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a b s t r a c t

In this paper we study the complexity of deontic logics grounded on norm-based semantics and apply
norm-based deontic logic to access control. Four principal norm-based deontic logics have been proposed
so far: imperative logic, input/output logic, deontic default logic and deontic defeasible logic. We present
the readers that imperative logic is complete for the 2ed level of the polynomial hierarchy and deontic
default logic is located in the 3ed level of the polynomial hierarchy. We then show how it is possible to
impose restrictions to imperative logic such that the complexity goes down to be tractable, allowing the
logic to be used in practical applications. We focus on a specific application: access control.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Deontic logic is a formal study of normative reasoning and
norms. In 1951, the philosopher and logician Georg von Wright
wrote a paper called ‘‘Deontic Logic’’ [1], which subsequently
became the name of the research area. Von Wright’s deontic logic
is exactly the same as the modal logic KD. Such logic is later called
standard deontic logic (SDL). With the work of Meyer [2], deontic
logic became a part of computer science. SDL has been a useful tool
in the specification and reasoning of access control policies because
key notions in access control such as permission, prohibition and
obligation are exactly the subjects of SDL [3–5].

Deontic logic provides a mathematically rigorous language for
modeling access control policies. The vagueness and ambiguity
of informal language disappear in the formal language of deontic
logic. Deontic logic is also associated with a sound and complete
axiomatic characterization. The interpretation of the normative
concepts is axiomatically constructed in deontic logic. As a
consequence of completeness, the framework is guaranteed to be
consistent. Without consistency, the move to the implementation
level would be meaningless.

Different approaches of deontic logic, alternative to SDL, have
been studied in the past 6 decades including imperative logic [6,7],
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dynamic deontic logic [2,8], deontic STIT logic [9,10], input/output
logic [11], deontic default logic [12,13] and deontic defeasible
logic [14,15]. Those results are summarized in the handbook
of deontic logic [16,17]. In imperative logic, input/output logic,
deontic default logic and deontic defeasible logic, norms are
explicitly represented. The truth value of deontic propositions in
those logics are explained not by some set of possible worlds,
but with references to a set of given norms. Such a non-possible
world semantics has been originally termed in Hansen [18] as
‘norm-based semantics’. We then use norm-based deontic logic
as a general term to refer input/output logic, imperative logic,
deontic default logic and deontic defeasible logic and use deontic
modal logic to refer those approaches which adopt possible world
semantics such as SDL.

Norms are the first class citizens in norm-based deontic logic.
Norms are everywhere in our daily life and also in access control.
For example:

• You should drive on the right side.
• Alice is permitted to read file-1 on Mondays.
• Bob is forbidden to write on file-2.
• Carol is obliged to delete all related files when he finishes his

task.

In general, we view norms as normative rules which are used to
regulated agent’s behavior. A norm is a rule in the sense that it con-
tains both a premise and a consequence. The premise describes
the situation in which it is triggered, while the consequence pre-
scribes the demand of the norm. Norms are normative in the sense
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that they classify what is obligatory, permitted or forbidden. An
access control policy is a set of norms defining which user is to
be granted access to which resource under which circumstances.
Compared to SDL, norm-based deontic logic has the following ad-
vantages.
1. Norm-based deontic logic solves the contrary-to-duty paradox.

The contrary-to-duty paradox is the most notorious paradox in
deontic logic. The original phrasing of the paradox requires a
formalization of the following scenario in which the sentences
are mutually consistent and logically independent [19].
(a) It ought to be that John goes to help his neighbors.
(b) It ought to be that if John goes to help his neighbors, then

he tells them he is coming.
(c) If John does not go to help his neighbors, then he ought not

to tell them he is coming.
(d) John does not go to help.
But the formalization of the above scenario using SDL is either
inconsistent or not logically independent. Being not able to
solve the contrary-to-duty paradox is seen as one of the most
serious limitations of SDL. The contrary-to-duty scenario is
also found in access control and it is called the ‘‘violation of
obligation’’ in Benferhat et al. [20] and corresponds to the policy
of reaction to new intrusions in Cuppens [5].

Norm-based deontic logic, on the other hand, gives consis-
tent and logically independent formalization of the above sce-
nario, therefore solves the contrary-to-duty paradox. In general,
norm-based deontic logic provides correct prescriptions in sit-
uations where some norms are already violated [21].

2. Norm-based deontic logic offers a formal mechanism to deal
with normative conflicts.

Consider the following scenario taken from Hansen [7],
which is sometimes called the ‘order puzzle’: before you go
to a party, you become the recipient of various imperative
sentences:
(a) Your mother says: if you drink anything, then do not drive.
(b) Your best friend says: if you go to the party, then you drive.
(c) Some acquaintance says: if you go to the party, then have a

drink with me.
Assumemother ismore important than best friend,who ismore
important than acquaintance. What will you do? Intuitively,
you should obey your mother and your best friend, and hence
do the driving and not accept your acquaintance’s invitation.
However, it is not so clear what formal mechanism could
explain this reasoning. Handling normative conflicts is also an
important issue in access control and is discussed in Benferhat
et al. [20]. SDL is unable to handle such conflicting imperatives.
On the other hand, norm-baseddeontic logic appears as suitable
tools to formalize such reasoning.

3. Norm-based deontic logic characterizes various notions of
permission.

Permission is probably the most important notion in the
specification of an access control policy [22,23]. Philosophically,
it is common to distinguish between two kinds of permission:
negative permission and positive permission. Negative permis-
sion is straightforward to describe: something is negatively per-
mitted according to certain norms iff it is not prohibited by
those norms. That is, iff there is no obligation to the contrary.
Positive permission is more elusive. Intuitively, something is
positively permitted according to certain norms iff it can be de-
rived from those norms. But what exactly does ‘‘derive’’ mean?
In mathematics we can derive theorems in a ‘‘straight’’ way or
by contradiction. These twomethods of derivation give two dif-
ferent notions of positive permission. Makinson and van der
Torre [24] introduces these two types of positive permission
as static and dynamic permission. Other notions of permission,
such as permission as exception, have been studied in [25,26].
All these notions of permission are useful in access control and
can be captured by norm-based deontic logics, while SDL is only
able to capture negative permission.

The above advantages of norm-based deontic logic shows that
comparing to SDL, norm-based deontic logic is a better tool to be
applied in the specification and reasoning of access control policies.
Among those existing norm-based deontic logics, imperative logic
is the most suitable for access control because different notions of
permission can be uniformly expressed in imperative logic.

For the existing norm-based deontic logics, the computational
complexity of input/output logic and deontic defeasible logic is
studied in [27,26]. In this paper, we study the complexity of
imperative logic and deontic default logic (Sections 3 and 5.1).
We show that both imperative logic and deontic default logic
are decidable but computationally intractable. We then impose
restrictions to obtain some tractable imperative logic such that we
can practically apply them to access control (Section 4). For the
sake of readability, we put all proofs in the Appendix.

2. Background: complexity theory

We assume the readers are familiar with notions like Turing
machines and the complexity classesP,NP andcoNP. Oracle Turing
machines and some complexity classes related to oracle Turing
machines will be used in this paper.

Definition 1 (Oracle Turing Machine [28]). An oracle for a language
L is a device that is capable of reporting whether any string w is
a member of L. An oracle Turing machine ML is a modified Turing
machine that has the additional capability of querying an oracle.
WheneverML writes a string on a special oracle tape it is informed
whether that string is a member of L, in a single computation step.

PNP is the class of problems solvable by a deterministic
polynomial time Turing machine with an NP oracle. NPNP is the
class of problems solvable by a non-deterministic polynomial time
Turing machine with an NP oracle. Σp

2 is another name for NPNP.
Π

p
2 is another name for coNPNP. ∆p

i+1 is PΣ
p
i and Σ

p
i+1 is NPΣ

p
i .

3. Imperative logic

If some given norms come into conflict, the best an agent can
be expected to do is to follow a maximal subset of those norms.
Intuitively, a priority ordering over the norms can be helpful
in resolving conflicts, but a formal resolution mechanism has
been difficult to provide. In particular, reasoning about prioritized
norms is overshadowed by problems such as the order puzzle that
are not satisfactorily resolved bymany existing approaches such as
Brewka [29], Marek and Truszczynski [30]. Based on input/output
logic [11], Hansen [7] develops prioritized imperative logic which
overcomes those difficulties.

3.1. Input/output logic

Input/output logic takes its origin in the study of conditional
norms. The basic idea is: norms are conceived as a deductive
machine, like a black box which produces normative statements
as output, when we feed it factual statements as input. In
input/output logic, a norm is an ordered pair of formulas (a, x) ∈

LP × LP, where LP is the language of propositional logic build
from the set of propositional atoms P. There are two types of
norms which are used in input/output logic, mandatory norms
and permissive norms. A mandatory norm (a, x) ∈ O is read as
‘‘given a, x is obligatory’’. A permissive norm (a, x) ∈ P is read as
‘‘given a, x is permitted’’. Mandatory norms are called commands
or imperatives in imperative logic, while permissive norms are
called licenses or authorizations. To distinguish these two types
of norms in notation, we may represent commands as a⇒o x and
licenses as a⇒p x. In this paper, wewill however stick the notation
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used in input/output logic because no confusion will arise in our
presentation.

Commands O can be viewed as a function from 2LP to 2LP such
that for a set A of formulas, O(A) = {x ∈ LP : (a, x) ∈

O for some a ∈ A}. Makinson and van der Torre [11] define the
semantics of input/output logic for commands as follows:

out(O, A) = Cn(O(Cn(A))).

Here Cn is the classical consequence operator of propositional
logic.1 Intuitively, x ∈ out(O, A) means that given a set of com-
mands O and facts A, x is obligatory.

Example 1. Let O = {(a, x), (a ∨ b, y)}. Put A = {a}.

A Cn(A) O(Cn(A)) out(O, A)

a Cn(a) {x, y} Cn({x, y})

The proof system of input/output logic is build on derivations
of commands. We say that a command (a, x) is derivable from a
set O iff (a, x) is in the least set that extends O ∪ {(⊤, ⊤)} and is
closed under a number of derivation rules. Here ⊤ is an arbitrary
tautology. The following are the derivation rules which are used by
Makinson and van der Torre [11] to construct the proof systems of
input/output logic:

• SI (strengthening the input): from (a, x) to (b, x) whenever
b ⊢ a.

• WO (weakening the output): from (a, x) to (a, y) whenever
x ⊢ y.

• AND (conjunction of output): from (a, x) and (a, y) to (a, x∧y).

deriv(O) is the smallest set that extends O∪ {(⊤, ⊤)} and is closed
under the rules of SI, WO and AND.

Example 2. Let O = {(a ∨ b, x)}. We have (b, x ∨ y) ∈ deriv(O).
Indeed:

1. (a ∨ b, x) Assumption
2. (b, x) 1, SI
3. (b, x ∨ y) 2, WO.

In Makinson and van der Torre [11], the following soundness and
completeness theorem is given:

Theorem 1 ([11]). Given a set of commands O and formula a,

x ∈ out(O, {a}) iff (a, x) ∈ deriv(O).

3.2. Prioritized imperative logic

3.2.1. Reasoning about obligation
Hansen introduces preferred obeyable maximal family

(pomfamily) to characterize those commands which are still func-
tioning in a given situationwhere not all commands can be obeyed.
Given a finite set of prioritized commands O>

= (O, >), where >
is an irreflexive and transitive relation between commands. Here
(a, x) > (b, y) means (a, x) has higher priority than (b, y). A pri-
oritization of > is a strict linear order � such that if (a, x) � (b, y)
then (a, x) > (b, y) for all (a, x), (b, y) ∈ O. The materialization of
O is m(O) = {a → x : (a, x) ∈ O}, which transforms a command
to a material implication.

Definition 2 (Preferred ObeyableMaximal Family [7]).Given a finite
set of prioritized commands O> and a set of formulas A. O′

∈

1 In Makinson and van der Torre [11], this semantics is called simple-minded
input/output logic. Several different input/output logics are introduced inMakinson
and van der Torre [11] as well.

pomfamily(O>, A) if there is a � which is a prioritization of > such
that O′

=
n

i=0 Oi where Oi is constructed as follows. We list � by
(a1, x1), . . . , (an, xn) such that (ai, xi) � (ai+1, xi+1).

1. O0 = ∅,
2. Oi = Oi−1 ∪ {(ai, xi)} if A ∪ m(Oi−1 ∪ {(ai, xi)}) is consistent.

Otherwise Oi = Oi−1.

Here note that every prioritization induces an element of
the pomfamily. The result after resolving normative conflicts is
characterized by the following output operator:

x ∈ outp(O>, A)

iff x ∈


{out(O′, A) : O′

∈ pomfamily(O>, A)}.

Example 3 (Order Puzzle Formalized). Let the three commands
in the order puzzle be represented respectively by (p1, ¬p2),
(p3, p2), (p3, p1). Let the set of prioritized commands O =

{(p1, ¬p2), (p3, p2), (p3, p1)} and let > be (p1, ¬p2) > (p3, p2) >
(p3, p1). Let the set of facts be {p3}. Then pomfamily(O>, {p3}) =

{(p1, ¬p2), (p3, p2)} and outp(O>, {p3}) = Cn(p2), which means
you should do the drive but not drink.

A natural decision problem in the imperative logic framework
is the obligation-checking problem: given a set of prioritized
commands O>, input A and target x, decide if x ∈ outp(O>, A).
The following theorem reveals the complexity of the obligation-
checking problem.

Theorem 2. Given O>
= (O, >) where > is irreflexive and tran-

sitive. Let A be a set of formulas and x be a formula. Deciding if
x ∈ outp(O>, A) is Π

p
2 -complete.

3.2.2. Reasoning about permission
Permission is probably the most important notion in the

specification of an access control policy. Several notions of
permission are introduced in norm-based deontic logic [24–26,18].
Hansen [18] gives a unified presentation of different notions of
permission in the setting of imperative logic. However, the norms
studied in Hansen [18] are unconditional norms. Combining the
ideas from Makinson and van der Torre [24] and Hansen [18],
we define negative and positive permission in the setting of
conditional norms.

Definition 3. Given a normative system N = (O, P, >) where P
is a finite set of licenses and >⊆ (O ∪ P) × (O ∪ P) is a priority
relation over norms. Let A be a set of formulas representing factual
statements.

1. NegPerm(N, A) = {x ∈ LP : ¬x ∉ outp(O>, A)}.
2. PosPerm(N, A) = {x ∈ LP : x ∈ outp((O ∪ {(a′, x′)})>, A),

for some (a′, x′) ∈ P}, if P ≠ ∅. Otherwise PosPerm(N, A) =

outp(O>, A).

Here (O ∪ {(a′, x′)})> is an ordered set with the set being O ∪

{(a′, x′)} and the ordering is obtained by restricting > to O ∪

{(a′, x′)}.
Intuitively, x is negatively permitted iff x is not forbidden.

Since something is forbidden iff its negation is obligatory, x is
not forbidden iff ¬x is not obligatory. Licenses play no role in
negative permission but they are treated like weak commands
in positive permission. The only difference between licenses and
commands in positive permission is that while the latter may be
used jointly, the former may only be applied one by one. It is
well acknowledged in the deontic logic literature that permission
cannot be used jointly [24]. As an illustration of such difference,
imaging a situation in which a man is permitted to date either one
of two girls, but not both of them.
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If a license (a, x) has higher priority than a command (⊤, ¬x),
positive permission can be understood as exception which says
although x is forbidden in general, there is an exception which
allows x, when a is the case. Detailed discussions of exception as
a notion of permission can be found in Stolpe [25] and Governatori
et al. [26]. On the other hand, if a license (⊤, x) has lower priority
than a command (a, ¬x), positive permission can be understood
as access denial which says although x is granted in general, such
permission is canceled when a is the case.

Taking licenses into consideration, natural decision problems
in the imperative logic framework includes the following: given a
normative system N = (O, P, >), a set of factual statements A and
a target formula x,
• negative permission-checking: decide if x ∈ NegPerm(N, A).
• positive permission-checking: decide if x ∈ PosPerm(N, A).
The following theorem reveals the complexity of those permission-
checking problems.

Theorem 3. Given N = (O, P, >) where > is irreflexive and
transitive. Let A be a set of formulas and x be a formula,
• to decide if x ∈ NegPerm(N, A) is Σ

p
2 -complete.

• to decide if x ∈ PosPerm(N, A) is Π
p
2 -complete.

3.2.3. Reasoning about prohibition
Based on the two notions of permission, we now introduce

two corresponding notions of prohibition: explicit prohibition and
implicit prohibition.

Definition 4. Given a normative system N = (O, P, >), a set of
input A and a target x,
1. ExProhi(N, A) = {x ∈ LP : ¬x ∈ outp(O>, A)}.
2. ImProhi(N, A) = {x ∈ LP : x ∉ PosPerm(N, A)}.

Intuitively, x is explicitly prohibited if¬x is obligatory. On the other
hand, x is implicitly prohibited if x is not positively permitted,
whichmeans there is no explicit command or license supporting x.

Corollary 1. Given N = (O, P, >) where > is irreflexive and
transitive, a set of input A and a target x,
• to decide if x ∈ ExProhi(N, A) is Π

p
2 -complete.

• to decide if x ∈ ImProhi(N, A) is Σ
p
2 -complete.

Now we have a bundle of notions about permission and
prohibition. Those notions are suitable for different applications.
In the case of access control, we believe positive permission and
its complement, implicit prohibition, aremost useful. The reason is
that the function of licenses are ignored in negative permission and
explicit prohibition whereas in positive permission and implicit
prohibition licenses play an important role. Moreover, the notion
of access denial, which can hardly be modeled by most existing
access control logics, can be modeled using positive permission
and implicit prohibition. We illustrate this point by formalizing
a scenario taken from van Hertum et al. [31] and show how
imperative logic allows to correctly handle statements whose goal
is to deny access rights.

Example 4. Suppose Ann is a professor with control over a
resource r , Bob is a Ph.D. student of Annwho needs access to r , and
Charles is a postdoc of Ann supervising Bob. Ann wants to grant
Bob access to r , but wants to grant Charles the right to deny Bob’s
access to r .

A natural way for Ann to do this is to issue the following
access control policy: Let N = (O, P, >), where O =

{(¬Bob_approve, ¬access(Charles, r))}, P = {(⊤, access(Charles,
r))}, and the command has higher priority than the license.

Now we have access(Charles, r) ∈ PosPerm(N, {⊤}) and
access(Charles, r) ∈ ImProhi(N, {¬Bob_approve}), which means
this access control policy has the effect that Charles has access to r
unless Bob denies his access.

Another advantage of positive permission is that it also captures
the idea of permission as exception, which is supported by
Stolpe [25]. According to Stolpe, permission must ‘‘denote the
elimination of a norm from a normative system’’. According to the
definition of positive permission, if a license has higher priority
than commands, then it eliminates all those commands which
are not consistent with it. Therefore characterize permission as
exception.

4. Tractable imperative logic for access control

Results from the above section show that although imperative
logic is decidable, the complexity is however intractable. In order
to practically use imperative logic in access control, we have to
lighten the complexity. This section shows that under reasonable
restrictions on the priority ordering and the syntax of language, the
complexity turns out to be tractable.

For the priority relation >, we restrict it to be a relation
such that the restriction of > on O is a strict linear order.
Such restriction ensures that the commands are strictly stratified,
although different license can still be incomparable or of the same
priority.

Concerning the syntax, we impose the following restrictions.
Let LitP = P ∪ {¬p : p ∈ P} be the set of literals build from P.
Let LcnlP be the conjunctions of literals of P. A strict Horn clause is a
non-empty disjunction of exactly one propositional atom and zero
or more negated atoms. A Horn clause is a non-empty disjunction
of atmost one propositional atom and zero ormore negated atoms.

Theorem 4. Let N = (O, P, >) be a normative system where for
each (a, x) ∈ P, the restriction of > on O ∪ {(a, x)} is a strict linear
order. Let A be a set of strict Horn clauses. For every norm (b, y), let
b be a conjunction of atoms and x be an atom. Let x ∈ LcnlP . Then the
following decision problems can be solved in polynomial time:
1. obligation-checking: x ∈ outp(O>, A);
2. negative permission-checking: x ∈ NegPerm(N, A);
3. positive permission-checking: x ∈ PosPerm(N, A);
4. explicit prohibition-checking: x ∈ ExProhi(N, A);
5. implicit prohibition-checking: x ∈ ImProhi(N, A).

5. Related work and extension

Many cryptographic solutions to the problem of access control
have been proposed [32–35]. Multiple logics have been proposed
for access control [36–38]. Most of these logics use a modality
saysk indexed by an agent k. says-based access control logics
are designed for systems in which different agents can issue
statements that become part of the access control policy. In
contrast to the tractability of imperative logic, Garg and Abadi [39]
show that the provability problem for says-based access control
logic is PSPACE-complete.

Van Hertum et al. [31] have recently proposed a multi-agent
variant of autoepistemic logic, called distributed autoepistemic
logic with inductive definitions (dAEL(ID)), to be used as a says-
based access control logic. By applying the semantic principles of
autoepistemic logic to characterize the says-modality, dAEL(ID)
allows us to derive a statement of the form says¬kφ on the basis
of the observation that k has not issued statements implying φ.
Supporting reasoning about such negated says-statements allows
dAEL(ID) to straightforwardly model access denials. A major
difference between imperative logic and dAEL(ID) is that the
former is able to handle the conflicts and priority between norms,
which is not addressed in the latter.

5.1. Deontic default logic

Horty’s deontic default logic [13], which can be viewed as
an attempt to reconstruct Reiter’s default logic to normative
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reasoning, is another representative norm-based deontic logic. In
this section we present some complexity results of deontic default
logic. Taken from Parent [40], now we concisely introduce deontic
default logic.

Using notation of imperative logic, a prioritized default theory is
a triple (O, >, A)whereO is a set of defaults/commands/mandatory
norms and> apriority relation overOwhich is irreflexive and tran-
sitive. The key concept in deontic default logic is that of ‘‘proper
scenario’’ based on a default theory. A proper scenario is a subset of
O satisfying certain conditions. The function of a proper scenarios
is similar to that of an elements of a pomfamily in imperative logic.
Intuitively, the defaults in a proper scenario tell us what counts as
a binding (good, satisfactory, etc.) reason for what. Thus, if (a, x) is
in the proper scenario O′ based on a given default theory, then O′

is said to provide a as a binding reason for x. The idea is to assume
that the agent derives its obligations from justifications or reasons
for those obligations: in particular, that the agent is bounded by an
obligation if it possesses a binding reason for that obligation.

Given O′
⊆ O, let Conclusion(O′) = {x : (a, x) ∈ O′

}. Formally,
the notion of proper scenario is defined using three other notions.
Each corresponds to a condition that a default must meet in order
to be binding. The first notion is that of a default being triggered in
O′, noted as Triggered(O,>,A)(O′). The definition runs as follows:

Triggered(O,>,A)(O
′) = {(a, x) ∈ O : A ∪ Conclusion(O′) � a}.

The second notion is that of a default being conflicted in O′.
Let Conflicted(O,≥,A)(O′) denote the set of all such defaults. The
definition reads:
Conflicted(O,>,A)(O

′) = {(a, x) ∈ O : A ∪ Conclusion(O′) � ¬x}.
The third notion is that of a default being defeated in O′. For
O1,O2 ⊆ O, let O1 ≻ O2 if for all (a1, x1) ∈ O1, (a2, x2) ∈ O2,
(a1, x1) > (a2, x2). Let OO1/O2 = (O − O1) ∪ O2.
Defeated(O,>,A)(O1) = {(a, x) ∈ O : there exists O2

⊆ Triggered(O,>,A)(O1) such that

1. O2 ≻ {(a, x)}
2. there exists O3 ⊆ O1 with O2 ≻ O3 such that

(a) A ∪ Conclusion(OO3/O2) is consistent
(b) A ∪ Conclusion(OO3/O2) � ¬x}.

Here O2 can be called a defeating set while O3 can be called an
accommodation set. The idea is that a default (a, x) is defeated by a
set of defaults O1 if we can find a set of defeating default O2 which
is triggered by O1 and we can find an accommodation set O3 in O1
such that if we replaceO3 byO2, then the resulting set of defaults is
consistent and implies ¬x. These three concepts are used to define
the notion of a proper scenario.

Definition 5 (Proper Scenario [13]). Let O′
⊆ O be a scenario based

on the prioritized default theory (O, >, A). Then O′ is a proper
scenario based on (O, >, A), noted as O′

∈ propScenario(O, >, A),
just in case O′

=


i≥0 O
′

i where
• O′

0 = ∅,
• O′

i+1 = {(a, x) ∈ O :
(a, x) ∈ Triggered(O,>,A)(O′

i),
(a, x) ∉ Conflicted(O,>,A)(O′),
(a, x) ∉ Defeated(O,>,A)(O′)}.
Combining Horty’s framework with imperative logic, we define

proper output with the idea of viewing proper scenario as
something similar to pomfamily.

Definition 6. x ∈ outd(O>, A) iff x ∈


{out(O′, A) : O′
∈

propScenarioi(O, >, A)}.
Another technical contribution in this paper is the following

complexity result of deontic default logic.

Theorem 5. Given O>
= (O, >)where O is finite and> is irreflexive

and transitive. Let A be a finite set of formulas and x be a formula.
Deciding if x ∈ outd(O>, A) is ∆

p
3-hard and in Π

p
3 .

6. Conclusion

In this paper we study the complexity of deontic logics
grounded on norm-based semantics and apply imperative logic to
access control. We present the readers that prioritized imperative
logic is complete for the 2ed level of the polynomial hierarchy. To
apply imperative logic to access control, restrictions are imposed
such that the complexity turns out to be tractable. We also
show that deontic default logic is located in the 3ed level of the
polynomial hierarchy.

A natural future work is to build imperative logic based on
logics which have stronger expressive power than propositional
logic (such as description logic) and use it to model access control
policies. Implementing imperative logic by a logical programming
language to build a deontic machine to perform automatic
reasoning is another interesting future work. A third direction of
future work is to generalize imperative logic for role-based access
control. In role-based access control, permissions are associated
with roles, and users are assigned to appropriate roles. From the
perspective of deontic logic, roles are institutional facts which are
created by constitutive norms. The logic of constitutive norms has
been well studied [41] and the combination of constitutive and
mandatory norms has been explored using input/output logic in
Sun and van der Torre [42]. We estimate that by combining the
logic of constitutive norms and imperative logic we can obtain a
logical framework to model role-based access control and leave it
for future work.
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Appendix

Theorem 2. Given O>
= (O, >) where > is irreflexive and tran-

sitive. Let A be a set of formulas and x be a formula. Deciding if
x ∈ outp(O>, A) is Π

p
2 -complete.

Proof. Concerning the Π
p
2 hardness, we show that the validity

problem of 2-QBF∀ can be reduced to our problem.
Let ∀p1 . . . pm∃q1 . . . qnΦ be a 2-QBF∀ where Φ is a proposi-

tional formula with variables in {p1, . . . , pm, q1, . . . , qn}. Let A =

∅, O = {(⊤, p1), . . . , (⊤, pm), (⊤, ¬p1), . . . , (⊤, ¬pm), (⊤, Φ)},
≥ ∅. Our aim is to show that this 2-QBF∀ is valid iff Φ ∈

outp(O>, A).

• If ∀p1 . . . pm∃q1 . . . qnΦ is valid, then for all valuation V for
{p1, . . . , pm} there is a valuation V ′ for {q1, . . . , qn} such that
V ∪ V ′ gives truth value 1 to Φ and 0 to ¬Φ .

Let O′
= {(⊤, p′

1), . . . , (⊤, p′
m), (⊤, Φ)} be an arbitrary set

such that each p′

i is either pi or ¬pi. Then it can be verified that
O′

∈ pomfamily(O>, A). Indeed, let > be a strict linear order
over O such that (⊤, p′

1) > · · · > (⊤, p′
m) > (⊤, Φ) >

(⊤, ∼ p′

1) > · · · > (⊤, ∼ p′
m). Then O′ is a preferred

obeyable maximal family generated by >. By the construction
we can further verify that O′ ranges over all elements of
pomfamily(O>, A). Note that out(O′, A) = Cn({p′

1 . . . , p′
m, Φ}).

Therefore Φ ∈ out(O′, A). Then we conclude Φ ∈ outp(O>, A).
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• If ∀p1 . . . pm∃q1 . . . qnΦ is not valid, then there is a valuation V
for {p1, . . . , pm} such that for all valuations V ′ for {q1, . . . , qn},
V ∪ V ′ gives truth value 0 to Φ and 1 to ¬Φ .

Let O′
= {(⊤, p′

1), . . . , (⊤, p′
m)}, where each p′

i is pi if pi ∈ V
and it is ¬pi if pi ∉ V . Then O′

∈ pomfamily(O>, A) because
A ∪ m(O′) = {p′

1, . . . , p
′
m} is consistent and adding anything

from m({(⊤, ¬p1), . . . , (⊤, ¬pm), (⊤, Φ)}) will destroy the
consistency. Note that ¬Φ ∈ Cn({p′

1, . . . , p
′
m}) by the

construction of {p′

1, . . . , p
′
m}. Therefore Φ ∉ out(O′, A), which

further implies that Φ ∉ outp(O>, A).
So, we have reduced the validity problem of 2-QBF∀ to our

problem, which shows the latter is Π
p
2 -hard.

Concerning the Π
p
2 -membership, we prove by giving the

following algorithm on a non-deterministic Turing machine with
an NP oracle to solve the complement of our problem.
1. Guess a subset O′

⊆ O.
2. Guess a strict extension of >.
3. Use the NP oracle to test if O′

∈ pomfamily(O>, A). If no, return
‘‘reject’’ on this branch. Otherwise continue.

4. Use the NP oracle to test if x ∉ out(O′, A). If x ∉ out(O′, A),
then return ‘‘accept’’ on this branch. Otherwise return ‘‘reject’’
on this branch.
It can be verified that x ∉ outp(O>, A) iff the non-deterministic

Turing machine returns ‘‘accept’’ on some branches. Step 3 can be
done in polynomial time steps because the pomfamilymembership
can be decided in PNP. Step 4 can also be done in polynomial
time steps on a Turing machine with an NP oracle because the
obligation-checking problem of input/output logic is also in PNP
(see chapter 6 of Sun [43]). Therefore the time complexity of this
non-deterministic Turing machine is polynomial. �

Theorem 3. Given N = (O, P, >) where > is irreflexive and
transitive. Let A be a set of formulas and x be a formula,
1. to decide if x ∈ NegPerm(N, A) is Σ

p
2 -complete.

2. to decide if x ∈ PosPerm(N, A) is Π
p
2 -complete.

Proof. 1. The negative permission-checking is complement to the
obligation-checking problem.

2. Let P = {(a1, x1), . . . , (an, xn)}. Then x ∈ PosPerm(N, A) iff
x ∈ outp((O∪{(a1, x1)})>, A)∪· · ·∪outp((O∪{(an, xn)})>, A) iff
x ∈ outp((O ∪ {(a1, x1)})>, A) or x ∈ outp((O ∪ {(a2, x2)})>, A)
or . . . or x ∈ outp((()O ∪ {(an, xn)})>, A). Since the Π

p
2 class

is closed under union, we know that the static permission
checking problem is in Π

p
2 . The Π

p
2 hardness can be proved by

setting P = ∅ and reducing the obligation-checking problem to
the static permission-checking problem. �

Theorem 4. Let N = (O, P, >) be a normative system where for
each (a, x) ∈ P, the restriction of > on O ∪ {(a, x)} is a strict linear
order. Let A be a set of strict Horn clauses. For every norm (b, y), let
b be a conjunction of atoms and x be an atom. Let x ∈ LcnlP . Then the
following decision problems can be solved in polynomial time:
1. obligation-checking: x ∈ outp(O>, A);
2. negative permission-checking: x ∈ NegPerm(N, A);
3. positive permission-checking: x ∈ PosPerm(N, A);
4. explicit prohibition-checking: x ∈ ExProhi(N, A);
5. implicit prohibition-checking: x ∈ ImProhi(N, A).

Proof (Sketch). Here we only prove that obligation-checking is
tractable. First, we show that pomfamily is a singleton and can
be find in polynomial time. It is unique due to that > is a strict
linear onO. Now themain source of complexity in the computation
of pomfamily is that we have to decide if A ∪ m(Oi ∪ {(ai, xi)})
is consistent. The readers are invited to verify that under our
syntactical restriction this decision can be made in polynomial
time. Finally, for pomfamily = {O′

}, whether x ∈ out(O′, A)
can be computed in polynomial time, due to the syntactical
restriction. �

Lemma 1. Given a prioritized default theory (O, >, A), a scenario O′

and a default (a, x)
1. deciding if (a, x) ∈ Triggered(O,>,A)(O′) is coNP-complete.
2. deciding if (a, x) ∈ Conflicted(O,>,A)(O′) is coNP-complete.
3. deciding if (a, x) ∈ Defeated(O,>,A)(O′) is in Σ

p
2 .

Proof. Item 1 and 2 are trivial. Item 3 can be proved by a simple
guess and check procedure on a non-deterministic Turingmachine
with an NP oracle. Here we omit the details. �

We will prove that deontic default logic is ∆
p
3-hard and in Π

p
3 .

[44] shows that the following problem is ∆
p
3-complete:

Maximum 2-QBF: given an arbitrary 2-QBF∃
∃p1 . . . pm

∀q1 . . . qnΦ , decide if V1(pm) = 1 where V1 is the lexicograph-
ically maximal valuation of {p1, . . . , pm} such that for all valu-
ation V2 of {q1, . . . , qn}, V1 ∪ V2 � Φ .

Here for two valuation of {p1, . . . , pm}, V1 is lexicographically
larger than V2 iff there exists i such that V1(pi) = 1, V2(pi) = 0
and for all j ∈ {1, . . . , i − 1}, V1(pj) = V2(pj).

Theorem 5. Given O>
= (O, >)where O is finite and> is irreflexive

and transitive. Let A be a finite set of formulas and x be a formula.
Deciding if x ∈ outd(O>, A) is ∆

p
3-hard and in Π

p
3 .

Proof. We prove the ∆
p
3 hardness by reducing Maximum 2-QBF

to our problem. Given an arbitrary 2-QBF∃
∃p1 . . . pm∀q1 . . . qnΦ ,

we construct O = {(⊤, p1), (⊤, ¬p1), . . . , (⊤, pm), (⊤, ¬pm),
(Φ, x)}, where x is a formula contains no propositional variable
from {p1, . . . , pm, q1, . . . , qn}. We further let the priority relation
be the universal relation, i.e.≥ ∅. Our aim is to show that to decide
if V1(pm) = 1where V1 is the lexicographicallymaximal valuations
of {p1, . . . , pm} such that for all valuation V2 of {q1, . . . , qn} it holds
that V1 ∪ V2 � Φ , we only need to decide if pm ∈ outd(O>, ∅).

We first show that the following are equivalent: for arbitrary
O′

⊆ O − {(Φ, x)} and P ′
⊆ {p1, . . . , pm} satisfying that (⊤, pi) ∈

O′ iff pi ∈ P ′ and (⊤, ¬pi) ∈ O′ iff pi ∉ P ′,
1. O′

∪ {(Φ, x)} ∈ propScenario(O, >,∅) and x ∈ Cn(Conclusion
(O′

∪ {(Φ, x)})).
2. P ′ is a lexicographically maximal valuation for {p1, . . . , pm}

such that for all Q ′
⊆ {q1, . . . , qn}, P ′

∪ Q ′
|H Φ .

Assume P ′ is the lexicographically maximal valuation for
{p1, . . . , pm} such that for all Q ′

⊆ {q1, . . . , qn}, P ′
∪ Q ′

|H Φ .
We show that O′

∪ {(Φ, x)} ∈ propScenario(O, >,∅). Indeed,
we can construct [O′

∪ {(Φ, x)}]0 = ∅, [O′
∪ {(Φ, x)}]1 =

{(a, x) ∈ O : (a, x) ∈ Triggered(O,>,A)([{O′
∪ (Φ, x)}]0), (a, x) ∉

Conflicted(O,>,A)(O′
∪ {(Φ, x)}), (a, x) ∉ Defeated(O,>,A)(O′

∪

{(Φ, x)})}. Here we have O′
⊆ [O′

∪ {(Φ, x)}]1 because for all
(⊤, li) ∈ O′,
1. (⊤, li) ∈ Triggered(O,>,A)(∅).
2. (⊤, li) ∉ Conflicted(O,>,A)(O′

∪ {(Φ, x)}).
3. (⊤, li) ∉ Defeated(O,>,A)(O′

∪ {(Φ, x)}) because (⊤, ∼ li) ≯
(⊤, li) since ≥ ∅.

We further have [O′
∪ {(Φ, x)}]2 = {(a, x) ∈ O : (a, x) ∈

Triggered(O,>,A)([O′
∪ {(Φ, x)}]1), (a, x) ∉ Conflicted(O,>,A)(O′

∪

{(Φ, x)}), (a, x) ∉ Defeated(O,>,A)(O′
∪ {(Φ, x)})}. Now we prove

[O′
∪ {(Φ, x)}]2 = O′

∪ {((Φ, x))}. This is because
1. for all (⊤, li) ∉ O′, (⊤, li) ∈ Conflicted(O,>,A)(O′

∪ {(Φ, x)}).
2. O′

⊆ [O′
∪ {(Φ, x)}]1 ⊆ [O′

∪ {(Φ, x)}]2.
3. (Φ, x) ∈ [O′

∪ {(Φ, x)}]2. The reason is: from Cn(P ′) |H

Φ we derive Consequence(O′) |H Φ . Then we know
(Φ, x) ∈ Triggered(O,>,A)([O′

∪{(Φ, x)}]1). Meanwhile, (Φ, x) ∉

Conflicted(O,>,A)(O′
∪{(Φ, x)}) and (Φ, x) ∉ Defeated(O,>,A)(O′

∪

{(Φ, x)}).

We further have [O′
∪ {(Φ, x)}]i = [O′

∪ {(Φ, x)}]2, for all i ≥ 3.
Therefore O′

∪ {(Φ, x)} =


i≥0[O
′
∪ {(Φ, x)}]i, which proves
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O′
∪ {(Φ, x)} ∈ propScenario(O, >,∅). Then trivially we have

x ∈ Cn(Conclusion(O′
∪ {(Φ, x)})).

Assume O′
∪ {(Φ, x)} ∈ propScenario(O, >,∅) and x ∈

Cn(Conclusion(O′
∪ {(Φ, x)})). Then we know (Φ, x) ∈ [O′

∪

{(Φ, x)}]i for some i. It cannot be that (Φ, x) ∈ [O′
∪ {(Φ, x)}]0

because [O′
∪ {(Φ, x)}]0 = ∅.

• If (Φ, x) ∈ [O′
∪ {(Φ, x)}]1, then (Φ, x) ∈ Triggered(O,>,A)(∅),

which means ∅ � Φ . Then we know P ′
∪ Q ′

|H Φ , where P ′ is
the lexicographically maximal valuation for {p1, . . . , pm} such
that for all Q ′

⊆ {q1, . . . , qn}.
• If (Φ, x) ∉ [O′

∪ {(Φ, x)}]1 but (Φ, x) ∈ [O′
∪ {(Φ, x)}]2,

then [O′
∪ {(Φ, x)}]1 = O′ and (Φ, x) ∈ Triggered(O,>,A)(O′).

Therefore Conclusion(O′) � Φ . Then by the relationship
between O′ and P ′, we know that for all Q ′

⊆ {q1, . . . , qn},
P ′

∪ Q ′
|H Φ .

• If (Φ, x) ∉ [O′
∪ {(Φ, x)}]2, then [O′

∪ {(Φ, x)}]2 = [O′
∪

{(Φ, x)}]1 = O′. Moreover


i≥0[O
′
∪ {(Φ, x)}]i = [O′

∪

{(Φ, x)}]1 = O′, which contradicts to


i≥0[O
′
∪ {(Φ, x)}]i =

O′
∪ {(Φ, x)}.

Then we can conclude that P ′
∪ Q ′

|H Φ , where P ′ is the
lexicographically maximal valuation for {p1, . . . , pm} such that for
all Q ′

⊆ {q1, . . . , qn}.
Now we finish our reduction: given an arbitrary 2-QBF∃

∃p1 . . . pm∀q1 . . . qnΦ , if V1 is the lexicographically maximal
valuations of {p1, . . . , pm} such that for all valuation V2 of
{q1, . . . , qn}, V1 ∪ V2 � Φ , to decide if V1(pm) = 1, we only need
to decide if pm ∈ outd(O>, ∅). Such reduction is polynomial in the
size of ∃p1 . . . pm∀q1 . . . qnΦ , which proves the ∆

p
3 hardness.

Now for the Π
p
3 membership. With Lemma 1 at hand. This

theorem can be proved by a simple guess and check procedure on
a non-deterministic Turing machine with an Σ

p
2 oracle. Here we

omit the details. �
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