the SR factor r, more blurring effects occur leading to a
higher 3D error. Furthermore, in order to evaluate the
quality of the filtered depth data and the filtered velocity,
we randomly choose one pixel pit from each super-
resolved sequence with r ¼ 1, r ¼ 2, and r ¼ 4, and a fixed
noise level for s=50 mm. For each one of these pixels, we

track the corresponding enhanced depth value fit and the

Fig. 4. 3D Plotting of one super-resolved depth frame with r ¼ 4 using:
(b) bicubic interpolation, (c) UP-SR [8], (d) SISR [31], (e) proposed
recUP-SR with L ¼ 3;K ¼ 7; � ¼ 2:5. (a) LR noisy depth frame. (f) 3D
ground truth. Color bar in mm.

Fig. 5. Comparison with multi-modal fusion methods. (a) Raw LR depth
image. (b) HR 2D image. (c) PWAS [25], (d) UML [26], (e) aTGV [28],
(f) Proposed recUP-SR and corresponding full video is available through
this link. Color bar in mm.
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corresponding enhanced velocity
Dfit
Dt through the super-

resolved sequence. In Figs. 7a, 7b, and 7c, we can see how
the depth values are filtered (blue lines) as compared to
the noisy depth measurements (red lines) for all scale fac-
tors. Similar behaviour is observed for the corresponding
filtered velocities.

5.2.2 Estimated Range Flow

One of themain contributions of this paper is the estimation of
range flow by point trackingwith a Kalman filter.We visually
evaluate the accuracy of this flow on a known sequence of a
hand non-rigidly deforming and captured with the PMD
CamBoard Nano camera. We qualitatively compare this
result with the state-of-art range flow algorithm aTGV-
SF [29]. The result for one frame is given in Fig. 8. One can see
that the proposed approach provides a smoother and more
homogeneous flow, which is more accurate. Moreover, this
flow is computed at a frame rate of 19 frames per second on a
CPU and without parallelization considering r ¼ 2, which is
faster than aTGV-SF’s reported runtime of 1 frame per second
using an optimized code. We have used the publically avail-
able aTGV-SFMatlab codewhich took around 200 seconds for
one frame. We have kept the same parameters used with the

Fig. 7. Tracking results for different depth values randomly chosen from
the super-resolved hand sequence in Section 5.2.1 with different SR
scale factors r ¼ 1; r ¼ 2; and r ¼ 4, are plotted in (a), (b), and (c),
respectively. The corresponding filtered velocities are shown in (d), (e),
and (f), respectively.

Fig. 8. Estimated range flow on the hand deforming sequence of Section
5.2.2: (a) aTGV-SF [29], (b) proposed recUP-SR. Arrows represent the
lateral motion. The color represents the radial motion in mm. Full video
available through this link.

Fig. 9. Results of SR on the hand deforming sequence of Section 5.2.2:
(a) aTGV-SF (flow+SR) [29] (b) recUP-SR (flow) + aTGV-SF (SR) (c)
aTGV-SF (flow) + recUP-SR (SR), (d) proposed recUP-SR (flow+SR).

Fig. 10. Results of SR on the hand deforming sequence of Section 5.2.2:
(a) Raw LR, (b) aTGV-SF (flow)+recUP-SR (SR), (c) proposed recUP-
SR (flow+SR).

Fig. 11. Effects of applying different steps separately and combined on a
sequence of 35 LR noisy depth frames with s ¼ 10 mm. The combina-
tion of the Kalman filter with the spatial multi-level deblurring provides
the best performance in reducing the 3D RMSE.

Fig. 6. 3D RMSE in mm of the super-resolved hand sequence in Section
5.2.1 using recUP-SR.
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PMD CamBoard Nano camera as in [29]. The aTGV-SF flow
was also used to super-resolve a depth scene containing a
non-rigidly deforming object. The proposed SR consists in
median filtering all registered frames using the estimated
flow after back-projecting them to the 3D world. We give the
result of aTGV-SF (flow+SR) as well as our result recUP-SR
(flow+SR) in Figs. 9a and 9d, respectively. This result shows
that the proposed algorithmoutperforms aTGV-SF at the level
of the flow and also at the SR level. Fig. 9b and 9c give the
result of using the flow of recUP-SR (flow) in the SR of aTGV-
SF (SR), and vice versa. This shows that while the flow esti-
mated through recUP-SR is good and outperforms state-of-art
methods, it is not sufficient to directly use it in a multi-frame
SR algorithm. Using the aTGV-SF (flow) in the proposed SR

algorithm, however, provides a more acceptable result
although still inferior to the proposed recUP-SR (flow+SR).
This is confirmed by the corresponding 3D rendering given in
Fig. 10, and can be explained by the fact that the proposed
recUP-SR algorithm is a simultaneous filtering of the flow and
also the depth values. This ensures an effective reconstruction
of non-rigid depth scenes.

5.2.3 Deblurring

In order to better understand the contribution of deblur-
ring, we consider the “Facecap” data [64] which is a sim-
ple scene of a real 3D face sequence with non-rigid
deformations. We use a similar setup to the one used
with the “Samba” dataset by fixing a camera at a distance

Fig. 12. 3D plotting of (starting from left column): 1) LR noisy depth frames, 2) super-resolved depth frames with r ¼ 4 using Kalman filter, 3) super-
resolved depth frame with r ¼ 4 using the proposed method with one-level deblurring step with L ¼ 1;K ¼ 25 4) super-resolved depth frame with
r ¼ 4 using the proposed method with the proposed multi-level deblurring step with L ¼ 5;K ¼ 25, 5) error map of comparing the obtained results in
forth column with the 3D ground truth.
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of 0.7 m from the 3D face. We create a new synthetic
depth sequence of the moving face.

Then, we downsample the obtained depth sequence with
r ¼ 4 and further degrade it with additive Gaussian noise
with standard deviation s varying from 0 to 20 mm. The
obtained LR noisy depth sequence is then super-resolved
with r ¼ 4 using: 1) Kalman filter, 2) spatial deblurring, and
3) the proposed recUP-SR algorithm. In the deblurring pro-
cess, two different techniques are considered, one-level
deblurring and the proposed multi-level deblurring. The
accuracy of the reconstructed 3D face sequences is mea-
sured by calculating the 3D RMSE.

In Fig. 11, we report the obtained results for the super-
resolved LR noisy depth sequence with s ¼ 10 mm. We see
how the Kalman filter attenuates the noise gradually and
hence decreasing the 3D RMSE for an increased number of
frames (black solid line). We notice that, in the presence of a
non-smooth motions, the constant velocity filtering model
needs few number of iterations (frames) before converging
which affects the reconstruction quality of the super-resolved
depth frame. For example, due to the up and down non-
smooth and fast motions of the eye brows between frame
number 20 to 25, the per-pixel temporal filtering is not con-
verged yet, and hence the 3D error increases for a few number
of frames before decreasing again Fig. 11 (Black solid line). By
considering the deblurring step alone without engaging in
the per-pixel temporal filtering process, we can see that the
3D RMSE is almost constant throughout the sequence as
shown in Fig. 11 (solid blue and green lines). This can be
explained by the fact that there is no engagement of temporal

information. Instead only a spatial filtering is applied at each
frame independently of each other. Finally, by looking at the
obtained results in Fig. 11, we find that the best performance
is achieved by combining the spatial and the temporal filters
(blue and green dashed lines), with an advantage of using the
proposed multi-level deblurring approach over the one-level
conventional deblurring approach. Note that an intensive
search is applied to find the best deblurring parameterswhich
lead to the smallest 3DRMSE error.

In Fig. 12, we show the physical effects of the previously
discussed cases by plotting the corresponding 3D super-
resolved results of the last HR depth frame in the sequence.
Starting from the first column, we show the LR noisy faces
for different noise levels. The filtered results using a per-
pixel Kalman filtering are shown in the second column
where we see how the noise has been attenuated. The results
of the proposed algorithm using the one-level deblurring
step, with L ¼ 1 and K ¼ 25, and the multi-level deblurring
step, with L ¼ 5 and K ¼ 5, are plotted in the third and
fourth columns, respectively. By visually comparing the
obtained results, we find that the proposed algorithm with
the multi-level deblurring process provides the best results
and hence confirms the quantitative evaluation of Fig. 11
(blue dashed line) where it provides the lowest 3D RMSE.

5.3 Additional Examples

We run the recUP-SR on different LR real depth sequences
captured with the PMD CamBoard Nano of resolution
(120� 160) [43]. First, we start with a simple scene with one
non-rigidly moving face. Then, we show the robustness of
recUP-SR to topology changes by testing it on a more com-
plex and cluttered scene containing multiple moving
objects. The algorithm’s runtime on all these sequences for
an SR scale factor of r ¼ 1 is 38 frames per second, r ¼ 2 is
20 frames per second, and r ¼ 3 is 9 frames per second. This
is using a 2.2 GHz i7 processor with 4 Gigabyte RAM and
an unoptimized code.

Fig. 13. Results of applying the proposed algorithm on a real sequence
captured by a LR ToF camera (120� 160 pixels) of a non-rigidly moving
face. First and second rows contain a 3D plotting of selected LR
captured frames. Third and fourth rows contain the 3D plotting of the
super-resolved depth frames with r ¼ 4. Distance units on the coloured
bar are in mm. Full video available https://dropit.uni.lu/invitations?
share=b6ed393cddde9693250b&dl=0

Fig. 14. Radial depth displacement filtering. (a) 2D optical flow calculated
from the normalized LR amplitude images. (b) Raw noisy depth radial
depth displacement. (c) Filtered radial depth displacement using Kalman
filter. (d) Filtered radial depth displacement using the proposed method.
Color bar in mm.
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5.3.1 One Non-Rigidly Moving Object

We test the proposed algorithm on a real LR depth sequence
of a non-rigidly deforming face with large motions and local
non-rigid deformations. We super-resolve this sequence
using the proposed algorithm with an SR scale factor of
r ¼ 4. Obtained results are given in 3D in Fig. 13. They visu-
ally show the effectiveness of the proposed algorithm in
reducing noise, and further increasing the resolution of the
reconstructed 3D face under large non-rigid deformations.
Full video of results is available through this link. To visu-
ally appreciate these results as compared to state-of-art
methods, we tested the bicubic, UP-SR, and SISR methods
on the same LR real depth sequence. Obtained results show
the superiority of the recUP-SR as compared to other meth-
ods, see Fig. 1. We show in Fig. 14b how the raw radial
depth displacement is noisy and ranges from �50 to �10
mm while in fact the real displacement of the face in this
frame has to be smooth and homogeneous. By applying the
proposed algorithm, the noisy displacement is refined to
match the real homogeneous displacement of an approxi-
mate value of �20 mm, see Fig. 14d.

We run another experiment on a second real sequence
composed of 120 depth frames of a face moving with long
hair causing strong self-occlusions. The goal of this experi-
ment is to show how the tracking process is reinitialized in
the self-occlusion case for all pixels representing the self-
occluded area. We super-resolve the acquired sequence

with a scale factor of r ¼ 6. Obtained results are shown in
Fig. 15. It is interesting to see in the third row how the track-
ing life for each pixel is evolving through the time with
stronger occlusions causing shorter tracking, hence illustrat-
ing the impact of the threshoulding parameter t on the per-
formance of the proposed algorithm. For example, all pixels
with the dark red colors in Fig. 15d have been appeared
through the full sequence and no self-occlusion happened
and hence the track continues. In contrast, for most of the
boundary pixels the tracking process has been reinitialized
(blue dark) and thus a spatial median filter is applied for
these pixels.

5.3.2 Cluttered Scene

Finally, we tested recUP-SR on a cluttered scene of moving
hands transferring a ball from one hand to another. This
scene is quite complex where it contains multiple objects
moving with non-rigid deformations, and self-occlusions
with one hand passing over the second one. Moreover, the
scene contains a challenging case of topology changes repre-
sented by hands touching each other and then separating.
We note that a strong temporal filtering leads to a longer
time for convergence in the case of self-occlusions or non-
smooth motions. Similarly, a strong spatial filtering leads to
undesired over-smoothing effects and hence removing the
fine details from the final reconstructed HR depth sequence.
Thus, in order to handle such a scene, a trade-off between

Fig. 15. Results of applying the proposed algorithm on a real sequence captured by a LR ToF camera (120� 160 pixels) of a non-rigidly moving face.
First and second rows contain a 3D plotting of selected LR captured frames and the 3D plotting of the super-resolved depth frames with r ¼ 6,
respectively. Third row shows the tracking life for each pixel through the sequence. Units of the coloured bar represents the tracking life (iterations).
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the temporal and spatial filtering has to be achieved.
Obtained results in Fig. 16 show the robustness of the pro-
posed algorithm in handling this kind of scenes. Full video
of results is available through this link.

6 DISCUSSION AND CONCLUSIONS

We have proposed a new algorithm to enhance the quality
of low resolution noisy depth videos acquired with cost-
effective depth sensors. This algorithm improves upon the
UP-SR algorithm [8], [10] which was able to handle non-
rigid deformations but limited to lateral motions. The newly
proposed algorithm, recUP-SR, is designed to handle non-
rigid deformations in 3D thanks to a per-pixel filtering that
directly accounts for radial displacements in addition to lat-
eral ones. This algorithm is formulated in a dynamic recur-
sive way that allowed a computationally efficient real-time
implementation on CPU. Moreover, as compared to state-
of-the-art methods, the processing on depth maps while
approximating local 3D motions has allowed to maintain a
good robustness against topological changes and indepen-
dence of the number of moving objects in the scene. This
property is a clear advantage over most recent methods that
explicitly compute a flow in 3D and apply a processing on
meshed point clouds [11], [12]. In order to keep smoothness
properties without losing details, each filtered depth frame
is further refined using a multi-level iterative bilateral total
variation regularization after filtering and before proceed-
ing to the next frame in the sequence. This post-processing
is shown experimentally to give the best final results in
terms of 3D error without having access to full information
about the scene and the sensor. Supported by the experi-
mental results on both synthetic and real data, we believe
that recUP-SR opens new possibilities for computer vision
applications using cost-effective depth sensors in dynamic
scenarios with non-rigid motions. Further developments in
the case of strong self-occlusions are still required. As
shown, the proposed recUP-SR algorithm needs a number
of depth measurements before converging, which is not
suitable for some applications. Moreover, a realistic depth

sensor noise model is more complex than the Gaussian
model considered in this work. An extended work would
be to adapt the proposed solution to a more elaborate noise
model on depth measurements.
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