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Purpose: The pathophysiological basis of major depression is incompletely understood. Re-
cently, numerous proteomic studies have been performed in rodent models of depression
to investigate the molecular underpinnings of depressive-like behaviours with an unbiased
approach. The objective of the study is to integrate the results of these proteomic studies in
depression models to shed light on the most relevant molecular pathways involved in the
disease.
Experimental design: Network analysis is performed integrating preexisting proteomic data
from rodent models of depression. The IntAct mouse and the HRPD are used as reference
protein–protein interaction databases. The functionality analyses of the networks are then
performed by testing overrepresented GO biological process terms and pathways.
Results: Functional enrichment analyses of the networks revealed an association with molecu-
lar processes related to depression in humans, such as those involved in the immune response.
Pathways impacted by clinically effective antidepressants are modulated, including glutamater-
gic signaling and neurotrophic responses. Moreover, dysregulations of proteins regulating
energy metabolism and circadian rhythms are implicated. The comparison with protein path-
ways modulated in depressive patients revealed significant overlapping.
Conclusions and clinical relevance: This systems biology study supports the notion that animal
models can contribute to the research into the biology and therapeutics of depression.
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� Additional supporting information may be found in the online version of this article at
the publisher’s web-site

1 Introduction

Major depressive disorder (MDD) is a severe and debilitat-
ing disorder carrying a heavy load of disability [1]. In spite
of a variety of available therapeutic options [2, 3], 30–60%
patients report insufficient management of the disease due
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to treatment-resistant depression, recurrent depression, side
effects that lead to therapy discontinuation, and delay before
clinical improvement [2,4]. Therefore, there is an urgent need
for new therapies, possibly based on novel mechanism of ac-
tion with respect to the existing ones, which mainly act on
monoaminergic neurotransmission [5]. However, new drug
discovery is hampered by our incomplete comprehension of
the neurobiological basis of MDD; although several hypothe-
ses are formulated, none is definitively proven [3, 6].
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Clinical Relevance

The neurobiological bases of depression are incom-
pletely understood and this lack of knowledge ham-
pers the diagnosis, the selection of appropriate ther-
apies and the discovery of novel medicines. Ro-
dent models of depression are employed both as
a tool for increasing disease understanding and as
aids to drug discovery efforts. Nevertheless, the ad-
equacy of animal models of depression is ques-
tioned due to the eminently human character of
the disease. Proteomic investigations have been

oriented to increase the knowledge on the neurobio-
logical basis of the depressive behaviors observed
in the preclinical models. The present study inte-
grates and expands the proteomic findings apply-
ing systems biology approaches with the aim of
increasing the understanding of the molecular per-
turbations in cellular pathways relevant in depres-
sion. The results support the value of rodent mod-
els to investigate the pathophysiological basis of
depression.

Much of the current knowledge about the pathophysiol-
ogy of MDD has come from animal models. However, based
on complex features of human depression, the generation
of valid models has not been straightforward and both their
construct validity and predictive value have been questioned
[7, 8]. MDD animal models are mainly based on genetic
selections regarding behaviors considered endowed with
face validity; alternatively, they rely on the application of
a stressful set of stimuli to resemble the observation that
stressful experiences are often the precipitating factors of
depressive episodes in humans [8].

In the last few years, several investigations have been
performed in rodent models of MDD using proteomic
approaches to help the identification of molecular under-
pinnings of depressive-like behaviors with an unbiased
approach [9–28]. The models are founded on exposure to
different paradigm of stressful experiences able to determine
long-term modifications of behavioral, neurochemical, and
molecular features resembling dysregulations observed in
human patients. In the chronic mild stress model, animals
are repeatedly exposed to unpredictable stresses, such as
intermittent light or food deprivation [10,11,16–18, 20,23–25,
27, 28]; the chronic stress may consist in confinement into
plastic restrainers (restraint stress model) [21]. In the prenatal
stress model, the restraint stress procedure is applied to
pregnant dams thereby affecting offspring brain develop-
ment and behaviors [15,19]. Early-life trauma is also modeled
in maternal separation, which includes repeated periods of
removal of the mother from the pups during the first weeks of
postnatal life [13, 16, 22]. In the learned helplessness model,
animals repeatedly receive an inescapable foot-shock and a
subset among them develops learned helplessness behavior,
failing to avoid the stress when escaping is possible [12, 26].
Social defeat stress involves subjecting rodents to repeated
experiences of social subordination to an aggressive male [9].
The high stress reactivity model consists of a breeding line
showing high corticosterone secretion in response to stres-
sors [14]. Prefrontal cortex and hippocampus were generally
analyzed because alterations in these regions included in
the emotion-regulating circuit are reported in neuroimaging

studies in patients [29]. To date, the integration of findings
obtained in distinct investigations is limited.

In the present study, an integrative approach using net-
work analysis of preexisting proteomic studies in brains of
rodent models of MDD was used to investigate the most rele-
vant molecular pathways affected by the disease. The results
were compared with pathways modulated in proteomics stud-
ies performed in depressive patients. Systems biology has
been paving the way to the integration of existing knowledge
and among systems biology approaches, network analysis is
increasingly gaining acceptance as a useful method for data
integration and in depth understanding of the molecular ma-
chinery altered in pathology [30,31]. Studying polygenic disor-
ders as major depression under the context of networks is very
essential and promising since the pathological alterations are
resulted from various biological processes that interact in a
complex network, rather than from an abnormality in a single
effector gene product.

This integration of knowledge suggested that pathways
previously associated with MDD, such as inflammatory
responses, energy metabolism, glutamatergic, and neu-
rotrophic signaling, were altered in rodent MDD models as
well as in human patients, supporting the importance and rel-
evance of the models for the human disease and the discovery
of novel therapies.

2 Materials and methods

2.1 Experimental design

A schematic representation of the study workflow is shown
in Fig. 1. Input data were collected from proteomic investi-
gations in MDD models (Table 1). An interaction network
was subsequently reconstructed and functional annotation
analysis was carried out on the curated proteins and their
interactors. Finally, a comparison was performed with an in-
teraction network reconstructed from proteins modulated in
human depressive patients.
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Figure 1. Schematic represen-
tation of the network analy-
sis workflow. Proteomic data of
MDD rodent models were col-
lected from studies reported in
Table 1. Network analysis was
performed with the reference
protein–protein interaction net-
work derived from the IntAct
mouse and the HRPD databases.
The functionality analysis of the
network was then performed by
testing overrepresented GO bio-
logical process terms and path-
ways.

2.2 Data

Data were collected from a thorough revision of literature
results. PubMed papers reporting proteomic data from stud-
ies of brain regions in rat or mouse models of MDD in the

time-frame 2000–2015 were analyzed (Table 1). Models were
selected by including validated models, whereas the obser-
vation of depressive-like behaviors per se was not consid-
ered sufficient. The experimental design was considered ade-
quate if it included biological replicates. Proteins identified as

Table 1. Proteomic studies in animal models of depression used as data source

Disease model Brain region Method References

Social defeat Hippocampus 2DE Carboni (2006) [9]
Chronic mild stress Hippocampus (ventral) DIGE Bisgaard (2007) [10]
Restraint stress Whole brain DIGE Kim (2007) [21]
Chronic mild stress Hippocampus 2DE Mu (2007) [11]
Maternal separation Hippocampus (ventral) 2DE Marais (2009) [22]
Chronic mild stress Hippocampus (DG) 2DE Kedracka-Krok (2010) [23]
Chronic mild stress Whole brain DIGE Liu (2011) [24]
Learned helplessness Hippocampus, prefrontal cortex

(synaptosomes)
2DE Mallei (2011) [12]

Maternal separation Hippocampus, prefrontal cortex 2DE Piubelli (2011) [13]
Chronic mild stress Hippocampus (ventral) DIGE Bisgaard (2012) [25]
Chronic mild stress Hippocampus (CA1, CA3) iTRAQ Henningsen [28]
High or low stress reactivity Hippocampus 2DE Knapman (2012) [14]
Prenatal stress Hippocampus 2DE Mairesse (2012) [15]
Maternal separation, chronic

mild stress
Hippocampus 2DE, tandem mass

tag
Malki (2012) [16]

Chronic mild stress Hippocampus (synaptosomes) 2DE Hu (2013) [17]
Congenital learned

helplessness
Lateral habenula 15N metabolic

labeling
Li (2013) [26]

Chronic mild stress Prefrontal cortex 2DE Yang (2013) [18]
Prenatal stress Hippocampus DIGE Föcking (2014) [19]
Chronic mild stress Hippocampus 2DE Ge (2015) [20]
Chronic mild stress Hippocampus 2DE Zhu (2014) [27]

The model is shown in column 1; the brain regions are reported in column 2, the proteomic technology is displayed in column 3; the
respective reference is shown in column 4. CA: cornu Ammonis, DG: dentate gyrus.
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Figure 2. Schematic graphs of
overrepresented GO biological
process terms in the mouse net-
work. GO terms are represented
as nodes, and the strongest
GO term pair-wise similari-
ties are designated as edges
in the graph. GO terms are
grouped to illustrate the main
biological processes character-
izing the network. The node
size represents the q-value, with
lower values displayed as larger
nodes. The complete list of sig-
nificantly enriched GO terms is
reported in Supporting Informa-
tion Table 2.

modulated with statistical significance in the original stud-
ies were used for subsequent analyses. The directionality of
change was not taken into consideration because different
PTMs can appear as distinct proteins. Therefore, all altered
proteins were included although absolute amount variations
could not be discriminated from changes in the respective
levels of different PTM forms, which are endowed with phys-
iological meaning. Mouse protein–protein interactions (PPI)
were selected because substantial information exists in this
model. The proteomic studies in the brain of MDD patients
were selected based on PubMed papers in the 2000–2015
interval [32–37] and respective human PPI were extracted.

2.3 Network reconstruction

A PPI network was reconstructed for modulated proteins
reported in the rodent studies presented in Table 1. The
mouse network was constructed using the 1-step neighbours
of the proteins described in Section 2.2 extracted in IntAct, a
molecular interaction database integrating data from a wide-
range of proteomic databases populated by data either cu-
rated from the literature or from direct data depositions
(http://www.ebi.ac.uk/intact/). The IntAct has employed ad-
vanced web-based curation tools, i.e. IMEx- and MIMIx-level
curation. Similary, the human protein interaction network
was constructed by using the raw human PPI from the HPRD
database (www.hprd.org). The HPRD is one of the most used
human PPI databases, a manually curated human protein

database from published literature by expert biologist and
bioinformatics analytical tools of protein sequence [38].

2.4 Network analysis

To gain information on the networks and their participat-
ing proteins, three centrality indices were evaluated, degree,
betweeness, and closeness for each protein. The degree cen-
trality represents hubs in the networks by counting the neigh-
bourhood of a node in the network. Betweeness and closeness
are both based on shortest path calculation. While betweeness
shows the bridge role of a proteins for other proteins in the
network, closeness centrality emphasizes the distance of a
protein to all the others in the network [39]. The higher the
degree, betweenness, and closeness are, the more central a
protein is in the network. The method is described in detail
in Supporting Information Table 1.

2.5 Functional annotation analysis

The network protein lists were used to extract the most rep-
resentative GO biological process terms (i.e. the ones that
are overrepresented, but that do not refer to most general
biological processes). For identifying and visualizing en-
riched GO terms, we used the ConsensuspathDB [40] and
the REVIGO [41] tools. Pathway analysis was performed us-
ing the ConsensusPathDB (mouse or human, respectively).
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Table 2. Summary of the functional annotation analysis results of the mouse and human networks

Pathway name Mouse network Human network

p-value q-value p-value q-value

Immune response
Fcgamma receptor (FCGR) dependent

phagocytosis
1.83 × 10–18 3.47 × 10–16 1.04 × 10–9 2.43 × 10–8

Innate immune system 3.75 × 10–17 4.06 × 10–15 3.33 × 10–17 8.63 × 10–15

B-cell receptor signaling pathway 1.13 × 10–16 9.55 × 10–15 7.87 × 10–6 5.47 × 10–5

Signaling by the B-cell receptor (BCR) 7.86 × 10–15 3.72 × 10–13 0.001722 0.006512
Immune system 1.57 × 10–14 6.63 × 10–13 1.06 × 10–11 5.52 × 10–10

T-cell receptor signaling pathway 5.39 × 10–14 2.04 × 10–12 8.33 × 10–7 7.01 × 10–6

Fc epsilon receptor (FCERI) signaling 3.39 × 10–13 9.51 × 10–12 2.44 × 10–12 1.65 × 10–10

Adaptive immune system 4.47 × 10–13 1.21 × 10–11 0.003275 0.010896
IL-3 signaling pathway 2.95 × 10–11 4.85 × 10–10 0.000202 0.000989
Fc gamma R-mediated phagocytosis 1.94 × 10–10 2.67 × 10–9 4.02 × 10–12 2.51 × 10–10

Interleukin-3, 5 and GM-CSF signaling 1.66 × 10–8 1.74 × 10–7 6.98 × 10–12 3.88 × 10–10

FCERI-mediated MAPK activation 2.05 × 10–7 1.87 × 10–6 7.93 × 10–11 2.59 × 10–9

IL-4 signaling pathway 3.92 × 10–7 3.38 × 10–6 0.001164 0.004569
Focal adhesion - 6.56 × 10–7 4.97 × 10–6 5.79 × 10–8 6.18 × 10–7

IL-2 signaling pathway 7.04 × 10–7 5.23 × 10–6 1.18 × 10–9 2.62 × 10–8

IL-6 signaling pathway 2.84 × 10–6 1.79 × 10–5 6.01 × 10–5 0.000333
IL-7 signaling pathway 8.17 × 10–6 4.39 × 10–5 4.99 × 10–6 3.55 × 10–5

TCR signaling 2.44 × 10–5 0.000111 0.007715 0.023161
Downstream signaling events of B-cell receptor

(BCR)
3.43 × 10–5 0.00015 0.002303 0.00811

Cytokine signaling in immune system 0.000146 0.000532 6.48 × 10–10 1.63 × 10–8

Interleukin-2 signaling 0.000202 0.000717 2.28 × 10–10 6.24 × 10–9

Toll like receptor 4 (TLR4) cascade 0.000509 0.001635 8.48 × 10–9 1.12 × 10–7

Toll-like receptors cascades 0.000638 0.001973 1.33 × 10–8 1.65 × 10–7

Interleukin receptor SHC signaling 0.001011 0.003064 6.10 × 10–9 9.05 × 10–8

CD28 costimulation 0.001219 0.003554 0.000213 0.001032
Costimulation by the CD28 family 0.001548 0.004267 0.004086 0.013099
Chemokine signaling pathway 0.001969 0.00535 4.31 × 10–5 0.000258
Energy metabolism
Glucose metabolism 2.64 × 10–10 3.45 × 10–9 0.002803 0.009474
Oxidative phosphorylation 3.32 × 10–10 4.19 × 10–9 0.005622 0.017379
The citric acid (TCA) cycle and respiratory

electron transport
1.84 × 10–8 1.91 × 10–7 0.002517 0.008773

Gluconeogenesis 6.37 × 10–8 6.04 × 10–7 0.000783 0.003225
Glycolysis 3.35 × 10–7 2.96 × 10–6 0.000378 0.001682
Glycolysis/Gluconeogenesis 8.08 × 10–7 5.89 × 10–6 0.007024 0.021207

Neurotrophin signaling
Signaling by NGF 7.46 × 10–18 9.42 × 10–16 7.11 × 10–21 7.97 × 10–18

NGF signaling via TRKA from the plasma
membrane

2.89 × 10–16 1.99 × 10–14 1.98 × 10–17 6.17 × 10–15

Neurotrophin signaling pathway 6.45 × 10–14 2.33 × 10–12 6.25 × 10–13 5.73 × 10–11

Retrograde neurotrophin signaling 1.44 × 10–6 9.48 × 10–6 6.01 × 10–5 0.000333
p75 NTR receptor-mediated signaling 7.68 × 10–5 0.000307 1.65 × 10–5 0.000109

Glutamate signaling
Activation of NMDA receptor upon glutamate

binding and postsynaptic events
1.36 × 10–6 9.20 × 10–6 1.10 × 10–9 2.53 × 10–8

Trafficking of GluR2-containing AMPA receptors 3.97 × 10–6 2.35 × 10–5 8.74 × 10–8 8.72 × 10–7

Post-NMDA receptor activation events 5.34 × 10–6 3.07 × 10–5 8.84 × 10–18 8.72 × 10–7

Glutamate binding, activation of AMPA receptors,
and synaptic plasticity

1.63 × 10–5 7.70 × 10–5 8.27 × 10–9 1.11 × 10–7

Trafficking of AMPA receptors 1.63 × 10–5 7.70 × 10–5 8.27 × 10–9 1.11 × 10–7

Long-term potentiation 4.14 × 10–5 0.000178 2.91 × 10–9 5.09 × 10–8

Long-term depression 0.000109 0.000408 0.000291 0.001339
Unblocking of NMDA receptor, glutamate

binding, and activation
0.001054 0.003122 2.27 × 10–8 2.58 × 10–7

(Continued)
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Table 2. Continued

Pathway name Mouse network Human network

p-value q-value p-value q-value

Others
Synaptic vesicle cycle 4.94 × 10–12 1.15 × 10–10 2.79 × 10–8 3.08 × 10–7

Circadian entrainment 0.000305 0.001024 0.000322 0.00145
Signaling by leptin 0.003974 0.009807 1.72 × 10–10 4.96 × 10–9

p-values are reported in columns 2 and 4 for the mouse and human networks, respectively; the multiple comparison corrected q values
in column 3 and 5 for the mouse and human networks, respectively. The pathway name is shown in column 1. The complete lists are
available as Supporting Information Tables 3 and 6.

ConsensusPathDB investigates the overrepresented set of
proteins that are searched among pathway-based sets of pro-
teins. A p-value is calculated according to the hypergeometric
test and then corrected for multiple testing using the false-
discovery rate method (q-values) with a threshold of 0.05. The
background used in the study is the complete list of proteins
in the IntAct or the HPRD, respectively. The Consensus-
PathDB includes in the analysis several pathways databases,
which were investigated in the study.

3 Results

We reconstructed the PPI networks of MDD model proteins
for both rodent and human data. There were 73 original
mouse proteins found in the IntAct database, and the result-
ing network consisted of 409 proteins and 713 interactions
(Fig. 1 and Supporting Information Table 1). Based on the
HRPD database the human network consisted of 1861 pro-
teins and 2751 interactions for the 217 original proteins in the
curated list. Network protein identities and centrality indices
are reported in Supporting Information Tables 1 and 4.

The functionality analysis of the mouse network was then
performed by testing overrepresented GO biological process
terms and pathways. The functional annotation GO terms
analysis (Fig. 2) revealed a predominant role of the regulation
of the immune response and inflammatory pathways, includ-
ing cytokines. Moreover, an enrichment of terms involved
in synaptic transmission and synaptic organization with the
main involvement of proteins regulating the synaptic vesi-
cle cycle was observed. In addition, a strong involvement of
pathways mediating the regulation of energetic metabolism
was highlighted. The complete list of results can be
found in Supporting Information Table 2. Pathway analysis
(Table 2) confirmed and expanded the findings, suggest-
ing an involvement of inflammatory pathways and a reg-
ulation of innate and adaptive immune responses, includ-
ing proteins such as MAPK14, inhibitor of NF�-B kinase,
tyrosine-protein kinase BTK, linker for activation of T cells
family member 1, STAT 6, TNF receptor-associated factor 6
(Table 2, Fig. 3A). Proteins in the synaptic vesicle cycle,
with a major involvement of vacuolar ATPase subunits
and dynamin were highlighted. An impact on neurotrophin

signaling pathways emerged (Table 2, Supporting Infor-
mation Fig. 1). Glutamatergic signaling resulted strongly
involved mainly through ionotropic receptors, particularly
NMDA and AMPA receptors (Table 2, Fig. 3B). En-
richments in pathways involved in energy metabolism
were also observed, containing proteins like fructose-
bisphosphate aldolase, alpha-enolase, triosephosphate iso-
merase, cytochrome c oxidase, cytochrome c oxidase, succi-
nate dehydrogenase, ATP synthase subunits (Table 2, Sup-
porting Information Fig. 2). Numerous hormonal signals
were evident with a role for estrogen, prolactin, vasopressin,
and leptin signaling. An involvement of monoaminergic
signaling was underlined, with pathways related to dopamin-
ergic and serotonergic synapses. Finally, a role for circadian
rhythm pathways was also evidenced. The complete list is
reported in Supporting Information Table 3.

In order to validate the relevance of the results in the ro-
dent models to human MDD, we reconstructed a protein in-
teraction network from proteins modulated in the prefrontal
cortex of affected subjects (Supporting Information Tables
4–6). The functional annotation analysis of the human de-
pression network demonstrated that an extensive overlap ex-
isted between significantly enriched protein pathways from
the network derived from animal model proteins and that ob-
tained from human brain proteins (Supporting Information
Tables 1–6). The overlap was evident for immune response
pathways, glutamatergic signaling, energy metabolism, and
neurotrophin signaling.

4 Discussion

Systems biology approaches are powerful tools to integrate
data produced by OMIC technologies revealing many aspects
of the affected molecular processes, thus providing a unique
insight into the underlying mechanisms that were not evident
in the original studies.

This networks analysis showed a strong involvement
of the inflammatory response. This result suggests that
protein regulation due to the exposure to MDD models
elicits a modulated immune response. Interestingly, none
of original studies identified the influence on the im-
mune response as the most dysregulated process [9–28].
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Figure 3. Flow diagram representing the molecular interactions in the KEGG pathways. (A) Chemokine signaling; (B) Long-term potentiation
pathways (from KEGG database). Mouse network proteins are labeled in the pathways.
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Among them, several studies identified modulations of en-
ergy metabolism pathways and detected influences on synap-
tic activity and function, which have been also highlighted
in the present analysis. The difficulty in observing these al-
terations in single studies suggests that subtle changes in
inflammatory responses were associated to depressive-like
behaviors that were only evidenced with the network-based
approach.

A large body of literature is available supporting the no-
tion that MDD relies on inflammation or it has, at least, an
inflammatory component in humans [42–44]. The evidence
is based on the discovery that key inflammatory cytokines, to-
gether with acute phase response and complement proteins,
are increased in the blood of depressed patients [42–44]. Ev-
idence about brain inflammation is more difficult to be ob-
tained, although recent findings support this notion [45]. In
addition, it was observed that depressive symptoms emerged
following long-term treatment with interferon-� for hepati-
tis C or IL-2 for cancer [42–44]. Moreover, anti-inflammatory
agents have been shown to decrease symptoms of depres-
sion, although controversial results are reported, suggesting
that the efficacy could be restricted to a subset of patients
whose primary pathogenesis is inflammatory [42]. Several
potential mechanisms of action have been suggested, in-
cluding the concept that increased cytokine levels influence
central serotonin levels, the hypothalamic–pituitary–adrenal
axis, and microglial activation [43]. In addition, increased in-
flammation is considered responsible of the observed asso-
ciation between MDD and metabolic disorders [46] or car-
diovascular disease [47]. Finally, the activation of immune
responses leading to depressive symptoms in MDD models
based on stress exposure has been observed in hypothesis-
driven studies, in agreement with the present findings
[48].

Another major finding of this study is that a significant
enrichment was detected in pathways involved in glutamate
neurotransmission. Similarly to the effects on the immune
response, this enrichment was not immediately evident in
the original dataset. In line with the hypothesis that gluta-
matergic signalling is involved in the molecular underpin-
nings of MDD, recent clinical findings have demonstrated
that ketamine, an NMDA glutamate receptor antagonist, is
able to induce a rapid and long-–lasting antidepressant re-
sponse in patients suffering from severe depression [49].
Several downstream mechanisms of action involving GABA-
ergic signalling and intracellular pathways have been sug-
gested to explain the antidepressant activity [50, 51]. In addi-
tion, recent evidence pointed to the involvement of AMPA
glutamatergic receptors in the development of MDD based
on dysregulated brain levels in patients [50]. These results
have led to the hypothesis that a dysfunction of excitatory
synapses contributes to the pathology of MDD through an
abnormal regulation of the excitatory input, thus modulat-
ing synaptic plasticity in different brain regions [50,51]. This
dysfunction is supposed to originate the altered valuation of
external stimuli observed in MDD patients, with decreases in

positive valuation (i.e. anhedonia) and increases in negative
valuation (disappointment) [51]. Therefore, the present find-
ings support the notion that rodent models of MDD based on
the exposure to a stress paradigm are endowed with similar
dysregulations in the glutamatergic circuitry to those sug-
gested in human patients.

The observed impact on neurotrophic pathways is in line
with the original studies and in agreement with the neu-
rotrophic hypothesis of depression. The hypothesis postu-
lates that stressful experiences elicit depression by reduc-
ing the expression of neurotrophic factors, thus generating a
reduction of hippocampal neurogenesis and synaptogenesis
[52, 53]. Further supporting evidence involves the alteration
of BDNF levels in MDD patients, the association of a BDNF
polymorphism and MDD, and the alteration of neurotrophic
factors in response to antidepressant treatments [52, 53]. In
particular, this study revealed an impact on synaptic vesicle
cycle. Remarkably, a single-nucleotide polymorphism in the
gene encoding for the presynaptic protein Piccolo has been
associated with MDD [54]. Piccolo mediates efficient synaptic
vesicle clustering by functioning as a protein rail to recruit
and tether synaptic vesicles in the presynaptic cytomatrix [55].
Piccolo dysfunction has been associated to depressive-like be-
haviors in animal models [56], in line with our findings, sug-
gesting that the regulation of synaptic vesicle cycle might play
a role in depressive symptoms in humans.

Other dysregulated pathways are related to energy
metabolism, in line with the original studies. In human de-
pressive patients, an increased risk for type 2 diabetes melli-
tus has been observed [57], whereas antidepressant treatment
appear to improve glucose homeostasis [58].

Of great interest is the role of pathways involved in the
regulation of circadian rhythms. Indeed, circadian rhythm
abnormalities have been repeatedly reported in depressed
patients and it has been postulated that stressful life events
lead to changes in the sleep/wake schedule, altering cellular
rhythms in vulnerable individuals and precipitating depres-
sive episodes [59]. Interestingly, this investigation suggests
that rhythm alterations can be detected in the models, al-
though establishing whether the impact is due to stress or to
the intermittent illumination applied in some studies is not
possible.

In conclusion, the present investigation provides support
to the value of rodent models of MDD, in which pathway
alterations were revealed overlapping with mechanisms per-
turbed also in human subjects affected by the disease. The
network analysis approach provided a useful tool allowing
the integration of data obtained from large-scale approaches,
such as proteomic investigations, in addition to the more
common applications to gene expression analysis.
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