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A new adaptive multiscale method for the nonlinear fracture simulation of heterogeneous
materials is proposed. The two major sources of error in the finite element simulation are
discretisation and modelling errors. In the failure problems, the discretisation error increases
due to the strain localisation which is also a source for the error in the homogenisation of the
underlying micro-structure. In this paper, the discretisation error is controlled by an adaptive
mesh refinement procedure following the Zienkiewicz-Zhu technique, and the modelling error,
which is the resultant of homogenisation of micro-structure, is controlled by replacing the
macroscopic model with the underlying heterogeneous micro-structure. The scale adaptation
criterion which is based on an error indicator for homogenisation proposed by[1] is employed
for our nonlinear fracture problem. The control of both discretisation and homogenisation
errors is the main feature of the proposed multiscale method.
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1. Introduction

Computational homogenisation and multiscale domain decomposition methods are
two distinct approach to simulate fracture mechanics whilst taking into account the
microstructure of the material. In computational homogenisation methods [2–7],
the macroscopic constitutive relations are implicitly defined by linking the macro-
scopic material point to the Representative Volume Element (RVE). Incremental
macroscopic stress-strain relationships are obtained “on-the-fly” during the macro-
scopic solution process by solving the boundary value problem associated with the
RVE at each (quadrature) point of the macroscopic problem. Such hierarchical
multiscale methods rely on the theory of homogenisation [8–12], and assume the
existence of a clear separation of scale. Indeed, homogenisation methods share
similarities with many other upscaling multiscale methods. The main idea of up-
scaling techniques is to form a coarse-scale equation and pre-compute the effective
coefficients. For example, in Multiscale Finite Element Method (MsFEM), the fine
scale information is upscaled to the coarse scale through the coupling of the global
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stiffness matrix [13]. However, the convergence of the MsFEM suffers from reso-
nance effects when the size of coarse mesh h is of the same order of magnitude as
the microscopic characteristic length scale ε and the classical finite element method
does not converge if h� ε [14].

In general, these methods fail to represent correctly the behaviour of the struc-
ture in highly strained regions due to the violation of this assumption, although
modern higher-order homogenisation schemes can accommodate moderately large
macroscopic deformations (see for instance [15, 16]). In the case of fracture mechan-
ics, hierarchical multiscale methods cannot be used in a straightforward manner
in the vicinity of cracks, as the separation of scales necessary for their application
is lost due to highly localised strain gradients. Crack tip properties in a heteroge-
neous structure cannot be accurately determined by replacing the whole structure
with a homogenised medium and calculating the SIF of the crack in that medium.
For example, [17] proposed that the crack tip region must explicitly be retained
with the actual micro-structure, and at best replace the surrounding region with
the homogenised medium.

Concurrent multiscale schemes can be employed in order to alleviate the absence
of the scale separation assumption. These methods make use of a domain de-
composition framework whereby the zones where homogenisation fails are directly
modelled at the microscale (e.g. [18–23]).In the context of fracture mechanics, con-
current multiscale methods take advantage of the fact that only a small portion
of the total domain is affected by high strain concentrations [24, 25]. Both scales
(or all scales) are resolved simultaneously. Information is exchanged between the
scales through the interfaces of the domain decomposition. In order to represent
crack propagation, the microscale domain needs to be adaptively expanded into
new critical regions [19, 20, 26]. In such a failure-oriented concurrent multiscale
method, the main challenges are to

• adequately model the coupling between the scales,

• determine those regions which must be modelled at the microscale and those for
which a macroscale model is sufficient,

To tackle the first challenge, several coupling techniques have been proposed in
the literature. Overlapping domain decomposition techniques are usually preferred
when the physics at the different scales involved have incompatible kinematics (e.g.
atomistic versus continuum), for instance in the context of the Arlequin framework
[27], whilst non-overlapping domain decomposition framework are usually used to
couple macroscopic homogeneous and microscopic heterogeneous continua, for in-
stance the Mortar Element method [28, 29], or the Linear Multi-Point Constraint
approach (or strong coupling) [20]. The latter will be employed in this paper.
[19] investigated three different coupling methods between coarse and fine scales,
both modelled using continuum mechanics: the Mortar method which connects
fine and coarse meshes in an average sense and over an interface between two
non-overlapping domains; the Arlequin method which connects two overlapping
domains; and the strong coupling method which provides a strong connection be-
tween the displacement fields of the fine and coarse meshes over their interface, in
a non-overlapping fashion.

To overcome the second challenge, several criteria have been proposed in order
to determine the adequate modelling scale in the failure-oriented concurrent mul-
tiscale methods. These criteria are mostly based on the local state of the material
(for example based on the level of damage, stress or strain [20, 30]). On the other
hand, in the context of linear or mildly nonlinear multiscale problems, a number
of contributions have proposed to drive the scale adaptivity using modelling er-
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ror estimates (indicators of a distance between the macroscopic response and the
unknown response of the underlying microscopic structure) [1, 31–35]. Oden and
Zohdi [36] developed an adaptive concurrent multiscale method for linear elastic
problem with a posteriori error estimator for homogenisation. In [37], the theory of
a posteriori modelling error estimation for heterogeneous materials was extended to
local features of the response, for example, average stresses on material interfaces,
boundary displacements, or pointwise displacements, strains, or stresses. Romkes
and Oden [38] presented an extension of the goal oriented estimation to the elasto-
dynamic problem. [39] devised an adaptive multiscale method by using a posteriori
error estimation and implementing the method for three-dimensional systems in-
volving molecular models, continuum models, and hybrid models. [40] improved
[41] by proposing a method that optimally determines the critical area in contin-
uum model to couple with atomistic scale with respect to the quantities of interest.
However, none of the concurrent multiscale methods for fracture mechanics have
employed the modelling error as scale adaptation criterion.

The first aim of this paper is to expose an hybrid multiscale method, which
is a combination of both the homogenisation and the domain decomposition ap-
proaches. This new approach will be developed for the simulation of fracture in
polycrystalline materials. The second aim of this paper is to select an adequate
scale selection criterion based on the ideas of modelling error control. Zohdi et al.
[42] proposed a domain decomposition method where the large micro-scale problem
is decoupled into several sub-domains. An error estimation technique based on the
Principle of Minimum Potential Energy (PMPE) was developed in which the errors
of coarse scale discretisation, fine scale discretisation and the decoupling error can
be determined. They also derived an error bound for their error estimator. In a
special case, the error bound for the domain decomposition problem reduces to
bounds on effective material properties which was proved to be identical to the
Reuss-Voigt inequalities. The work was an extension to their previous paper [31]
in which the fine scale discretisation error was ignored. The natural error between
the exact solution u and the coarsest scale solution u(0,h) is defined by [43, 44]:

‖u− u0,h‖E(Ω) ≤ ‖u− u0‖E(Ω)︸ ︷︷ ︸
modelling error

+ ‖u0 − u0,h‖E(Ω)︸ ︷︷ ︸
Numerical error

. (1)

where h is the size of coarse scale mesh, and the superscript 0 indicates the
homogeneous (regularized) solution. Zohdi et al [45] developed an error bound for
the regularized solution of an inhomogeneous domain:

‖u− u0‖2E(Ω) ≤
∫

Ω
((R− E) : ∇u0) : E−1 : ((R− E) : ∇u0)dΩ (2)

Where u and u0 are the primal solution for inhomogeneous and regularized
(homogenized) domain respectively. R is the elasticity tensor of regularized domain,
and E(x) is the elasticity tensor of inhomogeneous domain. Even though, this error
bound does not require a complex microscale simulation, it is required to map the
elasticity of inhomogeneous domain to the coarse scale coordinate system which
is not always possible in engineering problems. In addition, their work is limited
to linear cases and small problems as one needs to mesh the microstructure and
compute the fine scale homogenised solution.

The micro elasticity problem includes damage evolution at grain interfaces which
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cannot be taken into account by the error bound given in [45]. Hence, the proposed
error bound for homogenisation gives an larger band for the modelling error in
microstructures with discontinuities since it is incapable of considering material
degradation happening at grain interfaces in inhomogeneous domains.

Similarly, the error in the homogenized solution can be introduced by:

‖u− u0,h‖ ≤ ‖u− u00‖+ ‖u00 − u0‖︸ ︷︷ ︸
modelling error

+ ‖u0 − u0,h‖︸ ︷︷ ︸
Numerical error

. (3)

where u00,u0 are the solution of the second order and the first order homogenisation
respectively, and h is the size of the coarse mesh. Modelling error from higher order
homogenisations is neglected, and according to [1] and [35] the difference between
solutions from second order homogenisation and first order homogenisation plays
the main role in the modelling error in the presence of discontinuities:

‖u− u00‖ � ‖u00 − u0‖ (4)

Therefore, we devised a modelling error indicator based on the difference between
the strain energy from second order homogenisation and the strain energy from first
order homogenisation as in [1] to control the modelling error in our problem.

Two critical values are considered for the discretisation and the homogenisation
errors. After each load step, whenever the discretisation error reaches its critical
value, the corresponding coarse elements are refined. Then an evaluation of the
homogenisation error is carried out over all coarse elements. Wherever the ho-
mogenisation error reaches its critical value, the scale adaptation is triggered, and
the corresponding coarse elements are replaced by the underlying inhomogeneous
problem. The discretisation error is first estimated and controlled by the refine-
ment of the coarse scale mesh. Then, once the discretisation error has reached a
predefined threshold, the modelling error is estimated and controlled by the scale
adaptation procedure. We will adapt this scale-selection criterion to the context
of multiscale nonlinear fracture mechanics problem in order to automatically track
the vicinity of cracks that need to be described explicitly at the microscale for the
macroscale response to be correctly predicted.

2. Microscale damage model for polycrystalline materials.

The two-dimensional grains, Ωf , are modelled as linear elastic materials, separated
by cohesive interfaces, Γf . Only inter-granular fracture is considered in this work.
The Voigt’s form of the constitutive relationship for the grains at the current
configuration t is given by Hooke’s law:

∀xf ∈ Ωf \ Γf σf|xf ,t
= Cf

|xf
εf (uf|xf ,t

), (5)

where the Cauchy stress and the strain at the microscale are denoted by σf and
εf respectively, and Cf is a matrix that contains the elastic stiffness moduli of the
grains. The superscript f indicates that the variables are defined at the microscale
(“fine” scale). Note that the tensor form of the stress and strain will be represented
by the same notation as used for their vector (Voigt’s) form since they can be
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distinguished in context. The constitutive relationship for the interface between
grains is based on a cohesive zone model and is given by:

Tf (x) = K[[uf (x)]], on Γf , (6)

where the traction and displacement jumps on the interface of the grains, Γf , are
denoted by Tf and [[uf ]] respectively. K is the damageable stiffness matrix given by
a thermodynamically consistent function of the history of the displacement jump
[[uf ]] on the grain boundaries [46, 47]:

K =

[
k+
n (1− d)H([[ufn]]) + k−nH(−[[ufn]]) 0

0 kt(1− d)

]
. (7)

where kt and kn are original interface stiffness with dimension of force over length
cubed for three dimension problems, and force over length squared for two-
dimensional problems, and d is the damage parameter. The subscript t refers to the
tangential direction of the interface while n refers to the normal to the interface.
[[un]] and [[ut]] are the normal and tangential component of the displacement jump
[[u]]. In order to avoid the interpenetration of grains, the original interface stiffness
for the closing mode is chosen to be much larger than the original interface stiffness
for the opening mode, k−n /k

+
n > 1. It is noted that a very large value of k−n causes

ill-conditioning of the stiffness matrix in finite element procedure. In this study, we
choose k−n /k

+
n = 100. The Heaviside function H does not allow the damage param-

eter to influence the stiffness of the cohesive interface in compression mode. The
damage parameter d is related to time history of the displacement jump [[uf ]] in
order to represent the irreversible fracture process. A power-law damage evolution
is chosen:

d(κ) =


0 κ < κini

1−
(

κful−κ
κful−κini

)p
κini < κ < κful

1 κ > κful

(8)

where p is a material variable. κini and κful are the thresholds of the internal variable
κ that are associated with the initiation and the fully damaged conditions of the
interface crack respectively. For time t, κ is given by:

κ(t) = max (κ(τ)τ<t;ueff) , ueff =

∥∥∥∥ [[un]]H([[un]])
at[[ut]]

∥∥∥∥ , (9)

The coefficient at > 0 controls the effect of shear jump on the damage parameter,
and in this study at = 1. The function ‘max’ does not allow κ to decrease, and
the Heaviside function H([[un]]) prevents the negative jump in normal direction
[[un]] < 0 (associated with compression mode) from having an influence on the
damage variable.

We assume that the critical fracture energy of modes I and II and the maximum
tensile and shear strengths are equal (GIc = GIIc and σmax = τmax ). The internal
variable threshold κini is assumed to be zero. The parameters introduced in the
damage evolution law, Eq. (8), can be evaluated by the following equations [48]:
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Figure 1. A schematic of the microscale problem

κfull = [[u]]full = α
GIc
σmax

, α = (n+ 2)

(
n

n+ 1

)n
(10)

k+
n = kt = β

σ2
max

GIc
, β =

(n+ 1)

(n+ 2)

(
n+ 1

n

)2n

(11)

3. Hybrid multiscale framework

The fracture simulation is performed under the assumptions of quasi-static, isother-
mal evolution over time and small perturbations. The macroscopic problem is dis-
cretised by a coarse mesh which the finite elements cannot capture the hetero-
geneity of the microstructure. The macroscopic constitutive model is obtained by
homogenisation of nonlinear microstructure. Cracks cannot propagate at the coarse
scale, so the initiation and propagation of cracks are represented at the fine scale.

3.1. FE2 method

We assume that the macroscopic constitutive equation cannot be efficiently de-
rived in closed form at the macroscopic scale. Instead, it will be obtained implic-
itly through numerical material testing, which is the basic idea of the FE2 method
[2, 9, 49]. More precisely, incremental macroscopic stress-strain laws are obtained
“on-the-fly” during the macroscopic solution process by solving the boundary value
problem associated with the RVE at each (quadrature) point of the macroscopic
FEM model. Micromechanics links micro and macro scales based on “average the-
orems” for strain, stress and energy. The average strain (respectively stress and
energy) theorem assumes that the macroscopic strain (respectively stress and en-
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ergy) at a particular macroscale point is equal to the average of the strain (stress
or energy) of the corresponding RVE. For a microstructure with cohesive cracks,
the average theorems are given by

εc =
1

2|V♦(x)|

∫
∂V

uf ⊗ n + (uf ⊗ n)T dΓ,

σc =
1

|V♦(x)|

∫
∂V

tf ⊗ xf dΓ,

σc : ε̇c = 〈σf : ε̇f + tf · [[u̇]]〉 =
1

|V♦(x)|

∫
∂V

tf · u̇f dΓ, (12)

where |V♦(x)| is the volume of RVE, V♦, at the macroscopic point x, and ∂V is
the boundary of RVE. The unit outer vector normal to the RVE boundaries ∂V is
denoted by n, and the boundary tractions are denoted by tf . The last equation is
consistent with Hill’s energy consistency condition.

The macroscopic stress and tangent stiffness at the macroscopic quadrature
points can be obtained by the micro-macro links provided by Eqs. 12. For more
details see [48, 49].

3.2. Domain decomposition method

Bridging the scales by homogenisation is valid if scales are separable. When strain
localisation happens, the homogenisation results become overly sensitive to the
variation of both macroscopic mesh size and RVE size. In other words, an RVE
cannot be found for softening regime which means that scales are not separable.
In the critical regions where the scale separation assumption is not fulfilled, the
FE2 method is bypassed and a concurrent multiscale method based on domain
decomposition is adopted. In the concurrent multiscale method the scale separation
assumption does not need to be fulfilled, since the microscopic model is solved
directly (see Fig. 2).

We have been investigating, in other settings, weak coupling techniques based
on Nitsche’s method (e.g. for NURBS patches, see [50–52]). Our experience of such
coupling techniques is that they cause an increase in the conditioning number of the
global system, which dramatically increases the required number of iterations to
convergence when employing iterative solvers. Since direct solvers are not practical
for the problem sizes we are discussing here, we decided to use strong coupling
approaches instead.

We assume the existence of an equilibrated micro pair (uf ,σf ) defined over
the fully resolved region Ωf in equilibrium with the macro pair (uc,σc) at the
coarse scale, defined over Ωc = Ω\Ωf . The weak form of the governing equations
at arbitrary time t is given by:

∀ δuc ∈ Uc,0,
∫

Ωc

σc : ε(δuc) dΩ−
∫
∂ΩN

F · δucdΓ = 0,

∀ δuf ∈ Uf,0,
∫

Ωf\Γf

σf : ε(δuf ) dΩ +

∫
Γf

Tf · [[δuf ]] dΓ = 0,

∀x ∈ Γfc, uc − uf = 0, and σc · nc = −σf · nf ,

(13)

where Ωf and Ωc are the fully resolved region and the coarse scale region respec-
tively, with Γfc their intersection. The cohesive interfaces are denoted by Γf . The
strong coupling of the fully resolved region Ωf with the coarse domain Ωc is en-
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Figure 2. A hybrid multiscale method includes non-overlapping domain decomposition method and FE2.

forced by the third equation in Eq. 13, where nc and nf are the normal outward
vector of the coarse mesh and the fine mesh at the interface Γfc, respectively.
These balance equations are complemented by the macroscopic (homogenised and
defined through the solution of the RVE) and microscopic constitutive equations,
and the Dirichlet boundary conditions, which are assumed to be enforced only on
the boundary of the homogenised domain.

An implicit hybrid-scale time integration is carried out by using a local arc-length
strategy for the multiscale domain decomposition problem that can robustly follow
the load-displacement curve by imposing a constraint over the maximum increment
of the displacement jump of all cohesive cracks within the fully resolved regions.

4. Adaptive scale selection

4.1. Discrete representation of macroscale strain gradients: mesh adaptivity

The coarse scale problem is solved by using standard linear triangular finite ele-
ments. In order to control the coarse mesh discretisation error, the Zienkiewicz-
Zhu (ZZ) error estimate is employed [53] in association with local mesh subdivision.
The classical SPR technique is used. Our experience of SPR-C and SPR-CX [54–57]
compared to other non-equilibrated recovery techniques in the presence of discon-
tinuities and singularities [58–60] shows that the benefits of enforcing consistency,
local equilibrium, and boundary conditions is expensive and relatively complex
to implement given the observed benefits. We decided to keep the recovery pro-
cedure simple and focused our efforts on the modelling error evaluation because
whilst advanced techniques such as SPR-C and SPR-CX do decrease the error level
and improve the effectivity of the error indicator and the convergence of the ap-
proximate error to the exact error, it is always possible, even without satisfying
equilibrium, consistency and boundary conditions constraints, to obtain the same
error level (with more refined meshes)[55].

After convergence of the nonlinear hybrid multiscale solver, and at any time step,
those elements with high error in the energy norm are refined by splitting into four
smaller elements. The adjacent elements are also split in order to make the mesh
compatible.

In the adaptive multiscale method, after each mesh refinement, some modifica-
tions are required before starting a new time step:

• The RVEs corresponding to the parent elements are copied to the new, finer
elements.
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• The homogenisation error is computed and the scale adaptation condition is
checked. If the error of homogenisation is larger than the critical value, the
corresponding coarse elements are replaced by an explicit representation of the
microstructure (see next section).

• After mesh refinement or microstructure adaptation, the residual force will be
out of balance due to disturbances in the internal force. We relax the out-of-
balance force by running the nonlinear iterative solver before starting the next
load step.

4.2. Modelling error control: scale adaptivity

In the previous section, we have described how the representation of macroscale
strain gradients is controlled by refinement of the finite element mesh. The error due
to the partial fulfilment of the scale separation will now be estimated by making use
of these coarse-scale gradients. Indeed, scale separation is lost in regions where these
gradients are large compared to the typical size of the microstructural constituents.
This observation will be the basis for the developments proposed in this section.

In order to determine the loss of accuracy for first order homogenisation [1] and
[35] developed two error indicators. The main concept of their error indicators is
based on the difference between the strain energy from second order homogenisation
and the strain energy from first order homogenisation.

More precisely, [1] assumes that the difference between the (unknown) fine-scale
solution and the computed macroscopic surrogate is well-represented by the differ-
ence between macroscopic surrogate and the solution delivered by a second-order
macroscopic homogenised problem. Secondly, the authors claim that a good indica-
tor for this local homogenisation error is obtained by measuring the local difference
of energy delivered by first and second order homogenisation schemes. After run-
ning a series of test on the RVE of an hyper-elastic microstructure with various de-
grees of material heterogeneity, deformation and deformation gradient, they finally
show that this local difference is a monotonically increasing function of LV ||∇∇uc||
which they referred to as the strain-gradient sensitivity. Here, LV is the size of the
RVE, and ||∇∇uc|| is the Euclidean norm of the second gradient of the displace-

ment field that can be written in Einstein’s notation as ||∇∇uc|| =
√
uci,jku

c
i,jk.

Following [35] and [1], the strain-gradient sensitivity is chosen as local error
indicator for the error of homogenisation eh. The criterion for scale adaptation
reads:

LV ||∇∇uc||e > ecrit
h , (14)

Whenever this criterion is satisfied, the corresponding macroscale element e is
replaced by the underlying microstructure,

The scale adaptation criterion requires the evaluation of the local deformation
gradients. We do not wish to solve the higher-order homogenisation scheme. In-
stead, and consistently with [1, 35], the deformation gradients are recovered from
the first-order homogenisation scheme, using local post-processing. In this paper,
we recall that we use linear macro elements, and that we employ a recovery-based
technique [53] for error estimation. Therefore, it is natural to use the smoothing
of the ZZ error estimate to define our approximation of the deformation gradients.
The details of this implementation are given in Appendix A.

The arbitrary shapes of the grains do not coincide with the coarse element edges.
The critical coarse elements which are flagged by the homogenisation error crite-
rion, create a window to the underlying grains. To match the two different geome-
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Figure 3. Flowchart of the proposed adaptive multiscale method, carried out at the end of each load
increment.

tries, the underlying grains are cut and tailored according to the window of the
critical coarse elements. The fully resolved regions were adaptively expanded to
the new critical zones where the coarse elements have a modelling error eh > ecrit

h
or when their corresponding RVEs have already lost the stability.

Figure 4 demonstrates the procedure of the development of a fully resolved region
schematically. The procedure is slightly different for the initiation of a fully resolved
region than the extension of it. A five-step zoom-in procedure can be employed for
the extension of an existing fully resolved region (the right column in Fig. 4), while
the third step can be skipped for the initiation of the fully resolved region (the left
column in Fig. 4).

A zoom-in procedure is started when a critical zone appears at the coarse scale
due to excessive homogenisation error. The underlying microstructre of the critical
zone is determined by opening a window to the actual microstructure. It is assumed
that the actual geometry of the microstructure is known a priori. In the third
step, if the new critical zone is an extension to an existing fully resolved region,
those grains that are common between the existing fully resolved region and its
extension are attached to the extension part, and all related data are dismissed.
In the fourth step, the extension part is meshed in such a way that the mesh is
compatible with the adjacent coarse mesh and fully matches with the adjacent
fully resolved regions. The fourth step also consists of an equalisation process that
solves the new fully resolved region boundary value problem based on the history
of displacement field that has been experienced by the critical zone. At the end
of equalisation process, the displacement field of the new fully resolved region is
compatible with the surrounding meshes, and the level of energy saved in the high
resolution region is approximately equal to the amount of strain energy in the
coarse elements before adaptation [48]. In the next step, the Linear Multiple Point
Constraint (LMPC) technique is used to couple the the new fully resolved region
to the rest of the domain. Finally, before continuing the simulation, a relaxation
procedure is performed to minimise the out-of-balance residual force.
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1) Determining the critical zone at the coarse scale

The initiation of the critical zone The extension of the critical zone

2) Determining the microscopic resolution of the critical zone

initial fully resolved region

The microstructure of the initial critical zone The microstructure of the extension

3) Modification of the microstructure of the extended part of the fully resolved region

The grains that are partially in the initial fully

resolved region are attached to the extension

part.

4) Equalisation process for the initial (or the extension of the) fully resolved region according

to the history of displacement field on the common interfaces.

5) Coupling the fully resolved region (initial or extended part) to the other part of the

domain, and after the relaxation process, continue the simulation.

Figure 4. The procedure of the development of the fully resolved region

Table 1. Microscale material parameters.

grain cohesive interface
E ν lg σmax = τmax GIc = GIIc κini n

384.6GPa 0.237 25µm 1 GPa 35 Jm−2 0 0.5

5. Results and discussion

To illustrate the proposed methodology, a single-notched beam under uni-axial
load is considered, as shown in Fig. 5. The results from the proposed multiscale
framework are compared to those from a direct numerical solution (DNS). The
beam is made of a polycrystalline material, for which the constitutive equations
were introduced in Section 2, and the mechanical properties of the grains are given
in Table 1. The critical value of strain-sensitivity ecrith = 0.01 for this example.

In order to decrease computational costs a priori, the FE2 method is only imple-
mented in the middle part of the beam (grey region in Fig. 5), and a constant linear
elastic homogenised model with Young’s modulus E = 386.4 GPa and Poisson’s
Ratio ν = 0.237 is employed for the rest of the domain. For consistency reasons,
only the middle region is resolved at the microscale in the DNS.

Distribution of the von Mises stress over the notched beam are shown in Fig. 6
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Figure 5. Single-notched beam under uni-axial tensile load. The grey region is solved using the adaptive
hybrid multiscale approach.

for the DNS and the adaptive multiscale solution. We obtain very similar stress
distributions in these two cases. The maximum stress appears at the crack tip as
expected. Notice that in the cohesive interface models, the crack tip stress is not
infinite, and it is related to the maximum failure stress of the cohesive interface
(see Eq. (10)).

As developed in Section 4.1, the ZZ error estimator is employed for the control
of the macroscale discretisation space, and the strain-gradient sensitivity is used as
a measurement for the homogenisation error. The maximum permissible discreti-
sation error is set to η̄ = 5%. Whenever the strain-gradient sensitivity of a coarse
element LV ||∇∇uc||e becomes larger than the critical value of the homogenisation
error, the microstructure corresponding to this element is fully resolved. As a first
attempt to reproduce the DNS computation, the critical value of the homogenisa-
tion error indicator is set to ecrit

h = 0.01.
The distribution of the strain-gradient sensitivity of the coarse mesh is illustrated

in Fig. 7. The strain-gradient sensitivity remains small during the first time steps of
the simulation. With increasing load, the homogenisation error indicator increases
at the notch. Consequently the coarse elements with highest error levels are re-
placed by the underlying microstructure (Time steps of index greater than >5 in
the figure). Subsequently, cracks initiate and propagate at the grain boundaries,
within the explicitly resolved microscopic region. It is observed that most of the
coarse elements in the vicinity of the macroscale crack tip have high strain-gradient
sensitivities.

As shown in this figure, the adaptive procedure correctly follows the crack path,
without any prior knowledge.

In Fig. 8, the coarse mesh in the vicinity of the fully resolved region is shown.
Our choice of scale selection criterion and associated threshold value allows some
of the coarse elements to be smaller than the size of a grain.

The energy dissipation due to crack propagation has been investigated as a quan-
titative indicator of the validity of the proposed approach. For the notched beam,
the variation of the external work Wext, total strain energy Wint, and the dissipated
energy D versus time are shown in Fig. 9. The beam reaches its maximum strain
energy at time step 8. During subsequent time steps, the external load is decreased
in order to accommodate the snap-back behaviour of the load-displacement curve.
The level of external work and the strain energy of the structure drop drastically
(Time step 15). In this stage, the grains around the notch get separated, and a
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Figure 6. Von Mises stress distribution in the notched bar a) DNS and b) Adaptive multiscale solution.
Deformation is magnified by 100.

macro-crack is nucleated. Although the strain energy and the external work dis-
play oscillations, the dissipated energy of the beam increases in a strictly monotonic
manner. This is because the employed arc-length techniques enforces that the cohe-
sive cracks dissipate a given amount of energy during each time step. The external
work Wext, the total strain energy Wint and the dissipated energy D of the beam
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Figure 7. The distribution of strain-gradient sensitivity LV ||∇∇uc||e , and the adaptive development of
the fully resolved region.

at time t were calculated as follows:

Wext(t) =

nt∑
i=1

(∫
∂ΩN

F|τi · ∆uc|τi dΓ

)
, (15)

Wint(t) =
1

2

∫
∂ΩN

F|τnt
· uc|τnt

dΓ, (16)

D(t) = Wext(t)−Wint(t), (17)
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Figure 8. Coarse mesh in the adaptive multiscale at Time step 200. Deformation is magnified by 100.
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Figure 9. Variation of the external work Wext, the stored elastic energy Wint, and the dissipated energy
D in a notched beam under a uni-axial load.

where ∆uc|τi is the variation of the macroscopic displacement over the ith time
step τi, and F is the external traction load on the Neumann boundary ∂ΩN . The
total number of time steps are denoted by nt and the current time is denoted by
t = τnt

.

In Fig. 10, the deformation of the fully resolved region at two time steps is shown:
1) time step 8 when the domain is experiencing its maximum level of strain energy,
and 2) time step 15 when the crack is initiated and the strain energy of the domain
drops. Due to the micro-crack nucleation at time step 15, the beam is unloaded
and therefore the V-shape notch is less deformed in comparison to the deformation
that are observed at time step 8. As shown in the Fig. 9, the elastic energy at time
step 15 is lesser than the total energy computed at time step 8.

The energy dissipation in the beam versus the displacement at the tip of the
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A

crack initiation

Time step 15Time step 8

Figure 10. Capturing the crack initiation at the grain scale using adaptive multiscale method. Deformation
is magnified by 100.

beam is shown in Fig. 11, where the result from the adaptive multiscale method is
compared to the results obtain using DNS. It is observed that the total dissipated
energyD obtained from the adaptive multiscale method is lesser than the dissipated
energy from the DNS for the same displacement.

In Fig. 12, the dissipated energy is plotted as a function of a measure of the
cracked area for both the adaptive multiscale method and the DNS computations.
To calculate the cracked area , the cohesive cracks with damage parameter d larger
than 0.423 are considered as fully opened. Most of the cohesive interfaces undergo
some level of damage but can still carry the load except those interfaces with
d > 0.423. This is because the traction-separation law transitions to the softening

regime when d > 1−
(

n

n+ 1

)n
. The energy dissipated before macro-crack initiation

in the DNS is 10% more than that in the adaptive multiscale method. The rate
of energy dissipation in the DNS is also higher than the rate of energy dissipation
obtained from the adaptive multiscale method. This mismatch is attributed to
(i) the Dirichlet conditions between coarse and small domain, which stiffen the
structure and prevent damage diffusion, and too loose a strain sensitivity threshold,
and (ii) the small size of the RVE employed for homogenisation and the uniform
Dirichlet BC.

6. Conclusion

We have proposed a method to automatically choose the scale of material repre-
sentation in nonlinear fracture mechanics. Starting from an homogenised repre-
sentation of the microstructure, regions where loss of scale separability produces
inadmissible level of modelling errors are adaptively solved at the microscale.

In order to locate these regions, the homogenisation error indicator, proposed
initially in [1] has been adapted to the context of fracture mechanics. This criterion
is based on a measure of the macroscale strain gradients. We further proposed to
obtain these macroscale strain gradients in a reliable manner by using error-driven
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Figure 12. The variation of dissipated energy D versus crack area.

mesh adaptation and efficient recovery procedures.
We demonstrated the validity of this approach by simulating the propagation

of a crack in a two dimensional notched bar. The results obtained using the pro-
posed method were compared to those obtained using direct numerical solution. We
have shown that crack initiations and propagations could be tracked automatically
and that the approach concentrates the numerical effort due to explicit microscale
representations to the cracked region. We showed that due to our choices for the pa-
rameters of the hybrid multiscale approach, in particular the size of kinematically-
driven RVE, the kinematic strong coupling between homogenised and microscale
regions and the threshold value for the modelling error indicator, the method tends
to underestimate the amount of dissipation occurring in the structure.

Further studies are required to test the robustness and stability of the method,
and the efficiency of the strain-sensitivity criterion as a measure of local modelling
error in the context of fracture mechanics.
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Appendix A

In this appendix, a smoothing process is designed to obtain the second gradient of
displacement for triangular linear elements. The displacement gradient tensor for
each element ∇uc = ∂ui

∂xj
can be be obtained in vector form:

∀e ∈ Ωc, ∇uce =


∂uc

∂x
∂vc

∂y
∂uc

∂y
∂vc

∂x


e

=


∂N1

∂x 0 ∂N2

∂x 0 ∂N3

∂x 0

0 ∂N1

∂y 0 ∂N2

∂y 0 ∂N3

∂y
∂N1

∂y 0 ∂N2

∂y 0 ∂N3

∂y 0

0 ∂N1

∂x 0 ∂N2

∂x 0 ∂N3

∂x


e



U c1
V c

1

U c2
V c

2

U c3
V c

3


e

. (18)

Since linear shape functions are employed, the displacement gradient over each
element is constant. By making use of a simple averaging technique, the nodal
value of the displacement gradient tensor are obtained:

∇̄Iuc =
1

nI

nI∑
e=1

∇uc. (19)

where ∇̄I stands for the nodal value of gradient and nI is the number of elements
related to node I.

Then, an approximation of exact displacement gradient can be obtained by in-
terpolating the nodal values of displacement gradient:

∀x ∈ Ωc
e, ∇∗uc(x) =

∑
I

NI(x)∇̄Iuc, (20)

where ∇∗ indicates the recovery-based gradient, and NI is the nodal shape function
that is being used for displacement interpolation.

Finally, the second displacement gradient can be derived from the recovery-based
first displacement gradient field:

∀x ∈ Ωc
e, ∇∇∗uc(x) =

∑
I

BI(x)∇̄uce, (21)

where BI is a matrix that contains the shape function gradients for node I:
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BI =



∂NI

∂x 0 0 0

0 ∂NI

∂y 0 0
∂NI

∂y 0 0 0

0 0 ∂NI

∂x 0

0 ∂NI

∂x 0 0

0 0 0 ∂NI

∂y

0 0 ∂NI

∂y 0

0 0 0 ∂NI

∂x


, (22)

and consequently, the second gradient tensor is given in vector form:

∇∇∗uc(x) =
[
∂2u
∂x2 ,

∂2v
∂y2 ,

∂2u
∂x∂y ,

∂2u
∂y∂x ,

∂2v
∂x∂y ,

∂2v
∂y∂x ,

∂2u
∂y2 ,

∂2v
∂x2

]T
(23)

At the end, the norm of second displacement gradient for each element is ap-
proximated by the square root of the inner product of ∇∇∗uc(x)

||∇∇uc|| =
√
∇∇uc

...∇∇uc '
√

(∇∇∗uc)T∇∇∗uc (24)
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