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1 Introduction

The Fontaine-Mazur conjecture relatesℓ-adic ‘geometric’ Galois representations
with objects from geometry. In the 2-dimensional case overQ much progress has
been achieved ([Eme11, Thm.1.2.4(2)] and [Kis09]):

Theorem 1 (Emerton, Kisin). Let ℓ > 2, let E/Qℓ be a finite extension and letρ :
Gal(Q/Q)→GL2(E) be an irreducible, finitely ramified, odd Galois representation
which is de Rham atℓ with distinct Hodge-Tate weights. Assume that the residual
representationρ satisfies certain local conditions.

Then a twist ofρ is attached to some newform.

In fact, the level and the weight of the newform can be read offfrom ρ .
The picture for modℓ representations is even more complete: Serre type mod-

ularity conjectures relate 2-dimensional Galois representations withFℓ-coefficients
with modular forms overFℓ. Serre’s original modularity conjecture has been estab-
lished by Khare and Wintenberger [KW09]:
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Theorem 2 (Khare, Wintenberger, Kisin). Let ρ : Gal(Q/Q) → GL2(Fℓ) be an
odd irreducible Galois representation. Thenρ is attached to (the reduction of) some
newform.

Also in this case, the level and the weight of one of the (infinitely many) newforms
attached toρ can be read off fromρ: the level is the prime-to-ℓ Artin conductor,
and there is a formula for the weight given by Serre. In fact, it had been known for a
long time that ifρ is attached tosomenewform then it also is to one with a certain
predicted weight and level. Since the predicted weight and level are minimal (except
for two cases in the weight, see [Edi92]), the process of finding a newform with pre-
dicted invariants is calledlevel loweringor weight lowering. The quest for attached
newforms with non-minimal levels is accordingly calledlevel raising. These three
questions have been completely solved (with a tiny exception whenℓ = 2 and the
minimal weight 1 is concerned).

With theℓ-adic and the modℓ cases of irreducible odd 2-dimensional represen-
tations ofGQ := Gal(Q/Q) essentially settled, it is natural to wonder what happens
in between, i.e. modulo prime powers. Quite some research has been done, but the
picture is far from clear. In fact, very basic questions are still open.

Modularity modulo prime powers

Let us consider a representation (continuous like all representations in this paper)

ρ : GQ → GL2(O/λ m)

with O the valuation ring of a finite extension ofQℓ andλ its valuation ideal. It
turns out that themodularityof ρ follows from known results if one supposes that
the residual representationρ is absolutely irreducible and odd and satisfies certain
technical local conditions. This was surely known to many experts and had been,
for instance, discussed on mathoverflow. We make this precise in Section 2.

An important point here is that one needs to use the right notion of modularity.
This difficulty is not visible when only workingℓ-adically or moduloℓ. The sec-
ond author together with Chen and Kiming introduced in [CKW13] three notions
of modularity modulo prime powers:strong modularity, weak modularity, dc-weak
modularity. These three notions stem from three notions of Hecke eigenforms mod-
ulo prime powers, also calledstrong, weak, anddc-weak, which we briefly explain
now.

Throughout this article, we understand by aHecke eigenform fwith coefficients
in a ringR (they are all normalised and almost all cuspidal without this being said
explicitly) a ring homomorphismf : T → R, whereT is a Hecke algebra (to be
specified very soon). We often think off as theq-expansion∑n≥1 f (Tn)qn ∈ R[[q]].
Let Tk(Γ ) be the full Hecke algebra, generated as a ring by all Hecke operators
Tn, acting faithfully on the space of holomorphic cusp formsSk(Γ ) of weightk and
levelΓ .
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A weakHecke eigenform of weightk and levelΓ with coefficients inR is a
ring homomorphismf : Tk(Γ ) → R. It is calledstrong if there exists an orderO
in a number field together with a ring homomorphismπ : O → R such thatf fac-
tors asTk(Γ ) → O

π
−→ R. By embedding the orderO into C, the first arrow leads

to Tk(Γ ) → C, a holomorphic Hecke eigenform. In simple terms, strong Hecke
eigenforms with coefficients inR are those that are obtained by applyingπ to the
coefficients of a holomorphic eigenform.

PutS≤b(Γ ) =
⊕b

k=1Sk(Γ ) and letT≤b(Γ ) be the full Hecke algebra acting faith-
fully on it. A ring homomorphismf : T≤b(Γ ) → R is called adc-weak eigenform
of level Γ (and weights≤ b; in fact, b will not play any role as long as it is large
enough). A dc-weak eigenform can hence have contributions from many different
weights, as is the case for divided congruences, which is what the abbreviation ‘dc’
stands for. IfR is a finite field orFℓ, all three notions coincide by the Deligne-Serre
lifting lemma (for a presentation in the setup used here, see[CKW13, Lemma 16]),
but they are different in general. An example that strong is stronger than weak mod-
ulo ℓm for m> 1, even if one allows the weight to change (but not the level),is given
in [KRW16, §2.5].

As rings of coefficientsR, we take in this article rings of the formO/λ m whereO
is the valuation ring of a finite field extension ofQℓ, λ is its valuation ideal andma
positive integer. Many results can be and are phrased in thisway. However, a general
difficulty exists: we often need to compare two eigenforms, one with coefficients in
O1/λ m1

1 , the other one with coefficients inO2/λ m2
2 . One then needs to find a ring

containing both. In order for such a ring to exist, it is necessary thatλ mi
i ∩Zℓ for

i = 1,2 both yield the same power ofℓ, sayℓm. This led the second author together
with Taixés i Ventosa [TiVW10] to introduce the ring

Z/ℓmZ= Zℓ/{x∈ Zℓ | v(x)> m−1},

wherev denotes the normalised valuation, i.e.v(ℓ) = 1. We always considerZ/ℓmZ
with the discrete topology. We haveZ/ℓZ= Fℓ and for the valuation ringO of any
finite extension ofQℓ with absolute ramification indexe and valuation idealλ , the
quotientO/λ e(m−1)+1 injects intoZ/ℓmZ. This quotient is the smallest one that ex-
tendsZ/ℓmZ. The ringZ/ℓmZ is a localZ/ℓmZ-algebra of Krull dimension 0 with
residue fieldFℓ and the ring extensionZ/ℓmZ⊆Z/ℓmZ is integral. Any finitely gen-
erated subringR of Z/ℓmZ is contained in some ringO/λ e(m−1)+1 as above. These
are free asZ/ℓmZ-modules, but this is not true for all finite subrings ofZ/ℓmZ. A
Hecke eigenform with coefficients inZ/ℓmZ shall simply be called amoduloℓm

Hecke eigenform. Dc-weak (and hence also weak) Hecke eigenforms moduloℓm

have attached Galois representations, under the conditionthat the residual represen-
tation is absolutely irreducible (see [CKW13, Theorem 3]).
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Weight lowering and finiteness

Let us recall now that in a fixed prime-to-ℓ level, there are only finitely many mod-
ular Galois representations with coefficients inFℓ, which can all be realised – up
to twist – in weights up toℓ+1 and that there is an explicit recipe for the minimal
weight.

A natural question is whether there is a recipe for a minimal weight for strong
eigenforms moduloℓm, i.e. whether (almost) all the (prime-indexed) Hecke eigen-
values of a given strong eigenformf modulo ℓm in weight k and levelN (prime
to ℓ) also occur for a strong eigenformg moduloℓm in the same levelN and a ‘low’
or ‘minimal’ weight that can be calculated from the restriction to a decomposition
group atℓ of the Galois representation attached tof (under the assumption of resid-
ual absolute irreducibilty).

This question seems to be very difficult. One is then led to consider the question,
for fixed prime-toℓ levelN, whether the set

{∑
n≥1

f (Tn)q
n ∈Z/ℓmZ[[q]] | f strong eigenform moduloℓm of levelN, any weight}

is finite. It can also be seen as the set of reductions moduloℓm of all holomorphic
Hecke eigenforms in levelN of any weight. The second author together with Kim-
ing and Rustom conjectures that this is the case ([KRW16, Conjecture 1]). As is
shown in Theorem 2 of loc. cit., a positive answer to a question of Buzzard [Buz05,
Question 4.4] would indeed imply this. As an indication towards finiteness or the
potential existence of a weight recipe as alluded to above, [KRW16, Theorem 3],
proved with the help of Frank Calegari, shows that forℓ ≥ 5, there exists a bound
B= B(N, ℓm) such that theq-expansion of anystrongHecke eigenform moduloℓm

of level N, but any weight, already occurs in weightk ≤ B for someweakHecke
eigenform moduloℓm of levelN. One should compare this with the level raising and
level lowering results below, which also ‘only’ lead to weakforms.

Some first experimentation has led Kiming, Rustom and the second author to
state the formula

B(N, ℓm) = 2ℓm+ ℓ2+1

for m≥ 2. It is consistent with the available computational data, but should not be
understood as a conjecture at this point.

Level raising

Led by classical level raising results, one can hope that similar statements are true
moduloℓm. It seems that part of the theory indeed carries over from modulo ℓ to
modulo ℓm eigenforms. In Section 3 we prove a level raising result for weight 2
eigenforms onΓ0(N). Forℓ > 2, this result is as general as possible. Only forℓ= 2
some rare cases could not be proved.
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Let f :T→Z/ℓmZ be a weak moduloℓm Hecke eigenform with Galois represen-
tationρ . The main idea is to extend Ribet’s ‘classical’ geometric approach of level
raising to our more general situation. For that we need to realiseρ on the JacobianJ
of the appropriate modular curve. It is well known that the Hecke algebra acts faith-
fully on J. However, we need thatT/ker( f ), i.e. the image of the weak eigenform,
also acts faithfully on a subgroup of the Jacobian. The natural place isJ(Q)[ker( f )].
It turns out that this faithfulness does not seem to be that clear. In fact, we currently
make use of the ‘multiplicity one’ property for the residualGalois representation
on the Jacobian and, equivalently, the Gorenstein propertyof the residual Hecke
algebra. Once this faithfulness is established, the proof proceeds by comparing the
new and the old subvarieties in levelNp as in Ribet’s original work [Rib90b]. One
should expect similar limitations when extending level raising moduloℓm to higher
weights, e.g. the weight will likely have to be less thanℓ if one wants complete re-
sults in order to remain in the multiplicity one situation, where faithfulness is known
and easily obtained from existing results.

Level lowering and other results

Another natural domain is that of level lowering moduloℓm. The principal idea is
that one should always be able to find an eigenform giving riseto a given Galois
representation when the level is equal to the Artin conductor of the representation.
An immediate difficulty is then, of course, to define an Artin conductor for Galois
representations moduloℓm. It does not seem to be immediately clear how to do this
because not every module overZ/ℓmZ is free, so that there is no natural analog
for the dimension (of, say, inertia invariants) used in the classical Artin conductor.
Nevertheless, one can at least ask whether one can always finda moduloℓm Hecke
eigenform of a level which is only divisible by primes ramifying in the represen-
tation. There are, indeed, two such results, one is due to Dummigan, and the other
one due to Camporino and Pacetti. We quote both in Section 4. Dummigan’s result,
similar to our level raising theorem, works geometrically on cohomology, whereas
Camporino and Pacetti use the deformation theory of Galois representations. Both
approaches currently seem to lead to some restrictions (a congruence condition for
Dummigan, and unramified coefficients for Camporino–Pacetti).

Concerning generalisations along the lines of level lowering results moduloℓ,
which are based on the use of Shimura curves, the modℓm Galois representation
must first be realised in the cohomology (or the Jacobian) of the appropriate Shimura
curve. This is likely going to lead into faithfulness problems analogous to the one
we solved in the level raising result by appealing to the Gorenstein or multiplicity
one condition.

As a further instance of level lowering (though of a slightlydifferent nature), we
mention the following result from [CKW13, Theorem 5]: Any dc-weak eigenform
modulo ℓm in level Nℓr already arises from a dc-weak eigenform moduloℓm in
level N, under the hypothesesℓ ≥ 5 and that the modℓ reduction has an absolutely
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irreducible Galois representation. It is also shown that even if one starts with a strong
eigenform moduloℓm, the one in levelN will only be dc-weak, in general.

Another natural direction is to extend companionship results from eigenforms
moduloℓ to ℓm. This has been successfully performed by Adibhatla and Manohar-
mayum in [AM12] for oddℓ and ordinary modular forms with coefficients unrami-
fied atℓ, under certain conditions. In fact, that work is set in the more general world
of Hilbert modular forms. Another companionship result modulo prime powers has
been achieved by the first author together with Adibhatla [AT15].

Computations, algorithm and database

Next to the theoretical and structural motivation for studying modular forms and
modularity questions modulo prime powers, there is also a strong computational
driving force: realisingℓ-adic modular forms on a computer is only possible up to a
certain precision, i.e. one necessarily realises modular forms moduloℓm.

This also naturally leads to the questions studied in this article. For instance, if
one wants to compute modulo which power ofℓ a modularℓ-adic Galois represen-
tationρ of conductorNp (with p a prime not dividingN) becomes unramified atp,
one can test whether the system of Hecke eigenvalues moduloℓm also occurs in
level N/p for m= 1,2, . . . until this fails. If it first fails atm+1, thenρ moduloℓm

is known to be unramified atp. In cases where level lowering moduloℓm is entirely
proved, one also gets thatρ moduloℓm+1 does ramify atp. The authors know of no
other way of obtaining such information of anℓ-adic modular Galois representation.

The authors have developed several algorithmic tools for handling modular forms
moduloℓm and they have set up a database. Section 5 contains a brief exposition
of how to compute decompositions of commutative algebras into local factors in
situations arising from Hecke algebras, and how to perform weak modularity tests
explicitly. Finally, in Section 6 we describe features of the database of modular form
orbits and higher congruences that we have developed.
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2 Modularity

In this section we prove the following modularity theorem. This theorem has been
known to the experts and is a pretty straight forward application of ‘bigR=bigT’
theorems.

Theorem 3.Let ℓ ≥ 5 be a prime number, letΣ be a finite set of primes not con-
taining ℓ and let GQ,Σ∪{∞,ℓ} be the Galois group of the maximal extension ofQ
unramified outsideΣ ∪{ℓ,∞}. Consider a continuous Galois representation

ρ : GQ,Σ∪{∞,ℓ} → GL2(Z/ℓmZ)

such that the residual representationρ satisfies:

• ρ is odd,
• ρ |GQ(ζp)

is absolutely irreducible,

• ρ |GQℓ
6∼ χ ⊗

(

1 ∗
0 1

)

andρ|GQℓ
6∼ χ ⊗

(

1 ∗
0 ε

)

, for anyFℓ-valued characterχ of

GQℓ
and the modℓ cyclotomic characterε (where∗ may or may not be zero).

Let N be the maximal positive integer divisible only by primes in Σ such that there
is a newform of level N (and some weight) giving rise toρ .

Thenρ is dc-weakly modular of level N, i.e.ρ ∼= ρ f with f a dc-weak Hecke
eigenform moduloℓm of level N.

In the exposition of the theory, we essentially follow Deo’spaper [Deo17]. Let us
assume the notation and the set-up from Theorem 3. LetO be the valuation ring of a
finite extension ofQℓ with ramification indexe, valuation idealλ and residue fieldF
such that (possibly after conjugation)ρ takes values in GL2(O/λ w)⊂GL2(Z/ℓmZ)
with w= e(m−1)+1. LetT′

O
(Γ1(N)) be defined as the projective limit overb of

O ⊗T′
≤b(Γ1(N)) which are defined precisely likeT≤b(Γ1(N)), but only take Hecke

operatorsTn with n coprime toNℓ into account. Similarly, like Deo we define the
partially full Hecke algebraTpf

O
(Γ1(N)) as the projective limit ofO ⊗T

pf
≤b(Γ1(N))

by using in addition the operatorsUq for primesq | N. If we localise at the system
of eigenvalues afforded byρ , we denote this byρ in the index. Accordingly, denote
by Rρ the universal deformation ring ofρ for the groupGQ,Σ∪{∞,ℓ} in the category
of local profiniteO-algebras with residue fieldF.

Theorem 4 (Böckle, Diamond–Flach–Guo, Gouv̂ea–Mazur, Kisin). Assume the
set-up of Theorem 3. Then Rρ ∼= T′

O
(Γ1(N))ρ .

This is Theorem 5 from [Deo17]. Note that Deo works with pseudo-represen-
tations, but this comes down to the same thing here because weassumeρ to be
irreducible. In the proof, Deo essentially explains why theresults of [DFG04] allow
to strengthen the conclusions of [Böc01]. A similar discussion can also be found
in [Eme11,§7.3], where the theorem is, however, not stated in the form weneed
here. Alternatively, one can also invoke [Eme11, Theorem 1.2.3] to anℓ-adic lift
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of ρ , provided such a lift exists. Recent work by Khare and Ramakrishna [KR15]
provides a construction in the ordinary case.

We now apply Theorem 4. By assumption,ρ is a deformation ofρ with the
right ramification set, whence the universality leads to anO-algebra homomorphism
Rρ → O/λ w, which we consider as anO-algebra homomorphism

f : T′
O(Γ1(N))ρ → O/λ w.

By construction, the Galois representation associated with f is isomorphic toρ .
In order to finish the proof of Theorem 3,f has to be extended to the full Hecke

algebra in order to make it a genuine Hecke eigenform moduloℓm. Next we use that
T

pf
O
(Γ1(N))ρ is finite overT′

O
(Γ1(N))ρ . This is proved in [Deo17, Proposition 6];

one should note that theΓ1(N)-new assumption is not necessary for this statement
(see the proof of [Deo17, Theorem 3]). This integrality allows us to extendf to an
O-algebra homomorphism

f : Tpf
O
(Γ1(N))ρ → Õ/λ̃ w̃

whereO ⊆ Õ is the valuation ring of some finite extension ofQℓ with valuation
ideal λ̃ and ramification index ˜e and w̃ = ẽ(m− 1) + 1. One is able to make this
extension because one only needs to find one zero in some ring of the form Õ/λ̃ w̃

for any monic polynomial with coefficients inO/λ w; that this is possible follows,
for instance, by choosing any monic lift toO. From the natural degeneracy map,
we next get anO-algebra homomorphismf : Tpf

O
(Γ1(Nℓ))ρ → Õ/λ̃ w̃, which after

choice of f (Uℓ) leads to theO-algebra homomorphism

f : Tpf
O
(Γ1(Nℓ))ρ [[Uℓ]]→ Õ/λ̃ w̃.

According to [Deo17, Proposition 5], one can identifyTpf
O
(Γ1(Nℓ))ρ [[Uℓ]] with a

quotient of the full Hecke algebraTO(Γ1(Nℓ)). We obtain thus anO-algebra homo-
morphism

f : TO(Γ1(Nℓ))→ Õ/λ̃ w̃.

As its image is finite, it will factor throughO ⊗T≤b(Γ1(Nℓ)) for a suitable weight
boundb, so that we finally get a ring homomorphism

f : T≤b(Γ1(Nℓ))→ Õ/λ̃ w̃.

This is the dc-weak eigenform that is needed to finish the proof of Theorem 3. Note
that one can still removeℓ from the level of the final form because of [CKW13,
Theorem 5].
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3 Level raising via modular curves

Let p be a rational prime. Then one has a natural inclusion map

Sk(Γ0(N))⊕Sk(Γ0(N))→ Sk(Γ0(Np)),

the image of which is called thep-old subspace. This subspace is stable under the
action ofTk(Np) := Tk(Γ0(Np)) and so is its orthogonal complement under the
Petersson inner product. This complementary subspace is called thep-new subspace
and we denote byTp−new

k (Np) the quotient ofTk(Np) that acts faithfully on it. We
will call this quotient thep-new quotient ofTk(Np). There is also thep-old quotient
that is defined in the obvious way.

We can now state the main level raising result of this article.

Theorem 5.Let R be a local topological ring with maximal idealmR. Let ρ :
GQ → GL2(R) be a continuous Galois representation that is modular, associated
with a weak eigenformθ : T2(N) → R, and such that the residual representation
ρ : GQ → GL2(R/m) is absolutely irreducible. If the characteristic of R/m is 2,
assume themultiplicity one/Gorenstein conditionthat ρ is not unramified at2 with
scalar Frobenius.

Let p be a prime which satisfies thelevel raising conditionfor ρ by which we
mean thatρ is unramified at p and

Tr(ρ(Frobp)) =±(p+1).

Then the image ofθ is a finite ring, R/m is a finite field andρ is also associated
with a weak eigenformθ ′ : T2(Np)→ R which is new at p, i.e.θ ′ factors through
Tp−new

2 (Np).

In view of Lemma 8, the following corollary is essentially just an equivalent
reformulation. LetO be the ring of integers of a number field andλ a prime inO

aboveℓ.

Corollary 6. Let m≥ 1 be an integer andρ : GQ → GL2(O/λ m) be a continuous
(for the discrete topology onO/λ m) Galois representation that is modular, associ-
ated with a weak eigenformθ :T2(N)→O/λ m, and such that the residual represen-
tation ρ : GQ → GL2(O/λ ) is absolutely irreducible. IfO/λ is of characteristic2,
assume themultiplicity one/Gorenstein conditionthat ρ is not unramified at2 with
scalar Frobenius.

Let p be a prime which satisfies thelevel raising conditionfor ρ , which means
here that

(ℓN, p) = 1 and Tr(ρ(Frobp))≡±(p+1) modλ m.

Thenρ is also associated with a weak eigenformθ ′ : T2(Np) → O/λ m which is
new at p, i.e.θ ′ factors through theTp−new

2 (Np).

We remark that form= 1 this is Theorem 1 of [Rib90b]. Even ifθ is a strong
eigenform, there is no guarantee that the weak eigenform of level new atp that one
obtains in the end is strong.
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Corollary 7. Let R be a local topological ring with maximal idealmR and letρ :
GQ → GL2(R) be a continuous Galois representation that is modular, has finite
image and such that the residual representationρ : GQ → GL2(R/m) is absolutely
irreducible. If the characteristic of R/m is 2, assume themultiplicity one/Gorenstein
conditionthat ρ is not unramified at2 with scalar Frobenius.

Then there exists a positive set of primes p (coprime to N) such thatρ is modular
of level Np and new at p.

Proof. This is proved as in [Rib90b]. The argument is that complex conjugation, as
an involution, has trace 0 and determinant−1. By Chebotarev’s density theorem,
there is a positive density set of primesp such that−1 = det(ρ(Frobp)) = p and
p+1= 0= Tr(ρ(Frobp)) in R. ⊓⊔

Jacobians of modular curves

In what follows we setTN := T2(Γ0(N)) andTNp := T2(Γ0(Np)). The approach
taken here is adapted from Ribet’s original one, i.e. it is based on the geometry of
modular curves and their Jacobians. In this section we gather the necessary results
from [Rib90b] that we need for the proof of the main result. Let N be a positive
integer. LetX0(N) be the modular curve of levelN andJ0(N) := Pic0(X0(N)) its
Jacobian. There is a well defined action of the Hecke operators Tn on X0(N) and
hence, by functoriality, onJ0(N), too. The dual ofJ0(N) carries an action of the
Hecke algebra as well and can be identified withS2(Γ0(N)). This implies that one
has a faithful action ofTN onJ0(N).

Let nowp be a prime not dividingN. In the same way one has an action of Hecke
operators onX0(Np) and its JacobianJ0(Np) and the latter admits a faithful action
of TNp. The moduli interpretation ofX0(N) and X0(Np) allows us to define the
two natural degeneracy mapsδ1,δp : X0(Np)→ X0(N) and their pullbacksδ ∗

1 ,δ ∗
p :

J0(N)→ J0(Np). The image of the map

α : J0(N)×J0(N)→ J0(Np), (x,y) 7→ δ ∗
1 (x)+δ ∗

p(y).

is by definition thep-old subvarietyof J0(Np). We will denote it byA. The mapα
is almostHecke-equivariant:

α ◦Tq = Tq◦α for every primeq 6= p, (1)

α ◦

(

Tp p
−1 0

)

=Up◦α. (2)

For the first equation to make sense one interprets the operator Tq on the left hand
side of equation (1) as acting diagonally onJ0(N)× J0(N). We also work under
the notational conventionTq = Uq for primesq | N, but we writeUp in level Np.
Consider also the kernel Sh of the mapJ0(N)→ J1(N) induced byX1(N)→ X0(N).
If we inject it into J0(N)× J0(N) via x 7→ (x,−x) then its image, which we will
denote byΣ , is the kernel ofα (see Proposition 1 in [Rib90b]).
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Let ∆ be the kernel of

(

1+ p Tp

Tp 1+ p

)

∈ M2×2(TN) acting onJ0(N)×J0(N). The

group ∆ is finite and comes equipped with a perfectGm-valued skew-symmetric
pairing. FurthermoreΣ is a subgroup of∆ , self orthogonal, andΣ ⊆ Σ⊥ ⊆ ∆ . One
can also see∆/Σ , and therefore its subgroupΣ⊥/Σ , as a subgroup ofA.

Let B be thep-new subvariety ofJ0(Np). It is a complement ofA, i.e. A+B=
J0(Np) andA∩B is finite. The Hecke algebra acts faithfully onB through itsp-new
quotient and it turns out (see Theorem 2 in [Rib90b]) that

A∩B∼= Σ⊥/Σ . (3)

as groups.
Furthermore Sh, and thereforeΣ and its Cartier dual∆/Σ⊥, are annihilated by

the operatorsηr = Tr − (r + 1) ∈ TN for all primesr ∤ Np (see Proposition 2 in
[Rib90b]). In this context, we recall that a maximal idealm of the Hecke algebraTN

is calledEisensteinif Tr modm equals the Frobenius traces of a two-dimensional
reducible Galois representation at almost all primesr. This is in particular the case
if m contains the operatorTr − (r + 1) for almost all primesr. Consequently, any
maximal ideal in the support of the Hecke modulesΣ and∆/Σ⊥ is Eisenstein.

Proof of Theorem 5

We assume the setting of Theorem 5. In particular, we assume that ρ satisfies the
level raising condition at a primep ∤ N, i.e. there isε ∈ {±1} such thatθ(Tp) =
Tr(ρ(Frobp)) = ε(p+1). Let θ̄ : TN → R/mR be its reduction modulomR (which
is associated withρ , the modulomR reduction ofρ), and letI andm be the kernels
of θ andθ̄ , respectively. It will be enough to find a weak eigenformθ ′ : TNp → R
(i.e. a ring homomorphism) that agrees withθ onTq for all primesq 6= p and factors
throughTp−new

Np (hence, new atp).

Lemma 8. The idealm is the only maximal ideal ofTN containing I. Moreover,
TN/I is a finite subring of R of positive characteristic a prime power ℓr .

Proof. SinceTN is aZ-Hecke algebra acting faithfully onS2(N) we have thatTN

injects intoMd×d(Z), whered is the dimension ofS2(N). We can therefore see every
operator inTN as an integral matrix of dimensiond. We recall that the eigenvalues
of the operatorTn will correspond to the coefficientsan( f ) when f runs through the
normalised eigenforms inS2(N).

Let g(X) ∈ Z[X] be the characteristic polynomial ofTp. The hypothesisθ(Tp) =
ε(p+1) implies thatTp− ε(p+1) ∈ I and thereforem := g(ε(p+1)) ∈ I . Since
p ∤ N, the Ramanujan-Petersson bounds guarantee that none of theeigenvalues of
Tp is equal toε(p+1) and thereforem is non-zero. We thus have that(m)⊆ I . This
makes the quotientT/I finite.

SinceT/I is Artinian, it can be written as a direct product of Artinianlocal rings
indexed by its finitely many maximal ideals. Assume it decomposes as a direct prod-
uct ofs local rings, withs≥ 1. The set containing the identityei of each component
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then forms a complete set (i.e.∑s
i=1ei = 1) of pairwise orthogonal (i.e.eiej = 0 for

1≤ i 6= j ≤ s) non-trivial (i.e.ei 6= 0,1) idempotents forTN/I . The set{ē1, . . . , ēs}
of their image through the injection ofTN/I into R is clearly a complete set of pair-
wise orthogonal non-trivial idempotents, too. This implies thatR is isomorphic to
∏s

i=1 ēiR. But this cannot happen unlesss= 1 sinceR is local. Sinces= 1 we get
thatTN/I is local as well. The claims are then immediate. ⊓⊔

By the previous lemma, we have inclusions(ℓr)⊆ I ⊆m with some prime power
ℓr > 1, giving rise to inclusions

V[ℓr ] := J0(N)(Q)[ℓr ]⊇V[I ] := J0(N)(Q)[I ]⊇V[m] := J0(N)(Q)[m].

Lemma 9. The support of V[I ] is the singletonm and is hence non-Eisenstein.

Proof. As V[I ] ⊇ V[m], the maximal idealm is in the support ofV[I ]. Since the
representationρ is irreducible we get thatm is non-Eisenstein (see for example
Theorem 5.2c in [Rib90a]). Finally, Lemma 8 implies that Supp(V[I ]) is the single-
ton{m}. ⊓⊔

Lemma 10.The restriction ofα to V[I ] is injective and its imageα(V[I ]) is stable
under the action ofTNp. In particular, Up acts onα(V[I ]) by multiplication byε.

Proof. Consider the image ofV[I ] (still denotedV[I ]) under theTN-equivariant em-
bedding

J0(N)
x7→(x,−εx)
−−−−−−→ J0(N)×J0(N).

Next recall that the kernelΣ of J0(N)× J0(N)
α
−→ A ⊆ J0(Np) is annihilated by

almost all operatorsTr − (r +1) with r prime. The fact that the support ofV[I ] is
non-Eisenstein from Lemma 9 shows that the intersection ofΣ andV[I ] is trivial,
proving the injectivity ofα|V[I ].

As α commutes with the action of the Hecke operatorsTn with n coprime top
(see Equation (1)), it follows thatα(V[I ]) is stable under those operators. Here the
level raising condition enters for proving the stability underUp, as follows by using
Equation (2) fory∈V[I ]:

Up(y) =Up(α(x,−εx)) = α(

(

Tp p
−1 0

)(

x
−εx

)

) = α(Tp(x)− ε px,−x)

= α(ε(p+1)x− ε px,−x) = α(εx,−x) = εα(x,−εx) = εy.

The final claim follows as well. ⊓⊔

The following proposition is a non-trivial input.

Proposition 11.TheTN/I-module V[I ] is faithful.

Proof. Due to the assumptions, Theorem 9.2 of [Edi92] implies thatV[m] is of di-
mension 2 asTN/m-module. By Nakayama’s Lemma, it follows that the localisation
at m of the ℓ-adic Tate module is free of rank 2 as(TN ⊗Z Zℓ)m-module and that
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HomZℓ
((TN ⊗ZZℓ)m,Zℓ) is free of rank 1 as(TN ⊗ZZℓ)m-module, precisely as on

p. 333 of [Til97]. Consequently,

V[ℓr ]m ∼= (TN/ℓ
rTN)

2
m

∼= HomZℓ
((TN/ℓ

rTN)m,Z/ℓ
rZ)2,

which implies by taking theI -kernel withI the ideal such thatTN/I ∼= (TN/ℓ
rTN)/I

that
V[I ]∼= HomZ((TN/ℓ

rTN)/I ,Z/ℓrZ)2 = HomZ(TN/I ,Z/ℓrZ),

showing thatV[I ] is faithful asTN/I -module. ⊓⊔

The authors do not know if the ‘multiplicity one’ or ‘Gorenstein’ condition is
necessary. In the remaining case, the 2r -torsion group scheme is ordinary, and hence
by arguments as in Corollary 2.3 of [Wie07] admits a nice decomposition as

0→ (TN/ℓ
rTN)m →V[ℓr ]m → HomZ((TN/ℓ

rTN)m,Z/ℓ
rZ)→ 0.

However, we do not know if this sequence remains exact after taking theI -kernel.
If this were the case, the additional assumption would be unnecessary.

Lemma 12.The action ofTNp on α(V[I ]) is given by a ring homomorphism
θ ′ : TNp → R satisfyingθ ′(Tq) = θ(Tq) for all primes q6= p andθ ′(Up) = ε. In
particular, θ andθ ′ give rise to isomorphic Galois representations.

Proof. The faithfulness ofV[I ] asT/I -module from Proposition 11 implies thatθ
factors through a subringSof End(V[I ]), which is also a subring ofR. By Lemma 10
and Equation (1), the action ofTNp on α(V[I ]) is also given by elements ofS,
leading to a ring homomorphismθ ′ : TNp → S⊆ R. ⊓⊔

To finish the proof of Theorem 5, it remains to show thatθ ′ factors through the
p-new quotient ofTNp. To this end, it is enough to show thatα(V[I ]) is a sub-
group ofA∩B. We again proceed according to Ribet. By the level raising condition,
V[I ], when considered as a subgroup ofJ0(N)×J0(N), is a subgroup of∆ , whence
α(V[I ]) ⊆ ∆/Σ . As ∆/Σ⊥ is Eisenstein butα(V[I ]) is not,α(V[I ])/Σ⊥ = 0. This
impliesα(V[I ])⊆ Σ⊥/Σ = A∩B, completing the proof of Theorem 5.

4 Level lowering

In this section we give an overview of results about level lowering modulo prime
powers. We start by the following simple observation: twisting an eigenformf by
a Dirichlet characterχ such thatχ ≡ 1 modλ m leads to an eigenformg= f ⊗ χ ,
which is congruent tof modulo λ m. This idea leads to the following two level
lowering results from the first author’s unpublished PhD thesis [Tsa09].

Proposition 13 (Split ramified case).Let f ∈ Sk(Γ1(M)) be a newform such that
the restriction to a decomposition group at p6= ℓ of theℓ-adic Galois representation
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attached to f is isomorphic toχ1⊕ χ2, where both characters ramify. Letλ be a
prime ideal of a number field containing the coefficients of f .

If χ1 is unramified moduloλ m, then there exists a normalised eigenform g∈
Sk(Γ1(M/p)) such that f≡ g modλ m.

Proof. We can decomposeχ1 = χ1,unrχ1,ram into an unramified and a ramified char-
acter ofGQp. As p 6= ℓ, the order ofχ1,ram is finite. By assumption,χ1,ram ≡ 1
modλ m, whence in particular the order ofχ1,ram is a power ofℓ because only roots
of unity of ℓ-power order vanish under reduction moduloλ . Thusχ1,ram is tamely
ramified. By the local and the global Kronecker-Weber theorems,χ1,ram can be seen
as a global Dirichlet characterχ̃1,ram of conductorp the restriction of which toGQp

equalsχ1,ram.
Let nowg be the newform corresponding to the twistf ⊗ χ̃−1

1,ram. Then the restric-
tion to a decomposition group atp of theℓ-adic Galois representation attached tog
is isomorphic toχ1,unr⊕ χ2χ−1

1,ram. If χ2 is tame (i.e. of conductorp), thenχ2χ−1
1,ram

is either tame or unramified, and in any case its conductor divides p. If χ2 is wild,
i.e. it factors through Gal(Qp(ζpr N)/Qp) with r ≥ 2 and p ∤ N, but not through
Gal(Qp(ζpr−1N)/Qp), then alsoχ2χ−1

1,ram factors through Gal(Qp(ζpr N)/Qp) but not

through Gal(Qp(ζpr−1N)/Qp), whence the conductor ofχ2χ−1
1,ram equals that ofχ2.

In both cases we hence find that the conductor ofχ2χ−1
1,ram divides the conductor

of χ2. Since thep-valuation ofM equals thep-valuation of the conductor ofχ2

plus 1 (since the conductor ofχ1 is p) and thep-valuation of the newform level ofg
is thep-valuation of the conductor ofχ2χ−1

1,ram, it is clear that the newform level ofg
dividesM/p. ⊓⊔

Proposition 14 (Special ramified case).Let f ∈ Sk(Γ1(M)) be a newform such that
the restriction to a decomposition group at p6= ℓ of theℓ-adic Galois representation

attached to f is isomorphic toχ ⊗

(

ω ∗
0 1

)

, whereχ and∗ ramify andω is theℓ-

adic cyclotomic character. Letλ be a prime ideal of a number field containing the
coefficients of f .

If χ is unramified moduloλ m, then there exists a newform g∈ Sk(Γ1(M/p)) such
that f ≡ g modλ m.

Proof. The proof is essentially the same as in the split ramified case. Note, however,
that the tameness ofχ implies thatp2 exactly dividesM, whence the newform level
of g will be exactlyM/p. ⊓⊔

These propositions may be useful in some situations. We alsoremark that the
only Dirichlet character that is trivial moduloℓ2 in the sense of being equal to 1∈
Z/ℓ2Z is the trivial one. That is just due to the fact thatλ := 1−ζℓ is a uniformiser of
Qℓ(ζℓ), whenceζℓ 6≡ 1 mod(λ )2. This implies that the level does not lower modulo
ℓm for any m≥ 2 at primesp satisfying the hypothesis of one of the preceding
propositions. We now quote the main result from [Dum15], including the discussion
in the last paragraph of that article.
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Theorem 15 (Dummigan).Letℓ be a prime. Letℓ+2> k≥ 2 and let p be a prime
not dividing N∈ N such that p6≡ 1 modℓ. Let f ∈ Sk(Γ1(Np)) be an eigenform
and letλ be a prime of the coefficient field of f aboveℓ. Suppose that the residual
Galois representation of f moduloλ is irreducible.

If for some m≥ 1 the Galois representation of f moduloλ m is unramified at p,
then there is a weak eigenform g of weight k and levelΓ1(N) such that f modλ m

equals g at all coefficients the index of which is coprime to p.

Dummigan also gives an explicit example where the resultingform g cannot be
strong. We include another still unpublished result from [CP13] on level lowering,
which is proved using the deformation theory of Galois representations.

Theorem 16 (Pacetti-Camporino).Let ℓ≥ 7 be a prime. Let2≤ k≤ ℓ−1. Let M
be a positive integer. Let f∈ Sk(Γ1(M)) be an eigenform with coefficients in Kf . Let
O f be the ring of integers of Kf . Assume that

• ℓ is unramified inO f , and
• SL2(O f /λ ) is a subgroup of the image of the modλ representation attached to f .

If p | M is a prime and m≥ 1 is an integer such that the moduloλ m Galois rep-
resentation associated with f is unramified at p, then there is a weak eigenform g
of weight k and levelΓ1(M/p) such that f modλ m equals g at all coefficients the
index of which is coprime to p.

This result is proved by first applying techniques of Ramakrishna: by introducing
auxiliary primes in order to kill local obstructions, the authors construct anℓ-adic
lift in which p remains unramified. They then prove and use a modularity lifting
theorem to obtain that their lift is associated with some newform. Finally, they apply
Theorem 15 to remove the auxiliary primes, which had been chosen in such a way
that Dummigan’s theorem applies.

5 Computational aspects

In this section, we describe various algorithms we have implemented and used in
our computational study of higher congruences.

Some commutative algebra

We start by summarising some well known facts from commutative algebra. LetR
be anArtinian ring, i.e. a ring in which every descending chain of ideals becomes
stationary. In particular, for any ideala of R, the sequencean becomes stationary,
i.e. an = a

n+1 for all n “big enough”. We will then use the notationa∞ for an. The
following proposition is well known and easy to prove:
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Proposition 17.Let R be an Artinian ring. Then every prime ideal of R is maxi-
mal and there are only finitely many maximal ideals in R. Moreover, the maximal
ideal m is the only one containingm∞. Furthermore, ifm 6= n are two maximal
ideals, then for any k∈ N∪{∞}, the idealsmk andnk are coprime. The Jacobson
radical

⋂

m∈Spec(R)m is equal to the nilradical and consists of the nilpotent elements,
and we have

⋂

m∈Spec(R)m
∞ = (0). Moreover, for every maximal idealm, the ring

R/m∞ is local with maximal idealm and is hence isomorphic to Rm, the localisa-
tion of R atm. Finally, by virtue of the Chinese Remainder Theorem we havethe
following isomorphism, referred to aslocal decomposition:

R
a7→(...,a+m

∞,...)
−−−−−−−−−−→ ∏

m∈Spec(R)

R/m∞ ∼= ∏
m∈Spec(R)

Rm.

Definition 18. An idempotentof a ringR is an elemente that satisfiese2 = e. Two
idempotentse, f areorthogonalif e f = 0. An idempotente is primitive if it cannot
be written as a sum of two idempotents both different from 0. Aset of idempotents
{e1, . . . ,en} is said to becompleteif 1 = ∑n

i=1ei .

In concrete terms, a complete set of primitive pairwise orthogonal idempotents
is given by(1,0, . . . ,0),(0,1,0, . . . ,0), . . . ,(0, . . . ,0,1).

Proposition 19 (Newton method/Hensel lifting – special case). Let R be a ring
and I be an ideal. Let f∈ R[X] be a polynomial. We assume that there exist a∈ R
and a polynomial b∈ R[X] such that1 = a f(X)+ b(X) f ′(X). Let further a0 ∈ R
be such that f(a0) ∈ I r for some r≥ 1. For n≥ 1, we make the following recursive
definition:

an := an−1− f (an−1)b(an−1).

Then for all n∈ N, we have f(an) ∈ (I r)2n
. In particular, if

⋂

n≥1 In = 0 then the
sequence f(an) converges to0 exponentially.

Proof. This is a straight forward calculation with Taylor expansions of the polyno-
mial. ⊓⊔

Corollary 20 (Algorithmic idempotent lifting). Let R be a commutativeZℓ-alge-
bra which is finitely generated asZℓ-module. Let e0 ∈ R/ℓR be an idempotent. For
n≥ 1, make the following recursive definition:

en := en−1− (e2
n−1−en−1)(2en−1−1) = 3e2

n−1−2e3
n−1. (4)

Then e2n ≡ en modℓ2n
R for all n≥ 0. Moreover, the en form a Cauchy sequence in R

and thus converge to an idempotent e∈R ‘lifting’ e0, i.e. the image of e in R/ℓR is e0.

Proof. This is a simple application of the Newton method to the polynomial f (X) =
X2−X. Note that we havef ′(X) = 2X−1 and 1=−4(X2−X)+(2X−1)(2X−1).

⊓⊔
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The corollary thus tells us that any idempotent ofR/ℓR lifts to an idempotent
of R, and it tells us that the lift can be approximated by a simple recursion for-
mula that is easy to implement and converges very rapidly. Weshall now apply the
preceding considerations to a commutativeZℓ-algebraT which is free and finitely
generated as aZℓ-module. LetT= T⊗Fℓ andTQℓ

= T⊗Qℓ. Note thatT andTQℓ

are Artinian rings because they are finite dimensional vector spaces. The follow-
ing well-known result follows from the above considerations together with some
standard commutative algebra.

Proposition 21.The algebraT is equidimensional (in the sense of Krull dimension)
of dimension1, i.e. any maximal idealm strictly contains at least one minimal prime
ideal λ and there is no prime ideal strictly in between the two. The maximal ideals
ofT correspond bijectively under taking pre-images to the maximal ideals ofT; the
same letter will be used to denote them. The minimal primesλ of T are in bijection
with the prime ideals ofTQℓ

(all of which are maximal) under extension, for which
the notationλ (e) will be used. Under the correspondences, one hasTm

∼= Tm⊗Fℓ

andTλ ∼= TQℓ,λ (e) . By virtue of lifts of idempotents and Proposition 17, we have the
local decompositions

T∼= ∏
m

Tm,T∼= ∏
m

Tm andTQℓ
∼= ∏

λ
TQℓ,λ (e)

∼= ∏
λ
Tλ ,

wherem runs through the maximal ideals ofT (and T) and λ runs through the
minimal primes ofT (or, equivalently, all the prime=maximal ideals ofTQℓ

).

Package for computingℓ-adic decompositions

The second author has developed the MAGMA [BCP97] packagePADICALGEBRAS

(see [Wie14]) for computing the objects appearing in Proposition 21. The package
depends on the second author’s earlier MAGMA package ARTINALGEBRAS (see
[Wie08]).

The main ingredients are standard linear algebra, especially over finite fields, and
the algorithmic idempotent lifting from Corollary 20.

Application of the commutative algebra to modular forms

Let S(C) be a space of modular forms, e.g.Sk(Γ1(N)). We only work with spaces
that have a basis with coefficients inZ. We denote byS(R) the corresponding space
with coefficients in the ringR. Here the notionS(R) is the naive one via the standard
q-expansion:S(R) is the set ofR-linear combinations of the image of theZ-basis
in R[[q]] via the standardq-expansion. The spaceS(R) can also be characterised
as follows. The Hecke operatorsTn for n ∈ N acting onS(C) generate a ring (a
Z-algebra), denotedT, and we have the isomorphism
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S(R)∼= HomZ(T,R).

Concretely, ifϕ ∈ HomZ(T,R), then∑n≥1 ϕ(Tn)qn is a cusp form. Thus aZ-basis
of T gives rise to a ‘dual basis’ ofS(R). We also speak of an ‘echelonised basis’.

By Proposition 21, we have the decompositions

TQ :=Q⊗ZT∼= ∏
[ f ]

T[ f ] andS(Q)∼=
⊕

[ f ]

S[ f ](Q),

where the product and the sum run overGQ-orbits of Hecke eigenforms. If the space
S(C) is a newspace, thenS[ f ](Q) is the set of forms with coefficients inQ in theC-
span of all theGQ-conjugates off . Concretely,S[ f ](Z) is theZ-dual of theZ-algebra
generated by the Hecke operatorsTn in T[ f ]. All Hecke operators acting onS[ f ](Z)
are represented as matrices withZ-entries.

We now considerTZℓ
= Zℓ⊗Z T. Then we haveS(Zℓ) = HomZℓ

(TZℓ
,Zℓ). Im-

portantly, again by Proposition 21, we have the decompositions

TZℓ
∼= ∏

[ f ]

T[ f ] andS(Zℓ)∼=
⊕

[ f ]

S[ f ](Zℓ),

where the sum and the product run over theGFℓ -orbits of Hecke eigenforms in
S(Fℓ). These correspond to the maximal ideals ofTZℓ

. We refer to theS[ f ](Zℓ)
either asZℓ-orbits or asGFℓ-orbits.

We are also interested inQℓ-orbits of eigenforms inside aZℓ-orbit. By Proposi-
tion 21,Qℓ⊗Zℓ

S(Zℓ) = S(Qℓ) breaks as a direct sum

S(Qℓ)∼=
⊕

[ f̃ ]

S[ f̃ ](Qℓ),

where the sum runs over theQℓ-valued eigenforms up toGQℓ
-conjugation. The fact

that theseGQℓ
-orbits lie in a singleZℓ-orbit simply means that they are all congruent

modulo a uniformiser.

Testing weak congruences

The second author has developed the MAGMA package WEAKCONG (see [Wie16]),
which has the purpose to compute whether Hecke eigenforms over Qℓ belong to
givenZℓ-orbits of Hecke eigenforms modulo powers ofℓ (or uniformisers). Here
we briefly describe how it functions.

Let n1, . . . ,nr be indices such thatTn1, . . . ,Tnr form a basis of the Hecke alge-
braTZℓ

(which we may assume to be local by using the MAGMA packagePADIC-
ALGEBRAS, see above). We speak ofbasis indices. These indices are computed via
Nakayama’s lemma, i.e. by reducing the matrices toFℓ.

For anyn, we haveTn = ∑r
i=1an,iTni ; in particular,an j ,i = δi, j . For eachi ∈

{1, . . . , r}, we define a cusp formfi by specifying its coefficients as follows:
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an( fi) := an,i .

Then f1, . . . , fr form anR-basis of HomZℓ
(TZℓ

,R) for anyZℓ-algebraR. We call this
basisechelonisedbecause it is at the coefficientsn1, . . . ,nr . It is the dual basis with
respect to the basisTn1, . . . ,Tnr of TZℓ

.
Furthermore, we compute oneQℓ-eigenform for eachQℓ-orbit inside the given

Zℓ-orbit. This is done via standard linear algebra over local fields, using both the
new MAGMA command LocalField and the older implementation. If we find that a
system of linear equations which mathematically must have asolution does not seem
to have any, then we lower the precision until the desired solution exists. Thus, in
this procedure generally some precision is lost.

Let g= ∑n≥1bnqn ∈ S(Qℓ) be an eigenform in some level and weight. LetO be
the valuation ring of some finite extension ofQℓ that contains all coefficientsbn of g,
and letλ be a uniformiser ofO. The main purpose of this package is to compute
the maximum integerm such thatg lies in a givenZℓ-orbit (some level and some
weight) moduloλ m.

Puth := g−∑r
i=1bni fi . We then have:

h≡ 0 modλ m ⇔ ∃s1, . . . ,sr ∈ O : g≡
r

∑
i=1

si fi modλ m.

This equivalence is clear as the basis is echelonised, whence automaticallysi ≡ bni

modλ m for all i = 1, . . . , r. The desired highest exponentm can thus be computed
as the minimum of the valuations of the coefficients ofh up to the Sturm bound.

6 Database of modular form orbits and higher congruences

The first author has created a PostgreSQL database containing data onQ-, Qℓ- and
Zℓ-orbits, as well as information on congruences modulo powers of ℓ. We are cur-
rently planning to integrate parts of the database into the LMFDB.1

Technical features

In this section we describe the way our database is organisedand what kind of data
it contains. This will also highlight two important aspectsof our approach:

• We do our best to avoid computing again data that are used morethan once. This
aims to speed up the process of computing theGQℓ

-orbits. In order to do this we
store a lot of useful information, even intermediate results, e.g. congruences with
forms other than those that provide an optimal weight or level, even congruence
of individual coefficients.

1 http://lmfdb.org

http://lmfdb.org
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• We try to parallelise as much of the problem as possible. Thisalso aims at speed-
ing up the computation of congruences. This becomes especially handy when the
coefficient fields of the forms that are compared become large.

We will come back to both of these features after the description of the database
tables. We list them together with a brief description of thedata each one holds.

1. Modular form spaces overQ: For every level and weight we store some useful
information: The dimension of its Eiseinstein subspace, old cuspidal subspace,
new cuspidal subspace as well as the number of new EisensteinQ-Galois orbits
and the number of newformQ-Galois orbits.

2. Bases of modular form spaces overQ: Here we store the basis in terms of
modular symbols for every space in the previous table. This in Magma readable
format.

3. Eigenforms overQ: For every space overQ, we store an entry for every Eisen-
stein and newformQ-Galois orbit uniquely determined my its level, weight and
orbit number.

4. Hecke matrices overZ: For each of the newform orbits in the previous table
we store a list (up to a bound that can be increased as needed) of all the Hecke
matrices acting on theQ-subspace spanned by this orbit.

5. Lattices: For each of the newform orbits in theQ-eigenforms table, we store
a list of base change matrices that ensure the matrices in thetable above, after
base change, are with respect to the same basis.

6. ℓ-adic idempotents: Given a newform from theQ-eigenforms list and a prime
numberℓ, we store a list of idempotents which provide the decomposition of
the correspondingℓ-adic Hecke algebra into local factors (see Proposition 21),
their number and theℓ-adic precision that they were computed in.

7. Fℓ-Galois orbits: For each entry in the table above (i.e. a list of idempotents),
we store anZ-integral basis for each of the components (indexed by the idem-
potents in this list) that the parentQ-Galois orbit of newforms breaks into.

8. Qℓ-Galois orbits of newforms: For eachQ-Galois orbit of newforms and the
prime ℓ, we store theQℓ-Galois orbit of newforms it decomposes into, along
with theℓ-adic precision they were computed in.

These are the tables that provide a hierarchical organisation of the objects in-
volved in the database and we tried to present it in a top to bottom fashion were an
entry in one of these table will be associated with many entries in the ones men-
tioned after it.

There are some auxiliary tables where all the congruence information is stored.
We store everything down to congruences of individual pairsof coefficients. These
are detailed catalogs of all meaningful congruences when itcomes to level or weight
lowering, weak or strong.

It is obvious that the comparison of two eigenvalues at a prime p is independent
from the comparison of the ones at some other primeq. We thus run a multi-threaded
application utilising as many CPU cores as possible where all threads compare a
specific pair of eigenvalues each simultaneously. Let us stress here that the design
of the database and the multi-threaded application is such that it allows us to utilise
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more than one server and/or personal computers to compute even more congruences
simultaneously. Extra care has been taken to avoid overlapping of threads, i.e. two
of those computing the same congruence, but we choose not to elaborate on these
technical matters.

The current size of the database is 488GB. It contains 3906Q-eigenforms, of
level and weight up to 361 and 298 respectively (not of all possible combinations of
course).

Accessibility

We have designed a basic web interface2 for the database which currently allows
one to query the database about the following:

1. Given aGQ-orbit [ f ] and a primeℓ, returnGQℓ
-orbits appearing in it.

2. Given aGQ orbit [ f ], a primeℓ and a positive integern, return theGQℓ
-orbits

that are congruent to the ones corresponding to[ f ] and ℓ modulo ℓn and are
of the smallest weight possible, i.e. the answer to the strong weight lowering
moduloℓn problem for[ f ].

3. Given aGQ-orbit [ f ] and a primeℓ, return a list of downloadable files (one
for eachGQℓ

-orbit) containing all theℓ-adic, prime-indexed Hecke polynomials
(that are stored in the database) for eachGQℓ

-orbit.

Some remarks on the algorithms used

We now describe how we computed the various orbits. Our algorithm is imple-
mented in the MAGMA computer algebra system [BCP97]. Assume as input a given
levelN, weightk and primeℓ.

1. Compute the newsubspace of the cuspidal subspace of the modular symbols of
levelN and weightk. Decompose this subspace into irreducible Hecke modules.
These correspond toGQ-orbits. This is done with standard MAGMA commands.

2. For a given irreducible Hecke module of the previous decomposition, compute
the matrices for all operatorsTn acting on it up to a sufficient boundB.

3. Use the packagePADICALGEBRAS [Wie14] to factor the completion of the
Hecke algebra atℓ into local factors overZℓ. Each of these factors corresponds
to aGFℓ -orbit. Project the matrices representing theTn’s onto each of these local
factors.

4. After tensoring withQℓ, each of theseGFℓ -orbits is the sum of all theGQℓ
-orbits

admitting the same reduction modℓ. For each such orbit, take the collection of
projections of the Hecke matrices onto it computed in the previous step and
decompose the correspondingQℓ-vector space into simultaneous generalised

2 http://math.uni.lu/ ˜ tsaknias/elladicdatabase_2.php

http://math.uni.lu/~tsaknias/elladicdatabase_2.php
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eigenspaces by applying each operator successively. The resulting decompo-
sition is the breaking of the correspondingGFℓ -orbit into theGQℓ

-ones that
coincide modℓ.
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