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1 Introduction

The Fontaine-Mazur conjecture relatesadic ‘geometric’ Galois representations
with objects from geometry. In the 2-dimensional case @enuch progress has
been achieved[([Emelll, Thm.1.2.4(2)] and [Kis09]):

Theorem 1 (Emerton, Kisin). Let? > 2, let E/Q, be a finite extension and lgt:
Gal(Q/Q) — GL»(E) be anirreducible, finitely ramified, odd Galois represeiutat
which is de Rham at with distinct Hodge-Tate weights. Assume that the residual
representatiorp satisfies certain local conditions.

Then a twist op is attached to some newform.

In fact, the level and the weight of the newform can be readrofh p.

The picture for mod’ representations is even more complete: Serre type mod-
ularity conjectures relate 2-dimensional Galois represt@ms with[F,-coefficients
with modular forms oveF,. Serre’s original modularity conjecture has been estab-
lished by Khare and Wintenbergér [KWO09]:
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Theorem 2 (Khare, Wintenberger, Kisin). Let p : Gal(Q/Q) — GLy(F,) be an
odd irreducible Galois representation. Thpns attached to (the reduction of) some
newform.

Also in this case, the level and the weight of one of the (itgigimany) newforms
attached t@ can be read off fronp: the level is the prime-td@-Artin conductor,
and there is a formula for the weight given by Serre. In fadtad been known for a
long time that ifp is attached tesomenewform then it also is to one with a certain
predicted weight and level. Since the predicted weight anel lare minimal (except
for two cases in the weight, seée [Edi92]), the process ofifigpdi newform with pre-
dicted invariants is callel&vel loweringor weight lowering The quest for attached
newforms with non-minimal levels is accordingly callledel raising These three
guestions have been completely solved (with a tiny exceptiben? = 2 and the
minimal weight 1 is concerned).

With the /-adic and the mod cases of irreducible odd 2-dimensional represen-
tations ofGg := Gal(Q/Q) essentially settled, it is natural to wonder what happens
in between, i.e. modulo prime powers. Quite some researstbéan done, but the
picture is far from clear. In fact, very basic questions giteapen.

Modularity modulo prime powers

Let us consider a representation (continuous like all gmrgations in this paper)
p:Gg — GLo(0/A™)

with ¢ the valuation ring of a finite extension @f, and A its valuation ideal. It
turns out that thenodularityof p follows from known results if one supposes that
the residual representati@nis absolutely irreducible and odd and satisfies certain
technical local conditions. This was surely known to mangesis and had been,
for instance, discussed on mathoverflow. We make this métiSectiof .

An important point here is that one needs to use the righbnaif modularity.
This difficulty is not visible when only working-adically or modulof. The sec-
ond author together with Chen and Kiming introduced_in [CK\MtB8ee notions
of modularity modulo prime powerstrong modularityweak modularitydc-weak
modularity These three notions stem from three notions of Hecke egersfmod-
ulo prime powers, also callestrong weak anddc-weak which we briefly explain
now.

Throughout this article, we understand blfecke eigenform Wwith coefficients
in a ring R (they are all normalised and almost all cuspidal withous tieing said
explicitly) a ring homomorphisnt : T — R, whereT is a Hecke algebra (to be
specified very soon). We often think éfas theg-expansiorf -1 f(Tn)q" € R[[q]].
Let Tx(I") be the full Hecke algebra, generated as a ring by all Heckeatqrs
Th, acting faithfully on the space of holomorphic cusp for&§~) of weightk and
level I".
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A weakHecke eigenform of weighk and levell” with coefficients inR is a
ring homomorphisnt : Ty(I') — R. It is calledstrongif there exists an orde¢’
in a number field together with a ring homomorphism & — R such thatf fac-
tors asTy(I") — ¢ 5 R. By embedding the ordef into C, the first arrow leads
to Tx(I") — C, a holomorphic Hecke eigenform. In simple terms, strongkdec
eigenforms with coefficients iR are those that are obtained by applyimgo the
coefficients of a holomorphic eigenform.

PutSop(r) = @P2_; S(IM) and letT<,(I") be the full Hecke algebra acting faith-
fully on it. A ring homomorphismf : T-p(I") — Ris called adc-weak eigenform
of level I' (and weights< b; in fact, b will not play any role as long as it is large
enough). A dc-weak eigenform can hence have contributimra fnany different
weights, as is the case for divided congruences, which is thieaabbreviation ‘dc’
stands for. IR s a finite field orF,, all three notions coincide by the Deligne-Serre
lifting lemma (for a presentation in the setup used here[GE8V13, Lemma 16]),
but they are different in general. An example that strongrangier than weak mod-
ulo ¢™for m> 1, even if one allows the weight to change (but not the lei®diven
in [KRW16, §2.5].

As rings of coefficient®, we take in this article rings of the forfi/A™ where&
is the valuation ring of a finite field extension@f, A is its valuation ideal ancha
positive integer. Many results can be and are phrased iwtysHowever, a general
difficulty exists: we often need to compare two eigenfornme with coefficients in
01/A{™, the other one with coefficients ifi,/A,2. One then needs to find a ring
containing both. In order for such a ring to exist, it is neseey that\™ N 7Z, for
i = 1,2 both yield the same power 6f say/™. This led the second author together
with Taixés i Ventosa [TiVW10] to introduce the ring

Z/IL =Ty /{X € Zy | V(X) > m— 1},

wherev denotes the normalised valuation, ¥€) = 1. We always conside /(M7
with the discrete topology. We ha#&/(Z = F, and for the valuation ring’ of any
finite extension of), with absolute ramification indexxand valuation ideal, the
quotient /A &M-V+1 injects intoZ/¢MZ. This quotient is the smallest one that ex-
tendsZ/¢™7Z. The ringZ/¢™Z is a localZ/¢™Z-algebra of Krull dimension 0 with
residue fieldf, and the ring extensid#/(MZ C Z/¢™Z is integral. Any finitely gen-
erated subringR of Z/¢MZ is contained in some ring/A%™1Y+1 as above. These
are free a¥/(™Z-modules, but this is not true for all finite subrings@f(mzZ. A
Hecke eigenform with coefficients izi/¢™Z shall simply be called anodulo /™
Hecke eigenformDc-weak (and hence also weak) Hecke eigenforms modUlo
have attached Galois representations, under the contlig@bthe residual represen-
tation is absolutely irreducible (s€e [CKW13, Theorem 3]).
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Weight lowering and finiteness

Let us recall now that in a fixed prime-tolevel, there are only finitely many mod-
ular Galois representations with coefficientsFin which can all be realised — up
to twist — in weights up td + 1 and that there is an explicit recipe for the minimal
weight.

A natural question is whether there is a recipe for a minimeigit for strong
eigenforms moduld™, i.e. whether (almost) all the (prime-indexed) Hecke eigen
values of a given strong eigenforinmodulo /™ in weightk and levelN (prime
to ¢) also occur for a strong eigenforgmodulo/™ in the same leveN and a ‘low’
or ‘minimal’ weight that can be calculated from the restdntto a decomposition
group at/ of the Galois representation attached ttunder the assumption of resid-
ual absolute irreducibilty).

This question seems to be very difficult. One is then led teictar the question,
for fixed prime-to/ level N, whether the set

{ z f(Ta)q" € Z/¢MZ[[q]] | f strong eigenform moduld" of level N, any weight}

n>1

is finite. It can also be seen as the set of reductions modutaf all holomorphic
Hecke eigenforms in levél of any weight. The second author together with Kim-
ing and Rustom conjectures that this is the cdse ([KRW16, édtmje 1]). As is
shown in Theorem 2 of loc. cit., a positive answer to a quastilBuzzard([[Buz05,
Question 4.4] would indeed imply this. As an indication tossafiniteness or the
potential existence of a weight recipe as alluded to ab@&BW16, Theorem 3],
proved with the help of Frank Calegari, shows thatfor 5, there exists a bound
B = B(N, /™) such that the-expansion of angtrongHecke eigenform moduld™
of level N, but any weight, already occurs in weigh& B for someweakHecke
eigenform moduld™ of level N. One should compare this with the level raising and
level lowering results below, which also ‘only’ lead to wefakms.

Some first experimentation has led Kiming, Rustom and therskauthor to
state the formula

B(N, /M) =2/M 421

for m> 2. It is consistent with the available computational data,dhould not be
understood as a conjecture at this point.

Level raising

Led by classical level raising results, one can hope thailaistatements are true
modulo /™. It seems that part of the theory indeed carries over fromuicoéi to
modulo /™ eigenforms. In Sectiof] 3 we prove a level raising result feight 2
eigenforms orfp(N). For? > 2, this result is as general as possible. Only/fer 2
some rare cases could not be proved.
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Let f : T — Z/¢™Z be a weak moduld™ Hecke eigenform with Galois represen-
tation p. The main idea is to extend Ribet’s ‘classical’ geometriprapch of level
raising to our more general situation. For that we need titssesa on the Jacobiad
of the appropriate modular curve. It is well known that thekiealgebra acts faith-
fully on J. However, we need th&t/ ker(f), i.e. the image of the weak eigenform,
also acts faithfully on a subgroup of the Jacobian. The ahplace is)(Q) ker(f)].

It turns out that this faithfulness does not seem to be tlearcln fact, we currently
make use of the ‘multiplicity one’ property for the residuahlois representation
on the Jacobian and, equivalently, the Gorenstein propdrtiie residual Hecke
algebra. Once this faithfulness is established, the promfgeds by comparing the
new and the old subvarieties in lewep as in Ribet’s original work/[Rib90b]. One
should expect similar limitations when extending levesirag modulo/™ to higher
weights, e.g. the weight will likely have to be less thaifione wants complete re-
sults in order to remain in the multiplicity one situatiorheve faithfulness is known
and easily obtained from existing results.

Level lowering and other results

Another natural domain is that of level lowering modul&s The principal idea is
that one should always be able to find an eigenform givingtdsa given Galois
representation when the level is equal to the Artin conduatohe representation.
An immediate difficulty is then, of course, to define an Artonductor for Galois
representations modul". It does not seem to be immediately clear how to do this
because not every module ovBy¢™Z is free, so that there is no natural analog
for the dimension (of, say, inertia invariants) used in tlassical Artin conductor.
Nevertheless, one can at least ask whether one can alwaygs fiiediulo/™ Hecke
eigenform of a level which is only divisible by primes raniifg in the represen-
tation. There are, indeed, two such results, one is due torigan, and the other
one due to Camporino and Pacetti. We quote both in Selctiomdhriigan’s result,
similar to our level raising theorem, works geometricallyanhomology, whereas
Camporino and Pacetti use the deformation theory of Gafiseisentations. Both
approaches currently seem to lead to some restrictionsn@reence condition for
Dummigan, and unramified coefficients for Camporino—Pgcett

Concerning generalisations along the lines of level lomgeresults moduld,
which are based on the use of Shimura curves, the ffo@alois representation
must first be realised in the cohomology (or the Jacobiarfyeéppropriate Shimura
curve. This is likely going to lead into faithfulness prafoie analogous to the one
we solved in the level raising result by appealing to the Gstein or multiplicity
one condition.

As a further instance of level lowering (though of a slightlfferent nature), we
mention the following result from [CKW13, Theorem 5]: Any deak eigenform
modulo /™ in level N¢" already arises from a dc-weak eigenform moddibin
level N, under the hypothesés> 5 and that the mod reduction has an absolutely
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irreducible Galois representation. It is also shown thahéf/one starts with a strong
eigenform moduld™, the one in leveN will only be dc-weak, in general.

Another natural direction is to extend companionship itssiibm eigenforms
modulo/ to ™. This has been successfully performed by Adibhatla and Maro
mayum in [AM12] for odd¢ and ordinary modular forms with coefficients unrami-
fied at¢, under certain conditions. In fact, that work is set in theengeneral world
of Hilbert modular forms. Another companionship result miedprime powers has
been achieved by the first author together with AdibhatlallZ{T

Computations, algorithm and database

Next to the theoretical and structural motivation for stadymodular forms and
modularity questions modulo prime powers, there is alsa@gtcomputational
driving force: realising-adic modular forms on a computer is only possible up to a
certain precision, i.e. one necessarily realises modatans modulo/™.

This also naturally leads to the questions studied in tHislar For instance, if
one wants to compute modulo which power/af modular/-adic Galois represen-
tation p of conductom p (with p a prime not dividingN) becomes unramified g,
one can test whether the system of Hecke eigenvalues mdtluddso occurs in
levelN/p for m=1,2,... until this fails. If it first fails atm+ 1, thenp modulo/™
is known to be unramified . In cases where level lowering modul8 is entirely
proved, one also gets thatmodulo/™ ! does ramify ap. The authors know of no
other way of obtaining such information of &adic modular Galois representation.

The authors have developed several algorithmic tools fiodlag modular forms
modulo /™ and they have set up a database. Se¢fion 5 contains a briefitep
of how to compute decompositions of commutative algebrss local factors in
situations arising from Hecke algebras, and how to perfoeakymodularity tests
explicitly. Finally, in Sectioli b we describe features df thatabase of modular form
orbits and higher congruences that we have developed.
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2 Modularity

In this section we prove the following modularity theorenhisTtheorem has been
known to the experts and is a pretty straight forward appticaof ‘bigR=bigT’
theorems.

Theorem 3.Let/ > 5 be a prime number, leX be a finite set of primes not con-
taining ¢ and let Gy 5y be the Galois group of the maximal extension(of
unramified outside U {¢,}. Consider a continuous Galois representation

p: GQ,ZU{OO,Z} — GLz(Z/fmZ)

such that the residual representatiprsatisfies:

e pisodd,
° mG@(zp) is absolutely irreducible,

° ﬁ|G@€ A X® ((j)' i) andﬁ|G@[ AX® (é Z) for anyF,-valued characteyy of
Gg, and the mod cyclotomic characteg (wherex may or may not be zero).

Let N be the maximal positive integer divisible only by psre> such that there
is a newform of level N (and some weight) giving ris@to

Thenp is dc-weakly modular of level N, i.p. = ps with f a dc-weak Hecke
eigenform moduld™ of level N.

In the exposition of the theory, we essentially follow Demeégper[Deoll7]. Let us
assume the notation and the set-up from Thediem 30lm the valuation ring of a
finite extension of), with ramification indee, valuation ideal and residue field
such that (possibly after conjugatigmyakes values in GL &' /AY) C GLo(Z/¢™Z)
with w=e(m—1) + 1. LetT,(l(N)) be defined as the projective limit ovierof
0 T (M1(N)) which are defined precisely liKB-,(1(N)), but only take Hecke
operatorsT, with n coprime toN/ into account. Similarly, like Deo we define the
partially full Hecke aIgebréI“‘g(l'l(N)) as the projective limit ofﬁ’@Tﬂfb(Fl(N))
by using in addition the operatot, for primesq | N. If we localise at the system
of eigenvalues afforded ky, we denote this bp in the index. Accordingly, denote
by Rs the universal deformation ring @ for the groupGg si(«,¢y in the category
of local profinite¢-algebras with residue fielgl.

Theorem 4 (Bockle, Diamond-Flach—Guo, Gouga—Mazur, Kisin). Assume the
set-up of Theorefd 3. Ther; R T, (M11(N))5.

This is Theorem 5 from [Deol17]. Note that Deo works with pseuepresen-
tations, but this comes down to the same thing here becausessuenep to be
irreducible. In the proof, Deo essentially explains whyiasults of [DEG04] allow
to strengthen the conclusions 6f@801]. A similar discussion can also be found
in [Emel1,§7.3], where the theorem is, however, not stated in the formee
here. Alternatively, one can also invoke [Eme11, Theoret3] to an/-adic lift
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of p, provided such a lift exists. Recent work by Khare and Raimbka [KR15]
provides a construction in the ordinary case.

We now apply Theorerl4. By assumptignm,is a deformation ofo with the
right ramification set, whence the universality leads t@aalgebra homomorphism
Rs — ¢/A", which we consider as afi-algebra homomorphism

f:T,(M(N))y— O/A".

By construction, the Galois representation associateul fais isomorphic tq.

In order to finish the proof of Theorelnh 8,has to be extended to the full Hecke
algebra in order to make it a genuine Hecke eigenform moduldlext we use that
T%f(l‘l(N))ﬁ is finite overT/,(M(N));. This is proved in[[Deol7, Proposition 6];
one should note that thg (N)-new assumption is not necessary for this statement
(see the proof of [Deal7, Theorem 3]). This integrality aous to extend to an
¢-algebra homomorphism

£ T(R(N))y — G/AY

where & C 0 is the valuation ring of some finite extension @f with valuation
ideal A and ramification indexe andw = &m— 1) + 1. One is able to make this
extension because one only needs to find one zero in somefrihg torm & /AW
for any monic polynomial with coefficients i@ /A%; that this is possible follows,
for instance, by choosing any monic lift @. From the natural ~degeneracy map,
we next get anv-algebra homomorphism : Tg(l'l(Né))ﬁ — 0/A%, which after
choice off (U,) leads to the/-algebra homomorphism

£ T (M(NE))5[[U]] — /A%,

According to [Deoll7, Proposition 5], one can idenﬂ]’@(l’l(Né))ﬁ[[Ug]] with a
quotient of the full Hecke algebfB, (1 (N/)). We obtain thus aw-algebra homo-
morphism o

f: Tﬁ(l'l(Né)) — ﬁ/)\w.

As its image is finite, it will factor througlt’ ® T<p(1(N¥)) for a suitable weight
boundb, so that we finally get a ring homomorphism
f 1 Top(Ma(NE)) — /A7

This is the dc-weak eigenform that is needed to finish theflpb®heoren8. Note
that one can still remové from the level of the final form because 6f [CKW13,
Theorem 5].
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3 Level raising via modular curves

Let p be a rational prime. Then one has a natural inclusion map

S(Mo(N)) @ S(Fo(N)) — S(lfo(Np)),

the image of which is called the-old subspaceThis subspace is stable under the
action of Ty(Np) := Tk(lo(Np)) and so is its orthogonal complement under the
Petersson inner product. This complementary subspached tae p-new subspace
and we denote by ""(N p) the quotient ofl'«(N p) that acts faithfully on it. We
will call this quotient thep-new quotient of'x (N p). There is also th@-old quotient
that is defined in the obvious way.

We can now state the main level raising result of this article

Theorem 5.Let R be a local topological ring with maximal idealg. Let p :
Ggp — GL2(R) be a continuous Galois representation that is modular, eisged
with a weak eigenforn® : T2(N) — R, and such that the residual representation
p : Gg — GL2(R/m) is absolutely irreducible. If the characteristic of/f is 2,
assume thenultiplicity one/Gorenstein conditiothat p is not unramified ag with
scalar Frobenius.

Let p be a prime which satisfies thevel raising conditiorfor p by which we
mean thap is unramified at p and

Tr(p(Froby)) = £(p+1).

Then the image o is a finite ring, R'm is a finite field ando is also associated
with a weak eigenforn®’ : T»(N p) — R which is new at p, i.e9’ factors through
TgfneW(N p)'

In view of Lemma[8, the following corollary is essentiallysjuan equivalent
reformulation. LetZ be the ring of integers of a number field ahda prime in&
abovel.

Corollary 6. Let m> 1 be an integer angb : Gg — GL2(¢'/A™) be a continuous
(for the discrete topology o /A™) Galois representation that is modular, associ-
ated with a weak eigenforéh: To(N) — ¢ /A™, and such that the residual represen-
tationp : Gg — GL2(&'/A) is absolutely irreducible. 1&7/A is of characteristic,
assume thenultiplicity one/Gorenstein conditiothat p is not unramified a2 with
scalar Frobenius.

Let p be a prime which satisfies thevel raising conditiorfor p, which means
here that

(¢N,p) =1 and Tfp(Frob,)) =+(p+1) modA™.

Thenp is also associated with a weak eigenfoéth: To(Np) — &/A™ which is
new at p, i.ef’ factors through ther's ""(Np).

We remark that fom = 1 this is Theorem 1 of [Rib90b]. Even & is a strong
eigenform, there is no guarantee that the weak eigenforevef hew atp that one
obtains in the end is strong.
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Corollary 7. Let R be a local topological ring with maximal idealr and letp :
Gg — GL2(R) be a continuous Galois representation that is modular, haisefi
image and such that the residual representafionGg — GL2(R/m) is absolutely
irreducible. If the characteristic of Rn is 2, assume thenultiplicity one/Gorenstein
conditionthat p is not unramified a2 with scalar Frobenius.

Then there exists a positive set of primes p (coprime to Nj thatp is modular
of level Np and new at p.

Proof. This is proved as if[Rib90b]. The argument is that complexwgation, as
an involution, has trace 0 and determinafit. By Chebotarev’s density theorem,
there is a positive density set of primpssuch that-1 = det{p(Froly)) = p and
p+1=0=Tr(p(Frob,))in R O

Jacobians of modular curves

In what follows we sefl'y := T2(lo(N)) and Tnp := T2(lo(Np)). The approach
taken here is adapted from Ribet’s original one, i.e. it isdohon the geometry of
modular curves and their Jacobians. In this section we gé#tlkenecessary results
from [Rib90K] that we need for the proof of the main resultt Nebe a positive
integer. LetXg(N) be the modular curve of levé and Jo(N) := Pic®(Xo(N)) its
Jacobian. There is a well defined action of the Hecke operdoon Xp(N) and
hence, by functoriality, odp(N), too. The dual oflp(N) carries an action of the
Hecke algebra as well and can be identified vio(N)). This implies that one
has a faithful action o'y onJo(N).

Let now p be a prime not dividing\. In the same way one has an action of Hecke
operators oXp(N p) and its Jacobiady(N p) and the latter admits a faithful action
of Tnp. The moduli interpretation 0Kg(N) and Xo(N p) allows us to define the
two natural degeneracy maps, dp : Xo(Np) — Xo(N) and their pullback®;, o :
Jo(N) — Jo(Np). The image of the map

a:Jo(N) xJo(N) = Jo(Np),  (xy) = 5 (X)+&5(y)-

is by definition thep-old subvarietyof Jo(N p). We will denote it byA. The mapa
is almostHecke-equivariant:

a o Tq = Tqo a for every primeq # p, 1)

ao(-_ri 8>:Upoa. (2)

For the first equation to make sense one interprets the @pdiaon the left hand
side of equation[{1) as acting diagonally @{N) x Jo(N). We also work under
the notational conventiofly = Uq for primesq | N, but we writeUp in level Np.
Consider also the kernel Sh of the mipN) — J1(N) induced byX; (N) — Xo(N).
If we inject it into Jo(N) x Jp(N) via X — (x,—x) then its image, which we will
denote byZ, is the kernel ofx (see Proposition 1 in [Rib90b]).
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LetA be the kernel o(l}:p 1E’p> € M?*2(Ty) acting onJo(N) x Jo(N). The
group A is finite and comes equipped with a perfégt-valued skew-symmetric
pairing. Furthermore is a subgroup ofy, self orthogonal, and C =+ C A. One
can also sed /5, and therefore its subgroup* /=, as a subgroup k.

Let B be thep-new subvariety oflo(Np). It is a complement oA, i.e. A+ B =
Jo(N p) andANB is finite. The Hecke algebra acts faithfully 8rthrough itsp-new
quotient and it turns out (see Theorem 2[in [Rib90b]) that

ANBx~st/s. 3

as groups.
Furthermore Sh, and therefoFeand its Cartier dual />, are annihilated by

the operators), = T, — (r + 1) € Ty for all primesr { Np (see Proposition 2 in

[Rib90L)). In this context, we recall that a maximal ideabf the Hecke algebray

is calledEisensteirif T, modm equals the Frobenius traces of a two-dimensional

reducible Galois representation at almost all primeBhis is in particular the case

if m contains the operatdk — (r + 1) for almost all primeg. Consequently, any

maximal ideal in the support of the Hecke moduteandA /> is Eisenstein.

Proof of Theorem[3

We assume the setting of Theorin 5. In particular, we asshai@ tsatisfies the
level raising condition at a primpt N, i.e. there ise € {1} such thatd(Ty) =
Tr(p(Frobp)) = &(p+1). Let 6 : Ty — R/mg be its reduction moduleg (which
is associated witlp, the modulomg reduction ofp), and letl andm be the kernels
of 8 and®, respectively. It will be enough to find a weak eigenfoffmn Tnp — R
(i.e. aring homomorphism) that agrees wétlon T, for all primesg # p and factors
throughTg,,"*" (hence, new ap).

Lemma 8. The idealm is the only maximal ideal of'y containing |. Moreover,
Tn/I is a finite subring of R of positive characteristic a primengs ¢'.

Proof. SinceTy is aZ-Hecke algebra acting faithfully o&(N) we have thafl'y
injects intoM9*9(Z), whered is the dimension o%(N). We can therefore see every
operator inTy as an integral matrix of dimensiah We recall that the eigenvalues
of the operatof, will correspond to the coefficients (f) whenf runs through the
normalised eigenforms i (N).

Letg(X) € Z[X] be the characteristic polynomial @f. The hypothesi®(Tp) =
e(p+1) implies thatT, — £(p+1) € | and thereforen:=g(e(p+1)) € |. Since
p1N, the Ramanujan-Petersson bounds guarantee that none eifjgwalues of
Tp is equal toe(p+ 1) and thereforenis non-zero. We thus have thah) C |. This
makes the quotierit/I finite.

SinceT/I is Artinian, it can be written as a direct product of Artinical rings
indexed by its finitely many maximal ideals. Assume it decosgs as a direct prod-
uct of slocal rings, withs > 1. The set containing the identigy of each component
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then forms a complete set (i.E;_; & = 1) of pairwise orthogonal (i.eej = 0 for
1<i+#j<s)non-trivial (i.e.g # 0,1) idempotents fofly/I. The set{ey,...,&s}
of their image through the injection @iy /I into Ris clearly a complete set of pair-
wise orthogonal non-trivial idempotents, too. This implibatR is isomorphic to
7.1 &R. But this cannot happen unless- 1 sinceR is local. Sinces= 1 we get
thatTy/I is local as well. The claims are then immediate. O

By the previous lemma, we have inclusiqis) C I C m with some prime power
£" > 1, giving rise to inclusions

VI = D(N)(@Q)E'] 2 V(1] := Jo(N)(@)[I] 2 V[m] := Jpo(N)(Q) [m].
Lemma 9. The support of W] is the singletorm and is hence non-Eisenstein.

Proof. As V[I] 2 V[m], the maximal idealn is in the support o¥[l]. Since the
representatiorp is irreducible we get that is non-Eisenstein (see for example
Theorem 5.2¢ in[Rib90a]). Finally, Lemriid 8 implies that §{yl]) is the single-
ton{m}. O

Lemma 10. The restriction ofo to V[l] is injective and its imager (V[l]) is stable
under the action of'y . In particular, U, acts ona (V|[l]) by multiplication bye.

Proof. Consider the image &f[l] (still denotedV[l]) under theTy-equivariant em-
bedding

Jo(N) 2229, 3(N) x Jo(N).

Next recall that the kerneX of Jo(N) x Jo(N) < A C Jo(Np) is annihilated by
almost all operator3; — (r + 1) with r prime. The fact that the support ¥fl] is
non-Eisenstein from Lemnid 9 shows that the intersectioh ahdV|l] is trivial,
proving the injectivity ofa |y

As a commutes with the action of the Hecke operaf§ysvith n coprime top
(see Equatiori{1)), it follows that(V[I]) is stable under those operators. Here the
level raising condition enters for proving the stabilitydemUp, as follows by using
Equation[(2) fory € V(I]:

Ty p X
Uaty) = Un(artx.~e) = (5 B) (5, )) =T~ epx
=a(e(p+1)x—epx —X) = a(ex,—X) = £a (X, —€X) = &Y.
The final claim follows as well. O
The following proposition is a non-trivial input.

Proposition 11. TheTy/I-module 1] is faithful.

Proof. Due to the assumptions, Theorem 9.2[of [Edi92] implies YHat] is of di-
mension 2 a¥y /m-module. By Nakayama’'s Lemma, it follows that the localisat
atm of the ¢-adic Tate module is free of rank 2 &8N ®7 Z;)m-module and that
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Homy, ((Tn ®7 Z¢)m, Z¢) is free of rank 1 agTn ®z Z¢)m-module, precisely as on
p. 333 of [Ti[97]. Consequently,

V[l = (Tn/€ Tn)Z = Homy, ((Tn/ € TN)wm, Z/ 07 Z)?,

which implies by taking thé-kernel withl the ideal such thay /1 = (Tn /¢ Tn) /T
that
V(1] 2 Homy((Tn /¢ Tn)/T,Z/¢"Z)? = Homy (Tn /1, Z/ (' Z.),

showing thaW[l] is faithful asTy /I-module. O

The authors do not know if the ‘multiplicity one’ or ‘Goree#t’ condition is
necessary. In the remaining case, théd?sion group scheme is ordinary, and hence
by arguments as in Corollary 2.3 6f [Wi€07] admits a nice degosition as

0— (TN/CTN)m — V[ m — Homy, ((Tn /€ T ), Z/ € Z) — O.

However, we do not know if this sequence remains exact aténg thel-kernel.
If this were the case, the additional assumption would becessary.

Lemma 12.The action ofTnp on a(V(l]) is given by a ring homomorphism
0" : Tnp — R satisfyingd’(Ty) = 6(Ty) for all primes gq# p and6'(Up) = €. In
particular, 8 and 8’ give rise to isomorphic Galois representations.

Proof. The faithfulness o¥|[l] asT/I-module from Propositioh 11 implies thét
factors through a subringof EndV[1]), which is also a subring d® By Lemmd10
and Equation[{1), the action dfnp on a(V[l]) is also given by elements &
leading to a ring homomorphis@l : Typ — SC R ad

To finish the proof of Theorel 5, it remains to show tBafactors through the
p-new quotient ofT'yp. To this end, it is enough to show thaiV[l]) is a sub-
group of AN B. We again proceed according to Ribet. By the level raisingli@mn,
V[l], when considered as a subgrouplgfN) x Jo(N), is a subgroup oft, whence
a(V[I]) CA/5. AsA/5* is Eisenstein butr (V[1]) is not,a(V[l])/=+ = 0. This
impliesa (V[l]) € =+ /5 = AnB, completing the proof of Theoref 5.

4 Level lowering

In this section we give an overview of results about leveldang modulo prime
powers. We start by the following simple observation: timgtan eigenformf by

a Dirichlet characteg such thaty =1 modA™ leads to an eigenformg= f ® ¥,
which is congruent tof moduloA™. This idea leads to the following two level
lowering results from the first author’'s unpublished Phstb€T'sa09].

Proposition 13 (Split ramified case).Let f € §(I1(M)) be a newform such that
the restriction to a decomposition group at4¥ of the/-adic Galois representation
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attached to f is isomorphic tg; ® X2, where both characters ramify. Lat be a
prime ideal of a number field containing the coefficients of f.

If x1 is unramified modula\™, then there exists a normalised eigenforne g
S(ri(M/p)) such that =g modA™.

Proof. We can decompose; = X1,unrX1ram iNto an unramified and a ramified char-
acter ofG@p. As p # /£, the order ofx1am is finite. By assumptionyy ram = 1
modA™, whence in particular the order & ram is a power of? because only roots
of unity of /-power order vanish under reduction modiloThus X1 ram is tamely
ramified. By the local and the global Kronecker-Weber thewg(1 ram can be seen
as a global Dirichlet charactéh ram 0f conductorp the restriction of which &g,
equalsyy ram.

Let nowg be the newform corresponding to the twisb X, }am. Then the restric-
tion to a decomposition group atof the ¢-adic Galois representation attachedyto
is isomorphic tOXl,unr@szirlam- If x2 is tame (i.e. of conductop), thenxle’_rlam
is either tame or unramified, and in any case its conductaodekp. If x» is wild,
i.e. it factors through GaQy({yn)/Qp) with r > 2 andp ¢ N, but not through

Gal(Qp({y-1y)/Qp), then alsqlefrlam factors through G&lp({rn)/Qp) but not
through GalQp({y-1n)/Qp), Whence the conductor Q(flefém equals that of».

In both cases we hence find that the conductoxg{lfélm divides the conductor
of x2. Since thep-valuation ofM equals thep-valuation of the conductor of»
plus 1 (since the conductor gf is p) and thep-valuation of the newform level af
is the p-valuation of the conductor Q(lejrl:im, it is clear that the newform level of
dividesM/p. O

Proposition 14 (Special ramified case).et f € S(I1(M)) be a newform such that
the restriction to a decomposition group at4¥ of the/-adic Galois representation
W *
01)
adic cyclotomic character. Let be a prime ideal of a number field containing the
coefficients of f.

If x is unramified modul@ ™, then there exists a newformegSc(1(M/p)) such
that f=g modA™.

attached to f is isomorphic tg ® wherex andx ramify andw is the /-

Proof. The proof is essentially the same as in the split ramified. déste, however,
that the tameness gfimplies thatp? exactly dividesM, whence the newform level
of g will be exactlyM/p. O

These propositions may be useful in some situations. Weratsark that the
only Dirichlet character that is trivial modul& in the sense of being equal tocl
Z/0?7 is the trivial one. That s just due to the fact tAat= 1— , is a uniformiser of
Q¢(y), whenceZ, #1 mod(A)?. This implies that the level does not lower modulo
(™ for any m > 2 at primesp satisfying the hypothesis of one of the preceding
propositions. We now quote the main result from [Dum15]ludig the discussion
in the last paragraph of that article.
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Theorem 15 (Dummigan).Let/ be a prime. Lef +2 > k> 2 and let p be a prime
not dividing Ne N such that p£ 1 mod/. Let f € S(l1(Np)) be an eigenform
and letA be a prime of the coefficient field of f abofeSuppose that the residual
Galois representation of f modulois irreducible.

If for some m> 1 the Galois representation of f moduld" is unramified at p,
then there is a weak eigenform g of weight k and I€y&N) such that f modA™
equals g at all coefficients the index of which is coprime to p.

Dummigan also gives an explicit example where the resufting g cannot be
strong. We include another still unpublished result frofPIG] on level lowering,
which is proved using the deformation theory of Galois reprgations.

Theorem 16 (Pacetti-Camporino).Let? > 7 be aprime. LeR <k </—1.LetM
be a positive integer. Let & S(1(M)) be an eigenform with coefficients in KLet
Ot be the ring of integers of K Assume that

e (is unramified indt, and
e SlLy(0't/A)isasubgroup of the image of the mbdepresentation attached to f.

If p| M is a prime and m> 1 is an integer such that the modukd" Galois rep-
resentation associated with f is unramified at p, then thera weak eigenform g
of weight k and level; (M /p) such that f modA™ equals g at all coefficients the
index of which is coprime to p.

This result is proved by first applying techniques of Ransiaa: by introducing
auxiliary primes in order to kill local obstructions, thetlors construct aé-adic
lift in which p remains unramified. They then prove and use a modulariipdift
theorem to obtain that their lift is associated with somefoemw. Finally, they apply
TheoreniIb to remove the auxiliary primes, which had bees@h such a way
that Dummigan’s theorem applies.

5 Computational aspects

In this section, we describe various algorithms we have émginted and used in
our computational study of higher congruences.

Some commutative algebra

We start by summarising some well known facts from commugtagigebra. LeR
be anArtinian ring, i.e. a ring in which every descending chain of idealsdmees
stationary. In particular, for any idealof R, the sequence" becomes stationary,
i.e.a" = a™1 for all n “big enough”. We will then use the notatiar¥ for a". The
following proposition is well known and easy to prove:
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Proposition 17.Let R be an Artinian ring. Then every prime ideal of R is maxi-
mal and there are only finitely many maximal ideals in R. Meezothe maximal
ideal m is the only one containingh®. Furthermore, ifm # n are two maximal
ideals, then for any k NU {e}, the idealsmk andnk are coprime. The Jacobson
radical Ny espe¢r) ™ is equal to the nilradical and consists of the nilpotent edets,
and we have,cspe¢crym™ = (0). Moreover, for every maximal ideat, the ring
R/m® is local with maximal ideal and is hence isomorphic to,R the localisa-
tion of R atm. Finally, by virtue of the Chinese Remainder Theorem we tiage
following isomorphism, referred to dscal decomposition

a—(...,a+m®,...)

R Rm*= T[] Rm.

meSpedR) meSpecR)

Definition 18. An idempotenbf a ring R is an elemene that satisfie®’ = e. Two
idempotents, f areorthogonalif ef = 0. An idempotent is primitive if it cannot
be written as a sum of two idempotents both different from @efof idempotents
{e1,...,en} is said to becompletef 1 = 51! ; &.

In concrete terms, a complete set of primitive pairwise agtinal idempotents
is given by(1,0,...,0),(0,1,0,...,0),...,(0,...,0,1).

Proposition 19 (Newton method/Hensel lifting — special c&. Let R be a ring
and | be an ideal. Let £ R[X] be a polynomial. We assume that there existR
and a polynomial ke R[X] such thatl = af(X) + b(X) f’(X). Let further € R
be such that fag) € I" for some r> 1. For n> 1, we make the following recursive
definition:

@ = an-1— f(an-1)b(an-1).

Then for all ne N, we have fa,) € (1")?". In particular, if Nn>11" = 0 then the
sequence (fan) converges t@ exponentially.

Proof. This is a straight forward calculation with Taylor expamsi®f the polyno-
mial. O

Corollary 20 (Algorithmic idempotent lifting). Let R be a commutativé,-alge-
bra which is finitely generated a,-module. Let g € R/¢/R be an idempotent. For
n > 1, make the following recursive definition:

eni=en1—(f_1—en1)(2en1-1) =36 1 - 26 1. (4)

Then & =e, mod/?'R for all n> 0. Moreover, the gform a Cauchy sequence in R
and thus converge to an idempotert R ‘lifting’ e, i.e. the image of e in RR is &).

Proof. This is a simple application of the Newton method to the poiyial f (X) =
X2 —X. Note that we havé’(X) = 2X —1 and 1= —4(X%2 — X) + (2X —1)(2X — 1).
O
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The corollary thus tells us that any idempotentRy¥R lifts to an idempotent
of R, and it tells us that the lift can be approximated by a simpleursion for-
mula that is easy to implement and converges very rapidlyshédl now apply the
preceding considerations to a commutat&ealgebral which is free and finitely
generated as &-module. LetT = T®F; andTgy, = T ® Q. Note thafT andTg,
are Artinian rings because they are finite dimensional vespaces. The follow-
ing well-known result follows from the above consideratidogether with some
standard commutative algebra.

Proposition 21. The algebrdl is equidimensional (in the sense of Krull dimension)
of dimensiord, i.e. any maximal ideah strictly contains at least one minimal prime
ideal A and there is no prime ideal strictly in between the two. Th&imal ideals
of T correspond bijectively under taking pre-images to the makideals ofT; the
same letter will be used to denote them. The minimal prilme&T are in bijection
with the prime ideals offg, (all of which are maximal) under extension, for which
the notationA (® will be used. Under the correspondences, oneThas T, @ Fy
andT), = ’Jl‘@f - By virtue of lifts of idempotents and Proposit[od 17, weehtne
local decompositions

T2 [T, T =[] Tw andTq, = [ Tg, 20 =[] Ta.
m m A - A

wherem runs through the maximal ideals @ (and T) and A runs through the
minimal primes off' (or, equivalently, all the prime=maximal ideals B#,).

Package for computing/-adic decompositions

The second author has developed thedwia [BCP97] packag@ADICALGEBRAS
(see [Wiel4]) for computing the objects appearing in Prijmos21. The package
depends on the second author’s earliesdA package RTINALGEBRAS (see
[Wie08]).

The main ingredients are standard linear algebra, especiar finite fields, and
the algorithmic idempotent lifting from Corollafy 0.

Application of the commutative algebra to modular forms

Let S(C) be a space of modular forms, e§(1(N)). We only work with spaces
that have a basis with coefficientsZn We denote by5(R) the corresponding space
with coefficients in the ringR. Here the notior§(R) is the naive one via the standard
g-expansionS(R) is the set ofR-linear combinations of the image of ti#&basis
in R[[g]] via the standard-expansion. The spac&R) can also be characterised
as follows. The Hecke operatofg for n € N acting onS(C) generate a ring (a
Z-algebra), denotef, and we have the isomorphism
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S(R) =< Homy (T, R).

Concretely, if¢ € Homy(T,R), theny -, ¢(Th)q" is a cusp form. Thus @-basis
of T gives rise to a ‘dual basis’ &R). We also speak of an ‘echelonised basis’.
By Propositio 21, we have the decompositions

To:=Q®z T H T|r) andS(Q) = P §1)(Q),
[f]

where the product and the sum run o@y-orbits of Hecke eigenforms. If the space
S(C) is a newspace, thely (Q) is the set of forms with coefficients @ in the C-
span of all thé5g-conjugates of . ConcretelyS(Z) is theZ-dual of theZ-algebra
generated by the Hecke operatdysin T(s). All Hecke operators acting ofif(Z)
are represented as matrices wittentries.

We now considefl7, = Z, ®z T. Then we haveyZ,) = Homy, (Tz,,Zy). Im-
portantly, again by Propositidn 21, we have the decommusiti

Tz, = [ Ty andS(Ze) = P Sy (Ze),
[f] (7]

where the sum and the product run over (g -orbits of Hecke eigenforms in
S(Fy). These correspond to the maximal idealsTof. We refer to theSq, (Zy)
either asZ,-orbits or asGy, -orbits.

We are also interested i3,-orbits of eigenforms inside &,-orbit. By Proposi-
tion21,Q, @z, S(Z¢) = S(Q) breaks as a direct sum

S(Q) = DS (Q0),
[f]

where the sum runs over tlig-valued eigenforms up G, -conjugation. The fact
that thesésq, -orbits lie in a singleZ,-orbit simply means that they are all congruent
modulo a uniformiser.

Testing weak congruences

The second author has developed thedwia package VEAK CONG (see[WielB]),
which has the purpose to compute whether Hecke eigenfor@s@vbelong to
given Z-orbits of Hecke eigenforms modulo powers/ofor uniformisers). Here
we briefly describe how it functions.

Let ng,...,n; be indices such thak,,,..., Ty, form a basis of the Hecke alge-
braTz, (which we may assume to be local by using thed#A packagerADiIcC-
ALGEBRAS, see above). We speaklodsis indicesThese indices are computed via
Nakayama’s lemma, i.e. by reducing the matricegto

For anyn, we haveT, = 3{_;an;Ty; in particular, an;i = §,j. For eachi €
{1,...,r}, we define a cusp form by specifying its coefficients as follows:
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an(fi) :=an;.

Thenfy,..., f, form anR-basis of Hom, (T, , R) for anyZ,-algebraR. We call this
basisechelonisedbecause it is at the coefficients,...,n,. It is the dual basis with
respect to the basi,, ..., T, of Tz,.

Furthermore, we compute orig-eigenform for eact),-orbit inside the given
Zy-orbit. This is done via standard linear algebra over loatl§, using both the
new MAGMA command LocalField and the older implementation. If we fimat &
system of linear equations which mathematically must haaion does not seem
to have any, then we lower the precision until the desiredt&ni exists. Thus, in
this procedure generally some precision is lost.

Letg= Y,>1bna" € S(Q,) be an eigenform in some level and weight. iebe
the valuation ring of some finite extension(@f that contains all coefficients, of g,
and letA be a uniformiser o7. The main purpose of this package is to compute
the maximum integem such that lies in a givenZ,-orbit (some level and some
weight) moduloA ™.

Puth:=g—[_; by fi. We then have:

r
h=0 modA™ < 3s,....5€0:9= Zsfi modA™.
i=

This equivalence is clear as the basis is echelonised, wehmitomaticallys = by,
modA™ for alli =1,...,r. The desired highest exponantcan thus be computed
as the minimum of the valuations of the coefficienthiaip to the Sturm bound.

6 Database of modular form orbits and higher congruences

The first author has created a PostgreSQL database cogtdatia onQ-, Q,- and
Zy-orbits, as well as information on congruences modulo pswér. We are cur-
rently planning to integrate parts of the database into e J

Technical features

In this section we describe the way our database is organisgavhat kind of data
it contains. This will also highlight two important aspeofsour approach:

e We do our best to avoid computing again data that are used timameonce. This
aims to speed up the process of computing@g-orbits. In order to do this we
store a lot of useful information, even intermediate res@tg. congruences with
forms other than those that provide an optimal weight orleaxen congruence
of individual coefficients.

1|nttp://imfdb.org
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e We try to parallelise as much of the problem as possible. dlsizaims at speed-
ing up the computation of congruences. This becomes edlgd@ady when the
coefficient fields of the forms that are compared become large

We will come back to both of these features after the desoripif the database
tables. We list them together with a brief description ofdla¢a each one holds.

1. Modular form spaces overQ: For every level and weight we store some useful
information: The dimension of its Eiseinstein subspace colspidal subspace,
new cuspidal subspace as well as the number of new Eisefigt@ialois orbits
and the number of newforid-Galois orbits.

2. Bases of modular form spaces ovef): Here we store the basis in terms of
modular symbols for every space in the previous table. Thidgagma readable
format.

3. Eigenforms overQ: For every space ovép, we store an entry for every Eisen-
stein and newforn@)-Galois orbit uniquely determined my its level, weight and
orbit number.

4. Hecke matrices overZ: For each of the newform orbits in the previous table
we store a list (up to a bound that can be increased as neefdatjree Hecke
matrices acting on th®-subspace spanned by this orbit.

5. Lattices: For each of the newform orbits in tiig-eigenforms table, we store
a list of base change matrices that ensure the matrices talleeabove, after
base change, are with respect to the same basis.

6. (-adic idempotents Given a newform from th&-eigenforms list and a prime
number/, we store a list of idempotents which provide the decomjuosiof
the corresponding-adic Hecke algebra into local factors (see Proposiiidn 21)
their number and thé-adic precision that they were computed in.

7. Fy-Galois orbits: For each entry in the table above (i.e. a list of idempodents
we store arZ-integral basis for each of the components (indexed by temid
potents in this list) that the pare@tGalois orbit of newforms breaks into.

8. Q/-Galois orbits of newforms For eachQ-Galois orbit of newforms and the
prime ¢, we store the(),-Galois orbit of newforms it decomposes into, along
with the ¢-adic precision they were computed in.

These are the tables that provide a hierarchical orgaoisati the objects in-
volved in the database and we tried to present it in a top timimofashion were an
entry in one of these table will be associated with many eatim the ones men-
tioned after it.

There are some auxiliary tables where all the congruencenation is stored.
We store everything down to congruences of individual pairsoefficients. These
are detailed catalogs of all meaningful congruences wheamites to level or weight
lowering, weak or strong.

It is obvious that the comparison of two eigenvalues at a @giris independent
from the comparison of the ones at some other pgnwe thus run a multi-threaded
application utilising as many CPU cores as possible whdrthigdads compare a
specific pair of eigenvalues each simultaneously. Let essthere that the design
of the database and the multi-threaded application is shathttallows us to utilise
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more than one server and/or personal computers to comperengere congruences
simultaneously. Extra care has been taken to avoid overigmd threads, i.e. two
of those computing the same congruence, but we choose niatttorate on these
technical matters.

The current size of the database is 488GB. It contains 33@tgenforms, of
level and weight up to 361 and 298 respectively (not of alsgimle combinations of
course).

Accessibility

We have designed a basic web interfatar the database which currently allows
one to query the database about the following:

1. Given aGg-orbit [f] and a primé, returnGg,-orbits appearing in it.

2. Given aGq orbit [f], a primel and a positive integem, return theGg,-orbits
that are congruent to the ones correspondingfteand ¢ modulo /" and are
of the smallest weight possible, i.e. the answer to the gtmaight lowering
modulo/" problem for[f].

3. Given aGg-orbit [f] and a prime/, return a list of downloadable files (one
for eachGg,-orbit) containing all the-adic, prime-indexed Hecke polynomials
(that are stored in the database) for e&gh-orbit.

Some remarks on the algorithms used

We now describe how we computed the various orbits. Our ghgoris imple-
mented in the MGMA computer algebra systein [BCP97]. Assume as input a given
level N, weightk and primef.

1. Compute the newsubspace of the cuspidal subspace of thaangymbols of
levelN and weighk. Decompose this subspace into irreducible Hecke modules.
These correspond Bg-orbits. This is done with standardAsMA commands.

2. For a given irreducible Hecke module of the previous dgmusition, compute
the matrices for all operatofi, acting on it up to a sufficient bouril

3. Use the packagrADICALGEBRAS [Wiel4] to factor the completion of the
Hecke algebra atinto local factors oveZ,. Each of these factors corresponds
to aGy,-orbit. Project the matrices representing This onto each of these local
factors.

4. After tensoring withQ),, each of thes&p, -orbits is the sum of all th&g, -orbits
admitting the same reduction médFor each such orbit, take the collection of
projections of the Hecke matrices onto it computed in theviptes step and
decompose the correspondif@g-vector space into simultaneous generalised

2 http://math.uni.lu/ ~ tsaknias/elladicdatabase_2.php
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eigenspaces by applying each operator successively. Foéing decompo-
sition is the breaking of the correspondi@y,-orbit into the Gg,-ones that
coincide mod'.
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