
JMLR: Workshop and Conference Proceedings 1:1–6, 2016 preprint version

Flexible State-Merging for Learning (P)DFAs in Python

Christian Hammerschmidt firstname.lastname@uni.lu
Benjamin Loos lastname.firstname@gmail.com
Radu State firstname.lastname@uni.lu
Thomas Engel firstname.lastname@uni.lu
Interdisciplinary Centre for Security, Reliability and Trust
4ue Alphonse Weicker, L-2721, Luxembourg

Sicco Verwer s.e.verwer@tudelft.nl

TU Delft, Mekelweg 4, 2628 CD, Delft, The Netherlands

Abstract

We present a Python package for learning (non-)probabilistic deterministic finite state
automata and provide heuristics in the red-blue framework. As our package is built along
the API of the popular scikit-learn package, it is easy to use and new learning methods
are easy to add. It provides PDFA learning as an additional tool for sequence prediction
or classification to data scientists, without the need to understand the algorithm itself but
rather the limitations of PDFA as a model. With applications of automata learning in
diverse fields such as network traffic analysis, software engineering and biology, a stratified
package opens opportunities for practitioners.

Keywords: machine learning, grammar inference, automaton learning, PDFA inference

1. Introduction

Automata models are highly relevant in computer science: State-based models are frequently
used to specify protocols and software behavior prior to implementation. In these cases,
while not providing the same degree of generality as function approximating models such as
neural networks, automaton inference allows to recover a model similar to the specification
and offers advantages as an interpretable white box model. With the growth of data science
as a discipline of applied machine learning, a large software ecosystem ranging from big data
frameworks like Hadoop and Spark1 to machine learning libraries like scikit-learn and
weka2 was created. It contributes to an implicit standardization and enables practitioners
to leverage a wide range of algorithms without the need to re-implement or understand
the details of algorithms. Unfortunately, very few frameworks provide tools for automaton
inference. scikit-learn for instance removed their HMM inference algorithms from the
core package3. Other libraries to learn automata are not well-integrated in today’s data
science landscape. For a review of other libraries, see Cottone et al.. Our goals are therefore
twofold. We want to commoditize automaton learning and provide easy-to-use algorithms
to a wide audience. Moreover, we want to enable reproducible research by providing a

1. http://hadoop.apache.org/ and http://spark.apache.org/

2. Pedregosa et al. (2011), http://scikit-learn.org/ and http://www.cs.waikato.ac.nz/ml/weka/

3. http://scikit-learn.org/stable/faq.html#adding-graphical-models

c© 2016 C. Hammerschmidt, B. Loos, R. State, T. Engel & S. Verwer.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/78370422?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hadoop.apache.org/
http://spark.apache.org/
http://scikit-learn.org/
http://www.cs.waikato.ac.nz/ml/weka/
http://scikit-learn.org/stable/faq.html#adding-graphical-models

Hammerschmidt Loos State Engel Verwer

package to not only share code, but also results and work flows. We chose Python, which
has seamless integration with Jupyter notebooks4.

2. Flexible State-Merging in dfasat

In PDFA learning using a state-merging approach, see e.g. Verwer et al. (2014), a set S+ of
observed behaviors encoded as words over an alphabet Σ called the input sample is given.
The goal is to find a (non-unique) smallest probabilistic deterministic finite state automaton
(PDFA) A that is consistent with S+. A PDFA is considered consistent with S+ if it satisfies
a type of Markov property, i.e., for every prefix s from S+ that reaches the same state q in
A, the sample probabilities of future suffixes P (s′ | s) = count(ss′)/count(s) of the states
are not significantly different. The size of a PDFA is measured by its number of states.
Although they are similar, there is an important difference between hidden Markov models
(HMMs) and PDFAs, namely that PDFAs are deterministic: For any state, there can be at
most one transition for every possible input symbol. This adds a degree of interpretability
(a simple state representation), and perhaps improved learnability (in theory, but debatable
in practice Verwer et al. (2014)), at the cost of representational power Dupont et al. (2005).

One of the most popular algorithms has for a long time been ALERGIA Carrasco and
Oncina (1994), or one of its variants such as MDI Thollard et al.. They are implemen-
tations of the basic state merging method, which is also a popular method for learning
non-probabilistic automata. The starting point for state merging algorithms is the con-
struction of a tree-shaped PDFA A from the input sample S+. This is called augmented
prefix tree acceptor (APTA) and contains all samples from S+ in a directed graph, using
the symbols of the samples in S+ as labels for the edges. Two samples from S+ share a
path if they share a prefix. The state merging algorithm reduces the size of the automaton
iteratively by reducing the tree through merging pairs of states in A, and forcing the result
to be deterministic. Merges generalize the model beyond the samples from the training set.
The key difference between the different state-merging approaches is the heuristic used to
decide which pairs are best to merge, and the consistency test used to decide whether a
merge is valid. ALERGIA Carrasco and Oncina (1994) performs merges unless a statistical
test based on the Hoeffding bound suggests that the Markov property is violated. In the
MDI algorithm this test is replaced by a function that computes the Kullback-Leibler (KL)
divergence between the merged model and the original input sample. Other ALERGIA
variants such as Young-Lai and Tompa (2000); Carrasco et al. (2001); Verwer et al. (2010)
differ in the type of test performed, some learning other types of automata than PDFA.

dfasat Heule and Verwer (2013) is another state-merging style algorithm for learning
non-probabilistic automata. In addition to greedy state merging, it uses SAT-solvers (see,
e.g., Biere et al. (2009)) to solve the learning problem exactly. It uses a variant of the pop-
ular evidence-driven state-merging algorithm (EDSM) using the red-blue framework Lang
(1998), but with a different (overlap driven) merge heuristic. By maintaining a core of
already identified merged states, the red-blue framework reduces the number of candidate
merges to check. Since this heuristic uses only information from the positive sample S+,
it can be used for learning probabilistic automata. We are currently extending the dfasat

framework to be flexible in the used heuristic and consistency test such that it is possible to

4. http://jupyter.org/

2

http://jupyter.org/

Flexible State-Merging for learning (P)DFAs in Python

implement new heuristics with very little effort: consistency tests only requires adding a sin-
gle C++ file to the framework, inheriting essential functionality from base classes provided
by us. We provide ALERGIA, MDI, the likelihood-ratio test from RTI+, EDSM, a learner
for Mealy machines, and regression automata for time-series with the framework, making
use of the same efficient union/find data structures and the exact solution via satisfiability.

3. Scikit-learn and dfasat-python

Model learners in scikit-learn are encapsulated in estimator objects. After instantiating
a learner and initializing the object, its fit method can be called to train on data and labels
passed to it, and predict can be called on new data to obtain predictions. This flow is
consistent across a wide range of different learners, and allows the user to exchange the
type of learner with minimal changes to their application. The following listing compares
a SVM with our PDFA learner.

from sk l e a rn import svm
ge t t r a i n i n g samples and l a b e l s
X samples , Y l abe l s = get data ()
i n i t i a l i z e c l a s s i f i e r
c l f = svm .SVC(gamma=0.001 ,

C=100)

learn and p r e d i c t
c l f . f i t (X samples , Y l abe l s)
c l f . p r ed i c t (sequence)

from d fa sa t import DFASATEstimator
ge t t r a i n i n g samples and l a b e l s
X samples , Y l abe l s = get data ()
i n i t i a l i z e c l a s s i f i e r
e s t imator = DFASATEstimator (

hName=” a l e r g i a ” ,
hData=” a l e r g i a d a t a ” ,
t r i e s =1, s t a t e coun t =25)

learn and p r e d i c t
e s t imator . f i t (X samples , Y l abe l s)
e s t imator . p r ed i c t (sequence)

Similarly, a bagging classifier takes an estimator class and its parameters, and returns
and object to call fit and predict on. Currently, we average all estimator predictions.

bag = Bagg i n gC l a s s i f i e r (e s t imator=DFASATEstimator , number=50, random seed=
True , random counts =[5 , 15 , 2 5] , . . .)

f i t = bag . f i t (t r a in da ta x , t r a in da ta y , subset=True)

A core goal of the package development was minimal interference with the existing code-
base and ideally an encapsulation that is totally transparent to the developers modifying
the underlying C++ code of dfasat. Using boost.python5, we exposed the key classes to
Python and wrote the estimator objects as wrappers.

4. Participation in SPiCE and Results

We used the competition to test our package. The goals were to identify what is needed for a
good user experience during fast model iteration and learning ensembles. The assumed user
can understand and interpret PDFA model performance, but has only little knowledge of
state-merging algorithm and its heuristics. We assume that all problem sets were generated
by a PDFA model. During the competition, we primarily focused on a modified ALERGIA
implementation as outlined in Appendix B. We later on also tried likelihood and overlap
heuristics provided by dfasat, but due to time constraints did not follow up on their
performance. For each problem set we first ran one instance of the heuristic with default
parameters. Table 2 in the appendix shows the results. For problems where we obtained

5. http://www.boost.org/doc/libs/1_61_0/libs/python/doc/html/index.html

3

http://www.boost.org/doc/libs/1_61_0/libs/python/doc/html/index.html

Hammerschmidt Loos State Engel Verwer

competitive scores with fast run-time (0, 5, 6, 9, 14) we ran a bagging classifier with 50 and
100 instances using dfasat’s random greedy merge strategy. For all other problems we
submitted the baseline, but to smooth the models, we each trained an ensemble on random
subsets. We did not customize the merge heuristic nor did we do a deeper analysis of the
parameters of the algorithm used. We first used default parameters, and then increased
and decreased the values for the state count, transition count, and extra parameter.

5. Conclusion and Outlook

Our dfasat-python package can be used for fast model iteration within Jupyter note-
books for easy collaboration and sharing of code and work flows. We are working on
integrating custom merge heuristics written in Python. This is possible using the same
boost.python library we used to expose the C++ objects. Once this feature is integrated,
our package can be used for fast prototyping and development of custom merge heuristics.

Acknowledgments

This work was partially funded by the FNR AFR-PPP grant PAULINE, and STW VENI
project 13136 MANTA and NWO project 62001628 LEMMA.

References

A. Biere, M. J. H. Heule, H. van Maaren, and T. Walsh. Handbook of satisfiability: Volume 185
frontiers in artificial intelligence and applications, 2009.

R. Carrasco and J. Oncina. Learning stochastic regular grammars by means of a state merging
method. pages 139–152. Springer-Verlag, 1994.

R. C. Carrasco, J. Oncina, and J. Calera-Rubio. Stochastic inference of regular tree languages.
Machine Learning, 44(1):185–197, 2001.

P Cottone, M Ortolani, and G Pergola. Gi-learning: An optimized framework for grammatical
inference.

P. Dupont, F. Denis, and Y. Esposito. Links between probabilistic automata and hidden markov
models: Probability distributions, learning models and induction algorithms. Pattern Recogn., 38
(9):1349–1371, September 2005.

M. JH Heule and S. Verwer. Software model synthesis using satisfiability solvers. Empirical Software
Engineering, 18(4):825–856, 2013.

et al. Lang, K. J. Results of the abbadingo one dfa learning competition and a new evidence-driven
state merging algorithm. In Proceedings of the 4th International Colloquium on Grammatical
Inference, ICGI ’98, pages 1–12, London, UK, UK, 1998. Springer-Verlag.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research, 12:2825–2830, 2011.

F. Thollard, P. Dupont, C. de la Higuera, et al. Probabilistic dfa inference using kullback-leibler
divergence and minimality.

S. Verwer, M. de Weerdt, and C. Witteveen. A Likelihood-Ratio Test for Identifying Probabilistic
Deterministic Real-Time Automata from Positive Data. Springer Berlin Heidelberg, 2010.

S. Verwer, R. Eyraud, and C. De La Higuera. Pautomac: a probabilistic automata and hidden
markov models learning competition. Machine learning, 96(1-2):129–154, 2014.

M. Young-Lai and F. Tompa. Stochastic grammatical inference of text database structure. Machine
Learning, 40(2):111–137, 2000.

4

Flexible State-Merging for learning (P)DFAs in Python

Appendix A. Installing the Package

We are currently preparing the package for publication by adding extensive documentation
and suitable class- and integration tests. The package is already available for installation
via pip from the testing server. The source code of the package is be available in the python
branch of the dfasat repository. The following listing has the install instructions to build
dfasat and the Python interface from scratch. It has been tested thoroughly in Ubuntu
systems.

I n s t a l l dependenc ies
sudo apt−get i n s t a l l mercur ia l python−v i r tua l env
sudo apt−get i n s t a l l l i b a t l a s −base−dev g f o r t r an l i b b l a s−dev l i b g s l 0−dev

castxml l ibpopt−dev l i b l apack−dev l i bboo s t−python−dev python3−dev

(Optional) Create and a c t i v a t e a python3 v i r tua l env to conta in the p r o j e c t
v i r tua l env t e s t −p python3
cd t e s t
. bin / a c t i v a t e

I n s t a l l py++
hg c lone https : // b i tbucket . org /ompl/ pyp lusp lus
cd pyplusp lus
python3 setup . py i n s t a l l
cd . .
rm −r f pyp lusp lus

I n s t a l l pygccxml
g i t c l one https : // github . com/gccxml/pygccxml . g i t
cd pygccxml
python3 setup . py i n s t a l l
cd . .
rm −r f pygccxml

I n s t a l l more dependenc ies
pip3 i n s t a l l numpy sc ipy

Compile and i n s t a l l d f a sa t
This s tep needs more than 2GB RAM
pip3 i n s t a l l −−extra−index−u r l https : // t e s tpyp i . python . org /pypi d f a sa t

Appendix B. A Modified ALERGIA

For the SPiCE competition, we made several modifications to the basic ALERGIA algo-
rithm. Firstly, by default, ALERGIA attempts merges in a fixed (e.g., lexicographical or
shallow-first) order. This makes is easier to prove theoretical guarantees such as identifi-
cation in the limit Carrasco and Oncina (1994), but in our opinion makes little sense in
practice. It is much more natural to order the merges based on the amount of available
information, or on a merge heuristic such as in EDSM Lang (1998). In our current version of
ALERGIA, we try all possible merges (in a red-blue fashion) and simply count the number
of merges performed as a heuristic, which is used in the dfasat randomized greedy search
strategy, see Heule and Verwer (2013). A second modification we made is a new way of
dealing with low frequency symbols. In ALERGIA, the Hoeffding bound test is performed

5

Hammerschmidt Loos State Engel Verwer

symbol a b c d e f g h

count state 1 2 2 2 2 0 0 0 0
count state 2 0 0 0 0 2 2 2 2

Table 1: Two states that should be identified and treated differently.

iteratively on all symbol counts. When these counts are very small, this test will succeed
for all symbols, also for instance, when the data on symbols a − h are distributed in the
following way: In state 1. a, b, c, d have counts of 2 and e, f , g, h occur 0 times. In
state 2, the groups are switched, i.e. a, b, c, d don’t occur and e, f , g, h each occur twice.
Table 1 summarizes the situation. The two states are clearly different, but the individual
symbol distributions (0 vs. 2 counts) all provide insufficient data to draw this conclusion.
A standard method to deal with low frequencies is to pool (bin) then together and treat
them as one single symbol. In this case, this will give a pool with a count of 8 in both
states, again no indication that the two states are different. Our idea of dealing with this
problem is to bin these counts instead into 2 symbols: one where the counts in state 1 are
smaller than those in state 2, and one where the counts in state 2 are smaller than those in
state 1. We then apply the Hoeffding bound unmodified to the two pools.6

Appendix C. Score Overview

Set ALERGIA 3-gram spectral likelihood overlap Submitted Score Rank Best

1 0.841 0.843 0.874 0.841 0.841 spectral 0.879 4 0.918
2 0.823 0.818 0.872 0.799 0.768 spectral 0.874 5 0.920
3 0.778 0.776 0.828 0.790 0.722 spectral 0.825 7 0.886
4 0.370 0.538 0.470 0.400 0.439 3-gram 0.528 5 0.608
5 0.551 0.527 0.361 / / ALERGIA 0.555 8 0.810
6 0.650 0.675 0.631 0.531 0.597 ALERGIA50 0.724 7 0.860
7 0.337 0.442 0.367 / / 3-gram 0.440 7 0.785
8 0.512 0.591 0.535 0.494 0.507 3-gram 0.597 4 0.657
9 0.929 0.859 0.818 0.867 0.847 ALERGIA50 0.948 2 0.963
10 0.284 0.413 0.302 / / 3-gram 0.396 7 0.552
11 0.301 0.389 0.379 / / 3-gram 0.372 9 0.544
12 0.654 0.700 0.575 / / 3-gram 0.699 7 0.811
13 0.299 0.436 0.372 / / 4-gram 0.455 4 0.588
14 0.306 0.339 0.359 0.399 0.326 ALERGIA100 0.379 7 0.465
15 0.265 0.251 0.221 / / spectral 0.279 5 0.298

Table 2: Individual scores for different heuristics, and the final submission score. A slash
/ indicates that the run-time was too long for us. The index number indicates
the number of instances in the ensemble using dfasat’s random greedy method
on randomly chosen 2/3 of the training words.

6. Obviously, this test will fail more often than it should due to the biased binning strategy, we are still
working on the mathematics needed to correct for this bias.

6

	Introduction
	Flexible State-Merging in dfasat
	Scikit-learn and dfasat-python
	Participation in SPiCE and Results
	Conclusion and Outlook
	Installing the Package
	A Modified ALERGIA
	Score Overview

