
Fast Simulation of Probabilistic Boolean Networks

Andrzej Mizera1, Jun Pang1,2, and Qixia Yuan1∗

1 Faculty of Science, Technology and Communication , University of Luxembourg
2 Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg

firstname.lastname@uni.lu

Abstract. As an important mathematical framework, probabilistic Boolean net-
works (PBNs) are widely used for modelling and analysing biological systems.
PBNs are suited for modelling large biological systems, which more and more
often arise in systems biology. However, the large system size poses a significant
challenge to the analysis of PBNs, in particular, to the crucial analysis of their
steady-state behaviour. Numerical methods for performing steady-state analyses
suffer from the state-space explosion problem, which makes the utilisation of sta-
tistical methods the only viable approach. However, such methods require long
simulations of PBNs, rendering the simulation speed a crucial efficiency factor.
For large PBNs and high estimation precision requirements, a slow simulation
speed becomes an obstacle. In this paper, we propose a structure-based method
for fast simulation of PBNs. This method first performs a network reduction op-
eration and then divides nodes into groups for parallel simulation. Experimental
results show that our method can lead to an approximately 10 times speedup for
computing steady-state probabilities of a real-life biological network.

1 Introduction

Systems biology aims to model and analyse biological systems from a holistic per-
spective in order to provide a comprehensive, system-level understanding of cellular
behaviour. Computational modelling of a biological system plays a key role in systems
biology. It connects the field of traditional biology with mathematics and computational
science, providing a way to organize and formalize available biological knowledge
in a mathematical model and to identify missing biological information using formal
means. Together with biochemical techniques, computational modelling promotes the
holistic understanding of real-life biological systems, leading to the study of large bio-
logical systems. This brings a significant challenge to computational modelling in terms
of the state-space size of the system under study. Among the existing modelling frame-
works, probabilistic Boolean networks (PBNs) is well-suited for modelling large-size
biological systems. It is first introduced by Shmulevich et al. [1, 2] as a probabilistic
generalisation of the standard Boolean networks (BNs) to model gene regulatory net-
works (GRNs). The framework of PBNs incorporates rule-based dependencies between
genes and allows the systematic study of global network dynamics; meanwhile, it is ca-
pable of dealing with uncertainty, which naturally occurs at different levels in the study
of biological systems.

∗Supported by the National Research Fund, Luxembourg (grant 7814267).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/78371191?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Mizera, Pang, and Yuan

Focusing on the wiring of a network, PBNs is essentially designed for revealing the
long-run (steady-state) behaviour of a biological system. Comprehensive understanding
of the long-run behaviour is vital in many contexts. For example, attractors of a GRN
are considered to characterise cellular phenotypes [3]. There have been a lot of studies
in analysing the long-run behaviour of biological systems for better understanding the
influences of genes or molecules in the systems [4]. Moreover, steady-state analyses
have been used in gene intervention and external control [5, 6], which is of special
interest to cancer therapists to predict the potential reaction of a patient to treatment.
In the context of PBNs, many efforts have been devoted to computing their steady-
state probabilities. In [7, 8], efficient numerical methods are provided for computing
the steady-state probabilities of small-size PBNs. Those methods utilise an important
characteristics of PBNs, i.e., a PBN can be viewed as a discrete-time Markov chain
(DTMC) and its dynamics can be studied with the use of the rich theory of DTMCs.
The key idea of those methods relies on the computation of the transition matrix of
the underlying DTMC of the studied PBN. They perform well for small-size PBNs.
However, in the case of large-size PBNs, the state-space size becomes so huge that the
numerical methods are not scalable any more.

Many efforts are then spent on addressing the challenge of the huge state-space
in large-size PBNs. In fact, the use of statistical methods and Monte Carlo methods
remain the only feasible approach to address the problem. In those methods, the sim-
ulation speed is an important factor in the performance of these approaches. For large
PBNs and long trajectories, a slow simulation speed could render these methods in-
feasible as well. In our previous work [9], we have considered the two-state Markov
chain approach and the Skart method for approximate analysis of large PBNs. Taking
special care of efficient simulation, we have implemented these two methods in the tool
ASSA-PBN [10] and successfully used it for the analysis of large PBNs with a few
thousands of nodes. However, the required time cost is still expected to be reduced.
This requirement is of great importance for the construction of a model, e.g., param-
eter estimation, and for a more precise and deep analysis of the system. In this work,
we propose a structure-based method to speed up the simulation process. The method
is based on analysing the structure of a PBN and consists of two key ideas: first, it
removes the unnecessary nodes in the network to reduce its size; secondly, it divides
the nodes into groups and performs simulation for nodes in a group simultaneously.
We show with experiments that our structure-based method can significantly reduce the
computation time for approximate steady-state analyses of large PBNs. To the best of
our knowledge, our proposed method is the first one to apply structure-based analyses
for speeding up the simulation of a PBN.

2 Preliminaries

2.1 Probabilistic Boolean networks (PBNs)

A PBN G(X ,F) models elements of a biological system with a set of binary-valued
nodes X = {x1,x2, . . . ,xn}. For each node xi ∈ X , the update of its value is guided by
a set of predictor functions Fi = { f (i)1 , f (i)2 , . . . , f (i)

`(i)}, where `(i) is the number of pre-



Fast Simulation of Probabilistic Boolean Networks 3

dictor functions for node xi. Each f (i)j is a Boolean function whose inputs are a subset
of nodes, referred to as parent nodes of xi. For each node xi, one of its predictor func-
tions will be selected to update the value of xi at each time point t. This selection is in
accordance with a probability distribution Ci = (c(i)1 ,c(i)2 , . . . ,c(i)

`(i)), where the individ-
ual probabilities are the selection probabilities for the respective elements of Fi and they
sum to 1. The value of node xi at time point t is denoted as xi(t) and the state of the PBN
at time point t is denoted as s(t) = (x1(t),x2(t), . . . ,xn(t)). The state space of the PBN
is S = {0,1}n and it is of size 2n. There are several variants of PBNs with respect to the
selection of predictor functions and the synchronisation of nodes update. In this paper,
we consider the independent synchronous PBNs, i.e., the choice of predictor functions
for each node is made independently and the values of all the nodes are updated syn-
chronously. The transition from state s(t) to state s(t + 1) is performed by randomly
selecting a predictor function for each node xi from Fi and by applying those selected
predictor functions to update the values of all the nodes synchronously. We denote f (t)
the combination of all the selected predictor functions at time point t. The transition of
state s(t) to s(t +1) can then be denoted as s(t +1) = f (t)(s(t)).

Perturbations of a biological system are introduced by a perturbation rate p ∈ (0,1)
in a PBN. The dynamics of a PBN is guided with both perturbations and predictor
functions: at each time point t, the value of each node xi is flipped with probability
p; and if no flip happens, the value of each node xi is updated with selected predictor
functions synchronously. Let γ(t) = (γ1(t),γ2(t), . . . ,γn(t)), where γi(t) ∈ {0,1} and
P(γi(t) = 1) = p for all t and i ∈ {1,2, . . . ,n}. The transition of s(t) to s(t +1) in PBNs
with perturbations is given by s(t+1) = s(t)⊕γ(t) if γ(t) 6= 0, and s(t+1) = f (t)(s(t))
otherwise, where ⊕ is the element-wise exclusive or operator for vectors. According to
this equation, perturbations allow the system to move from a state to any other state
in one transition, hence render the underlying Markov chain irreducible and aperiodic.
Thus, the dynamics of a PBN with perturbations can be viewed as an ergodic DTMC [1].
Based on the ergodic theory, the long-run dynamics of a PBN with perturbations is
governed by a unique limiting distribution, convergence to which is independent of the
choice of the initial state.

The density of a PBN is measured with its predictor function number and parent
nodes number. For a PBN G, its density is defined as D(G) = 1

n ∑
NF
i=1 φ(i), where n is

the number of nodes in G, NF is the total number of predictor functions in G, and φ(i)
is the number of parent nodes for the ith predictor function.

2.2 Simulating a PBN

A PBN can be simulated via two steps based on its definition. First, perturbation is veri-
fied for each individual node and its value is flipped if there is a perturbation. Second, if
no perturbation happens for any of the nodes, the network state is updated by selecting
predictor functions for all the nodes and applying them. For efficiency reason, the se-
lection of predictor functions for each node xi is performed with the alias method [11],
which allows to make a selection among choices in constant time irrespective of the
number of choices. The alias method requires the construction of an alias table of size
proportional to the number of choices, based on the selection probabilities of Ci.



4 Mizera, Pang, and Yuan

3 Structure-based Parallelisation

The simulation method described in the above section requires to check perturbations,
make a selection and perform updating a node for n times in each step. In the case of
large PBNs and huge trajectory (sample) size, the simulation time cost can become pro-
hibitive. Intuitively, the simulation time can be reduced if the n-time operations can be
speeded up, for which we propose two solutions. One is to perform network reduction
such that the total number of nodes is reduced. The other is to perform node-grouping
in order to parallelise the process for checking perturbations, making selections, and
updating nodes. For the first solution, we analyse the PBN structure to identify those
nodes that can be removed and remove them to reduce the network size; while for the
second solution, we analyse the PBN structure to divide nodes into groups and per-
form the operations for nodes in a group simultaneously. We combine the two solutions
together and refer to this simulation technique as structure-based parallelisation. We
formalise the two solutions in the following three steps: the first solution is described in
Step 1 and the second solution is described in Steps 2 and 3.

Step 1. Remove unnecessary nodes from the PBN.
Step 2. Parallelise the perturbation process.
Step 3. Parallelise updating a PBN state with predictor functions.

We describe these three steps in the following subsections.

3.1 Removing unnecessary nodes

We first identify those nodes that can be removed and perform network reduction. When
simulating a PBN without perturbations, if a node does not affect any other node in the
PBN, the states of all other nodes will not be affected after removing this node. If this
node is not of interest of the analysis, e.g., we are not interested in analysing its steady-
state, then this node is dispensable in a PBN without perturbations. We refer to such
a dispensable node as a leaf node in a PBN and define it as follow:

Definition 1 (Leaf node). A node in a PBN is a leaf node (or leaf for short) if and only
if either (1) it is not of interest and has no child nodes or (2) it is not of interest and has
no other children after iteratively removing all its child nodes which are leaf nodes.

According to the above definition, leaf nodes can be simply removed without affecting
the simulation of the remaining nodes in a PBN without perturbations. In the case of
a PBN with perturbations, perturbations in the leaf nodes need to be considered. Updat-
ing states with Boolean functions will only be performed when there is no perturbation
in both the leaf nodes and the non-leaf nodes. Perturbations of the leaf nodes can be
checked in constant time irrespective of the number of leaf nodes as describe in Algo-
rithm 1. The input p is the perturbation probability for each node and ` is the number
of leaf nodes in the PBN. Then, the probability that no perturbation happens in all the
leaf nodes is given by t = (1− p)`. With the consideration of their perturbations, the
leaf nodes can be removed without affecting the simulation of the non-leaf nodes also
in a PBN with perturbations. Since the leaves are not of interest, results of analyses
performed on the simulated trajectories of the reduced network, i.e., containing only



Fast Simulation of Probabilistic Boolean Networks 5

Algorithm 1 Checking perturbations of leaf nodes in a PBN
1: procedure CHECKLEAFNODES(p, `)
2: t = pow(1− p, `); // the probability that no perturbation happens in leaves
3: if rand()> t then return true;
4: else return false;
5: end if
6: end procedure

non-leaf nodes, will be the same as performed on trajectories of the original network,
i.e., containing all the nodes.

3.2 Performing perturbations in parallel

The second step of our method speeds up the process of determining perturbations.
Normally, perturbations are checked for nodes one by one. In order to speed up the
simulation of a PBN, we perform perturbations for k nodes simultaneously instead of
one by one. For those k nodes, there are 2k different perturbation situations. We calculate
the probability for each situation and construct an alias table based on the resulting
distribution. With the alias table, we make a choice c among 2k choices and perturb the
corresponding nodes based on the choice. The choice c is an integer in [0,2k) and for
the whole network the perturbation can then be performed k nodes by k nodes using
the logical bitwise exclusive or operation, denoted | . To save memory, the alias table
can be reused for all the groups since the perturbation probability p for each node is the
same. It might happen that the number of nodes in the last perturbation round will be
less than k nodes. Assume there is k′ nodes in the last round and k′ < k. For those k′

nodes, we can reuse the same alias table to make the selection in order to save memory.
After getting the choice c, we perform c = c&m, where & is a bitwise and operation
and m is a mask constructed by setting the first k′ bits of m’s binary representation to 1
and the remaining bits to 0.

Theorem 1. The above process for determining perturbations for the last k′ nodes
guarantees that the probability for each of the k′ nodes to be perturbed is still p.

Proof. Without loss of generality, we assume that in the last k′ nodes, t nodes should
be perturbed and the positions of the t nodes are fixed. The probability for those t
fixed nodes to be perturbed is pt(1− p)k′−t . When we make a selection from the alias
table for k nodes, there are 2k−k′ different choices corresponding to the case that t fixed
position nodes in the last k′ nodes are perturbed. The sum of the probabilities of the
2k−k′ different choices is [pt(1− p)k′−t ] ·∑k−k′

i=0 pi(1− p)k−k′−i = pt(1− p)k′−t . ut

We present the procedures for constructing groups and performing perturbations
based on the groups in Algorithm 2, where n is the given number of nodes,3 k is the
maximum number of nodes that can be perturbed simultaneously and s is the PBN’s

3In our methods, it is clear that Step 2 and Step 3 are independent of Step 1. Thus, we con-
sistently use n to denote the number of nodes in a PBN.



6 Mizera, Pang, and Yuan

Algorithm 2 The group perturbation algorithm
1: procedure PREPAREPERTURBATION(n,k)
2: g = dn/ke; k = dn/ge; k′ = n− k ∗ (g−1);
3: construct the alias table Ap; mask = 0; i = 0;
4: repeat mask = mask | (1 << i); i++;
5: until i = k′;
6: return [Ap,mask];
7: end procedure
8: procedure PERTURBATION(Ap,mask,s)
9: perturbed = false;

10: for (i = 0; i < g; i++) do
11: c = Next(Ap); //Next(Ap) returns a random integer based on Ap
12: if c 6= 0 then
13: s = s⊕ (c << (i∗ k)); //shift c to flip only the bits (nodes) of current group
14: perturbed = true;
15: end if
16: end for
17: c = Next(Ap) & mask;
18: if c 6= 0 then
19: s = s⊕ (c << (i∗ k)); perturbed = true;
20: end if
21: return [s, perturbed];
22: end procedure

current state which is represented by an integer. To obtain more balanced groups, k can
be decreased in line 2. As perturbing one node equals to flipping one bit of s, perturbing
nodes in a group is performed via a logical bitwise exclusive or operation, denoted
⊕ (see line 13 of Algorithm 2). Perturbing k nodes simultaneously requires 2k double
numbers to store the probabilities of 2k different choices. The size of k is therefore
restricted by the available memory.4

3.3 Updating nodes in parallel

The last step to speed up PBN simulation is to update a number of nodes simultaneously
in accordance with their predictor functions. For this step, we need an initialisation
process to divide the n nodes into m groups and construct combined predictor functions
for each group. After this initialisation, we can select a combined predictor function for
each group based on a sampled random number and apply this combined function to
update the nodes in the group simultaneously.

We first describe how predictor functions of two nodes are combined. The com-
bination of functions for more than two nodes can be performed iteratively. Let xα

and xβ be the two nodes to be considered. Their predictor functions are denoted as

4For the experiments, we set k to 16 and k could be bigger as long as the memory allows.
However, a larger k requires larger table to store the 2k probabilities and the performance of
a CPU drops when accessing an element of a much larger table due to the large cache miss rate.



Fast Simulation of Probabilistic Boolean Networks 7

Fα = { f (α)
1 , f (α)

2 , . . . , f (α)
`(α)
} and Fβ = { f (β )1 , f (β )2 , . . . , f (β )

`(β )
}. Further, the correspond-

ing selection probability distributions are denoted as Cα = {c(α)
1 ,c(α)

2 , . . . ,cα

`(α)} and

Cβ = {c(β )1 ,c(β )2 , . . . ,cβ

`(β )
}. After the grouping, due to the assumed independence, the

number of combined predictor functions is `(α) ∗ `(β ). We denote the set of com-
bined predictor functions as F̄αβ = { f (α)

1 · f (β )1 , f (α)
1 · f (β )2 , . . . , f (α)

`(α)
· f (β )

`(β )
}, where for

i ∈ [1, `(α)] and j ∈ [1, `(β )], f (α)
i · f (β )j is a combined predictor function that takes the

input nodes of functions f (α)
i and f (β )j as its input and combines the Boolean output of

functions f (α)
i and f (β )j into integers as output. The combined integers range in [0,3]

and their 2-bit binary representations (from right to left) represent the values of nodes
xα and xβ . The selection probability for function f (α)

i · f (β )j is c(α)
i ∗ c(β )j . It holds that

∑
`(α)
i=1 ∑

`(β )
j=1 c(α)

i ∗ c(β )j = 1. With the selection probabilities, we can compute the alias
table for each group so that the selection of combined predictor function in each group
can be performed in constant time.

We now describe how to divide the nodes into groups. Our aim is to have as few
groups as possible so that the updating of all the nodes can be finished in as few rounds
as possible. However, fewer groups lead to many more nodes in a group, which will
result in a huge number of combined predictor functions in the group. Therefore, the
number of groups has to been chosen properly so that the number of groups is as small
as possible, while the combined predictor functions can be stored within the memory
limit of the computer performing the simulation. Besides, nodes with only one predic-
tor function should be considered separately since selections of predictor functions for
those nodes are not needed. In the rest of this section, we first formulate the problem for
dividing nodes with more than one predictor function and give our solution afterwards;
then we discuss how to treat nodes with only one predictor function.

Problem formulation. Let S be a list of n items {µ1,µ2, . . . ,µn}. For i ∈ [1,n], item µi
represents a node in a PBN with n nodes. Its weight is assigned by a function ω(µi),
which returns the number of predictor functions of node µi. We aim to find a minimum
integer m to distribute the nodes into m groups such that the sum of the combined
predictor functions numbers of the m groups will not exceed a memory limit θ . This is
equivalent to finding a minimum m and an m-partition S1,S2, . . . ,Sm of S, i.e., S = S1∪
S2∪·· ·∪Sm and Sk∩S` = /0 for k, `∈ {1,2, . . . ,m}, such that ∑

m
i=1

(
∏µ j∈Si ω(µ j)

)
≤ θ .

Solution. The problem in fact has two outputs: an integer m and an m-partition. We
first try to estimate a potential value of m, i.e., the lower bound of m that could lead
to an m-partition of S which satisfies ∑

m
i=1

(
∏µ j∈Si ω(µ j)

)
≤ θ . With this estimate, we

then try to find an m-partition satisfying the above requirements.
Denote the weight of a sub-list Si as wi, where wi = ∏µ j∈Si ω(µ j). The inequality in

the problem description can be rewritten as ∑
m
i=1 wi ≤ θ . We first compute the minimum

value of m̂, denoted as m̂min, satisfying the following inequality:

m̂ · m̂

√
n

∏
i=1

ω(µi)≤ θ . (1)



8 Mizera, Pang, and Yuan

Algorithm 3 The greedy algorithm
1: procedure FINDPARTITIONS(S,m)
2: sort S with descending orders based on the weights of items in S;
3: initialise A, an array of m lists; //initially, each A[i] is an empty list
4: for ( j = 0; j < S.size(); j++) do //S.size() returns the number of items in S
5: among the m elements of A, //the weight of A[i] is wi = ∏µ j∈A[i] ω(µ j)
6: find the one with the smallest weight and add S[ j] to it;
7: end for
8: return A;
9: end procedure

Theorem 2. m̂min is the lower bound on m that allows a partition to satisfy ∑
m
i=1 wi≤ θ .

Proof. We proceed by showing that for any k ∈ {1,2, . . . , m̂min−1}, m̂min−k will make
the inequality unsatisfied, i.e., ∑

m̂min−k
i=1 w

′
i > θ , where w

′
i is the weight of the ith sub-list

in an arbitrary partition of S into m̂min−k sub-lists. Since m̂min is the minimum value of
m̂ that satisfies Inequality (1), we have (m̂min− k) · (m̂min−k)

√
∏

n
i=1 ω(µi)> θ . Hence,

(m̂min− k) · (m̂min−k)

√√√√m̂min−k

∏
i=1

w′i > θ . (2)

Based on the inequality relating arithmetic and geometric means, we have

m̂min−k

∑
i=1

w
′
i ≥ (m̂min− k) · (m̂min−k)

√√√√m̂min−k

∏
i=1

w′i. (3)

Combining Inequality (2) with Inequality (3) gives ∑
m̂min−k
i=1 w

′
i > θ . ut

Starting from the lower bound, we try to find a partition of S into m sub-lists that
satisfies ∑

m
i=1 wi ≤ θ . Since the arithmetic and geometric means of non-negative real

numbers are equal if and only if every number is the same, we get the heuristic that the
weight of the m sub-lists should be as equal as possible so that the sum of the weights
is as small as possible. Our problem then becomes similar to the NP-hard multi-way
number partition problem: to divide a given set of integers into a collection of subsets,
so that the sum of the numbers in each subset are as nearly equal as possible. We adapt
the greedy algorithm (see Algorithm 3 for details) for solving the multi-way number
partition problem, by modifying the sum to multiplication, in order to solve our partition
problem.5 If the m-partition we find satisfies the requirement ∑

m
i=1 wi ≤ θ , then we get

a solution to our problem. Otherwise, we need to increase m by one and try to find
a new m-partition. We repeat this process until the condition ∑

m
i=1 wi ≤ θ is satisfied.

The whole partition process for all the nodes is described in Algorithm 4.

5There exist other algorithms to solve the multi-way number partition problem and we choose
the greedy algorithm for its efficiency.



Fast Simulation of Probabilistic Boolean Networks 9

Algorithm 4 Partition n nodes into groups.
1: procedure PARTITION(G,θ )
2: compute two lists S and S′ based on G; //S′ contains nodes with one predictor function
3: compute the lower bound m̂ according to Inequality (1); m = m̂;
4: repeat
5: A1 = FINDPARTITIONS(S,m);

6: sum = ∑
m
i=1

(
∏µ j∈A1[i] ω(µ j)

)
; m = m+1; //compute the sum of weights

7: until sum < θ ;
8: divide S′ into A2; //using modified Algorithm 3: in each iteration, a node is put in a list
9: merge A1 and A2 into A; //which shares most common parent nodes with this node

10: return A;
11: end procedure

Nodes with only one predictor function are treated in line 8. We divide such nodes
into groups based on their parent nodes, i.e., we put nodes sharing the most common
parents into the same group. In this way, the combined predictor function size can be
as small as possible such that the limited memory can handle more nodes in a group.
The number of nodes in a group is also restricted by the combined predictor function
size, i.e., the number of parent nodes in this group.6 The partition is performed with an
algorithm similar to Algorithm 3. The difference is that in each iteration we always add
a node into a group which shares most common parent nodes with this node.

3.4 The new simulation method

We describe our new method for simulating PBNs in Algorithm 5. The procedure
PREPARATION describes the whole preparation process of the three steps (network re-
duction for Step 1, and node-grouping for Step 2 and Step 3). The three inputs of the
procedure PREPARATION are the PBN network G, the memory limit θ , and the max-
imum number k of nodes that can be put in a group for perturbation. The PREPARA-
TION procedure performs network reduction and node grouping. The reduced network
and the grouped nodes information are then provided for the PARALLELSIMULATION
procedure via seven parameters: Ap and mask are the alias table and mask used for
performing perturbations of non-leaf nodes as explained in Algorithm 2; l is the num-
ber of leaf nodes; p is the perturbation rate; A is an array containing the alias tables
for predictor functions in all groups; F is an array containing predictor functions of all
groups; and cum is an array storing the cumulative number of nodes in each group, i.e.,
cum[0] = 0 and cum[i] =∑

i−1
j=0 τ j for i∈ [1,m], where m is the number of groups and τ j is

the number of nodes in group j. Procedure PARALLELSIMULATION simulates one step
of a PBN by first checking perturbation and then updating PBNs with combined pre-
dictor functions. Perturbations for leaf nodes and non-leaf nodes have been explained

6In our experiments, the maximum number of parent nodes in one group is set to 18. Similar
to the value of k in Step 2, the number can be larger as long as the memory can handle. However,
the penalty from large cache miss rate will diminish the benefits by having fewer groups when
the number of parent nodes is too large.



10 Mizera, Pang, and Yuan

Algorithm 5 Structure-based PBN simulation.
1: procedure PREPARATION(G,θ ,k)
2: perform network reduction for G and store the reduced network in G′;
3: get the number of nodes n and perturbation probability p from G;
4: get the number of nodes n′ from G′; `= n−n′;
5: [Ap,mask] =PREPAREPERTURBATION(n′,k);
6: PA =PARTITION(G′,θ);
7: for each group in PA, compute its combined functions and put them as a list in array F ,
8: and compute its alias table in array A;
9: compute cum as cum[0] = 0 and cum[i] = ∑

i−1
j=0 τ j for i ∈ [1,m], where m is the number

10: of groups in PA and τ j is the number of nodes in group j;
11: return [Ap,mask, `, p,A,F,cum];
12: end procedure
13: procedure PARALLELSIMULATION(Ap,mask,A,F,cum, `, p,s)
14: [s,perturbed] =PERTURBATION(Ap,mask,s); //perform perturbations by group
15: if perturbed || CHECKLEAFNODES(p, `) then return s; //check perturbations of leaves
16: else s′ = 0; count = size(A); //size(A) returns the number of elements in array A
17: for (i = 0; i < count−1; i++) do
18: index = Next(A[i]); //select a random integer based on the alias table of group i
19: f = F [i].get(index); //obtain the predictor function at the given index
20: v = f [s]; // f [s] returns the integer output of f based on state s
21: s′ = s′ | (v << cum[i]); //bit shift v to update only nodes in the current group
22: end for
23: end if
24: return s′;
25: end procedure

in Algorithms 1 and 2. We now explain how nodes in a group are simultaneously up-
dated with combined predictor function. It is performed via the following three steps: 1)
a random combined predictor function is selected from F based on the alias table A; 2)
the output of the combined predictor function is obtained according to the current state
s; 3) the nodes in this group are updated based on the output of the combined predictor
function. To save memory, states are stored as integers and updating a group of nodes
is implemented via a logical bitwise or operation. To guarantee that the update is per-
formed on the required nodes, a shift operation is needed on the output of the selected
function (line 21). The number of bits to be shifted for the current group is in fact the
cumulative number of nodes of all its previous groups, which is stored in the array cum.

4 Evaluation

The evaluation of our new simulation method is performed on both randomly generated
networks and a real-life biological network. All the experiments are performed on high
performance computing (HPC) machines, each of which contains a CPU of Intel Xeon
X5675 @ 3.07 GHz. The program is written in Java and the initial and maximum Java
virtual machine heap size is set to 4GB and 5.89GB, respectively.



Fast Simulation of Probabilistic Boolean Networks 11

4.1 Randomly generated networks

With the evaluation on randomly generated networks, we aim not only to show the
efficiency of our method, but also to answer how much speedup our method is likely to
provide for a given PBN.

The first step of our new simulation method performs a network reduction tech-
nique, which is different from the node-grouping techniques in the later two steps.
Therefore, we evaluate the contribution of the first step and the other two steps to the
performance of our new simulation method separately. We consider the original simula-
tion method as the reference method and we name it Methodre f . The simulation method
applying the network reduction technique is referred to as Methodreduction and the sim-
ulation method applying both the network reduction and node-grouping techniques as
Methodnew. Methodreduction and Methodnew require pre-processing of the PBN under
study, which leads to a certain computational overhead. However, the proportion of the
pre-processing time in the whole computation decreases with the increase of the sam-
ple size. In our evaluation, we first focus on comparisons without taking pre-processing
into account to evaluate the maximum potential performance of our new simulation
method; we then show how different sample sizes will affect the performance when
pre-processing is considered.

How does our method perform? Intuitively, the speedup due to the network reduction
technique is influenced by how much a network can be reduced and the performance of
node-grouping is influenced by both the density and size of a given network. Hence, the
evaluation is performed on a large number of randomly generated PBNs covering dif-
ferent types of networks. In total, we use 2307 randomly generated PBNs with different
percentages of leaves ranging between 0% and 90%; different densities ranging between
1 and 8.1; and different network sizes from the set {20,50,100,150,200,250,300,350,
400,450,500,550,600,650,700,750,800,850,900,950,1000}. The networks are gen-
erated randomly using the tool ASSA-PBN [10], by providing the following informa-
tion: the number of nodes, the maximum (minimum) number of predictor functions
for the nodes, and the maximum (minimum) number of parent nodes for the predic-
tor functions. Thus, the generation of these networks’ density and percentage of leaves
cannot be fully controlled. In other words, density and percentage of leaves for these
2307 PBNs are not uniformly distributed. We simulate 400 million steps for each of the
2307 PBNs with the three different simulation methods and compare their time costs.
For the network reduction technique the speedups are calculated as the ratio between
the time of Methodreduction and the time of Methodre f , where the pre-processing time of
the former method is excluded. The obtained speedups are between 1.00 and 10.90. For
node-grouping, the speedups are calculated as the ratio between the time of Methodnew
and the time of Methodreduction without considering the required pre-processing times.
We have obtained speedups between 1.56 and 4.99. We plot in Figure 1 the speedups
of the network reduction and node-grouping techniques with respect to their related pa-
rameters. For the speedups achieved with network reduction, the related parameters are
the percentage of leaves and the density. In fact, there is little influence from density
to the speedup resulting from network reduction as the speedups do not change much
with the different densities (see Figure 1a). The determinant factor is the percentage of
leaves. The more leaves a PBN has, the more speedup we can obtain for the network. For



12 Mizera, Pang, and Yuan

(a) Simulation time of Methodreduction over
simulation time of Methodre f .

(b) Simulation time of Methodnew over simu-
lation time of Methodreduction.

Fig. 1: Speedups obtained with network reduction and node-grouping techniques. The
pre-processing time is excluded from the analysis.

the speedups obtained from node-grouping, the related parameters are the density and
the network size after network reduction, i.e., the number of non-leave nodes. Based
on Figure 1b, the speedup with node-grouping is mainly determined by the network
density: a smaller network density could result in a larger speedup contributed from the
node-grouping technique. This is mainly due to the fact that sparse network has a rela-
tively small number of predictor functions in each node and therefore, the nodes will be
partitioned into fewer groups. Moreover, while the performance of network reduction
is largely influenced by the percentage of leaves, the node-grouping technique tends
to provide a rather stable speedup. Even for large dense networks, the technique can
reduce the time cost almost by half.

The combination of these two techniques results in speedups (time of Methodnew
over time of Methodre f ) between 1.74 and 41.92. We plot in Figure 2 the speedups in
terms of the percentage of leaves and density. The figure shows a very good performance
of our new method on sparse networks with large percentage of leaves.

What is the influence of sample size? We continue to evaluate the influence of sam-
ple size on our proposed new PBN simulation method. The pre-processing time for the
network reduction step is relatively very small. Therefore, our evaluation focuses on
the influence of the total pre-processing time of all the three steps on the speedup of
Methodnew with respect to Methodre f . We select 9 representative PBNs from the above
2307 PBNs, with respect to their densities, percentages of leaves and the speedups we
have obtained. We simulate the 9 PBNs for different sample sizes using both Methodre f
and Methodnew. We show the average pre-processing time of Methodnew and the ob-
tained speedups with Methodnew (taking into account pre-processing time costs) with
different sample sizes in Table 1. As expected, with the increase of the sample size, the
influence of pre-processing time becomes smaller and the speedup increases. In fact,
in some cases, the pre-processing time is relatively so small that its influence becomes
negligible, e.g., for networks 7 and 8, where the sample size is equal or greater than 100



Fast Simulation of Probabilistic Boolean Networks 13

Fig. 2: Speedups of Methodnew with respect to Methodre f .

network # size
percentage
of leaves

density
average

pre-processing
time (second)

speedup with different
sample sizes (million)

1 10 100 400

1 900 1.11 6.72 28.12 0.65 1.49 1.71 1.73
2 950 0.84 6.96 32.35 0.59 1.47 1.73 1.75
3 1000 0.30 7.00 33.72 0.58 1.45 1.71 1.73
4 600 67.83 4.25 162.21 0.13 1.08 4.51 6.89
5 800 68.38 3.94 43.17 0.66 3.05 6.75 7.69
6 900 68.00 3.89 36.58 0.69 3.56 6.90 7.70
7 450 89.78 1.60 0.23 21.44 37.59 41.62 41.84
8 550 88.55 1.72 0.24 20.26 35.94 36.47 36.62
9 1000 89.10 1.75 1.08 10.04 31.83 35.09 37.19

Table 1: Influence of sample sizes on the speedups of Methodnew with respect to
Methodre f .

million. Moreover, often with a sample size larger than 10 million, the effort spent in
pre-processing can be compensated by the saved sampling time (simulation speedup).

Performance prediction. To predict the speedup of our method for a given network, we
apply regression techniques on the results of the 2307 PBNs to fit a prediction model.
We use the normalised percentage of leaves and the network density as the predictor
variables and the speedup of Methodnew with respect to Methodre f as the response vari-
able in the regression model. We do not consider network size as based on the plotted
figures it does not directly affect the speedup. In the end, we obtain a polynomial re-
gression model shown in Equation (4), which can fit 90.9% of the data:

y = b1 +b2 ∗ x1 +b3 ∗ x2
1 +b4 ∗ x2 +b5 ∗ x2

2, (4)

where [b1,b2,b3,b4,b5] = [2.89,2.71,2.40,−1.65,0.71], y represents the speedup, x1
represents the percentage of leaves and x2 represents the network density. The result of



14 Mizera, Pang, and Yuan

#
Methodre f Methodnew

speedupsample size
(million)

time
(m)

probability
pre-processing

time (s)
sample size

(million)
total time

(m)
probability

1 147.50 9.51 0.003243 4.57 147.82 1.05 0.003236 9.09
2 452.35 28.65 0.990049 3.10 452.25 2.79 0.990058 10.28
3 253.85 14.88 0.005583 3.42 253.99 1.74 0.005587 8.54
4 49.52 2.96 0.001087 3.38 50.39 0.36 0.001078 8.31
5 315.06 17.73 0.993293 4.40 305.43 2.05 0.993298 8.39
6 62.22 3.69 0.001088 3.13 50.28 0.39 0.001087 7.67
7 255.88 16.74 0.005621 4.01 256.61 1.70 0.005623 9.88

Table 2: Performance of Methodre f and Methodnew on an apoptosis network.

a 10-fold cross-validation of this model supports this prediction rate. Hence, we believe
this model does not overfit the given data. Based on this model, we can predict how
much speedup is likely to be obtained with our proposed method for a given PBN.

4.2 An apoptosis network

In this section, we evaluate our method on a real-life biological network, i.e., an apopto-
sis network of 91 nodes [12]. This network has a density of 1.78 and 37.5% of the nodes
are leaves, which is suitable for applying our method to gain speedups. The network has
been analysed in [9]. In one of the analyses, i.e., the long-term influences [13] on com-
plex2 from each of its parent nodes: RIP-deubi, complex1, and FADD, seven steady-
state probabilities of the network need to be computed. In this evaluation, we com-
pute the seven steady-state probabilities using our proposed structure-based simulation
method (Methodnew) and compare it with the original simulation method (Methodre f ).
The precision and confidence level of all the computations, as required by the two-state
Markov chain approach [14], are set to 10−5 and 0.95, respectively. The results of this
computation are shown in Table 2. The computed probabilities using both methods are
comparable, i.e., for the same set of states, the differences of the computed probabilities
are within the precision requirements. The sample sizes required by both methods for
computing the same steady-state probabilities are very close to each other. Note that the
speedups are computed based on the accurate data, which are slightly different from the
truncated and rounded data shown in Table 2. We have obtained speedups (Methodnew
with respect to Methodre f ) between 7.67 and 10.28 for computing those seven proba-
bilities. In total, the time cost is reduced from 1.5 hours to about 10 minutes.

5 Conclusion

We propose a structure-based method for speeding up simulations of PBNs. Using net-
work reduction and node-grouping techniques, our method can significantly improve
the simulation speed of PBNs. We show with experiments that our method is especially
efficient in the case of analysing sparse networks with a large number of leaf nodes.



Fast Simulation of Probabilistic Boolean Networks 15

The node-grouping technique gains speedups by using more memory. Theoretically,
as long as the memory can handle, the group number can be made as small as possible.
However, this causes two issues in practice. First, the pre-processing time increases
dramatically with the group number decreasing. Second, the performance of the method
drops a lot when operating on large memories due to the increase of cache miss rate.
Therefore, in our experiments we do not explore all the available memory to maximise
the groups. Reducing the pre-processing time cost and the cache miss rate would be two
future works to further improve the performance of our method. We plan to apply our
method for the analysis of real-life large biological networks.

References

1. Shmulevich, I., Dougherty, E.R.: Probabilistic Boolean Networks: The Modeling and Con-
trol of Gene Regulatory Networks. SIAM Press (2010)

2. Trairatphisan, P., Mizera, A., Pang, J., Tantar, A.A., Schneider, J., Sauter, T.: Recent develop-
ment and biomedical applications of probabilistic Boolean networks. Cell Communication
and Signaling 11 (2013) 46

3. Kauffman, S.A.: Homeostasis and differentiation in random genetic control networks. Nature
224 (1969) 177–178

4. Shmulevich, I., Dougherty, E.R., Zhang, W.: From boolean to probabilistic boolean networks
as models of genetic regulatory networks. Proceedings of the IEEE 90(11) (2002) 1778–1792

5. Shmulevich, I., Dougherty, E.R., Zhang, W.: Gene perturbation and intervention in proba-
bilistic Boolean networks. Bioinformatics 18(10) (2002) 1319–1331

6. Shmulevich, I., Dougherty, E.R., Zhang, W.: Control of stationary behavior in probabilistic
Boolean networks by means of structural intervention. Journal of Biological Systems 10(04)
(2002) 431–445

7. Shmulevich, I., Gluhovsky, I., Hashimoto, R., Dougherty, E., Zhang, W.: Steady-state analy-
sis of genetic regulatory networks modelled by probabilistic Boolean networks. Comparative
and Functional Genomics 4(6) (2003) 601–608

8. Trairatphisan, P., Mizera, A., Pang, J., Tantar, A.A., Sauter, T.: optPBN: An optimisation
toolbox for probabilistic boolean networks. PLOS ONE 9(7) (2014)

9. Mizera, A., Pang, J., Yuan, Q.: Reviving the two-state markov chain approach (technical
report). Available online at http://arxiv.org/abs/1501.01779 (2015)

10. Mizera, A., Pang, J., Yuan, Q.: ASSA-PBN: a tool for approximate steady-state analysis of
large probabilistic Boolean networks. In: Proc. 13th International Symposium on Automated
Technology for Verification and Analysis. LNCS, Springer (2015) Available at http://
satoss.uni.lu/software/ASSA-PBN/.

11. Walker, A.: An efficient method for generating discrete random variables with general dis-
tributions. ACM Transactions on Mathematical Software 3(3) (1977) 253–256

12. Schlatter, R., Schmich, K., Vizcarra, I.A., Scheurich, P., Sauter, T., Borner, C., Ederer, M.,
Merfort, I., Sawodny, O.: ON/OFF and beyond - a Boolean model of apoptosis. PLOS
Computational Biology 5(12) (2009) e1000595

13. Shmulevich, I., Dougherty, E.R., Kim, S., Zhang, W.: Probabilistic Boolean networks: a
rule-based uncertainty model for gene regulatory networks. Bioinformatics 18(2) (2002)
261–274

14. Raftery, A.E., Lewis, S.: How many iterations in the Gibbs sampler? Bayesian Statistics 4
(1992) 763–773


