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Abstract:
In the public-key setting, known constructions of function-private functional encryption (FPFE)

were limited to very restricted classes of functionalities like inner-product [Agrawal et al. - PKC
2015]. Moreover, its power has not been well investigated. In this paper, we construct FPFE for
general functions and explore its powerful applications, both for general and specific functionali-
ties.

One key observation entailed by our results is that Attribute-based Encryption with function pri-
vacy implies FE, a notable fact that sheds light on the importance of the function privacy property
for FE.

1. Introduction

Functional Encryption (FE) [1] is a sophisticated type of encryption that allows fine-grained con-
trol over encrypted data. Progressively, more expressive forms of FE were constructed in a series
of works (see, e.g., [2, 3, 4]) culminating in the breakthrough of Garg et al. [5] that put forth the
first candidate FE for all poly-size Boolean circuits.
In a FE system, a central authority can hand a user with a token for any function f in some function-
ality space; such token allows the user to compute f(m) on a ciphertext encryptingm. The security
notion in these works only takes in account the privacy of the message that dictates that beyond
f(m) no other information should be leaked beyond m. However, these works do not consider
the security of the function. In other words, the token leaks f in the clear. In the symmetric-
key setting, a preliminary study of FE with function privacy was initiated by Shen et al. [6] for
the inner-product functionality [4], subsequently followed by constructions for general function-
alities [7]. Boneh et al. [8] put forward the study of public-key function-private FE providing
constructions for the IBE functionality, then followed by works that considered the inner-product
functionalities (and its variants) [9, 10].
Inevitably, the adversary can always try to infer partial information about the function in the token
by using the public key to encrypt messages of his choice. For this reason, Boneh et al. [8] con-
sider functions chosen from high min-entropy distributions. Precisely, in the context of IBE they
propose an indistinguishability (IND) style real-or-random definition of function privacy, that stip-
ulates that as long as the identity id was chosen from a sufficiently high min-entropy distribution,
the adversary should not be able to discriminate the token for id from a token for a uniformly ran-
dom identity. Agrawal et al. [10] strengthen simulation-based definitions for function privacy but
assuming non-standard inefficient simulators; this is necessary due to broad impossibility results

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/78370438?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


for simulation-secure FE (see Agrawal et al. for a survey).
It seems that a meaningful simulation-based security notion of public-key function-private func-

tional encryption (FPFE) for some expressive enough class of Boolean circuits would imply virtual
black box (VBB) obfuscation for the same class of circuits and thus it seems unachievable even
for NC1 circuits. For such reasons, in this work we stick with the indistinguishability-based (IND-
based) definition and defer to future works the study of stronger security notions.
Specifically, in the case of Boolean circuits, we consider what we call pairs of ensembles of effi-
ciently samplable feasible entropy distributions, a strengthening of a notion defined by Agrawal et
al. [10]. Roughly speaking, a pair of ensembles of distributions D0 and D1 over the same class of
circuits are called a pair of ensembles of feasible entropy distributions if a circuit sampled from
D0 cannot be differentiated from a circuit sampled from D1, given just oracle access to the circuit.
Formal definition is given in Section 2.
Note that we put the constraint that the distributions be efficiently samplable. This is because, in
the context of function privacy, as well as for functional anonymous signatures that we will intro-
duce later, users sample the cryptographic objects from efficiently samplable distributions. This
requirement makes possible assume what we call quasi-siO that weakens siO in that, whereas siO
consider general (non necessarily efficiently samplable) distributions, quasi-siO only considers ef-
ficiently samplable ones. This subtle difference turns out to be very important; indeed it is the key
to make such primitives composable.

To our knowledge no previous work in literature considered public-key FPFE for more general
functionalities, like poly-sized circuits or even NC1 circuits. This leads to the main questions that
we study in this work:

Can we achieve public-key FPFE for more general functionalities, like NC1 or even
all poly-sized circuits, from reasonable assumptions? And what applications and other
primitives can we build from FPFE (not necessarily for general functionalities)?

Based on the existence of quasi-siO proposed by Bitansky, Canetti, Kalai and Paneth [11],1 we an-
swer affirmatively to the first question. The solution we propose is conceptually simple and elegant
but we believe that the key is in having discovered and identified quasi-siO as the main building
block, a relation that was not known before in the literature.
Note that quasi-siO is a weakened version of strong iO (siO), which guarantees that no efficient
adversary can distinguish two feasible entropy distributions D0 or D1. The weakening lies in the
fact that quasi-siO requires the distributions to be efficiently samplable.
We answer the second question by mainly demonstrating the implication with respect to func-
tional anonymous signatures, FE for randomized functionalities, and adaptive security for efficient
Boolean formulae encryption; for this application we do not require FPFE for general functional-
ities). Some of our results are not technically involved, but this is a due to our recognition of the
power of these primitives not studied so far, and some applications we derive from them improve
the state of the art in the field or solve known problems. Thus, we deem the simplicity of our
approach a positive feature not a shortcoming.
Our results are not only an example of the power and of the applications of FPFE but also and
mainly of the power siO/quasi-siO, and in Section 6 we show equivalences between them. We
mention that recently the existence of siO was put in contention with the existence of other strong
assumptions in [12] and we defer the reader to the discussion after Definition 2.2 for further details.
Anyhow, we point out that all our results based on quasi-siO can be instantiated for NC1 circuits

1The name quasi-siO is ours. The authors define a weakening of the their notion of siO (see the following) without explicitly naming it.
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assuming only quasi-siO for NC1 circuits.

1.1. Public-key FPFE based on Quasi-siO

It is worthy reminding why existing constructions of FE do not offer any meaningful function pri-
vacy. Consider the construction of Garg et al. [5] of FE from iO. Therein, the token for a circuit
C consists of an iO of C. One could hope that being the circuit obfuscated it should hide as much
information as possible about the circuit. Nonetheless, we argue that the form of function privacy
attained here is very limited. Indeed, the token for C is indistinguishable from the token for any
other functionally equivalent circuit C ′ but may leak any other sensitive information.
We now show that this is insufficient in concrete applications. Consider the case of circuits im-
plementing point functions. Specifically, for any binary string x ∈ {0, 1}n consider the class of
circuits Cx that contain all circuits C defined so that C on input a binary string y of length n out-
puts 1 if and only if y = x. Then, the class of circuits implementing point functions, let us say
restricted to points of length n, is the union of all Cx’s for all strings x of length n. It is trivial
to notice that an iO for this class could just return the value x in clear,2 assuming that this can be
done efficiently. That is, the (non necessarily efficient) obfuscator that on input a circuit C ∈ Cx
for some x ∈ {0, 1}n outputs x in the clear (with evaluation procedure associated in the obvious
way) is provably an iO. We claim that this obfuscator, when used to construct FE, does not offer
any guarantee of function privacy for these classes of functions.
In fact, consider two distributions D0 and D1 over strings in {0, 1}n defined so that the first bit in
the strings drawn from Db, for b ∈ {0, 1} is b and the remaining bits are uniformly and indepen-
dently chosen. Then, a token for a point x drawn from D0 can be easily distinguished from a token
for a point drawn from D1. This is because the obfuscated point leaks x in clear and looking just
at the first bit of it, the token can be distinguished. The above analysis motivate us to use siO. If
the token was instead a siO of the circuit, it would leak as little information as possible about the
circuit. To the aim of having conceptually simple and general constructions, we construct a FPFE
scheme by nesting a generic FE scheme (without function privacy) with a siO.
Specifically our FPFE scheme FPFE will use the underlying FE scheme FE as a black-box and will
have identical procedures except that a token for a circuit C will consist of a token of FE for the
circuit qsiO(C), where qsiO is a quasi-siO. That is, setting C ′ = qsiO(C), a token of FPFE for C
will be a token of FE for C ′.

The intuition is that, even though this token is computed with a non function-private scheme, it
is built on the top of a circuit obfuscated with quasi-siO, and thus it should leak as little information
as possible about the function. In fact, we confirm this intuition providing reductions to quasi-siO
and FE.
Note here that the underlying FE scheme guarantees the privacy of the encrypted messages and
quasi-siO is only used to add the extra layer of function privacy.
The modularity of our approach allows to instantiate a FPFE for a class of circuits C assuming
only a quasi-siO for the same class of circuits assuming that the class C is enough expressive,
specifically includes at least all NC1 circuits. Furthermore, the construction generalizes easily to
multi-inputs FE (MIFE, in short) [13] allowing to construct the first MIFE scheme with function
privacy (FPMIFE, in short). The definition of a FPFE scheme and its security are presented in
Section 2.3 and its construction from quasi-siO is presented in Section 3.
The reverse direction also holds. In fact, a quasi-siO qsiO for class of circuits C can be constructed

2Precisely, we also have to define a corresponding evaluation procedure in the obvious way.
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from a FPFE scheme FPFE for the same class in the following way. For any input C the algorithm
qsiO(C) outputs the public-key of the FPFE scheme and a token Tok for C of FPFE. To evaluate
such obfuscated circuit on an input x, the evaluation algorithm associated with qsiO takes as input
the public-key and Tok and encrypts x to get Ct and evaluates Tok on Ct to get C(m). The
correctness of FPFE and its INDFP-Security defined in Section 2.3 imply that such obfuscator is a
quasi-siO. This construction also reaffirms that a meaningful simulation-based security notion for
FPFE for a class C would imply VBB obfuscation for C, and thus is unachievable in general. For
such reason we stick with an IND-based definition of function privacy.

1.2. Functional Anonymous Signatures

As warmup we construct from FPFE a new primitive called Functional Anonymous Signature
(FAS). Recall that the Naor’s transformation (presented in [14]) allows to transform an identity-
based encryption (IBE) scheme. The transformation is based on the idea that the token for an
identity id acts as a signature for it. Such signature can then be verified by encrypting the pair
(r, id) for a random string r and testing whether the token (i.e., the signature) evaluated on such ci-
phertext returns r. By the security property of IBE, one can prove the unforgeability of signatures.
We generalize this concept to FE and propose what we call FAS. With FAS, a user Alice can sign
a Boolean circuit C allowing Bob holding an input m to verify (1) that the signature was issued by
Alice and that (2) C(m) = 1.
This makes no sense since in general the signature leaks the signed input, thus Bob could verify
that C(m) = 1 by himself without running the verification procedure at all. We envision a scenario
where the signature of Alice of a circuit C hides C if it is drawn from a feasible entropy distri-
bution. In this case, the intent of Bob is to verify (1) that Alice signed some circuit C, that is not
known to him, and (2) verify that his input m satisfies the circuit, e.g., C(m) = 1.
We foresee FAS to be a very useful primitive in practice, e.g. in the following authenticated policy
verification mechanism. Alice, the head of a company, can publish her verification key and with
the corresponding secret key can sign an hidden policy P chosen from some known distribution
D and send the signature σ of P to the server of her company. The secretary of the company,
who is assumed to be honest but curious, can grant Bob access to some private document iff the
access pattern m held by Bob verifies the signature of Alice, and in particular her hidden policy,
i.e., P (m) = 1. If the signature is verified by the access pattern of Bob, then the secretary has the
guarantee that (1) the policy was signed by Alice and (2) the access pattern of Bob satisfies such
policy.
Both Bob and the secretary have no information about the policy except what can be trivially in-
ferred from the distribution D. Due to the possibility of using universal circuits in FAS, the role of
access pattern and policy can be inverted, that is Alice can sign an access pattern and Bob holding
a policy can verify whether his policy satisfies her access pattern. It is easy to see that FAS implies
traditional signature schemes.
We define FAS with a notion that we call functional unforgeability, that suits for most applications
of FAS. The notion does not consider as valid the forgery of a circuit more restricted than a circuit
for which a signature was seen. 3

To see why such condition is not too restrictive, consider the above application. In that case, the
security of FAS should prevent some unauthorized user to claim that Alice signed a document who
authorizes him. This is exactly what the condition states. Note also that being Alice semi-trusted

3That is, it is not considered as a valid forgery if an adversary given a signature of circuit C can sign another circuit C′ that computes the same
function as C or is more restricted than C.
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we do not consider a breach of security if she is able to forge a signature for a circuit C ′ more
restricted than the circuit C of which she received a signature from Alice (a circuit C ′ is said to be
more restricted than C if C ′(x) = 1 implies C(x) = 1). Only malicious users have the interest to
forge new signatures and in this case their scope is to forge signatures for circuits that authorize
them, so a forgery for a more restricted circuit (or a functionally equivalent one) must not be con-
sidered a successful attack.
For some applications such security could not suffice but we show that it is possible to make FAS
unforgeable according to the classical notion of unforgeability (i.e., requiring that any PPT adver-
sary can not forge a signature for a circuit C ′ different (as bit string) from any circuit C for which it
saw a signature) just adding a traditional unforgeable scheme on the top of it. Beyond unforgeabil-
ity, we require anonymity, namely that a signature σ hide as much information as possible about C
except what can be inferred from knowledge of the distribution from which C is drawn.
FPFE fits perfectly in the picture, and in fact we show that it implies FAS in a black-box way.
Specifically, we extend the Naor’s transformation to construct FAS for a class of circuits C from
Attribute-based Encryption (ABE) [15] with function privacy, a weaker notion of FPFE, for the
same class C.
Despite of the name, FAS is not related at all with functional signatures of Goldwasser et al.
[16]. Primitives more related to FAS are content-concealing signatures and confidential signa-
tures ([17, 18]) that can be viewed as a weak form of FAS schemes without functional capabilities
(or alternatively for the class of equality predicates). The definition of FAS, its security and its
construction from ABE with function privacy (FPABE) are presented in Section 4.

We mention that it is possible to construct FAS in a more direct way from quasi-siO, but our
aim is also to show equivalences among FAS, quasi-siO and FPFE (see Section 6).

1.3. Functional Encryption for Randomized Functionalities

Goyal et al. [19] introduce the concept of FE for randomized circuits. In this setting, the challenge
is to guarantee that the circuit be evaluated on fresh randomness that can not be maliciously chosen.
A first attempt to the problem would be to include the seed of a pseudo-random function in the
token. Unfortunately, this approach fails since the token is not guaranteed to hide the function that
the circuit is supposed to compute.

This leaves open the possibility that this basic idea could work assuming a FE whose token
hides the function (i.e., with function privacy), and in fact we are able to confirm this intuition by
showing a black-box construction of FE for randomized circuits (RFE) from FPFE for (determin-
istic) circuits. We adopt an indistinguishability-based security for RFE, but unlike Goyal et al. we
do not take in account the problem of dishonest encryptors that goes beyond the scope of our work.
(We note that the problem of dishonest encryptions is a concern not only for RFE but for FE and
FPE as well.)
Our construction of RFE also preserves the function privacy of the underlying FPFE and thus
satisfies the standard notion of function privacy where the adversary can ask distributions of de-
terministic circuits. We call this notion FPRFE. We believe that it also satisfy a form of function
privacy extended in a natural way to support randomized circuits, but we did not investigate the
details.
Our construction of RFE can be easily extended to the multi-inputs setting, resulting in the first
construction, assuming only quasi-siO, of a FPMIFE for randomized functionalities (as said before,
where the function privacy is restricted to deterministic circuits) with selective form of security.
The restriction of selective security can be removed assuming in addition an adaptively-secure
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MIFE.
The definition of RFE and its security are presented in Section 2.4 and its construction from

FPFE is presented in Section 5.

1.4. Adaptively-secure FE for CNF/DNF formulae of bounded degree

Henceforth, we assume familiarity with inner-product encryption (IPE) introduced by Katz et al.
[4].

Katz et al. show how to construct from IPE polynomial evaluation from IPE and FE for a sub-
class of Boolean formulae with a bounded number of variables (BoolEnc). Hereafter, we focus on
DNF formulae encryption (DNFEnc). Analogous considerations hold for other classes of Boolean
formulae that can be derived from IPE, e.g., CNF formulae.

Conjunctions can be handled in the following way. Consider the predicate ANDI1,I2 where

ANDI1,I2(x1, x2)
4
= 1 if both x1 = I1 and x2 = I2. Then, we can choose a random r ← Zp (here

we assume that the coefficient of the polynomial are over Zp) and letting the token correspond to

the polynomial p(x1, x2)
4
= r · (x1 − I1) + (x2 − I2). If ANDI1,I2(x1, x2) = 1 then p(x1, x2) =

0, whereas if ANDI1,I2(x1, x2) = 0 then, with all but negligible probability over the choices of
r, it will hold that p(x1, x2) 6= 0. Disjunctions can be implemented by defining a polynomial
p′(x1, x2)

4
= (x1 − I1) · (x2 − I2). Conjunctions and disjunctions can be combined to get general

DNF formulae but, as the Katz et al.’s transform has a super-polynomially growth, we have to put
a bound on the number of variables.

As observed by Katz et al. in general the token may leak the value of r in which case the
adversary will be able to find x1, x2 such that ANDI1,I2(x1, x2) = 0 yet p(x1, x2) = 0. Since,
however, they consider the “selective“ notion of security, this is not a problem in their setting. On
the other hand, disjunctions can be handled without issues.

Anyhow, an adaptively-secure IPE schemes [20] can not be directly employed in this transfor-
mation and thus to construct an adaptively-secure DNFEnc. FPFE turns out to be useful in this
context: assuming that the underlying IPE satisfies our notion of function privacy, we show that
an adaptively-secure IPE with function privacy implies an adaptively-secure DNFEnc. The idea is
that a function-private scheme hides the value r so that the adversary cannot make the reduction to
fail. In Appendix B.1 we provide a rigorous proof of this fact.

It is out of the scope of this work to provide concrete instantiations of function-private schemes
for our transformation but our result emphasizes the importance of function-privacy even for prac-
tical matters. For instance, the IPE scheme of Agrawal et al. [21] is clearly subject to function-
privacy attacks and thus cannot be employed in the Katz et al.’s transformation whereas, though
not backed by any security proof, the IPE schemes of Katz et al. does not seem subject to any
of such attacks. Our result suggests that care has to be taken when instantiating the Katz et al.ś
transformation.

1.5. Relation between primitives

In Section 6, we present a general picture of the relations among all these related primitives. One
key observation is that Attribute-based Encryption with function privacy implies FE, a notable fact
that sheds light on the importance of the function privacy property for FE.
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2. Definitions

2.1. Preliminaries

In our work, we make use of the following definition inspired by a similar definition from Agrawal
et al. [22, 10].

Definition 2.1. [Pair of Ensembles of Feasible Entropy Distributions]. Let D0 = {D0,n}n∈N and
D1 = {D1,n}n∈N be two ensembles of distributions over a class of circuits C = {Cn}n∈N where
any n ∈ N, Cn contains circuits of same size. We say that D0 and D1 are a pair of ensembles of
feasible entropy distributions, if for all non-uniform families of (possibly inefficient) algorithms
A = {An}n∈N making a polynomial number of queries to its oracle, it holds that:∣∣PrC←D0

[
AC(·)
n (1n, 1|C|) = 1

]
− PrC←D1

[
AC(·)
n (1n, 1|C|) = 1

]∣∣ ≤ negl(n) .

Note that in the above definition we do not require that the distributions be efficiently samplable
but for all our applications we will put such additional constraint. So we will talk about a pair of
ensembles of efficiently samplable feasible entropy distributions with the obvious meaning.
In this work, we make use of puncturable pseudorandom functions [23] which are essentially
pseudorandom functions (PRFs, in short) that can be defined on all inputs except for a polynomial
number of inputs. We refer the reader to [23] the formal definitions.

We refer the reader to Appendix A for the standard definitions of FE and its IND-Security.

2.2. Strong and Quasi-strong Indistinguishability Obfuscation

Strong indistinguishability obfuscation has been introduced by Bitansky et al. [11]. Their formu-
lation is syntactically different from ours, but as they point out ([24], p. 4) it is equivalent to ours.
Thus, without loss of generality we adopt the following formulation as it is more suitable for our
scopes.

Definition 2.2. [Strong Indistinguishability Obfuscators for Circuits] A uniform PPT machine siO
is called a strong indistinguishability obfuscator (siO, in short) for a circuit family C = {Cn}n∈N,
if the following conditions are satisfied:

• Correctness: ∀n,∀C ∈ Cn,∀x ∈ {0, 1}? we have

Pr [C ′(x) = C(x) : C ′ ← siO(1n, C) ] = 1.

• Strong indistinguishability: For all pairs of ensembles of feasible entropy distributions D0 =
{D0,n}n∈N and D1 = {D1,n}n∈N over a class of Boolean circuits C ′ = {C ′n}n∈N ⊂ C where
for any n ∈ N the set C ′n contains circuits of the same size, for any non-uniform family of PPT dis-
tinguishers D = {Dn}n∈N, there exists a negligible function negl(·) such that the following holds:
For all n ∈ N, we have that

|PrC←D0,n

[
Dn(1n, 1|C|, siO(1n, C)) = 1

]
−PrC←D1,n

[
Dn(1n, 1|C|, siO(1n, C)) = 1

]
| ≤ negl(n).

Bitansky et al. also hint the following weakening of siO (as they do not explicitly assign a name
to the primitive, the new name is ours).

Definition 2.3. [Quasi-strong indistinguishability Obfuscators for Circuits] A quasi-strong indis-
tinguishability obfuscator (quasi-siO, in short) for a circuit family C is defined analogously to siO
except that the strong indistinguishability condition is weakened with the quasi-strong indistin-
guishability condition that is identical to the former except that it is required that the ensembles of
distributions be ensembles of efficiently samplable distributions.
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2.3. Function-Private Functional Encryption (FPFE)

A FPFE scheme is a FE scheme satisfying IND-Security and the following additional security
notion. Indistinguishability-based function privacy security. The IND-based function privacy
notion of security for a functional encryption scheme FPFE = (Setup,KGen,Enc,Eval) for a
class of circuits C = {Cλ}λ is formalized by means of the following game INDFPFPFE

A between
an adversary A = (A0,A1) and a challenger C. Below, we present the definition for only one
function; it is easy to see the definition extends naturally for multiple functions.

INDFPFPFE
A (1λ)

1. C generates (Mpk,Msk)← Setup(1λ) and runs A0 on input Mpk;

2. A0 submits queries for Boolean circuits Ci ∈ Cλ for i = 1, . . . , q1 and, for each such
query, C computes Toki = KGen(Msk, Ci) and sends it to A0.
When A0 stops, it outputs two challenge distributions D0,λ, D1,λ over Cλ and its internal
state st.

3. C picks b ∈ {0, 1} at random, picks a circuit C according to distribution Db,λ, and com-
putes the challenge token Tok = KGen(Msk, C) and sends Tok to A1 that resumes its
computation from state st.

4. A1 submits queries for circuits Ci ∈ Cλ for i = q1 + 1, . . . , q and, for each such query, C
computes Toki = KGen(Msk, Ci) and sends it to A1.

5. When A1 stops, it outputs b′.

6. Output: if b = b′ then output 1 else output 0.

The advantage of adversary A in the above game is defined as

AdvFPFE,INDFP
A (1λ) = |Prob[INDFPFPFE

A (1λ) = 1]− 1/2|.

Note that we did not put any non-trivial constraint on the above game. In fact, any PPT could
trivially win in it. As in Agrawal et al. we need to restrict the class of adversaries to what are called
legitimate function privacy adversaries.

Definition 2.4. A non-uniform family of PPT algorithms A = {Aλ}λ∈N is called a legitimate
function privacy adversary against a FPFE scheme for a class of circuits C = {Cλ}λ∈N if all pairs
of distributions D0,λ and D1,λ output by Aλ in the above game for security parameter λ are such

that D0
4
= {D0,λ}λ∈N and D1

4
= {D1,λ}λ∈N are of a pair of ensembles of efficiently samplable

feasible entropy distributions 4 over a circuit class C ′ = {C ′λ}λ∈N where for any λ ∈ N, C ′λ contains
circuits of the same size.

Definition 2.5. We say that FPFE is indistinguishability function private secure (INDFP-Secure,
for short) if every legitimate function privacy adversary A = {Aλ}λ∈N have at most negligible
advantage in the above game. 5

4Note that the adversary is randomized so that the distributions could depend on its randomness. Thus, the interpretation here is that all pairs of
sequences (D0,λ, D1,λ)λ∈N, formed putting for any λ some pair of distributions D0,λ and D1,λ that it is a possible (i.e., such that the adversary
outputs them with non-zero probability) output of the adversary in the experiment for parameter λ, is a pair of ensembles of efficiently samplable
feasible entropy distributions. Note that Agrawal et al. do not explicitly expand on this detail. Same considerations hold for later definition of FAS
legitimate adversaries.

5Hereafter, we say that a family of algorithms B = {Bn}n∈N has negligible advantage in a experiment if there exists a negligible function
negl(·) such that for all n ∈ N the advantage of Bn in the experiment is at most negl(n).
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2.4. Functional Encryption for Randomized Functionalities

Goyal et al. [19] introduced the concept of FE for randomized functionalities. Like in Komargodski
et al. [25] in this paper we do not take in account the problem of dishonest decryptors; this problem
does not arise only in the context of randomized functionalities, and we think it go beyond the
scope of our paper. A FE for randomized functionalities (RFE, in short) has the same syntax of a
FE scheme for deterministic functionalities, with the obvious change that the functionality takes
two inputs, the message and the randomness. We refer to the aforementioned papers for details. In
this paper we will focus on the functionality of randomized circuits, both randomized NC1 circuits
and general randomized poly-size circuits, defined in an anologous way to the deterministic case
except that such circuits also take a random string as second input. We refer the reader to Goyal et
al. for formal definitions of RFE. As our formalization of security for RFE we choose what Goyal
et al. call "security against key queries after public-key" except that, as discussed before, we do
not take in account dishonest decryptors.

3. Construction of FPFE from quasi-siO

Definition 3.1. [quasi-siO-Based Construction] Let qsiO be a quasi-siO and
FE = (FE.Setup,FE.Enc,FE.KGen,FE.Eval) be a FE scheme, both for an enough expressive
class of circuits C (at least all NC1 circuits). We define a FPFE scheme FPFE[qsiO,FE] =
(Setup,KGen,Enc,Eval) for the class of circuits C.

• Setup(1λ): output the public-key Mpk and master secret-key Msk computed, respectively, as the
public-key and the master secret-key output by FE.Setup(1λ).
• Enc(Mpk,m): output Ct← FE.Enc(Mpk,m).
• KGen(Msk, C: output the token FE.KGen(Msk, qsiO(C)).
• Eval(Mpk,Ct, Tok): output FE.Eval(Mpk,Ct, Tok).

It is easy to see that the scheme satisfies correctness assuming the correctness of qsiO and FE,
and the following theorem holds.

Theorem 3.2. If FE is IND-Secure then FPFE[qsiO,FE] is IND-Secure.

The proof of the next theorem is given in Appendix B.2.

Theorem 3.3. If qsiO is a quasi-siO then FPFE[qsiO,FE] is INDFP-Secure.

4. Construction of FAS from FPABE

Overview. The construction extends the Naor’s transformation from IBE to (traditional) signa-
ture schemes. Specifically a token for a circuitC computed with the ABE system acts as a signature
for C. The security of the ABE system guarantees the unforgeability of FAS: no adversary, given
a token for circuit C can produce another token for another circuit that would enable to distinguish
the encryption of two ciphertexts computed with an attribute x such that C(x) = 0. If in addition
the ABE system is function private, the resulting FAS scheme is anonymous as well.

Definition 4.1. [FPFE-Based Construction] Let FPABE = (FPABE.Setup,
FPABE.Enc,FPABE.KGen,FPABE.Eval) be a FPABE scheme for the class of Boolean circuits
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C = {Cn}n∈N. We define a FAS scheme FAS[FPABE] = (FAS.Setup,FAS.Sign,FAS.Verify) for C
as follows.

• FAS.Setup(1λ): set verification key vk and signing key sk to be respectively the public-key and the
master secret-key output by the setup of FPABE .
• FAS.Sign(sk,C): output σ ← FPABE.KGen(sk,C).
• FAS.Verify(vk, σ, x): choose random value r ← {0, 1}λ, encrypt Ct← FPABE.Enc(vk, (r, x)) and

compute r′ ← FPABE.Eval(vk,Ct, σ). If r′ = r then output 1 otherwise output ⊥.

It is easy to see that the scheme satisfies correctness assuming the correctness of FPABE and
is functionally unforgeable.6 In fact an adversary outputting a forgery that satisfies the winning
condition of functional unforgeability, is a valid adversary against the security of FPABE and thus
as in the Naor’s transformation the forgery can be used to break the security of FPABE. Thus, the
following theorem holds.

Theorem 4.2. If FPABE is IND-Secure then FAS[FPABE] is unforgeable.

The proof of the following theorem is given in Appendix B.3.

Theorem 4.3. If FPABE is INDFP-Secure then FAS[FPABE] is anonymous.

5. Construction of RFE from FPFE

Definition 5.1. [FPFE-Based Construction] Let F = (F.Key,F.Pnct,F.Eval) be a puncturable
pseudorandom function and
FPFE = (FPFE.Setup,FPFE.Enc,FPFE.KGen,FPFE.Eval) be a FPFE scheme, both for a suffi-
ciently expressive class of (deterministic) Boolean circuits C ′. We define a RFE scheme RFE[F,FPFE] =
(Setup,KGen,Enc,Eval) for the class of randomized Boolean circuits C = {Cn}n∈N induced by C ′
as follows.

• Setup(1λ): generate Mpk and Msk computed, respectively, as the public-key and the master secret-
key output by FPFE.Setup(1λ).
• Enc(Mpk,m): output Ct← FPFE.Enc(Mpk,m).
• KGen(Msk, C): on input Msk, a randomized circuit C ∈ Cλ with input of length n and random-

ness of length n, compute k ← F.Key(1λ) and output the token FPFE.KGen(Msk, C[k])) for the
following deterministic circuit C[k] ∈ C ′2λ.

Circuit C[k](m)
1. Pad with circuits U [C, k,m0,m1, s0, s1] and U [C, k({m0,m1}),m0,m1, s0, s1];
2. return C(m||F.Eval(k,m)).

• Eval(Mpk,Ct, Tok): output FPFE.Eval(Mpk,Ct, Tok).

Correctness. It is easy to see that the scheme satisfies correctness assuming the correctness of
FPFE and the pseudorandomness of F.
Security reduction.

6It is easy to make the above scheme even secure according to the traditional notion of unforgeability. It is sufficient to use a traditional
unforgeable signature scheme and signing the token with such scheme. The resulting scheme will be unforgeable (according to the traditional
notion) as well.
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Theorem 5.2. If FPFE is IND-Secure and INDFP-Secure, and F is a puncturable pseudorandom
function, then RFE[F,FPFE] is INDRFE-Secure.

Proof: We reduce the security of our RFE scheme to that of the underlying primitives (FPFE and
puncturable pseudorandom functions) via a series of hybrid experiments against a PPT legitimate
RFE adversary A attacking the INDRFE-Security of RFE[F,FPFE].

• H0. This corresponds to the INDRFE-Security game in which the challenge ciphertext en-
crypts the message m0.

• H1. This experiment is identical to H0 except that any token for randomized circuit C is
computed as FPFE.KGen(Msk, U [C, k,m0,m1, s0, s1]) where sb = F.Eval(k,mb) for b ∈
{0, 1} and U [C, k,m0,m1, s0, s1] is the following deterministic circuit:

Circuit U [C, k,m0,m1, s0, s1](m)
1. Pad with circuits C[k] and U [C, k({m0,m1}),m0,m1, s0, s1];
2. if m = m0 return C(m||s0);
2. else if m = m1 return C(m||s1);
3. otherwise return C(m||F.Eval(k,m)).

Claim 5.3. Indistinguishability of H1 from H0. First, we assume that the adversary asks only
one token query. The general case follows from a standard hybrid argument. Note that the
two circuits C[k] and U [C, k,m0,m1, s0, s1] compute the same function. In fact, on input
m = mb for b ∈ {0, 1} the first circuit computes C(mb||F.Eval(k,mb)) and the second circuit
computes C(mb||sb) that, by construction of sb, equals C(mb||F.Eval(k,mb)). For any other
input m 6= m0,m1, by construction, the two circuits output the same value as well. Then,
consider the two ensembles (parameterized by the security parameter λ) of distributions D0

and D1 defined so to output with probability 1, respectively, the circuit C[k] and the circuit
U [C, k,m0,m1, s0, s1]. Notice that such pair of ensembles of distributions is feasible, thus
the claim follows from the INDFP-Security of FPFE.

• H2. This experiment is identical to H1 except that any token for randomized circuit C is com-
puted as FPFE.KGen(Msk, U [C, k({m0,m1}), m0,m1, s0, s1]) where sb = F.Eval(k,mb) for
b ∈ {0, 1} as before but k({m0,m1}) = F.Pnct(k, {m0,m1}) andU [C, k({m0,m1},m0,m1, s0, s1]
is identical to U [C, k,m0,m1, s0, s1] except for the constant k({m0,m1} instead of k.

Claim 5.4. Indistinguishability of H2 from H1. First, we assume that the adversary asks only
one token query. The general case follows from a standard hybrid argument. Note that the
two circuits U [C, k,m0,m1, s0, s1] and U [C, k({m0,m1}), m0,m1, s0, s1] differ only for the
constant values k and k({m0,m1}). By the fact that F preserves the functionality at points
different from the punctured points, the two circuits compute the same function. Thus, as
argued above, the claim follows from the INDFP-Security of FPFE.

• H3. This experiment is identical to H2 except that any token for randomized circuit C is
computed as FPFE.KGen(Msk, U [C, k({m0,m1}), m0,m1, s0, s1]) where s0 and s1 are ran-
domly and independently chosen in {0, 1}m(λ), and k = F.Key(1λ) and k({m0,m1}) =
F.Pnct(k, {m0,m1}) are as in the previous experiments.
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Claim 5.5. Indistinguishability of H3 from H2. First, we assume that the adversary asks only
one token query. The general case follows from a standard hybrid argument. The indistin-
guishability of the two experiments follows from the pseudorandomness of F at the punctured
points m0 and m1.

• H4. This experiment is identical to H3 except that the challenge ciphertext is computed as
encryption of m1.

Claim 5.6. Indistinguishability of H4 from H3. First, we notice what follows. Any token for
randomized circuit C for which A asked a query is computed as
FPFE.KGen(Msk, U [C, k({m0,m1}),m0,m1, s0, s1]) where s0 and s1 are randomly and in-
dependently chosen in {0, 1}m(λ) and k({m0,m1}) = F.Pnct(k, {m0,m1}) (for k computed
as k ← F.Key(1λ)). So we have U [C, k({m0,m1}),m0,m1, s0, s1](m0)

4
= C(m0; s0) and

U [C, k({m0,m1}),m0,m1, s](m1)
4
= C(m1; s1). Sincd A is a legitimate RFE adversary,

then A only asks queries for circuits C such that C(m0; s) is statistically indistinguish-
able from C(m1; s) where the probability is taken over the choices of s and thus the above
equations imply that with all except negligible probability over the choices of s0 and s1 in
{0, 1}m(λ), C(m0; s0) = C(m1; s1). Therefore, the indistinguishability of the two experi-
ments follows from the IND-Security of FPFE.

• H5. This experiment is identical to H4 except that any token for randomized circuit C is
computed as FPFE.KGen(Msk, U [C, k({m0,m1}), m0,m1, s0, s1]) where sb for b ∈ {0, 1} is
computed as F.Eval(k,mb), and k = F.Key(1λ) and k({m0,m1}) = F.Pnct(k, {m0,m1}) are
as in the previous experiments.

Claim 5.7. Indistinguishability of H5 from H4. The indistinguishability of the two experi-
ments is symmetrical to that of H3 from H2.

• H6. This experiment is identical to H5 except that any token for randomized circuit C is
computed as FPFE.KGen(Msk, U [C, k,m0,m1, s0, s1]) where sb for b ∈ {0, 1} is computed
as F.Eval(k,mb) and k = F.Key(1λ) as in the previous experiments.

Claim 5.8. Indistinguishability of H6 from H5. The indistinguishability of the two experi-
ments is symmetrical to that of H2 from H1.

• H7. This experiment is identical to H6 except that any token for randomized circuit C is
computed as FPFE.KGen(Msk, C[k]) where k = F.Key(1λ) as in the previous experiments.

Claim 5.9. Indistinguishability of H7 from H6. The indistinguishability of the two experi-
ments is symmetrical to that of H1 from H0.

Note that experiments H0 and H7 correspond to the experiments of INDRFE-Security where the
challenger encrypts respectively m0 and m1. Thus, the theorem holds.

6. Relation between Primitives

It is easy to see that quasi-siO implies iO that in turn is known to imply FE. Thus, quasi-siO implies
FPFE. Moreover, FAS can be used to construct a quasi-siO as follows. An obfuscation of circuit
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C will consist of a signature for C and the verification key of the FAS scheme, and to evaluate
the obfuscated circuit on an input x, just run the verification algorithm of FAS with input the
verification key, the signature and the message m. From the anonymity of FAS, such obfuscator is
easily seen to be a quasi-siO.

Since FPFE implies FPABE, that in turn implies FAS, we have that FAS, FPFE and quasi-siO
are equivalent primitives. The equivalence also extends to FPRFE.
One of the key points highlighted by our results is that FPABE implies quasi-siO and thus iO that
in turn implies FE [26], a notable fact that sheds light on the importance and power of function
privacy for FE. In Figure 2, we present relations among the primitives studied or discussed in this
paper, except for the implication presented in Section 1.4 about IPE.

VGB siO quasi-siO iO

FEMIFE

FPRMIFE

FPFE sel-MIFE

FPABE

FAS

FPRFE RFE

sel-FPRMIFE

[11]

[26]
[13]

Fig. 1. Relations among primitives studied or discussed in this paper (except for the implication
of Section 1.4): A line with arrow from A to B denotes that it is possible to build B from A and lines
are annotated with the work where the implication first appeared, or unlabeled if such implication is
discussed in this paper. A line from A to B with arrows at both ends denotes that it is possible to build
A from B and vice-versa. A dashed line denotes a trivial implication. Two lines coming respectively
from A and B with arrow directed in a circled black box with an outgoing line with arrow directed
to box C means that it is possible to build C assuming both A and B (e.g., FPRFE and MIFE imply
FPRMIFE). For FE and MIFE we assume adaptive indistinguishability-security. For the security of
FPFE, FAS and RFE see Section 2. FPRFE denotes a RFE scheme with a standard form of function
privacy for deterministic circuits (see Section 5) and FPRMIFE denotes a FPRFE scheme that is in
addition multi-inputs.
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A. Security of FE

The indistinguishability-based notion of security for functional encryption scheme
FE = (Setup,KGen,Enc,Eval) for functionality F defined over (K,M) is formalized by means
of the following game INDFE

A between an adversary A = (A0,A1) and a challenger C. Below, we
present the definition for only one message; it is easy to see the definition extends naturally for
multiple messages.

INDFE
A (1λ)

1. C generates (Pk,Msk)← Setup(1λ) and runs A0 on input Pk;

2. A0 submits queries for keys ki ∈ K for i = 1, . . . , q1 and, for each such query, C
computes Toki = KGen(Msk, ki) and sends it to A0.
WhenA0 stops, it outputs two challenge plaintexts m0,m1 ∈M satisfying |m0| =
|m1| and its internal state st.

3. C picks b ∈ {0, 1} at random, computes the challenge ciphertext Ct = Enc(Pk,mb)
and sends Ct to A1 that resumes its computation from state st.

4. A1 submits queries for keys ki ∈ K for i = q1 + 1, . . . , q and, for each such query,
C computes Toki = KGen(Msk, ki) and sends it to A1.

5. When A1 stops, it outputs b′.

6. Output: if b = b′, m0 and m1 are of the same length, and F (ki,m0) = F (ki,m1)
for i = 1 . . . , q, then output 1 else output 0.

The advantage of adversary A in the above game is defined as

AdvFE,INDA (1λ) = |Prob[INDFE
A (1λ) = 1]− 1/2|.

Definition A.1. We say that FE is indistinguishably secure (IND-Ssecure, for short) if all non-
uniform families of PPT adversariesA = {Aλ}λ∈N have at most negligible advantage in the above
game.
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A. Figure

VGB siO quasi-siO iO

FEMIFE

FPRMIFE

FPFE sel-MIFE

FPABE

FAS

FPRFE RFE

sel-FPRMIFE
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[26]
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Fig. 2. Relations among primitives studied or discussed in this paper (except for the implication
of Section 1.4): A line with arrow from A to B denotes that it is possible to build B from A and lines
are annotated with the work where the implication first appeared, or unlabeled if such implication is
discussed in this paper. A line from A to B with arrows at both ends denotes that it is possible to build
A from B and vice-versa. A dashed line denotes a trivial implication. Two lines coming respectively
from A and B with arrow directed in a circled black box with an outgoing line with arrow directed
to box C means that it is possible to build C assuming both A and B (e.g., FPRFE and MIFE imply
FPRMIFE). For FE and MIFE we assume adaptive indistinguishability-security. For the security of
FPFE, FAS and RFE see Section 2. FPRFE denotes a RFE scheme with a standard form of function
privacy for deterministic circuits (see Section 5) and FPRMIFE denotes a FPRFE scheme that is in
addition multi-inputs.
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B. Proofs and security reductions

In this section we include the proofs that we did not include in the main body.

B.1. Adaptively-secure function-private IPE → adaptively-secure DNFEnc

Now we prove that an adaptively-secure function-private IPE implies an adaptively-secure DNFEnc
(see Section 1.4).
Proof: For simplicity we will consider only a single conjunction and one token query. At the end

we show how to remove such restrictions. Hereafter, we also assume that the reader be familiar
with the Katz et al.’s transformation presented in Section 1.4.

Observe that the reduction from IPE to DNFEnc fails only in the case that the adversary for the
IND-Security against the DNFEnc scheme is able to output as challenge a pair of values (x1, x2)
such that ANDI1,I2(x1, x2) = 0 but p(x1, x2) = 0. Thus, we have to show that for any PPT ad-
versary the probability that this event occur is negligible in the security parameter. Towards a
contradiction we suppose that there exist an adversary A that during the IND-Security experiment
against the DNFEnc scheme is able to output a challenge with such values x1 and x2 with some
non-negligible probability α(n) (for simplicity hereafter we do not explicitly mention the payload
messages).
Assume that for any value of the security parameter n our DNFEnc scheme is parameterized by
a prime pn of length n that induces the field Zpn over which the variables are defined. Given a

conjunction φ 4
= ANDI1,I2 we call pφ,r the corresponding polynomial that uses randomness r as

specified in Section 1.4 (recall that here for simplicity we restrict the analysis to formulae consist-
ing of a single conjunction) and we callCφ,r the circuit that evaluates the predicateCφ,r(x1, x2) = 1
if and only if pφ,r(x1, x2) = 0.
Given a conjunction φ consider the pair of ensembles of distributions D0 and D1 such that for each
value of the security parameter n, D0,n outputs C0

φ,r for a randomly chosen element r in Zpn and
D1,n outputs C1

φ,r for an element r chosen such that its first n bits are set to 0 and the remaining
are randomly selected.
It is easy to see that D0 and D1 are a pair of feasible entropy distributions (and in addition they
are efficiently samplable). In fact, on any input (x1, x2) such that ANDI1,I2(x1, x2) = 1 the two
circuits output by the two distributions give the same answer (i.e., 1) and the adversary can find an
input (x1, x2) such that ANDI1,I2(x1, x2) = 0 but C0(x1, x2) = 1 with probability at most 2−n · q,
where q(·) is the number of oracle queries, and such that ANDI1,I2(x1, x2) = 0 but C1(x1, x2) = 1
with probability at most 2−n/2 · q; thus any adversary with a polynomial number of queries can
have only negligible advantage in distinguishing oracle access to the two distribution ensembles.

Now observe that the INDFP-Security guarantees that no PPT adversary can tell apart a token for
the circuit C0 from a token for the circuit C1. So, we construct an adversary B against the INDFP-
Security of DNFEnc that makes use of the adversary A against its IND-Security. B simulates the
environment to B receiving from its challenger either a token for C0

φ,r chosen by D0 or a token for
C1
φ,r chosen by D1. WhenA outputs its challenge (x1, x2), B checks 1) that the token evaluates on

a ciphertext for this challenge to 1 (thus implying, by the correctness of the polynomial evaluation
scheme, that pφ,r(x1, x2) = 0), 2) ANDI1,I2(x1, x2) = 0 and if both checks are verified B computes

r′
4
= −(x2−I2)/(x1−I1) (notice that if condition 1) and 2) are satisfied then it cannot be x1 = I1)

and finally output 0 (indicating a guess for the circuit C0) if and only if the first n/2 bits of p are

19



different from 0; if one of the previous checks is not satisfies B outputs 1 (indicating a guess for
the circuit C1).

If the circuit was chosen from D0 then B outputs 0 with probability at least α(n), up to a negligible
factor, whereas if the circuit was chosen from D1 then B outputs 0 with probability 0. Therefore,
B can win in the INDFP-Security game against DNFEnc, a contradiction.
For the general case of DNF formulae (instead of formulae consisting of a single conjunction)
observe that a DNF formula, when implemented with the Katz et al.’s transformation consists in a
product of polynomial pφ,r’s (see Section 1.4) in which each term uses different randomness (also
recall that there is no randomness introduced for the disjunctions). Thus the general case for DNF
formulae follows by a standard hybrid argument. The general case for multiple token queries can
be handled by a standard hybrid argument as well.

B.2. Proof of Theorem 3.3

Proof: Suppose that there exists a legitimate function privacy adversaries A = {An}n∈N breaking
the INDFP-Security of FPFE[qsiO,FE]. Specifically, suppose that there exists a non-negligible
function p(·) such that for any n ∈ N, An wins in the INDFP-Security parameterized by n with
advantage ≥ p(n).
Thus, by an averaging argument, for any n ∈ N there exist two distributions D0,n and D1,n and
random strings r1, r2 ∈ {0, 1}? (to be defined later) such that in the the security experiment (for
parameter n) executed with random strings r1, r2,An outputs such distributions as challenge distri-
butions with non-zero probability and under the occurrence of such event An has advantage p(n).
Precisely, r1 is used to compute the public-key and the master secret-key with which the token
queries can be answered (w.l.o.g., we can assume that KGen is deterministic) and r2 is used to run
the adversary until the challenge query (that is, after the challenge query other randomness will be
used and r1 and r2 determine the behavior of An until that point but not after.7).
Then, from the fact that A is a legitimate function privacy adversary it follows that the ensembles
D0 = {D0,n}n∈N andD1 = {D1,n}n∈N are a pair of ensembles of feasible entropy distributions and
thus it is straightforward to construct a family of non-uniform distinguishers D = {Dn} breaking
the security of qsiO as follows. Specifically, Dn has embedded the random strings r1, r2 (that have
size polynomial in n) and takes as input the obfuscated circuit C ′ that is a computed as qsiO(C)
where the circuit C is drawn from either D0,n or D1,n. Dn runs the setup of FE with security pa-
rameter n and randomness r1 to get the public-key Mpk and master secret-key Msk of FE.
Then, Dn runs An with randomness r2 on input Mpk and answers the An’s queries using Msk.
Then, by construction of r1 and r2, An outputs as challenge distributions D0,n and D1,n. Dn an-
swers the challenge query returning to An the token FE.KGen(Msk, C ′) and then continues the
execution of An as before. At the end Dn outputs what An outputs.
It is easy to see that the advantage of Dn in distinguishing whether the input was an obfuscation
of a circuit drawn from D0,n or D1,n is p(n) (note here that the probability is also taken over the
choices of the randomness used to compute C ′ that is not known to Dn). Then, we conclude that

7Recall that there are two ways to define probabilistic algorithms. One is to feed them with a random string, and one is to give them access to an
oracle that returns random bits. Here we can adopt the latter convention and in this case we mean that the oracle uses the bits of r2 to answer the
queries until the challenge phase, and after that the oracle returns uniformly and independently chosen bits. Furthermore, note that r2 is not used to
answer the challenge query: indeed, as it will be specified later, the randomness used to answer it is chosen by the challenger of quasi-siO and thus
it will be not known to the distinguisher
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D along with the ensembles of distributions D0 = {D0,n}n∈N and D1 = {D1,n}n∈N contradicts the
security of qsiO.

B.3. Proof of Theorem 4.3

PROOF SKETCH. The proof is almost identical to that of theorem 3.3, thus we omit full details.
Suppose that there exists a family of non-uniform PPT adversaries A = {An}n∈N breaking the
anonymity of FAS[FPABE]. Then, it is easy to construct a family of non-uniform PPT adversaries
B = {Bn}n∈N breaking the security of FPABE. Being A a legitimate FAS adversary, we can
construct Bn identical to the distinguisherDn in the proof of theorem 3.3 except in the way that Bn
has to simulates the view to A and construct the challenge. This is also straightforward. Then, we
conclude that B contradicts the security of qsiO. 2
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