
ON THE GENERALIZED ASSOCIATIVITY EQUATION

JEAN-LUC MARICHAL AND BRUNO TEHEUX

Abstract. The so-called generalized associativity functional equation

G(J(x, y), z) = H(x,K(y, z))
has been investigated under various assumptions, for instance when the un-

known functions G, H, J , and K are real, continuous, and strictly monotonic
in each variable. In this note we investigate the following related problem:
given the functions J and K, find every function F that can be written in the
form

F (x, y, z) = G(J(x, y), z) = H(x,K(y, z))
for some functions G and H. We show how this problem can be solved when

any of the inner functions J and K has the same range as one of its sections.

1. Introduction

Let X, Y , Z, UJ , UK , and U be nonempty sets and consider the functional
equation

(1) G(J(x, y), z) = H(x,K(y, z)), x ∈X, y ∈ Y, z ∈ Z,
where J ∶X × Y → UJ , K ∶Y × Z → UK , G∶UJ × Z → U , and H ∶X × UK → U are
unknown functions. This functional equation, called the generalized associativity
equation, has been investigated under various solvability conditions, in particular
when the unknown functions are real, continuous, and strictly monotonic in each
variable (see, e.g, [1, 2] and the references therein).

In this paper we are interested in the following problem, which is closely related to
that of solving the generalized associativity equation (1). Throughout this paper we
denote the domain and range of any function f by dom(f) and ran(f), respectively.
Problem 1. Given two functions J ∶X × Y → UJ and K ∶Y × Z → UK , determine
the class FJ,K of functions F ∶X ×Y ×Z → ran(F ) for which there exist G∶UJ ×Z →
ran(F ) and H ∶X ×UK → ran(F ) such that

(2) F (x, y, z) = G(J(x, y), z) = H(x,K(y, z)), x ∈X, y ∈ Y, z ∈ Z.
Contrary to the problem of solving the generalized associativity equation, here

we assume that the inner functions J and K are given beforehand and we search
for all functions F which have the form given in (2). For instance, searching for the
real functions F ∶R3 → R that can be expressed in the form

F (x, y, z) = G(x − y, z) = H(x, y − z), x, y, z ∈ R,

Date: July 28, 2016.
2010 Mathematics Subject Classification. 39B52.

Key words and phrases. Generalized associativity, functional equation, quasi-inverse.
Corresponding author: Jean-Luc Marichal is with the Mathematics Research Unit, University

of Luxembourg, 6, rue Coudenhove-Kalergi, L-1359 Luxembourg, Luxembourg. Email: jean-
luc.marichal[at]uni.lu.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/78371056?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 JEAN-LUC MARICHAL AND BRUNO TEHEUX

for some functions G,H ∶R2 → R is a special case of Problem 1. As we will see in
Example 4, these functions are all of the form

F (x, y, z) = f(x − y + z),
where f ∶R→ R is an arbitrary function.

The following problem gives an equivalent but simpler reformulation of Prob-
lem 1, where the functions G and H are not explicitly involved.

Problem 2. Given two functions J ∶X × Y → UJ and K ∶Y × Z → UK , determine
the class FJ,K of functions F ∶X × Y ×Z → ran(F ) satisfying the conditions

J(x, y) = J(x′, y′) ⇒ F (x, y, z) = F (x′, y′, z)
K(y, z) = K(y′, z′) ⇒ F (x, y, z) = F (x, y′, z′)

for all x,x′ ∈X, all y, y′ ∈ Y , and z, z′ ∈ Z.

It is easy to see that Problem 1 and Problem 2 are equivalent in the sense that
they define the same class FJ,K of functions. We also observe that FJ,K is never
empty since it contains all the constant functions. More generally, we have the
following fact.

Fact 1. If F ∈ FJ,K , then f ○ F ∈ FJ,K for every function f defined on ran(F ).

Solving Problem 1, or equivalently Problem 2, seems not easy in general. How-
ever, solutions can be found as soon as certain assumptions are made on the func-
tions J and K. In Section 2 we show how this problem can be solved whenever
any of the functions J and K has the same range as one of its sections. In Section
3 we focus on the special case where X = Z = A and Y = An−2 for some nonempty
set A and some integer n ⩾ 3 (in which case any function in FJ,K is defined on the
Cartesian power An) and we provide conditions on J and K for the functions in
FJ,K to be expressible in terms of their diagonal sections (i.e., every F ∈ FJ,K is of
the form F = δF ○M for some function M ∶An → A, where δF ∶A → A is defined by
δF (x) = F (x, . . . , x)).

We use the following notation. The identity function on any nonempty set E
is denoted by idE . We denote the set of quasi-inverses of a function f by Q(f),
where a quasi-inverse g of a function f is defined by the conditions (see, e.g., [4,
Sect. 2.1])

f ○ g∣ran(f) = idran(f) and ran(g∣ran(f)) = ran(g).
Throughout this paper we assume that every function has at least one quasi-inverse.
It is well known that this assumption is equivalent to the Axiom of Choice. Recall
also that the relation of being quasi-inverse is symmetric: if g ∈ Q(f) then f ∈ Q(g);
moreover, we have ran(g) ⊆ dom(f) and ran(f) ⊆ dom(g) and the functions f ∣ran(g)
and g∣ran(f) are one-to-one (in particular if ran(g) = dom(f) and ran(f) = dom(g),
then f and g are inverses of each other).

Fact 2. If g ∈ Q(f) and ran(h) ⊆ ran(f), then f ○ g ○ h = h.

Remark 1. Consider the class FJ,K as defined in Problem 1 and let F ∈ FJ,K .
Then we have G(a, b) = F (ϕ(a), b) for every ϕ ∈ Q(J) and every (a, b) ∈ ran(J) ×
Z. Therefore, G is completely determined from F . Similarly, we have H(a, b) =
F (a,ψ(b)) for every ψ ∈ Q(K) and every (a, b) ∈ X × ran(K), and hence H is
completely determined from F . Thus, when such quasi-inverses ϕ and ψ can be
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given explicitly, Problem 1 amounts to solving the generalized associativity equation
(1) for given functions J and K and an arbitrary set U .

2. Main results

For any a ∈ Z we define the section Ka
2 ∶Y → UK of K as the function Ka

2 (y) =
K(y, a). The following theorem provides a first step in the resolution of Problem 1
whenever ran(K) = ran(Ka

2 ) for some a ∈ Z.

Theorem 3. Assume that ran(K) = ran(Ka
2 ) for some a ∈ Z and let F ∈ FJ,K .

Then there exists f ∶UJ → ran(F ) such that F = f ○Rk for every k ∈ Q(Ka
2 ), where

Rk ∶X × Y ×Z → UJ is defined by

Rk(x, y, z) = J(x, k ○K(y, z)).

Proof. Let F ∈ FJ,K . Then, there exist G∶UJ×Z → ran(F ) andH ∶X×UK → ran(F )
such that (2) holds. Let f = Ga

2 and k ∈ Q(Ka
2 ). For any (y, z) ∈ Y × Z, by Fact 2

we have

K(y, z) = Ka
2 ○ k ○K(y, z) = K(k ○K(y, z), a).

For every (x, y, z) ∈X × Y ×Z, we then have

F (x, y, z) = H(x,K(y, z)) = H(x,K(k ○K(y, z), a))
= G(J(x, k ○K(y, z)), a) = f ○Rk(x, y, z),

which completes the proof. �

Remark 2. We observe that, although the quasi-inverse k ofKa
2 need not be unique,

the identity F = f ○Rk in Theorem 3 does not depend on the choice of this quasi-
inverse.

Example 4. Let F ∶R3 → R be a function for which there exist G,H ∶R2 → R such
that

(3) F (x, y, z) = G(x − y, z) = H(x, y − z), x, y, z ∈ R.

Searching for all possible such functions F reduces to describing the functions in
FJ,K that range in R, where J and K are defined by J(x, y) = x − y and K(y, z) =
y − z. Since K0

2 = idR, we have ran(K0
2) = R = ran(K) and hence we can apply

Theorem 3 with a = 0. We then have k = (K0
2)−1 = idR and Rk(x, y, z) = x − y + z.

Therefore any function F ∈ FJ,K ranging in R is of the form

(4) F (x, y, z) = f(x − y + z), x, y, z ∈ R,

for some f ∶R→ R. Conversely any such function clearly lies in FJ,K . Therefore we
necessarily have

{F ∈ FJ,K ∣ ran(F ) ⊆ R} = {(x, y, z)↦ f(x − y + z) ∣ f ∶R→ R}.

Finally, setting y = 0 in (3) and (4) we obtain G(x, z) = H(x,−z) = f(x + z) for
every x, z ∈ R. �

Example 5. Assume that (A,∨) is a bounded join-semilattice, with 0 as the least
element and let F ∶An → ran(F ) be a function for which there exist G,H ∶A2 →
ran(F ) such that

F (x1, . . . , xn) = G(x1 ∨⋯ ∨ xn−1, xn) = H(x1, x2 ∨⋯ ∨ xn).
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The class of all possible functions F satisfying this condition is nothing other than
the set FJ,K , where the functions J,K ∶An−1 → A are defined by J(x1, . . . , xn−1) =
K(x1, . . . , xn−1) = x1∨⋯∨xn−1. Using Theorem 3 with a = 0, we can easily see that

FJ,K = {(x1, . . . , xn)↦ f(x1 ∨⋯ ∨ xn) ∣ dom(f) = A}. �

The following theorem is the dual version of Theorem 3. The proof is similar
to that of Theorem 3 and hence is omitted. For any b ∈ X we define the section
Jb
1 ∶Y → UJ of J as the function Jb

1(y) = J(b, y).

Theorem 6. Assume that ran(J) = ran(Jb
1) for some b ∈ X and let F ∈ FJ,K .

Then there exists g∶UK → ran(F ) such that F = g ○ Sj for every j ∈ Q(Jb
1), where

Sj ∶X × Y ×Z → UK is defined by

Sj(x, y, z) = K(j ○ J(x, y), z).

We observe that each of Theorems 3 and 6 provides only necessary conditions for
a function to be in FJ,K . Examples 4 and 5 show that the use of only one of these
theorems may sometimes be sufficient to derive a complete characterization of the
class FJ,K . The following example shows that using both theorems may somewhat
simplify the quest for such a characterization.

Example 7. Let F ∶R3 → ran(F ) be a function for which there exist G,H ∶R2 →
ran(F ) such that

F (x, y, z) = G(xy, z) = H(x, y + z), x, y, z ∈ R.

Using both Theorems 3 and 6 with J(x, y) = xy, K(y, z) = y + z, a = 0, and b = 1,
we obtain the expressions

F (x, y, z) = f(xy + xz) = g(xy + z)

for some functions f, g∶R → ran(F ). Setting y = 0 and z = 1 in these equations
shows that f = g must be a constant function. Therefore FJ,K consists of the
class of constant functions. Note that using Theorem 3 only would have been
sufficient here. Indeed, taking a = 0 and then a = 1 would lead to the identity
f(xy + xz) = f ′(xy + xz − x) for some functions f, f ′∶R → ran(F ), from which we
would reach the same conclusion by setting y = 1 and z = 0. �

Example 7 may suggest that the set FJ,K reduces to the class of constant func-
tions whenever the functions J and K do not coincide. To see that this is not true,
just replace J and K in Example 7 with the functions J(x, y) = y and K(y, z) = y,
respectively. Any F ∈ FJ,K is then of the form F (x, y, z) = f(y) for some function
f ∶R→ ran(F ).

Interestingly, FJ,K may reduce to the class of constant functions even if J and
K coincide. The following example illustrates this fact.

Example 8. Let A = [0,+∞[ and let F ∶A3 → ran(F ) be a function for which there
exist G,H ∶A2 → ran(F ) such that

F (x, y, z) = G(max(1, x + y), z) = H(x,max(1, y + z)), x, y, z ∈ A.

Using both Theorems 3 and 6 with J(x, y) = K(x, y) = max(1, x + y) and a = b = 0
and choosing j = k = id[1,+∞[, we obtain the expressions

F (x, y, z) = f(max(1 + x,x + y + z)) = g(max(1 + z, x + y + z))
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for some functions f, g∶ [1,+∞[ → ran(F ). Setting first x ∈ [0,1] and y = z = 0 and
then x = y = 0 and z ∈ [0,1] in these identities, we obtain that f = g is constant on
[1,2]. Then, setting x ⩾ 1 and y = z = 0 and then x = y = 0 and z ⩾ 1, we obtain
that f = g is constant on [1,+∞[. Therefore FJ,K consists of the class of constant
functions. �

The following two propositions give sufficient conditions on the functions Rk and
Sj (as defined in Theorems 3 and 6) to obtain a characterization of the class FJ,K .

Proposition 9. Assume that ran(K) = ran(Ka
2 ) for some a ∈ Z. Let Rk ∶X × Y ×

Z → UJ be defined as in Theorem 3. If Rk ∈ FJ,K , then FJ,K = {f ○Rk ∣ dom(f) =
UJ}.

Proof. Inclusion ‘⊆’ follows from Theorem 3. Inclusion ‘⊇’ follows from both the
hypothesis and Fact 1. �

Proposition 10. Assume that ran(J) = ran(Jb
1) for some b ∈X. Let Sj ∶X×Y ×Z →

UK be defined as in Theorem 6. If Sj ∈ FJ,K , then FJ,K = {g ○ Sj ∣ dom(g) = UK}.

Remark 3. Finding necessary and sufficient conditions on functions J and K for
Rk (or Sj) to be in FJ,K remains an interesting problem.

The following proposition states that if the functions f ○Rk and g ○ Sj defined
in Theorems 3 and 6 are equal, then they belong to the class FJ,K .

Proposition 11. Assume that ran(K) = ran(Ka
2 ) and ran(J) = ran(Jb

1) for some
a ∈ Z and b ∈ X. Let Rk ∶X × Y × Z → UJ and Sj ∶X × Y × Z → UK be defined
as in Theorems 3 and 6. If f ○Rk = g ○ Sj for some functions f and g such that
dom(f) = UJ and dom(g) = UK , then f ○Rk ∈ FJ,K .

Proof. Since the identity f ○Rk = g ○Sj can be rewritten as condition (1) for some
function G defined on UJ ×Z and some function H defined on X ×UK , the function
f ○Rk is necessarily in FJ,K . �

Remark 4. Proposition 11 is particularly useful, when combined with any of the
Propositions 9 and 10, if for instance UJ = UK and f = g is the identity function
(or a one-to-one function by Fact 1). Example 12 illustrates this observation.

Example 12. Consider the class FJ,K , where J,K ∶ [0,1]2 → [0,1] are defined
by J(x, y) = K(x, y) = 1

2
max(1, x + y). Consider also the functions Rk and Sj

defined in Theorems 3 and 6 by choosing the values a = b = 1 and the functions
j, k∶ [ 1

2
,1]→ [0,1] defined by j(x) = k(x) = 2x − 1. Then we have

Rk(x, y, z) = Sj(x, y, z) = 1
2
max(1, x + y + z − 1).

By Proposition 11 (and in view of Remark 4), we can immediately see that

FJ,K = {(x, y, z)↦ f( 1
2
max(1, x + y + z − 1)) ∣ dom(f) = [ 1

2
,1]}. �

We observe that Problem 1 can also be generalized to functions J and K that
are defined on subsets of X × Y and Y ×Z, respectively. Such a generalization can
be useful for instance when the assumption of Theorem 3 is not satisfied (i.e., when
ran(K) ≠ ran(Ka

2 ) for all a ∈ Z). For the interested reader we elaborate on this
generalization in the Appendix.
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3. When the domain of F is a Cartesian power

We now particularize Problem 1 to the case where X = Z = A and Y = An−2 for
some nonempty set A and some integer n ⩾ 3. We then have X × Y × Z = An and
both functions J and K have n − 1 arguments (like in Example 5).

Recall that the diagonal section of a function F ∶An → ran(F ) is the function
δF ∶A→ ran(F ) defined by δF (x) = F (x, . . . , x). Also, a function F ∶An → A is said
to be range-idempotent if δF ○ F = F . It is said to be idempotent if δF = idA.

In this section we provide conditions on J and K for each function F in FJ,K

to be expressible as F = δF ○M for some function M ∶An → A. Under idempotence
and nondecreasing monotonicity (assuming A is an ordered set), such a functionM
is then called a Chisini mean associated with F (see [3]). This observation could be
useful in applications where aggregation functions, and especially mean functions,
are considered.

Let us first consider an important but simple lemma.

Lemma 13. Let R∶An → U be a function such that ran(R) = ran(δR) and consider
the functions f ∶U → V and F = f ○R. The following assertions hold.

(a) We have F = δF ○ r ○R for every r ∈ Q(δR).
(b) If F ′ = f ′ ○R satisfies δF = δF ′ for some f ′∶U → V , then we have F = F ′.
(c) If F is idempotent, then F = r ○R for every r ∈ Q(δR).
(d) If r ○R is not idempotent for some r ∈ Q(δR), then F is not idempotent.
(e) For every r ∈ Q(δR), the function r ○R is range-idempotent (i.e., r ○ δR ○

r ○R = r ○R). It is idempotent if and only if δR is one-to-one.

Proof. By Fact 2 we have δR ○ r ○ R = R, which proves assertion (e). We also
derive the identities F = f ○ R = f ○ δR ○ r ○ R = δF ○ r ○ R, which prove assertion
(a). Assertions (b) and (c) immediately follow from (a). Assertion (d) follows from
(c). �

Whenever its assumptions are satisfied, Lemma 13 provides interesting properties
of function F . Assertions (a) and (c) give an explicit expression of F in terms of its
diagonal section. Assertion (b) shows that F depends only on δF and R. Assertion
(d) is nothing other than the contrapositive of assertion (c). Finally, assertion (e)
reveals a surprising property of r ○R.

Example 14. Let R∶Rn → R be the sum function R(x1, . . . , xn) = ∑n
i=1 xi. Asser-

tion (a) of Lemma 13 shows that, for any function f ∶R→ R, the function F = f ○R
can be written as

F (x1, . . . , xn) = δF (
1

n

n

∑
i=1
xi), x1, . . . , xn ∈ R. �

For any function F ∶An → U , any k ∈ {1, . . . , n}, and any a ∈ A, we define the
section F a

k ∶An−1 → U of F by

F a
k (x1, . . . , xk−1, xk+1, . . . , xn) = F (x1, . . . , xk−1, a, xk+1, . . . , xn).

Combining Theorem 3 with Lemma 13, we obtain the following result. First define
FA

J,K = {F ∈ FJ,K ∣ ran(F ) ⊆ A}.

Theorem 15. Assume ran(K) = ran(Ka
n−1) for some a ∈ A and let F ∈ FJ,K .

Assume also that ran(R) = ran(δR), where R is one of the functions Rk (k ∈
Q(Ka

n−1)) defined in Theorem 3. Then the assertions (a)–(e) of Lemma 13 hold
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(where U and V are to be replaced with UJ and ran(F ), respectively). If F ∈ FA
J,K ,

then for every r ∈ Q(δR) we have r ○R ∈ FA
J,K if and only if

FA
J,K = {f ○ r ○R ∣ f ∶A→ A}.

Proof. By Theorem 3 there exists f ∶UJ → ran(F ) such that F = f ○R and hence
Lemma 13 applies. Let us now establish the last part of the theorem. To see that
the condition is sufficient, just take f = idA. Let us show that it is necessary. The
inclusion ‘⊇’ follows from Fact 1. To see that the inclusion ‘⊆’ holds, let F ′ ∈ FA

J,K .

Then F ′ = δF ′ ○ r ○R (by assertion (a)) and hence we can take f = δF ′ . �

The dual statement of Theorem 15 can be derived immediately. We then have
the following theorem.

Theorem 16. Assume that ran(J) = ran(Jb
1) for some b ∈ A and let F ∈ FJ,K .

Assume also that ran(S) = ran(δS), where S is one of the functions Sj (j ∈ Q(Jb
1))

defined in Theorem 6. Then the assertions (a)–(e) of Lemma 13 hold (where R, r,
U , and V are to be replaced with S, s, UK and ran(F ), respectively). If F ∈ FA

J,K ,

then for every s ∈ Q(δS) we have s ○ S ∈ FA
J,K if and only if

FA
J,K = {f ○ s ○ S ∣ f ∶A→ A}.

Example 17. Considering again Example 12, where

R(x, y, x) = 1
2
max(1, x + y + z − 1)

on [0,1]3, we clearly see that ran(R) = ran(δR) = [ 12 ,1]. Applying Theorem 15,

with r(x) = 2x+1
3

on [ 1
2
,1] for instance, we obtain

r ○R(x, y, z) = 1
3
max(2, x + y + z)

and for any F ∈ FJ,K we have F (x, y, z) = δF ( 13 max(2, x + y + z)). By identifying

the variables in the latter identity we then obtain δF (x) = δF ( 13 max(2,3x)), which
shows that δF is constant on [0, 2

3
]. �

Remark 5. Let A be a nonempty real interval possibly unbounded. Recall that if a
function F ∶An → R is nondecreasing in each variable and satisfies ran(F ) = ran(δF ),
then there always exists a function M ∶An → A (called a Chisini mean) that is
idempotent and nondecreasing in each variable such that F = δF ○M (see [3] for a
constructive proof). For instance, considering again the functions in Example 17,
we can write F (x, y, z) = δF (x+y+z3

), where δF is constant on [0, 2
3
].

We observe that the function r ○R is idempotent in Example 14 while it is not
in Example 17. Actually, under the assumptions of Theorem 15, the function r ○R
is idempotent whenever there exists F ∈ FJ,K such that δF is one-to-one. Indeed,
we then have r ○R = δ−1F ○F and hence δr○R = δ−1F ○ δF = idA, which shows that r ○R
is idempotent. Clearly, the dual version of this fact can be derived by considering
the assumptions of Theorem 16.

We also have the following result.

Proposition 18. Under the assumptions of both Theorems 15 and 16, the following
assertions are equivalent.

(i) There exists F ∈ FJ,K such that δF is one-to-one.
(ii) r ○R = s ○ S is idempotent.
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(iii) r ○R is idempotent and lies in FJ,K .
(iv) s ○ S is idempotent and lies in FJ,K .

Proof. Clearly (iii) or (iv) implies (i). Let us prove that (i) implies (ii). As observed
above, we have r○R = δ−1F ○F = s○S and hence the function r○R = s○S is idempotent.
Finally, (ii) implies (iii) and (iv) by Proposition 11. �
Remark 6. We observe that the proof of Lemma 13 does not rely on the very con-
cept of diagonal section. Actually, Lemma 13 can be easily generalized as follows.
Consider the functions R∶X → U , f ∶U → V , F = f ○R, and Π∶X → X and assume
that ran(R) = ran(R ○Π). Denote by ker(f) the kernel of any function f , that is,
the relation {(a, b) ∈ dom(f)2 ∣ f(a) = f(b)}. Then the following assertions hold.

(a) We have F = F ○Π ○ r ○R for every r ∈ Q(R ○Π).
(b) If F ′ = f ′ ○ R satisfies F ○ Π = F ′ ○ Π for some f ′∶U → V , then we have

F = F ′.
(c) If F ○Π = Π, then F = Π ○ r ○R for every r ∈ Q(R ○Π).
(d) If Π ○ r ○R ○Π ≠ Π for some r ∈ Q(R ○Π), then we have F ○Π ≠ Π.
(e) If Π○Π = Π, then Tr ○Π○Tr = Tr for every r ∈ Q(R○Π), where Tr = Π○r○R.

In this case we have Tr ○Π = Π if and only if ker(Tr ○Π) = ker(Π).

Appendix

We consider a generalization of Problem 1 in which the functions J and K are
defined on subsets of X × Y and Y ×Z, respectively.

Problem 3. Given two functions J ∶DJ → UJ and K ∶DK → UK , where DJ ⊆X×Y
and DK ⊆ Y × Z, determine the class FJ,K of functions F ∶DJ,K → ran(F ), where
DJ,K = {(x, y, z) ∣ (x, y) ∈ DJ and (y, z) ∈ DK}, for which there exist G∶UJ × Z →
ran(F ) and H ∶X ×UK → ran(F ) such that

F (x, y, z) = G(J(x, y), z) = H(x,K(y, z)), (x, y, z) ∈DJ,K .

This generalization of Problem 1 can be useful for instance when the assumption
of Theorem 3 is not satisfied (i.e., when ran(K) ≠ ran(Ka

2 ) for all a ∈ Z). Indeed, it
then may be possible to restrict the domain of K to a subset DK ⊆ Y ×Z on which
the assumption is satisfied. These situations are illustrated in the following results
(whose proofs can be obtained by a simple adaptation of Theorems 3 and 6) and
examples.

If a function f is defined on D ⊆ X × Y and if a ∈ Y , then we denote by fa2 the
function defined on {x ∈X ∣ (x, a) ∈D} by fa2 (x) = f(x, a). Similarly, if b ∈X, then
we denote by f b1 the function defined on {y ∈ Y ∣ (b, y) ∈D} by f b1(y) = f(b, y).

Theorem 19. Under the notation of Problem 3, assume that ran(K) = ran(Ka
2 )

for some a ∈ Z and let F ∈ FJ,K . Then there exists f ∶UJ → ran(F ) such that for
every k ∈ Q(Ka

2 ) we have F (x, y, z) = f ○Rk(x, y, z) for every (x, y, z) ∈DJ,K such
that (x, k ○K(y, z)) ∈ DJ , where Rk ∶X × Y × Z → UJ is defined by Rk(x, y, z) =
J(x, k ○K(y, z)).

Theorem 20. Under the notation of Problem 3, assume that ran(J) = ran(Jb
1)

for some b ∈ X and let F ∈ FJ,K . Then there exists g∶UK → ran(F ) such that for

every j ∈ Q(Jb
1) we have F (x, y, z) = g ○ Sj(x, y, z) for every (x, y, z) ∈ DJ,K such

that (j ○ J(x, y), z) ∈ DK , where Sj ∶X × Y × Z → UK is defined by Sj(x, y, z) =
K(j ○ J(x, y), z).
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Example 21. Let A be a real interval, let J,K ∶A2 → A be defined by J(x, y) =
K(x, y) = x+y

2
, and let F ∶A3 → R be a function for which there exist G,H ∶A2 → R

such that

F (x, y, z) = G(J(x, y), z) = H(x,K(y, z)), x, y, z ∈ A.

If A = R, then ran(K) = ran(K0
2) and by Theorem 3 the function F is of the

form F (x, y, z) = f(x + y + z) for some f ∶R → R. If A = [0,1], then we have
ran(K) ≠ ran(Ka

2 ) for every a ∈ [0,1]. Let us then use Theorem 19 by considering
the sets

DJ = [0,1]2 and DK = {(y, z) ∈ [0,1]2 ∣ y + z ⩽ 1}.
We then see that ran(K ∣DK

) = ran((K ∣DK
)02) and DJ,K = [0,1] ×DK . Also, we

may define k∶ [0, 1
2
]→ [0,1] by k(x) = 2x. By Theorem 19, for every F ∈ FJ,K there

exists f ∶ [0,2]→ R such that

F (x, y, z) = f(x + y + z) when y + z ⩽ 1.

Similarly, considering the set

D′K = {(y, z) ∈ [0,1]2 ∣ y + z ⩾ 1},

we see that ran(K ∣D′
K
) = ran((K ∣D′

K
)12) and then there exists f ′∶ [1,3] → R such

that

F (x, y, z) = f ′(x + y + z) when y + z ⩾ 1.
It follows that on the whole domain [0,1]3 we have F (x, y, z) = f(x+y+z) for some
f ∶ [0,3]→ R. �

Note that the assumption (x, k ○ K(y, z)) ∈ DJ of Theorem 19 need not be
satisfied for every (x, y, z) ∈DJ,K . The following example illustrates this case.

Example 22. Let J and K be the real functions defined on

D = {(x, y) ∈ R2 ∣ y ≠ x + 1}

by

J(x, y) = K(x, y) = x + y
2(x − y + 1)

and let F ∶C → R be a function for which there exist G,H ∶R2 → R such that

(5) F (x, y, z) = G(J(x, y), z) = H(x,K(y, z)), (x, y, z) ∈ C,

where C = {(x, y, z) ∈ R3 ∣ y ≠ x + 1, z ≠ y + 1}.
Since K(x,x) = x, we have ran(K) = R. We also have ran(Ka

2 ) = R ∖ { 1
2
} if

a ∈ R ∖ {1
2
} and ran(K1/2

2 ) = {
1
2
}, which shows that ran(K) ≠ ran(Ka

2 ) for every
a ∈ R. We then can apply Theorem 19 if we choose an appropriate restriction of
function K. Let us use the notation of Problem 3 and Theorem 19 with the sets

DJ = D and DK = D ∖ {(y, z) ∈ R2 ∣ z = 1
2
}.

We then have K0
2(y) =

y
2(1+y) for every y ≠ −1 and ran(K) = ran(K0

2) = R ∖ {12}.
The unique quasi-inverse of K0

2 is the function k∶R ∖ {1
2
} → R ∖ {−1} defined by

k(t) = 2t
1−2t . Moreover we have

DJ,K = {(x, y, z) ∈ R3 ∣ y ≠ x + 1, z ≠ y + 1, z ≠ 1
2
}
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and the condition (x, k ○K(y, z)) ∈DJ is then equivalent to y+z
1−2z ≠ x+ 1. It follows

from Theorem 19 that for every function F ∶DJ,K → ran(F ) in FJ,K there is a
function f ∶R→ ran(F ) such that

(6) F (x, y, z) = f( x + y + z − 2xz
2 + 2x − 2y − 6z − 4xz

),

for every (x, y, z) ∈ R3 such that y ≠ x + 1, z ≠ y + 1, z ≠ 1
2
, and y+z

1−2z ≠ x + 1.
We can apply Theorem 20 similarly. Let us use the corresponding notation with

the sets

DK = D and DJ = D ∖ {(x, y) ∈ R2 ∣ x = − 1
2
}.

We then have J0
1 (y) =

y
2(1−y) for every y ≠ 1 and ran(J) = ran(J0

1 ) = R ∖ {− 1
2
}.

The unique quasi-inverse of J0
1 is the function j∶R ∖ {− 1

2
} → R ∖ {1} defined by

j(t) = 2t
1+2t . Moreover we have

DJ,K = {(x, y, z) ∈ R3 ∣ y ≠ x + 1, z ≠ y + 1, x ≠ − 1
2
}

and the condition (j ○ J(x, y), z) ∈DK is then equivalent to x+y
1+2x ≠ z − 1. It follows

from Theorem 20 that for every function F ∶DJ,K → ran(F ) in FJ,K there is a
function g∶R→ ran(F ) such that

(7) F (x, y, z) = g( x + y + z + 2xz
2 + 6x + 2y − 2z − 4xz

),

for every (x, y, z) ∈ R3 such that y ≠ x + 1, z ≠ y + 1, x ≠ − 1
2
, and x+y

1+2x ≠ z − 1.
Now, let us consider the function F given in (6) and (7) on the domain

E = {(x, y, z) ∈ R3 ∣ y ≠ x + 1, z ≠ y + 1, x ≠ − 1
2
, z ≠ 1

2
, y+z

1−2z ≠ x + 1,
x+y
1+2x ≠ z − 1}.

Substituting x = − 1
3
(t + 1), y = t, and z = 1 in (6) and (7), we obtain

(8) f( − 2t + 2
2t + 5

) = g(0), t ∈ R ∖ {− 5
2
,0, 1

2
}.

Similarly, substituting x = − 1
5
(t + 2), y = t, and z = 2, we obtain

(9) f( − 4t + 8
2t + 19

) = g(0), t ∈ R ∖ {− 19
2
, 1
2
,1}.

It follows from conditions (8) and (9) that f ∶R → ran(F ) is a constant map on
R ∖ {− 1

2
}. Using (6) it is then easy to see that F is constant on E.

Let us now consider equation (5) when x = − 1
2
. We have

F (− 1
2
, y, z) = G(− 1

2
, z) = H(− 1

2
,K(y, z))

for every (y, z) ∈ R2 such that y ≠ 1
2
and z ≠ y + 1. It follows that the identity

H(− 1
2
,K(y, z)) = H(− 1

2
,K(y′, z))

holds for any y, y′ ∈ R∖{1
2
} and any z ∈ R∖{y+1, y′+1}. Since ran(Kz

2 ) = R∖{ 12} for
every z ≠ 1

2
, we see that the function t↦H(− 1

2
, t) is constant on R∖{1

2
}. Therefore

F is constant on {(− 1
2
, y, z) ∈ R3 ∣ z ≠ 1

2
, y ≠ 1

2
, z ≠ y + 1}. We can show similarly

that F is constant on {(x, y, 1
2
) ∈ R3 ∣ x ≠ − 1

2
, y ≠ − 1

2
, y ≠ x+1}. Finally, F is clearly

constant on {(− 1
2
, y, 1

2
) ∈ R3 ∣ y ≠ ± 1

2
}. Now, in order to complete the resolution

of this exercise, it would remain to know whether or not these constant values are
related and to search for the behavior of F when y+z

1−2z = x + 1 or x+y
1+2x = z − 1. �
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