
JMLR: Workshop and Conference Proceedings 57:69–72, 2016 Proceedings of the 13th ICGI

Learning Deterministic Finite Automata from Infinite
Alphabets

Gaetano Pellegrino g.pellegrino@tudelft.nl
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4, 2628 CD, Delft, The Netherlands

Christian Albert Hammerschmidt christian.hammerschmidt@uni.lu
Interdisciplinary Institute for Security, Reliability, and Trust
University of Luxembourg
Rue Alphonse Weicker 4, L-2127, Luxembourg

Qin Lin q.lin@tudelft.nl
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4, 2628 CD, Delft, The Netherlands

Sicco Verwer s.e.verwer@tudelft.nl

Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology

Mekelweg 4, 2628 CD, Delft, The Netherlands

Abstract

We proposes an algorithm to learn automata infinite alphabets, or at least too large to
enumerate. We apply it to define a generic model intended for regression, with transitions
constrained by intervals over the alphabet. The algorithm is based on the Red & Blue
framework for learning from an input sample. We show two small case studies where the
alphabets are respectively the natural and real numbers, and show how nice properties of
automata models like interpretability and graphical representation transfer to regression
where typical models are hard to interpret.

Keywords: Passive Learning, Deterministic Finite Automata, Regression

1. Introduction

Automata have been studied in depth, e.g. in ? (?), and successfully applied in a wide
range of fields, ranging from biology over linguistics to computer science itself. Especially
in the field of software specification and verification, these models are appreciated for their
balance between expressive power and decidability of model and language class properties.
In reverse, inferring an automaton from observations of software interactions, is an impor-
tant step when analyzing and reverse engineering software and protocols, e.g. ? (?), ?.
Here, the benefit of automata are easy to interpret and graphically representable models.
Because most work on learning these models has been done under the assumption of small
alphabet sizes, it is hard to transfer the nice properties to situations where the alphabet is
large, or even uncountable. In this work, our goal is to provide a general method to infer

c© 2016 G. Pellegrino, C.A. Hammerschmidt, Q. Lin & S. Verwer.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/78370424?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Pellegrino Hammerschmidt Lin Verwer

automaton models on infinite totally ordered alphabets, meant for the task of regression.
Many regression methods, like ARIMA (?, ?) and neural LSTM models (?, ?), don’t offer
a good way of interpreting and understanding the learned model. We propose a bottom-up
approach to learn finite automata from infinite alphabets and apply to deterministic finite
automata intended for regression: each transition is constrained by intervals over the infi-
nite alphabet. For this reason we call then Deterministic Regression Automata with Guards
(RAGs).

Finite automata with potentially infinite alphabets have been studied in theory, e.g.
in ? (?), ?, and shown to be conservative extensions. Often, automata are also extended
with additional memory such as registers or variables ?, ? (?). Learning these variants
of automata from input samples has not been researched frequently. In the context of
alphabet refinement, ? (?) permits infinite alphabets and uses an active learning approach
to learn automata. ? (?) proposes a modified Angluin’s L* algorithm to learn from large
alphabets. The method is top-down: Initially, the largest possible label is taken for each
transition. Upon queries to the oracle, a label can be partitioned. Partitions of the infinite
alphabet are used to label the transitions in the final automaton. For state-merging learning
approaches, ?, ? (?), propose a clustering-based algorithm to infer real-time automata on
multivariate timed events, where the events may contain real-valued components. The data
is used to cluster states globally in a merge step, without evaluating the equivalence of
future continuations of the states.

A very close related work is ?, where regression automata without guards are learned
for predicting wind speed data, overcoming the limitless of the alphabet by translating it
in a bounded symbolic domain.

The rest of the paper is organized as follows. In Section 2 we provide basic notation and
definitions, furthermore we introduce Regression Automata with Guards. In Section 3 we
describe our algorithm for learning RAGs from a data sample, and we show how it works
in two case studies. In Section ?? we conclude by a discussion about the current and future
work.

2. Deterministic Regression Automata with Guards

This section uses basic notation from grammar inference theory, for an introduction we refer
to ?. In several contexts, i.e. time series forecasting, data are sequences of points made
over a continuous time interval, out of consecutive and equally spaced measurements. We
model such data with sequences of symbols taken from a given totally ordered alphabet
Σ, where the time is indirectly represented by the position within the sequence. This
is sufficient because in practice we always deal with a finite precision of time intervals,
e.g. milliseconds, minutes, hours. In this paper we introduce a new type of finite state
automaton exclusively meant for dealing with large or infinite alphabets. In Regression
Automata with Guards (RAGs), every transition is decorated with constraint guards. We
represent a constraint guard by a closed interval in Σ, and we say that [l, r] is satisfied by
a symbol s ∈ Σ if s ∈ [l, r]. A RAG is defined as follows:

Definition 1 (RAG) A Regression Automaton with Guards (RAG) is a 5-tuple 〈Σ, Q, q0,
∆, P 〉 where Σ is the alphabet, Q is a finite set of states, q0 ∈ Q is the start state, ∆ is a

70

Learning Deterministic Finite Automata from Infinite Alphabets

finite set of transitions, and P : Q → Σ is a prediction function that assigns a prediction
value to every state in Q. A transition δ ∈ ∆ is a triple 〈q, q′, [l, r]〉 where q, q′ ∈ Q are
respectively the source and target states, and [l, r], l, r ∈ Σ, is a guard.

We will also use functional notation for transitions, so for q ∈ Q and s ∈ Σ, δ(q, s) = q′ ∈
Q iff ∃ 〈q, q′, [l, r]〉 ∈ ∆ s.t. s ∈ [l, r]. We only focus on deterministic regression automata
because of the complexity of learning non-deterministic automata (?). A RAG is called
deterministic if it does not contain two transitions with the same source state and any
overlap between the guards. In a RAG, a state transition is possible only if its constraint
guard is satisfied by a coming value. Hence a transition δ = 〈q, q′, [l, r]〉 is interpreted as
follows: whenever the automaton is in state q, by reading an incoming value v such that
v ∈ [l, r], then the automaton changes state moving to q′.

In order to define a computation of a RAG, we introduce the notion of closest transition:

Definition 2 (closest transition) The closest transition for a given state q ∈ Q of a
RAG A = 〈Σ, Q, q0,∆, P 〉, and given a symbol s ∈ Σ, is the transition πq(s) such that:

πq(s) =



〈q, q0, [s, s]〉 if @ 〈q, q′, [l, r]〉 ∈ ∆

〈q, q′, [l, r]〉 if ∃ 〈q, q′, [l, r]〉 ∈ ∆ s.t. s ∈ [l, r]

〈q, q′, [l, r]〉 if ∃! 〈q, q′, [l, r]〉 ∈ ∆ s.t. s < l or s > r

argmin
δleft,δright∈∆

{|s− rleft|, |s− lright|} otherwise.

The first branch defines a default transition to the start state when no transitions are
available in q. The second branch defines the closest transition as the only one, if exists,
that contains s. Since we are restricting to deterministic RAGs, at most one transition
which includes the value can be present in ∆. The third branch addresses the special case
when there exists only one transition in ∆, with initial state q, and it does not contain s.
The last branch occurs when the value is located in between two consecutive transitions
(δleft =

〈
q, q′left, [lleft, rleft]

〉
and δright =

〈
q, q′right, [lright, rright]

〉
). In this case the one

with the closest edge is chosen.
The behavior of a RAG is defined by its computation:

Definition 3 (RAG computation) A finite computation of a RAG A = 〈Σ, Q, q0,∆, P 〉
over a finite sequence of symbols s = s1, s2, . . . , sn is a finite sequence

q0
s1→ q1

s2→ q2, . . . , qn−1
sn→ qn

such that for all 1 ≤ i ≤ n 〈qi−1, q
′
i, [li, ri]〉 = πqi−1(si). It is also called close-computation.

Let S ⊆ Σ+ denote a sample of non-empty sequences with symbols in Σ. We call
SUFF (S) ⊆ Σ+ the set of all non-empty suffixes of sequences in S. Hereby we introduce
the notion of future continuations set of a state q, as the set of all suffixes of a sample
inducing a computation in A that starts with q:

71

Pellegrino Hammerschmidt Lin Verwer

Definition 4 (future continuations set) The future set for a state q ∈ Q of a RAG
A = 〈Σ, Q, q0,∆, P 〉, given a sample S ⊆ Σ+, is the set φA,S(q) = {s = s1, s2, . . . , sn ∈
SUFF (S) | ∃q1, q2, . . . , qn ∈ Q+, q0 = q, and δ(qi−1, si) = qi, i = 1, 2, . . . , n}. φA(q) de-
notes the future continuations set of state q given the sample used for learning A.

We also introduce the notion of transition centroid given a sample as the mean of all
values of the sequences, included in the sample, that get caught by this transition:

Definition 5 (transition centroid) The centroid of a transition δ = 〈q, q′, [l, r]〉 of a

RAG A, given a sample S ⊆ Σ+, is µS(δ) =

∑
s∈φA,S(q)∧I(s)=1 s∑

s∈φA,S
I(s) , where I(s) =

{
1 if |s| = 1,

0 otherwise.

When clear from the context, we will omit the sample subscript from the transition centroid.

0

2

[0, 4]

1

15

[10, 20]

Figure 1: An example of a RAG. The leftmost state is the start state. Every state transition
contains a guard. Missing transitions lead to the start state. Every state contains an
identification number (above) and a prediction value (below).

Example 1 Figure 1 shows an example of RAG. This RAG computes sequences of real
values. For instance, given the sequence 0.88, 15.07, it crosses the states 0, 0, 1. Given the
sequence 0.88, 9.05 the RAG crosses the states 0, 0, 1 because in state 0 the closest transition
to value 9.05 leads to state 1.

3. Learning Regression Automata with Guards

The problem of learning RAGs is a specialization of the more general problem of learning
deterministic finite state automata (DFAs), with the additional task of learning guards
over transitions. Unfortunately identifying transition guards is already an NP-Complete
problem, as demonstrated in ? (?) for time guards in real time automata. In addition, the
more general problem of learning DFAs is again NP-Complete, as proved in ?. Hence we
will not be able to solve this task efficiently unless P = NP. However, we can still design an
efficient algorithm that learns both the structure and the guards and converge to the correct
underlying RAG when more and more data are provided, in the limit. It has been done for
deterministic finite state automata with RPNI algorithm (?), and for real time automata
with RTI algorithm (?, ?). For real time automata there exists a polynomial time algorithm,
able to identify time guards over transitions and structure of the automaton in the same
way, such that it converges in the limit to the correct target.

72

Learning Deterministic Finite Automata from Infinite Alphabets

Algorithm 1 Regression Automata Identifier (RAI)

Data: a sample S of real value sequences, a threshold τ
A := BUILD-PT(S) ; // construct the prefix tree

RED := ∅ ; // core set of red states

BLUE := ∅ ; // fringe of blue states

// make the root of the prefix tree red

PROMOTE(PROMOTE(A, RED,BLUE, q0, τ)) while BLUE 6= ∅ do
CHOOSE(qb ∈ BLUE) ; // select the best red/blue merge

; // if qb and qr are compatible

if ∃qr ∈ RED | COMPATIBLE(A, qr, qb, τ) then
MERGE(A, qr, qb) ; // perform the merge

else
. if no compatible merges are available for qb PROMOTE(A, RED,BLUE, qb, τ) .
make qb red

return A

73

	Introduction
	Deterministic Regression Automata with Guards
	Learning Regression Automata with Guards

