
GPU-accelerated Steady-State Analysis of
Probabilistic Boolean Networks

Andrzej Mizera1, Jun Pang1,2, and Qixia Yuan1?

1 Faculty of Science, Technology and Communication
University of Luxembourg, Luxembourg

2 Interdisciplinary Centre for Security, Reliability and Trust
University of Luxembourg, Luxembourg

firstname.lastname@uni.lu

Problem statement. Steady-state computation is important for analysing bi-
ological systems modelled as probabilistic Boolean networks (PBNs). Since the
state-space is exponential in the number of nodes, the use of statistical meth-
ods and Monte Carlo methods remain the only feasible approach to address the
problem for large PBNs (e.g., with more than 50 nodes) [5, 2]. Such methods
usually rely on long simulations of a PBN; hence the simulation speed becomes
critical. For large PBNs with high precision requirements, a slow simulation
speed becomes an obstacle of computing the steady-state probabilities. Intu-
itively, parallelising the simulation process can be an ideal way to accelerate the
computation process.

Our approach. We propose to parallel the simulation of PBNs using multiple
graphics processing unit (GPU) cores. A GPU usually contains hundreds or
thousands of cores. It uses data parallelism, i.e., the same instruction is run
in different cores with different data. The memories provided by GPU can be
divided into two types based on the access speed: fast-memory and slow-memory.
Accessing fast-memory is highly efficient, but the size of fast-memory is very
limited. A GPU program is executed in parallel by the GPU threads. Usually
thousands of threads are launched in parallel to hide latency. Due to the specific
architecture of GPUs, parallelising a process in a GPU has to be treated carefully.
A discussion of two particular issues follows.

Firstly, synchronisation between cores is very time expensive in a GPU. To
avoid it, we let each GPU core handle all the nodes in a PBN. Instead of simu-
lating one trajectory, we simulate multiple trajectories in parallel. Samples from
multiple trajectories can be combined to compute steady-state probabilities us-
ing a combination of the two-state Markov chain approach with the Gelman &
Rubin method [1, 3].

Secondly, the performance of a GPU is highly related to how well the latency
is hidden. Latency can be hidden via the use of more threads, more blocks,
and/or fast-memory. More threads/blocks require more fast-memory, but the
size of fast-memory is very limited. Therefore, a trade-off between the number
of threads/blocks and the use of fast-memory is required. We first optimize our

? Supported by the National Research Fund, Luxembourg (grant 7814267).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/78370967?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


node # CPU time (s) GPU time (s) speedup

100 635.27 1.84 345×
200 424.18 1.84 231×
500 1567.77 5.80 270×
91 905.10 3.54 256×

Table 1. GPU speedup for computing four steady-state probabilities.

data structure to minimize the use of memory and then follow the rule that the
frequently accessed information should be put in fast-memory whenever possi-
ble since the latency caused by accessing slow-memory is relatively large. To
better understand the optimization, we briefly review what a PBN is. A PBN
is composed of a set of binary-valued nodes, each of which has a certain num-
ber of Boolean functions. The process of simulating a PBN consists of select-
ing a Boolean function for each node and updating its value in accordance the
selected function (see [4, 6] for details). The state (value of all nodes) and the
Boolean functions (stored as a truth table) are repeatedly used in the simulation
process and require much memory to store, hence we optimize the data structure
to represent the state of a PBN and the truth table. We use the primitive integer
type (32 bits) instead of Boolean arrays to store a state of a PBN. The integer
type is used due to the following two reasons: 1) it reduces the memory usage
by 4 times comparing to Boolean arrays; 2) operations on 32 bits data are faster
than or equal to those on non-32 bits data in our GPU architecture. The truth
table is optimized similarly as the state, i.e., it is also stored using integers. After
optimization, we store the state in registers (fast-memory), if possible. In the
cases that a PBN is extremely large and registers are not enough, the slow global
memory is used. However, accessing this slow global memory is reduced by 32
times using an intermediate register. The truth table as well as other frequently
accessed arrays (e.g., the selection probabilities) are stored in shared memory
(fast-memory). Frequently accessed single variables are stored in registers. After
arranging all variables in memory, we compute the optimal number of threads
and blocks to be launched based on the usage of fast-memory to hide latency as
much as possible.

Preliminary results. We have evaluated the proposed GPU-based simulation
of PBNs for computing steady-state probabilities of both randomly generated
networks and of a real biological network using the approach in [3]. On randomly
generated networks, our proposed GPU-based parallelised approach showed more
than two orders of magnitude speedups compared to the sequential CPU ver-
sion. The evaluation on a real biological network was performed by analysing an
apoptosis network with 91 nodes [2]. The speedups for computing steady-state
probabilities for 3 randomly generated networks and the real 91-node network
are shown in Table 1. All experiments were conducted on a high-performance
computing (HPC) node, which contained Intel Xeon E5-2680 v3 @2.5 GHz and
a NVIDIA Tesla K80 Graphic Card with 2496 cores @824MHz.



References

1. Gelman, A., Rubin, D.: Inference from iterative simulation using multiple sequences.
Statistical Science 7(4), 457–472 (1992)

2. Mizera, A., Pang, J., Yuan, Q.: Reviving the two-state markov chain approach
(technical report) (2015), available online at http://arxiv.org/abs/1501.01779

3. Mizera, A., Pang, J., Yuan, Q.: Parallel approximate steady-state analysis of large
probabilistic Boolean networks. In: Proc. 31st ACM Symposium on Applied Com-
puting. pp. 1–8 (2016)

4. Shmulevich, I., Dougherty, E., Zhang, W.: From Boolean to probabilistic Boolean
networks as models of genetic regulatory networks. Proceedings of the IEEE 90(11),
1778–1792 (2002)

5. Trairatphisan, P., Mizera, A., Pang, J., Tantar, A.A., Sauter, T.: optPBN: An op-
timisation toolbox for probabilistic boolean networks. PLOS ONE 9(7) (2014)

6. Trairatphisan, P., Mizera, A., Pang, J., Tantar, A.A., Schneider, J., Sauter, T.:
Recent development and biomedical applications of probabilistic Boolean networks.
Cell Communication and Signaling 11, 46 (2013)


