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Abstract

This thesis presents MathLet v3 which is the third version of a system developed to

recognize handwritten mathematical expressions. Previous versions were developed

by Hakan Büyükbayrak and Mehmet Çelik.

MathLet v3 implements two steps to recognize handwritten mathematical ex-

pressions; symbol recognition and parsing. In the symbol recognition step, two

classifiers are combined. One of these classifiers uses online features while the other

one uses offline features. Both classifiers return probability distributions over classes.

In the parsing step, probability distributions are used to increase time perfor-

mance of MathLet v3. Moreover, parallel programming is used in parsing phase.

Special handling approach for mistaken symbols is also implemented in the parsing

step.

MathLet v3 has four applications and two of them can be accessed through the

Web. Users write mathematical expressions or upload existing InkML files which

contain mathematical expression and get recognition results for them through the

Web by using these applications.

MathLet has been participating in a competition named CROHME since 2011.

The evaluation results of MathLet in CROHME show that the accuracy of MathLet

has increased from 0.55% to 8.35% starting from 2011, although recognition task be-

comes more difficult each year. In addition to accuracy improvements, experiments

made in order to measure the time performance of MathLet v3 show that MathLet

v3 has become faster.
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Tez Danışmanı: Berrin Yanıkoğlu

Anahtar Kelimeler: el yazısı, tanıma, çevrimiçi, matematiksel, ifade

Özet

Bu tez elle yazılmış matematiksel ifadeleri tanımak için geliştirilmiş bir sistemin

üçüncü versiyonu olan MathLet v3’ü sunar. Önceki versiyonlar Hakan Büyükbayrak

ve Mehmet Çelik tarafından geliştirilmiştir.

MathLet v3 elle yazılmış matematiksel ifadeleri tanımak için iki aşama uygu-

lar; sembol tanıma ve çözümleme. Sembol tanıma aşamasında iki sınıflandırıcı

birleştirilir. Bu sınıflandırıcılardan biri çevrimiçi özellikleri kullanırken diğeri çev-

rimdışı özellikleri kullanır. Her iki sınıflandırıcı da sınıflar üzerindeki olasılık dağılı-

mını verir.

Çözümleme aşamasında, MathLet v3’ün zaman performansını artırmak için ola-

sılık dağılımları kullanılır. Ayrıca paralel programlama da çözümleme safhasında

kullanılır. Çözümleme aşamasında, yanılgıya düşülen karakterler için özel işleme

yaklaşımı uygulanır.

MathLet v3 dört uygulamaya sahiptir ve bunlardan ikisine Web üzerinden ulaşı-

labilir. Kullanıcılar bu uygulamaları kullanarak Web üzerinden mathematiksel ifade-

ler yazar ya da matematiksel ifade içeren InkML dosyalarını yükler ve bunlar için

tanıma sonuçları elde eder.

MathLet 2011’den beri CROHME adlı bir yarışmaya katılmaktadır. MathLet’in

CROHME’daki değerlendirme sonuçları, tanıma görevinin her yıl daha zor hale

gelmesine karşın, MathLet’in doğruluğunun 2011’den başlayarak %0.55’ten %8.35’e

yükseldiğini gösterir. Doğruluk geliştirmelerine ek olarak, MathLet v3’ün zaman

performansını ölçmek amacıyla yapılan deneyler MathLet v3’ün daha hızlı hale

geldiğini gösterir.
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1 Introduction

Recognition of handwritten or printed text has become a very important need since

many years. This need has increased with the increasing the popularity of smart

phones, electronic pads, electronic tablets, tablet computers and other touch-enabled

devices. Handwritten mathematical expression (ME) recognition has also emerged

as a remarkable specific need among these needs. Today, individuals who especially

study on science documents need to write MEs and digitize them.

Handwritten MEs can be written by individuals on their computers by using

mouse, electronic tablets, electronic pads, touch pads, touch-enabled screens etc.

The recognition of these handwritten MEs can be achieved by the systems which

generally have an interface or a Web page which can be accessed through the Web.

Today, there are also mobile applications which can be used for the same purpose

through the smart phones, tablet computers and other mobile devices.

The task of the recognition of handwritten ME generally consists of two steps

which are character or symbol recognition and structural analysis [1]. The task

of symbol recognition step is to recognize individual characters which are included

in the handwritten ME. For instance, the task of symbol recognition for the ME

“an + bk” is to recognize the symbols “a”, “n”, “+”, “b” and “k”.

In structural analysis phase, the main task is to identify the relationships between

the symbols which are recognized in the first step. Then, the ME is structured among

identified relationships. For example, in the ME “a2 + b3”, there are two superscript

relationships between the symbols “a” and “2”, and the symbols “b” and “3”. After

the identification of these relationships, the system should also consider the plus

sign between “a2” and “b3” and constitute ME at the end.

After the recognition process is finished, users can obtain the digitized ME and

use this information easily. For instance, users can use the LATEX code of ME if they

write a thesis, paper or article on a LATEX editor. Mathematical Markup Language

(MathML) code of ME is another output format that can also be used by users
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depending on their needs.

The task of handwritten ME recognition possesses some ambiguities. First one

can be called as the symbol segmentation. Especially the segmentation of symbols

which are written in more than one stroke such as “i”, “!”,“+”, “=” etc. is difficult.

In addition to these symbols which naturally consist of more than one stroke, users

may write other symbols in more than one stroke too. For example, some individuals

write the symbol “5” in two strokes. They generally write the line which is at the top

of the symbol “5” in one stroke and the remaining part in another stroke, while some

individuals write this symbol in only one stroke. In Figure 1.1, the symbol “5” in

the left is written in one stroke, while the one in the right is written in two strokes.

Secondly, there are too many possible relationships between recognized symbols.

Superscript and subscript relationships are only two of them. For instance, in order

to identify the relationship between the symbols of the ME “an” is not trivial and

also depends on the writing habits of users. A system can recognize the ME as “an”,

“an” or “an”.

Figure 1.1: The symbol “5” written in one stroke and two strokes

Handwritten ME recognition can be divided into two categories. These cate-

gories are online and offline handwritten ME recognition. In online ME recognition,

symbols consist of strokes. The number of strokes may be one or more than one.

Online ME recognition systems can also use temporal information about input data.

Two examples of the systems which implement online handwritten ME recognition

can be found in [2] and [3]. These systems are based on academic studies. There

is also MyScript Equation recognizer which is the commercial system developed by

Vision Objects [4]. MathLet [5] is another example of the systems which implement

online ME recognition.

In offline ME recognition, there is no temporal information about input data.

The input data is the image of symbols, in other words there is a set of black pixels

representing a symbol. There is no certain information about the strokes which a
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symbol consists of. One example of these systems is Infty project [6]. A recent

system for the recognition of printed MEs is detailed in [7].

With the increasing attention paid to the area of ME recognition, Competition

on Recognition of Online Handwritten Mathematical Expressions (CROHME) has

been organized since 2011. In order to compare MathLet with other benchmark

systems, participation in CROHME was crucial. There was also need to measure

and improve the time performance of MathLet. This thesis presents newer version of

MathLet, namely MathLet v3, which participated in CROHME and has improved

accuracy and time performance. MathLet v3 has also two applications which can

be accessed through the Web.

As a contribution of this thesis, MathLet v3 uses both online and offline features

in different classifers and combines these classifiers. In the combination, the classi-

fier which returns greater prediction probability for the most probable symbol that

it predicts is chosen. In the parsing phase of MathLet v3, mistaken symbols are

specially handled by using prediction probabilities. The functions used in parsing

were analyzed and one loop which takes MathLet v3 much time to process was paral-

lelized. This thesis also presents the evaluation of the time performance of MathLet

v3. Symbol recognition, parsing step and MathML parsing implemented in MathLet

v3 provided an increase in the time performance and expression level recognition

rates of MathLet v3. Furthermore, this thesis presents two Web applications of

MathLet v3. One of these applications provides that users can upload existing ME

included in Ink Markup Language (InkML) file and the other one provides that users

can write their own handwritten ME. Users can get top-5 recognition results for the

MEs using both applications.

The remainder of the thesis is organized as follows. First, a review of previ-

ous work on handwritten ME recognition is given in Section 2. Section 3 presents

MathLet v3 which is the system developed to recognize handwritten MEs. Section 4

reports accuracy and time performance of MathLet. Section 5 provides an overview

of CROHME and reports MathLet v3’s evaluation results obtained in CROHME

competitions. In Section 6, contributions and future work are presented.
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2 Previous Work

For the purpose of handwritten ME recognition, several approaches are proposed

and used by different benchmark systems. In the work described in [2], 2D stochas-

tic context-free grammar (SCFG) is defined. This grammar consists of symbols,

grammar rules and probability function. Grammar rules are manually defined in

this grammar. Spatial relations are given as a parameter to these grammar rules.

These spatial relations are horizontal, vertical, subscript, superscript and inside re-

lations. The system also uses a parser based on Cocke-Younger-Kasami (CYK)

based algorithm which is defined for 2D SCFG. The recognition process is started

by Hidden Markov Model (HMM) classifier which achieves symbol recognition and

segmentation steps. Then, a set of symbol recognition and segmentation hypotheses

are obtained. 2D SCFG continually generates the ME from its subexpressions ac-

cording to these hypotheses and CYK-based parser finds the most probable ME. As

a result, HMM-based classifier, 2D SCFG and CYK-based parser jointly achieve the

recognition of ME which is given as input. This sytem participated in CROHME

2011 and took the first place.

A system which implements a baseline extraction-driven parsing of handwritten

MEs is detailed in [8]. The system first identifies the strokes of the leftmost symbol

on the main baseline by using a data structure called Left Blocking Tree. Detected

symbols are classified by using HMM-based classifier. After the leftmost symbol is

detected, the system detects the next baseline symbol. In this step, the system finds

the conditional probability which shows that whether candidate for next baseline

symbol is placed in the area of superscript, subscript or adjacent at right with

respect to current symbol. If the conditional probability of adjacency is greater

than other two probabilities a candidate is determined as next baseline symbol,

otherwise the region of a symbol according to the current symbol such as subscript,

above etc. is found. A Left Blocking Tree is created for each new region and each

new region represents a new baseline. This continues until all strokes are processed.
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Extracted baselines are then parsed by a modified LL(1) parser which makes lexical

analysis. Finally, the system ranks the parses by a scoring function which only

considers symbol recognition. This scoring function does not consider the spatial

relationships.

An online recognizer, MyScript Equation recognizer, which is developed by Vi-

sion Objects [4] handles segmentation, recognition and interpretation steps concur-

rently. The system has three important entities which are equation recognition

engine, grammar and symbol expert. The equation recognition engine first deter-

mines the segmentation based on the grammar rules each defining a different spatial

relationship such as vertical relationship for fraction symbol, nominator and denom-

inator. Then, symbol expert makes probability estimation based on the segmenta-

tion. Symbol expert consists of a set of classifiers which use the combination of the

features extracted from online and offline information. These classifiers use neural

network (NN) and other pattern recognition techniques. The equation recognition

engine uses a statistical language model which uses context information extracted

from hundreds of thousands of equations. For the purpose of training the recognizer,

a global discriminant training scheme on equation level with automatic learning of

required parameters is used. This system participated in CROHME 2012 and it was

the winner of it.

Waterloo recognizer [3] is a system developed for MathBrush [9]. Three-step

recognition process is used by this system. The system first recognizes the symbols

and parsing is performed in the second phase. Third and final step, tree extraction,

is for the purpose of ranking the ME. In the symbol recognition stage, strokes

are grouped by using proximity of strokes and bounding box alignment. Grouped

strokes are then recognized by symbol recognizer which uses feature-based matching

and elastic matching distance. A fuzzy relational grammar and a tabular variant of

Unger’s parsing method are used in parsing step in order to produce parse forest. In

the grammar, there are relations for subscript, superscript, horizontal and vertical

adjacency and containment such as the relation in the ME “
√
x”. In tree extraction

step, each tree in parse forest is extracted by scoring which is made by considering

symbol recognition scores and relation membership grades. This system was one of

the CROHME 2012 participants and it took the second place.
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As mentioned, the recognition of handwritten ME consists of symbol recognition

and structural analysis phases. In the symbol recognition step, most of existing

systems use traditional classification techniques. There are also some research, [10],

[11], [12], [13], which only concentrate on mathematical symbol recognition without

mentioning the problem of structural analysis and the recognition of whole ME. In

[2] and [10] HMM is used. The system detailed in [2] uses both online and offline

features and combines them. In combination, Naive Bayes Classifier and weighting

are used. Support Vector Machines (SVMs) are used in [11] with offline features. In

[12], SVM is trained by using online and offline features and taking weighted sum.

In [14], multi-layer perceptron (MLP) NN is used. Both online and offline data are

used by Neural Network model described in [13].

2.1 MathLet

MathLet is the name of the software which is designed for the recognition of hand-

written MEs. It has two previous versions. In this thesis, these previous versions of

MathLet are called as MathLet v1 [15] and MathLet v2 [5].

2.1.1 MathLet v1

MathLet v1 [15] is developed by Hakan Büyükbayrak as Master’s thesis under the

supervision of Aytül Erçil and Berrin Yanıkoğlu. MathLet v1 uses two-phase process

for handwritten MEs; symbol recognition and parsing. The system has the capability

of recognizing 66 different mathematical symbols.

In the symbol recognition step, a MLP NN with 40 inputs and 66 outputs is

utilized. Data used to train symbol recognizer is collected by using an interface de-

veloped for collecting ink data. The interface can be seen from Figure 2.2. Collected

data is normalized to 20 equidistant points and x and y coordinates of them form

40 inputs of MLP. MathLet v1 assumes that all symbols are written in only one

stroke. By this assumption, the symbol recognition of MathLet v1 turns out to be

stroke recognition. In contrast, this provides the easy segmentation of symbols es-

pecially intersected symbols. For the symbols which naturally consist of more than

one stroke such as “=”, “+”, single stroke equivalents of them are suggested. Figure

2.1 shows the symbols “=” and “+” together with their single stroke equivalents

6



suggested in MathLet v1.

Figure 2.1: Single stroke equivalents of the symbols “=” and “+” used by MathLet

v1

Figure 2.2: Data collection interface of MathLet v1

After symbol recognition, MathLet v1 performs expression parsing step with

procedural approach. Fraction, summation, square root, integral, superscript, sub-

script, logarithm and trigonometric functions are recognized in this step. The system

first sorts all symbols from left to right. Expression parsing starts with the leftmost

symbol and continues to the right until all symbols are parsed. MathLet v1 uses

procedures for each structure in parsing stage and these procedures are applied when

a structure is recognized.
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Procedures defined consist of simple positioning and size metrics. For instance,

when a fraction line is recognized, the system parses upper and lower regions of it.

For integral and summation sign, upper, lower and right regions of them are parsed.

For subscript and superscript structures, the size of the symbol which is at upper-

right (for superscript) and lower-right (for subscript) of base symbol is compared

with the size of the base symbol. The size of subscript and superscripts should

be smaller than base symbol and their positions should be appropriate. When the

structures are combined in a ME, a recursive parsing is performed.

Second interface of MathLet v1 is developed for recognizing MEs. This interface

can handle matrices and recursive structures. It can also be used to load and save

the ink data. Furthermore, it provides the LATEX code of written ME and also can

evaluate the result of it. Figure 2.3 shows the sample interface.

Figure 2.3: ME recognition interface of MathLet v1

It is also possible to recognize articles containing text, MEs and figures in Math-

Let v1 by using the article structure recognition interface of it. The article structure

recognition interface of MathLet v1 is shown in Figure 2.4. This third interface of

MathLet v1 provides the segmentation of articles and handling recursive mathemati-

cal structures. Moreover, a user can export recognized article in Portable Document

Format (PDF) . In the interface, a user should identify the regions of MEs and

figures by using different pens.

As a result, the assumption that a symbol is written in one stroke could be ac-
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cepted as a weakness of MathLet v1. Also, the system does not have the capability

of providing different alternative recognition results. On the other hand, the inter-

faces of MathLet v1 are the strengths of it. Interfaces provide easy collection of

data, writing MEs and recognizing articles containing not only MEs but also text

and figures.

Figure 2.4: The article structure recognition interface of MathLet v1

2.1.2 MathLet v2

MathLet v2 [5] is developed by Mehmet Çelik as a Master’s thesis under the super-

vision of Berrin Yanıkoğlu. It follows the traditional approach which consists of two

steps to recognize handwritten MEs. The system first recognizes individual symbols

and then the whole ME is recognized by structural analysis. In the structural anal-

ysis step, 2D-grammar is used and the system gives more than one result sorted by

their statistically calculated likelihood values.
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Symbol Recognizer

In the symbol recognition step, MathLet v2 uses a classifier based on SVMs. This

classifier is obtained by running a program named CharTrainer. In MathLet v2 [5],

symbol or character recognizer is able to return only the label of a predicted class for

an input symbol. It does not return the prediction probability of the class. It also

does not return any other possible class. Figure 2.5 shows the illustration of this

process. SVM kernel of the symbol recognizer is Radial Basis Function. MathLet

v2’s symbol recognizer is trained by using 288 offline features extracted from the

images of symbols. The data collected from students is used for the training of

symbol recognizer.

Figure 2.5: Symbol recognizer in MathLet v2

Training data is collected by using a program named CharCollector which is

developed in Microsoft .NET environment and C# programming language. The

interface of CharCollector can be seen in Figure 2.6. CharCollector produces XML

(Extensible Markup Language) files as a training data. These XML files contain the

information about the training data. These information are the label of the symbol

and x and y coordinates of points which form a symbol included in the training

data. CharCollector can generate these two information in two ways. In the first

one, a user writes the symbol and it collects the data. In the second one, it takes

an InkML file as an input and extract the data from it.

Recognizer is one of the important entities of MathLet v2. It specifies the list of

symbols which the system can recognize. Furthermore, it is used to load the classifier

and get the results from it. Moreover, symbol recognition results are organized by

the recognizer so that the parser can use it.

Token is another important entity in MathLet v2. Initial tokens are generated by

using the results returned by symbol recognizer. In other words, initial tokens are

the symbols written by a user. Each token stores information about its neighbour
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tokens, component tokens and calculated likelihood values together with its 2D

position information. Tokens also have their own LATEX and MathML codes. Tokens

are expanded and new tokens are generated in MathLet v2. For instance, consider

that initially there are neighbour tokens “a” and “2”, and the subscript rule is one

of the applicable rules for the token “a”. This token can be expanded according to

subscript rule after some necessary calculation and the token “a2” can be generated.

Figure 2.6: Interface of CharCollector

Parser

One of the most important entities of MathLet is parser. Parser creates initial tokens

using the results returned by the recognizer and also specifies the neighbourhood

relationships between them. To determine the neighbourhood, parser first checks the

distance between tokens. If two tokens are close enough and there is not any other

token between them, they will be marked as neighbour to each other. Moreover,

parser controls the application of grammar rules and the generation of new tokens.

If the likelihood of a generated token is less than predetermined threshold value,

parser eliminates that token. In addition to these, parser creates neighbourhoods

among all tokens and updates the list of existing tokens after each iteration.

MathLet v2 mistakes some certain characters for another certain character. For

instance, the system cannot distinguish the symbols “1” and “(”, that is to say that

users write “1”, but the character recognizer may recognize it as “(” or vice versa.

To deal with this problem, when one of mistaken characters is recognized, parser
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adds the other one to the initial list of tokens as an alternative without any check.

When the character recognizer recognizes the symbol as “1”, the parser adds “(” to

the initial list of tokens. One example of this can be seen from Figure 2.7.

Figure 2.7: An example for mistaken symbol handling in MathLet v2

The parser of MathLet v2 adds the token “\times (×)” to the initial list of

tokens when the token “x” is initially recognized. This fact causes an increase in

the number of tokens which Mathlet v2 has to consider for the MEs which consist

of the symbol “x” or “×”. Figure 2.8 shows the illustrative example of this. In this

example, the initial token list has 5 tokens. The system needs to process one more

token than it has to do.

Figure 2.8: Initial token list after recognition of the symbol “x” in MathLet v2

Parser uses grammar rules to generate new tokens. Examples of the rules that

used in MathLet v2 are the rule for subscript, superscript, square root, 2-stroke

symbol generation, operators, multiple numbers, multiple letters and others. Each

rule checks an appropriate token together with its neighbours and each rule is fired

with an associated applicability score indicating how suitable it is to apply that

rule in that situation. For instance, in Figure 2.9 a ME “2d”is shown. For this

example, subscript rule and alphanumeric rule are fired. These rules produce the

tokens “2d” and “2d” where the applicability score of subscript rule is greater than
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alphanumeric rule. Hence, the likelihood of “2d” is greater than the likelihood of

“2d”. Statistical information is used to determine the likelihood of relationship

between two neighbour tokens and calculated likelihood is assigned to generated

token. For the same pair of tokens, more than one token can be generated with

different fitness values using different rules as in this example.

Figure 2.9: Handwritten ME “2d”

As mentioned, likelihood value is calculated for each generated token. Likelihood

calculation is based on statistics and there are different statistics for different rela-

tionships. Fitness values are also combined with the fitness of component tokens.

At the end, resulting fitness is assigned to generated token. For instance, subscript

rule finds the fitness values for the nearest x and y positions of neighbour tokens

by using appropriate statistics. Also, subscript rule uses different statistics for the

comparison of the height and width of the tokens. Not only these fitness values

but also individual fitness values of component tokens are used in the calculation of

likelihood.

Histograms are used for the statistical representation of information used in

likelihood calculation. For each relationship, there is a list of frequency values for

histograms together with maximum and minimum values. Each rule first calculates

frequency value and gets the likelihood for generated token by using appropriate

statistics.

MathLet v2 is developed in Microsoft .NET Framework environment by using C#

programming language similar to CharCollector and CharTrainer. It has Graphical

User Interface (GUI) and the interface of MathLet v2 can be seen in Figure 2.10.
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Figure 2.10: Interface of MathLet v2
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3 MathLet v3

MathLet v3 is the name of the software developed to recognize handwritten MEs.

It is the third version of MathLet as its name applies. MathLet v3 implements two-

step process for the purpose of handwritten ME recognition; symbol recognition and

parsing. Some of the structures that MathLet v3 uses are also used by MathLet v2.

In MathLet v3, these structures are modified and extended in order to obtain better

accuracy and time performance results which will be detailed in Section 4.

3.1 Symbol Recognition

MathLet v3 can recognize 102 different mathematical symbols that provides an

opportunity for users to write MEs which contain wide symbol range. In the symbol

recognition phase of MathLet v3, two classifiers are used. One of these classifiers

uses offline features while online features are used by the other one. These two

classifiers are combined in MathLet v3. Both classifiers are based on SVM and they

are trained by using a program named CharTrainer which was developed in Microsoft

.NET Framework using C# programming language and LibSVM [16] library.

As a training data for classifiers, 102474 instances that contain an information

about mathematical symbols are used. These training data are collected from the

students and extracted by using a program named CharCollector from the data

provided by CROHME organizers. This program is an extended version of Char-

Collector which is also used by MathLet v2. One extension of this version is the

ability to deal with 3-dimensional data. These 3-dimensional data include one more

information in addition to x-y coordinates of points which form a mathematical

symbol. CharCollector is also able to extract information about 102 symbols which

may be written in different naming formats i.e., “&lt;” or “\lt” may stand for the

symbol “<”. This version can also extract information about the symbols “.” and

“,” which were problematic before.
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Both classifiers used by MathLet v3 return the prediction probability distribution

over all classes as shown in Figure 3.1 rather than just returning the label of the

predicted class. In other words, both classifiers give probability estimates. This

property provides further information about the accuracy of the result returned by

the symbol recognizer. Estimated probability can be defined as follows:

pi = P (y = i | x), i = 1, ..., k (1)

where k is the number of classes, x is the data to be classified and
∑k

i=1 pi = 1.

Figure 3.1: An example for symbol classification in MathLet v3

3.1.1 Offline Classifier

In order to extract offline features from training data to train offline classifier, the

ink data is transformed into 32× 32 bitmap image after scaling operations. Offline

features are then extracted from this 32× 32 bitmap image. The number of offline

features extracted from bitmap image is 288.

32 of 288 offline features are extracted counting the number of black pixels in

the half of bitmap image. In feature extraction, an image is first divided into 64

windows with 4 × 4 size. Then, black pixels are counted in each window and 64

number of black pixels are obtained. First 32 of these 64 number of black pixels

are extracted as features. These 32 features can be defined as the number of black

pixels in 4× 4 windows which are located in the left half of the image.

128 of 288 offline features are extracted from the depth of the first black pixel

in each row of image. There are 32 rows in 32×32 bitmap image. First, in the

unrotated image, the index of the first black pixel in each row is found. Then, the

image is rotated 90◦ and again the index of the first black pixel in each row is found.

This procedure is also applied for 180◦ and 270◦ rotated images. At the end, 128
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features are extracted. Each 32 features of these represent the depth of the first

black pixel in each row in the image with different rotation.

Finally, the remaining 128 features are extracted as the number of black pixels

in each row of the image. Firstly, in the unrotated image the number of black pixels

in each row is counted and these form 32 of these 128 features. The number of

black pixels in each of 32 rows is then counted in the rotated images. The image is

rotated −45◦, 45◦ and 90◦. As a result, 128 features are formed by the number of

black pixels in each row of 32× 32 symbol image which is rotated −45◦, 0◦, 45◦ and

90◦.

3.1.2 Online Classifier

In addition to offline features, online features are also used in the symbol recognition

in MathLet v3. Online features are used by a different classifier namely online clas-

sifier. Online features are extracted from ink data which consist of strokes forming

the symbol. The number of online features used is 38.

In order to extract online features, the following three steps are applied by Math-

Let v3:

• Resampling distance is calculated from ink data according to the predeter-

mined number of equidistant points which will be included by resampled

strokes. In MathLet v3, resampled strokes have 20 equidistant points.

• Strokes are resampled by using resample distance calculated in the first step.

Resampled strokes have the predetermined number of equidistant points. For

resampling, the codes written by Çağlar Tırkaz are rewritten in C# program-

ming language and used.

• Resampled strokes are scaled to predetermined size and online features are

extracted from scaled resampled strokes.

In the first step, the points which form the strokes are used. The distance between

each consecutive points is calculated. Then these distances are added and the total

distance is found. By using this total distance and the predetermined number of

points, resampling distance is calculated. Resampling distance can be defined as a
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distance between each consecutive points in the resampled strokes which have the

predetermined number of equidistant points.

Secondly, strokes are resampled such that they have the predetermined number

of points and the distance between each consecutive points is equal to the resampling

distance calculated in the first step.

Thirdly and finally, resampled strokes are scaled to the predetermined size and

from these resampled strokes, online features are extracted. Online features are

delta features and extracted as a difference between consecutive points in scaled

resampled strokes. Starting from the first point, x and y coordinates of each point

is subtracted from x and y coordinates of the next point. For 20 points, there are

19 distances between them. Because the difference is calculated for both x and y

coordinates, there are 38 delta features.

A tool is developed to view the points of the original and resampled symbols.

The name of the tool is “View Ink Points”. This tool takes an input file which

contains data about mathematical symbol. Tool first resamples the strokes of the

symbol and then scales both the original and resampled symbol to the same size.

Finally it shows both the original symbol and the resampled symbol. Figure 3.2

shows the interface of the tool with the example. In the example, the points of the

symbol “e” is shown.

Figure 3.2: Interface of the tool “View Ink Points”

3.1.3 Classifier Combination

Online and offline classifiers are combined in Mathlet v3. In the classifier combina-

tion, the prediction probability distributions over classes returned by classifiers are
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involved. First, the most probable symbol and its prediction probability which are

returned by online and offline classifiers are found and then these probabilities are

compared. The result of the classifier which returns greater probability for the most

probable symbol is chosen as the result of symbol recognition.

Figure 3.3 illustrates the classifier combination in MathLet v3. In the figure, son

denotes the most probable symbol predicted by the online classifier, soff denotes

the most probable symbol predicted by the offline classifier and sreturn denotes the

symbol returned at the end of symbol recognition. p(son) and p(soff ) denote the

probability of most probable symbol predicted by the online and offline classifiers

respectively.

Figure 3.3: Classifier combination in the symbol recognition in MathLet v3

The offline classifier of MathLet v3 uses much more information than online

classifier. The information used by offline classifier are extracted from the images

of mathematical symbols and do not contain information about the stroke orders

of mathematical symbols. On the other hand, online classifier uses 38 features and

these features contain information about the order variations occured while writing

a mathematical symbol. For instance, for the symbol “a” written ambiguously in

Figure 3.4, offline classifier does not consider the down stroke which is at the right

of the symbol and recognizes it as the symbol “0”. In contrast, online classifier

considers the down stroke and recognizes it correctly as the symbol “a”. As seen

from this example, there is a trade-off between using only online or offline classifier.

In order to deal with this trade-off, classifier combination is implemented in MathLet

v3.

The accuracy rates of the online classifier, offline classifier and combined classifier

are evaluated. Accuracy of each classifier is calculated as the rate of correctly

classified symbols. In the evaluation, each classifier is trained with the same data
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which is 80% of all data. The number of training symbols is 82015 for each classifier.

The accuracy rate of each classifier is evaluated on the same test dataset which is

completely different from the training dataset. Test data is chosen as the remaining

20% of all data. The number of test symbols is 20459. Table 3.1 shows the accuracy

rate of each classifier.

Figure 3.4: The symbol “a” written ambiguously

Online Classifier Offline Classifier Combined Classifier

77.15% 90.18% 90.45%

Table 3.1: The accuracy rates of classifiers in MathLet v3

Two other combinations are also tested. In both combinations, first the pre-

diction probability of the most probable symbol predicted by online classifier is

compared to the predetermined threshold. If it is greater than the threshold, the

most probable symbol predicted by the online classifier is chosen as a symbol recog-

nition result, otherwise the most probable symbol returned by the offline classifier

is chosen as the result of symbol recognition. The thresholds are 0.85 in one case

and 0.9 in the other case. The accuracy results of these combinations are shown in

Table 3.2. Notice that, in Combination 1 and Combination 2, the thresholds are

0.85 and 0.9 respectively. Training and test sets are the same as used for the online,

offline and combined classifiers.

Online Classifier Offline Classifier Combination 1 Combination 2

77.15% 90.18% 90.25% 90.32%

Table 3.2: The accuracy rates of different classifier combinations

In addition to the rate of correctly classified symbols, the accuracy of each classi-

fier on each symbol is also evaluated. Table 3.3 shows these symbol-based evaluation
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results. The accuracies are evaluated as the rate of correctly classified instances for

each symbol. For instance, online classifier can correctly classify the 82.85% of

the instances which are labeled as “a”, while offline classifier can correctly classify

90.77% of them.

Symbol Online Classifier Offline Classifier Combined Classifier

a 82.85% 90.77% 91.56%

b 79.80% 92.33% 93.09%

c 85.66% 88.52% 89.75%

d 71.05% 92.48% 94.74%

e 92.72% 91.39% 96.03%

f 64.16% 90.17% 87.86%

g 37.78% 48.89% 50%

h 58.33% 82.14% 80.95%

i 63.86% 81.53% 82.33%

j 60.22% 79.57% 80.65%

k 62.69% 83.42% 83.42%

l 12.96% 29.63% 24.07%

m 64.84% 79.69% 78.91%

n 83.55% 91.13% 92.98%

o 0% 0% 0%

p 81.76% 91.22% 92.57%

q 44.57% 70.65% 68.48%

r 57.25% 73.28% 74.05%

s 64.71% 56.47% 61.18%

t 45.25% 81.01% 79.33%

u 55.79% 80% 77.89%

v 76.14% 81.82% 85.23%

w 86.21% 94.83% 98.28%

x 84.93% 94.95% 96.38%

y 80.89% 91.84% 93.01%

z 51.5% 71.8% 69.17%
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0 86.51% 96.98% 96.74%

1 74.93% 92.23% 90.8%

2 92.34% 95.62% 96.51%

3 92.27% 94.5% 97.25%

4 88.64% 93.18% 94.7%

5 64.54% 88.45% 86.85%

6 91.75% 91.26% 94.66%

7 61.42% 91.88% 88.32%

8 73.16% 91.58% 91.58%

9 72.68% 78.35% 81.44%

A 77.42% 77.42% 83.87%

B 79.25% 86.79% 92.45%

C 0% 16.07% 7.14%

E 35.71% 89.29% 89.29%

F 30.56% 86.11% 86.11%

G 47.06% 76.47% 76.47%

H 25% 90% 80%

I 0% 61.54% 53.85%

L 70.37% 96.30% 92.59%

M 21.05% 78.95% 57.89%

N 70.37% 74.07% 77.78%

P 0% 14.29% 14.29%

R 64.86% 75.68% 83.78%

S 4.35% 13.04% 13.04%

T 0% 84.21% 73.68%

V 0% 14.29% 14.29%

X 0% 17.24% 15.52%

Y 4.16% 41.67% 41.67%

− 82.42% 99.14% 99.07%

! 4.17% 75% 68.75%

( 91.9% 94.64% 95.79%
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) 92.21% 97.26% 98.11%

, 37.72% 61.68% 53.29%

/ 1.37% 83.56% 75.34%

[ 41.86% 86.05% 79.07%

{ 57.45% 78.72% 74.47%

} 46.81% 68.09% 59.57%

α 83.33% 76.98% 84.13%

β 69.7% 92.93% 90.91%

cos 79.41% 94.85% 94.85%

∆ 54.05% 94.59% 94.59%

∃ 0% 66.67% 33.33%

∀ 11.11% 55.56% 44.44%

γ 52% 60% 56%

≥ 66.15% 90.77% 90.77%

> 60% 84.44% 80%

∈ 60% 90% 70%

∞ 66.67% 90.35% 90.35%∫
70.44% 86.68% 88.68%

λ 44.44% 94.44% 94.44%

≤ 72.84% 88.89% 90.12%

lim 63.01% 89.04% 95.89%

log 71.88% 92.19% 92.19%

< 40.74% 85.19% 79.63%

µ 48.72% 82.05% 82.05%

6= 62.5% 89.29% 89.29%

φ 42.86% 83.67% 83.67%

π 67.13% 88.81% 88.11%

± 50% 79.41% 85.29%

′ 0% 0% 0%

→ 59.05% 96.19% 94.29%

σ 0% 80% 70%
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sin 82.22% 94.44% 96.67%

√
72.45% 98.81% 99.05%∑
76.33% 96.45% 96.45%

tan 82.46% 89.47% 92.98%

θ 81.94% 88.19% 89.58%

] 72.09% 90.7% 93.02%

| 1.12% 26.97% 21.35%

+ 88.9% 97.81% 97.97%

= 93.01% 96.56% 97.39%

Table 3.3: Symbol based accuracies of classifiers

From the results, it is obtained that the accuracy of online classifier is very low

compared to the accuracy of offline and combined classifiers. One reason of this fact

is that when individuals write the mathematical symbols in a different way, online

classifier cannot recognize it. For instance, the symbol “2” is generally written by

starting from left center point as shown in the left of Figure 3.5. If the symbol “2”

is written in a reverse way as indicated in the right of Figure 3.5, online classifier

cannot recognize it. Online classifier recognizes the symbol “2” which is written in

a reverse way as the symbol “0”, while offline classifier recognizes it as the symbol

“2”.

Figure 3.5: The symbol “2” written in two different ways

Another reason of the low accuracy of online classifier is that some capital letter

symbols such as C, S, X, V and P are generally written in the same pattern as

the lower case letter symbols of these. When one of these symbols is written, online

classifier mostly recognizes them as lower case letters.

For the symbols which are classified by combined classifier with the accuracy

rate less than or equal to 50%, the symbols which are mostly mistaken for these
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symbols are investigated. Table 3.4 shows these symbols. For instance, from Table

3.4 it is seen that the misclassified instances of the symbol “g” are mostly classified

as the symbol “9” by combined classifier .

Symbol Mistaken Symbol

g 9

l 1

o 0

C c

P p

S s

V v

X x

Y y

∃ 3

∀ x

′ 1

| 1

Table 3.4: Mistaken symbols for the symbols classified by combined classifier with

the rate less than or equal to 50%

Furthermore, it is also obtained that the misclassified instances of the symbols

“z”, “m”, “c” and “>” are mostly classified by combined classifier as the symbols

“2”, “n”, “(” and “)” respectively.

3.2 Parsing in MathLet v3

Symbol recognition step is followed by parsing in MathLet v3. In parsing phase,

grammar rules which define relationships between tokens are used. Initial tokens

are created from symbols and these tokens are expanded during parsing phase by

parser in order to obtain whole ME at the end.
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3.2.1 Tokens

Symbols and MEs are represented by a structure called “token” in MathLet v3.

Each token stores its own LATEX and MathML codes of mathematical symbol or ME

which it represents. Each token has also a likelihood value which defines its fitness.

Components of the token are also stored by the token. Each token also stores its

bounding box and some 2D information about its position such as top right point of

it. For instance, a token representing the ME “a3” has a LATEX code “{a}ˆ{3}”, a

MathML code “<msup><mi>a</mi><mn>3</mn></msup>” and the compo-

nent tokens representing “a” and “3” together with likelihood value, bounding box

and 2D information. A visual representation of the token “a3” is shown in Figure

3.6.

Figure 3.6: A visual representation of the token “a3”

Parsing step in MathLet v3 starts with creating initial tokens from the symbols

recognized in the symbol recognition step. Here, the probability distribution over

classes returned by the symbol recognizer is used. According to the most probable

symbol, parser creates the initial tokens. For instance, if the symbol “θ” is the most

probable symbol according to the probability distribution, a token representing the

symbol “θ” is created by parser. If the most probable symbol is “x”, then two tokens

representing the symbols “x” and “×(times)” are created.

Parser in MathLet v3 applies different procedures while creating the initial token

for the symbols which are generally mistaken for another symbol. According to the

prediction probability of the most probable symbol, more than one token may be

created by the parser. For example, MathLet v3 mistakes the symbol “1” for the

symbols “(” and “|”. When the symbol “1” is the most probable symbol, parser

checks prediction probability of it. If this probability is greater than or equal to 0.8

only a token representing the symbol “1”, else if this probability is less than 0.6 three

tokens representing the symbols “1”, “|” and “(”, otherwise two tokens representing

the symbols “1” and “(” are created. Similar procedure is also applied for the symbol
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“t” which is mistaken for “+”, the symbol “z” which is mistaken for the symbol “2”

etc. The goal of this procedure is to decrease errors due to the misrecognition of

symbols in symbol recognition step. An example list of initial tokens for the ME

“813” is shown in Figure 3.7. It should be noted that the prediction probability of

the symbol “1” is greater than or equal to 0.8 and the symbols “8”, “1” and “3” are

the most probable symbols in this example.

Figure 3.7: An example for mistaken symbol handling in MathLet v3

After the initial token list is created, parser creates the initial neighbourhood

between initial tokens. In order to do this, some checks are made among each pair

of tokens. First, the distance between tokens are calculated. If they are close enough

and there is no third token between them, tokens are marked as neighbour by the

parser.

After the creation of initial neighbourhoods, parser makes special cheks to dis-

tinguish the symbols “x” and “×” when the initial token list has one of these tokens.

These checks are experimental and depend on the content of ME. After checks, if

parser determines that the mistaken token is “likely x” then the token representing

“×” is removed or vice versa. If parser cannot make such decision, two tokens re-

main in the initial token list. Parser makes different checks to decide that mistaken

token is “likely x” or “likely ×”. If the left and right neighbours of the mistaken

token is a number and the structure “number×number” is very likely for these to-

kens, then the mistaken token is marked as “likely ×”. If there is no neighbour in

the left or right of the mistaken token, then it is marked as “likely x”. Furthermore,

if the right neighbour of the mistaken token is plus or minus and the positions of

the mistaken token and its right neighbour is appropriate for being a horizontally

neighbour, then the mistaken token is marked as “likely x”. This procedure pro-

vides a decrease in the number of initial tokens for some of the MEs which contain
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“x” or “×”. The time performance of MathLet v3 increases while processing these

MEs, because the number of tokens which MathLet v3 has to process decreases.

An example is shown in Figure 3.8. In this example, parser eliminates the token

“×” after making checks. It should also be noted that, the symbols “3”, “x”, “+”

and “2” are the most probable symbols according to the probability distributions

returned by the symbol recognizer for each symbol in this example.

Figure 3.8: Initial token list after the recognition of the symbol “x” in MathLet v3

3.2.2 Grammar Rules

As the next task, parser expands existing tokens and generates new tokens by ap-

plying grammar rules. There are many grammar rules in MathLet v3. These rules

are considered in four different groups. This grouping is done for the purpose of

application order which will be detailed in Section 3.2.3. Four groups can be defined

as follows: rules defining the conditions to generate tokens representing symbols

written in more than one stroke such as the symbol “‘=”, operator rules defining

the conditions to generate tokens representing expressions such as “3 + 4”, equality

operator rules defining conditions to generate tokens such as “x = y”, “2 ≤ 3” and

others i.e., a rule defining conditions to generate multi-number terms such as “123”.

The rules in the first group define the conditions to generate a token representing

a symbol written in more than one stroke such as “=”, “x (may be written like a

concatenation of the symbols “)” and “(”)”, “≤”, “. . .”, “÷”, “tan”, “cos”. Each

rule in this group takes one candidate token which may be recognized as a separate

symbol while it is written as a stroke of multi-stroke symbol. Then, the positions

of neighbour tokens of the candidate token which represents appropriate symbol is

checked by the rule. If such a token exists and that token satisfies further conditions,

a token representing multi-stroke symbol can be created. Each rule checks different

conditions for generating tokens representing different symbols.
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For instance, in MathLet v3 there is a rule to define the conditions for generating

a token representing the symbol “=”. A rule checks each of the tokens “−” separately

as a candidate token. Then, rule checks whether there is another token representing

“−” at the top of the candidate token. If such a token exists, then the widths of

two tokens are compared. If the difference of the widths of two tokens are less than

0.75 of width of each token, a token representing the symbol “=” can be generated.

A rule in the second group is the operator rule which defines the conditions

for generating MEs containing operator and its operands. The rule takes a token

representing an operator symbol which can be “+”,“−”,“×”,“÷” or “±”. Then,

the neighbour tokens of that token are checked. If the type (variable, number etc.),

height and baseline of neighbour tokens are appropriate for being an operand, new

token can be generated. Likelihood calculation is also defined by the rule. In the

calculation, the widths and heights of components are considered together with

distance between them.

One more condition is also checked while selecting a neighbour token in the

right of the operator token. The rule checks whether a neighbour token in the

right is included as a component in another neighbour token which is in the right

of the operator token and has likelihood value greater than the threshold. If this

condition is satisfied, that neighbour token is not expanded by the operator rule.

This condition check provides a decrease in the number of tokens that MathLet

v3 has to process and this fact provides an increase in the time performance of

MathLet v3. As an example, consider the ME “1 + 2435”. In the left of the token

“+” there can only be one token representing “1”, while in the right there can be

tokens representing “2”,“24”, “243”, “2435”. If the likelihood of the token “2435”

is greater than the threshold value, other subexpressions are not generated. An

illustrative example can be seen from Figure 3.9.

The rule in the third group is a rule that defines conditions to generate tokens

containing equality operators which are “=”, “6=”, “≤”, “<”, “>” and “≥”. A

rule takes a candidate token representing one of the equality operator symbols.

A rule then checks the neighbour tokens in the left and right of candidate token.

Contextual information is also used by the rule. If the neigbour token represents

one of the operators, new token is not generated according to the assumption that
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a ME does not contain a subexpression like “+ =”, “≤ −” etc. The calculation of

likelihood value of new token is also defined by the rule. In the calculation, baselines

of component tokens are considered together with distances between them.

Figure 3.9: Recognition result for the ME “1 + 2435”

In the fourth group, there are many rules defining conditions for different neigh-

bourhood relationships between tokens. There are rules for subscript and superscript

relationships which takes a base token as a candidate and checks appropriate posi-

tion for subscript and superscript relationships. For instance, to generate the token

representing the ME “a1”, the rule takes the token “a” as a candidate token. Then

the bottom-right of it is checked whether there is a token or not and the rule finds a

token representing “1”. The rule also makes checks based on contextual information.

Then the token “a1” can be generated with its likelihod value. The likelihood value

is calculated comparing the nearest x and y points of components, the widths and

heights of them. For subscript rule, the size of the token in the subscript should be

smaller than the size of base token. In this group there is a fraction rule defining the

conditions to generate fractions such as “ 1
2x

”. There are rules defining conditions

to generate numeric terms such as “241”, alpha terms such as “xy”, alphanumeric

terms such as “2a”, multiple terms such as “a2b2”, subexpressions containing “lim”

such as “limx→∞ x
2”, square roots such as “

√
xn”, functions such as “sinx”, “tan y”,

“log b”, summation and integrals such as “
∑
a”, “

∫
x2dx”, paranthesis and absolute

values such as “(2 + 3y)” , “| − 2|”. Each rule defines appropriate checks based on
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spatial relationships and contextual information. Likelihood calculation specific to

relationship is also defined by the rules.

Parser in MathLet v3 applies the applicable grammar rules to existing tokens and

generates new tokens. If a rule is applicable, then parser generates new token with

likelihood value. For instance, consider the ME “2x” which is written ambiguously

as shown in Figure 3.10. This ME may be recognized as “2x” or “2x”. The rule for

superscript relation and the rule to generate alphanumeric terms check the relative

positons of the tokens “2” and “x”. Both rules find the relative position of these

tokens appropriate to generate the tokens “2x” and “2x”. In other words, both rules

are applicable to the tokens “2” and “x”.

Figure 3.10: The ME “2x” written ambiguously

Parser in MathLet v3 calculates the likelihood value and assigns it to the gen-

erated token. The calculation of likelihood value is done according to the grammar

rule which is applied by parser to generate the token. For instance, the parser as-

signs likelihood values to the tokens “2x” and “2x” according to the superscript rule

and the rule to generate alphanumeric terms for the ME shown in Figure 3.10. The

parser calculates the likelihood value for the token “2x” according to the superscript

rule by comparing the x and y position and the width and height of the component

tokens “2” and “x”. According to the superscript rule, y position of the token “x”

should be greater and the height and width of the token “x” should be less com-

pared to the same properties of the token “2”. The likelihood of the token “2x” is

calculated according to the rule to generate alphanumeric terms by comparing the

distance between component tokens “2” and “x” and the baselines of them. The

tokens “2” and “x” should be close to each other and y positions of their baselines

should be comparable. Consequently, the calculated likelihood value of the token

“2x” is greater than the likelihood value of the token “2x”.
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3.2.3 Rule Application

Parser in MathLet v3 manages the application of grammar rules on existing tokens.

If any new token is generated after rule application, the likelihood value of new token

is checked by the parser. If this value is greater than the predetermined threshold,

new token is added to the list of existing tokens, otherwise it is eliminated by the

parser.

Rule application is made in the predetermined order by the parser and after each

iteration of rule application, the parser updates the existing neighbourhood relation-

ships between existing tokens or creates new relationships. Parallel programming

is involved in this neighbourhood creation step and this provides an increase in the

time performance of MathLet v3.

As the first step of rule application, generation rules are applied continuously on

appropriate existing tokens until no new token is generated. For instance, a user

wants MathLet v3 to recognize the ME “y+16 = x”. Consider that, a user naturally

writes the symbol “=” in two strokes. Parser in MathLet v3 first generates the token

representing the symbol “=”.

As the second step, parser applies the rules in the fourth group continuously

until no new token is generated. For the ME “y+16 = x”, the parser creates tokens

representing subexpressions “+1” and “16” according to the rule for alphanumeric

terms and numeric terms respectively. In the third step, the operator rule which is

given in the second group is applied by the parser. The application of this rule is

done again until no new token can be generated. At this time, parser in MathLet v3

creates a token representing the subexpression “y + 16” according to the operator

rule.

After applying the operator rule, as the fourth step, parser applies the equality

operator rule until it is not possible to generate new tokens. For the ME “y+16 = x”,

there is one token representing the equality operator “=”. According to the rule,

parser will create three tokens representing the subexpressions “6 = x”, “16 = x”

and “y + 16 = x”.

Parser then repeats the second step to see whether any new tokens can be gen-

erated from existing tokens. If any new tokens can be generated, then it repeats

second, third and fourth step using existing tokens until no new token can be gen-
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erated. For our example, no new token can be generated after repeating the second

step and parsing step is done. Figure 3.11 shows the input ME and the recognition

result of it which is returned by MathLet v3. From the Figure 3.11, subexpressions

can be seen in the list of recognition results presented in the right. At the bottom,

the readable view of top-ranked recognition result is shown.

Figure 3.11: Recognition result for the ME “y + 16 = x”

Figure 3.12 shows the tokens generated after each rule application step while the

ME “y + 16 = x” is being parsed. The component tokens of generated tokens are

also shown. It should be noted that after the application of equality operator rule,

three tokens are generated. For the sake of simplicity, only one of these three tokens

is shown in Figure 3.12.

Figure 3.12: The tokens generated while the ME “y + 16 = x” is being parsed

Parsing process is manually stopped if it takes MathLet v3 to finish it more than

5 minutes. The parsing process in MathLet v3 is generally stopped, when MEs with

33



too many number of symbols are recognized.

3.2.4 Sorting Existing Tokens

After parsing process is finished, MathLet v3 sorts the existing tokens. First, extra

check based on contextual information is made for tokens which contain the symbols

paranthesis or absolute value. The number of left and right parantheses (“(” and

“)”) and the number of the symbol absolute value (“|”) are counted. If the number

of the symbols left and right paranthesis is not equal to each other or the number of

the symbol absolute value is not even, the likelihood value of the token is manually

decreased.

Then, the existing tokens are sorted. In this sorting, the number of components

and the likelihood values of two tokens are compared. A token which has more

components has precedence. If more than one token have the same number of

components, then the likelihood value of them are compared. A token having greater

likelihood has precedence.

MathLet v3 uses this sorting for the presentation purpose of recognition results.

The recognition results are ordered according to this sorting. Top-ranked token is

presented at the top, second one is presented below of it and so on. An example can

be seen in the right of Figure 3.11.

3.2.5 Parsing MathML Codes

The process of sorting existing tokens is followed by parsing the MathML code

of top-ranked token. The need of this process emerged with the low recognition

results obtained in CROHME 2011 (see Section 5). The system which participated

in CROHME 2011 was MathLet v2. The major source of errors which caused low

recognition results in CROHME 2011 was MathML problems. MathLet v2 generated

wrong MathML codes for the most of the MEs that are correctly recognized. These

MathML problems of MathLet v2 were difficult to fix within the existing parsing

algorithm.

The problem was that MathLet produces MathML codes in which there are

misplaced “mrow” elements. In the correct format, symbols have to be grouped in

“mrow” elements iteratively starting from the right. The rightmost two symbols are
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grouped in “mrow” and then each symbol in the left are grouped in another “mrow”

element. As an example, consider the ME “a + c = b”. The MathML code of this

expression can be seen in Table 5.1.

In MathLet v3, the MathML codes of each subexpression is created by the parser

based on the rule which generates that subexpression. Hence, grouping the tokens

in “mrow” elements is also achieved according to these rules. Each rule specifies

grouping tokens in “mrow” element by specifying criteria based on component to-

kens. Consider the parsing of the ME “a+ c = b” by the parser in MathLet v3. The

parser first creates the token “a + c” according to the operator rule. The MathML

code of the token “a + c” is created by grouping the symbols “+” and “c” in one

“mrow”, and then grouping all of three symbols in outer “mrow”. Then the token

“a + c = b” is created according to the equality operator rule by the parser. The

MathML code of the ME “a+c = b” is created by grouping the symbols “=” and “b”

in one “mrow”, and the remaining part in one outer “mrow”. As a result, according

to the parsing process of MathLet v3, expression tree and MathML code for this

ME will be as in Figure 3.13.

Figure 3.13: Expression tree and the MathML code for the ME “a+c = b” produced

by MathLet v3 before MathML parsing

Because the console application of MathLet v3 gives an InkML file containing

top-ranked recognition result as an output, MathML code of top-ranked token is

parsed at the end of parsing process. In order to do this, first each “mrow” element

in MathML code is removed. Then, the suffix of the remaining MathML code which
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contains two symbols is detected. Finally, grouping the symbols in “mrow” elements

is done by inserting “mrow” elements into the correct places.

MathML codes included in output InkML file can still be problematic for some

cases in MathLet v3. For instance, the MathML codes of nested fractions and

nested square roots such as “ x
x
y
” and “

√
1 +
√

2” cannot be constructed correctly in

MathLet v3.

3.3 Accessibility

MathLet v3 has four applications each can be accessed by different ways. All ap-

plications of MathLet v3 are developed in Microsoft .NET Framework environment

using C# programming language. Two of these applications can be accessed through

the Web, while the others are Windows and console application.

The first application of MathLet v3 is a Windows application and has GUI

to facilitate human-computer interaction. Users write their own MEs and get the

recognition results for them. This application also provides a functionality for users

to upload InkML files. The MEs included by these files can be viewed and recognized

by running this application.

The second application of MathLet v3 is a console application which takes one

input file and generates one output file. The input of this application is an InkML

file which contains the MathML code of the expression to be recognized together

with stroke-level information such as points of strokes and segmentation of them.

The output is also an InkML file which contains the MathML code and stroke seg-

mentation information of the best recognition result. Users have to run the applica-

tion by calling the executable file created by Microsoft Visual Studio automatically

after building the solution. Users must invoke the executable file from Windows

command prompt together with two parameters which are the paths of input and

output InkML files. Some details of InkML and MathML will be given in Section

5.1.

MathLet v3’s third application is used to upload InkML files through the Web. It

returns recognition results for the uploaded InkML file. Users can choose the InkML

file which they want and see the recognition results for it. The system returns top-5

recognition results together with their LATEXcodes.

36



As the implementation of MathLet v3’s third application, a Web page in Hy-

perText Markup Language (HTML) is created. In this web page, there is an in-

troductory explanation about the page and the list of supported symbols. There

are also appropriate titles and two buttons for browsing the files and recognizing

ME. Clicking the browsing button provides that a user browses the files stored in

his/her computer and chooses an InkML file to be recognized. Other button is

used to get recognition results for chosen InkML file. A web page which is dis-

played with Mozilla Firefox browser can be seen in Figure 3.14. Web pages are also

available online at http://ferrari.sabanciuniv.edu/MathLetInkml/ and http:

//ferrari.sabanciuniv.edu/MathLetInkml2/. The difference between these two

web pages is that they run different web applications which are able to recognize

different list of symbols.

As the second step of the implementation of third application of MathLet v3,

ASP.NET MVC 2 Web Application is developed. A user runs this application by

clicking recognize button in the Web page and the Web application returns the

result page. In this Web application, first the Windows application of MathLet

v3 is modified and used as the models of an application. Secondly, a result page is

developed as the view of the application. This page is shown after recognize button is

clicked on the Web page. Thirdly, a controller for the Web application is developed.

Sample result pages which are displayed with Microsoft Internet Explorer can be

seen in Figure 3.15.

The fourth application of MathLet v3 provides that users can write their own

MEs through the Web page. Users can get top-5 recognition results for the ME

which they write as similar to the third application. Users are also able to clear the

ME which they write by clicking an appropriate button.

As the implementation of the fourth application, first an ink-enabled user control

which provides that users can write their own MEs through the Web is created. Users

can also clear the MEs which they write and write new ME from scratch. This user

control is created by using [17] and included in ASP.NET MVC 2 Web Application.

Similar to the third application, entities of MathLet v3’s Windows application

are modified and used as models. New views and controller are also developed. In

this web application, there are two views. These views can be considered as the

37



Web pages which have different operational tasks. One of these views is for writing

a ME and clearing it, while the other one provides the recognition results for a ME.

Figure 3.14: InkML upload Web page of MathLet v3

In contrast to the third application, fourth one does not have any Web page

written in HTML. Instead views are used. Figure 3.16 shows the sample Web

interface pages and their corresponding result pages. In this figure, there are two

different MEs written on two Web pages. Below the Web pages, there are result

pages which contain recognition results for these MEs. In addition to this figure,

fourth application can also be seen online from http://ferrari.sabanciuniv.edu/

MathLet/. To view the Web page correctly, users need to use Microsoft Internet

Explorer and follow the instructions given on the Web page.
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For the Windows application of MathLet v3, a setup file is created in order to

improve the accessibility of it. A user simply installs the MathLet v3’s Windows

application by running setup file and uses it. Similarly, a user is able to remove or

repair MathLet v3 by running the file which is also installed after the setup.

Figure 3.15: Example result pages for uploaded InkML files

Before creating the setup file for MathLet v3, first the file to remove or repair it

is created. To do this, the codes provided in MSDN forums [18] are used. A program

is developed using Microsoft .NET Framework and C# programming language ac-

cording to these codes. The file created is included in the installation folder of the
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application.

In order to create the installation file for MathLet v3, a “Setup Project” [19] in

Microsoft .NET Framework is developed. In this project, the files which are needed

to run Windows application of MathLet v3 are included. These files are included

in the application folder. Moreover, the file for removing and repairing MathLet v3

is included. An icon is created for this file and this file is included together with

existing icon file of MathLet v3 in the project.

“Setup Project” gives two output files. One of them is “MathLet.msi” and the

other one is “setup.exe”. Instead of giving the files of Release or Debug folder of an

application directory, now these 2 files are given to the users.

Users install the Windows application of MathLet v3 by running the file named

“setup.exe”. After installation is completed, users will have shortcut on their desk-

tops and MathLet v3 is appeared under Start menu in Windows operating systems.

In the same path, they will see the file to repair or remove MathLet v3.

Figure 3.16: The web interface of MathLet v3
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4 Accuracy and Time Performance Evaluations

In this thesis, MathLet is evaluated according to the accuracy and time performance

of it. Accuracy evaluation results are given based on CROHME results which show

the progress of MathLet clearly. Time performance evaluation results of MathLet v3

which includes improvements are given together with the initial results of MathLet

v3 which does not have improvements on time performance where both systems are

evaluated based on the same metric which is also defined further in this section.

4.1 Accuracy Evaluation

To evaluate the accuracy of MathLet, the evaluation results that MathLet has ob-

tained in CROHME competitions are used. MathLet participated in CROHME in

2011, 2012 and 2013. For different recognition tasks, the accuracy evaluation results

that MathLet obtained are reported in Table 4.1. It should be noted that given

evaluation results show the rate of fully recognized MEs by MathLet. The details

of these evaluation results, evaluation metrics and recognition tasks will be given in

Section 5.

Task CROHME 2011 CROHME 2012 CROHME 2013

Part-I 0.55% 22.22% N/A

Part-II 0.29% 7.97% N/A

Part-III N/A 4.92% N/A

Part-IV N/A N/A 8.35%

Table 4.1: The accuracy evaluation results of MathLet

As seen, the accuracy evaluation results of MathLet v2 were very low in CROHME

2011. For both Part-I and Part-II tasks, the evaluation results were lower than 1%.

In addition to improvements on the symbol recognizer and parsing, the efforts made
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to correct MathML errors made MathLet v3 more successful in CROHME 2012. For

both Part-I and Part-II tasks, a huge gain was obtained in CROHME 2012 in which

MathLet v3 did not have special system for Part-III task. Despite of the fact that

Part-IV task is more difficult than others, CROHME 2013 results of MathLet v3

are better than Part-II and Part-III results obtained by MathLet v3 in CROHME

2012. Training the symbol recognizer with a huge data and extensions in parsing

play key role in obtaining these results.

As a result, starting from 2011, accuracy evaluation results of MathLet have

shown an increasing trend with the improvements made on the symbol recognition,

parsing and MathML parsing. In short, although the recognition task becomes more

difficult, the accuracy of MathLet has been increased from 0.55% to 8.35% within

two years.

4.2 Time Performance Evaluations

In order to evaluate the time performance of MathLet v3, first an evaluation metric

is decided. Then, initial measurements are made on MathLet v3 which does not

have any improvements. The same measurements are made again on MathLet v3

after the improvements. Expression-level recognition rates are also found in both

measurements.

4.2.1 Evaluation Metrics

It takes MathLet v3 long time to process long MEs. When a ME contains many

symbols, MathLet v3 might not give recognition result for it or might recognize it

after long processing time. Before making any improvements, some analysis is made

on MathLet v3.

In MathLet v3, parsing phase is managed by a function named “recognize”. This

function is invoked after a ME is written. Thus, the time which MathLet v3 takes to

process this function is decided to measure. In addition to the time measurement,

the recognition results of MathLet v3 are also measured.

For CROHME 2011, competition organizers provided 921 traning files which in-

clude Part-I and Part-II symbols. In time measurements, these training files are

used and the processing time of “recognize” function for these training files is mea-
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sured. In these measurements, a version of console application of MathLet v3 which

is specially prepared for Part-II is used. In other words, the systems used in mea-

surements can only recognize the symbols which are included in Part-II recognition

task of CROHME (see Section 5).

4.2.2 Initial Time Performance Evaluation Results of MathLet v3

Time performance measurements provide the processing time for each file. From this

information, some statistics are extracted. First, the number of files which requires

specific interval of processing time is extracted. This information is shown in Table

4.2.

Processing Time Number of Files Proportion

Less than 1 second 415 45.06%

Less than 10 seconds 524 56.89%

Less than 30 seconds 566 61.45%

Between 30 seconds and 5 minutes 73 7.93%

More than 5 minutes 282 30.62%

Table 4.2: The initial time performance evaluation results of MathLet v3

As seen from Table 4.2, there are 282 files which require more than 5 minutes to

be processed by MathLet v3. The number of strokes included by the MEs in these

files are also analyzed. The number of strokes in these MEs varies between 10 and

54.

Moreover, some relationship between the number of strokes and processing time

are detected. Table 4.3 shows this relationship. This relationship shows that when

a ME has many strokes, it takes MathLet v3 to process more than one minute.

Number of Strokes Processing Time

Less than 9 Less than 1.1 seconds

Less than 10 Less than 45 seconds

More than 31 More than 1 minute

Table 4.3: Initial stroke number-processing time relationship in MathLet v3
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In addition to these measurements, the initial accuracy of MathLet v3 on these

921 trainig files is also evaluated. MathLet v3 can recognize 108 of 921 training files.

In other words, 11.73% of the training files can be fully recognized by MathLet v3.

This information will be compared to the evaluation results of MathLet v3 which

has improvements in order to make sure that improvements made to increase time

performance does not cause any loss in the accuracy of MathLet v3.

4.2.3 Time Performance Evaluations of MathLet v3 After Improvements

After parsing step is extended as detailed in Section 3.2, the same measurements

are made on MathLet v3. The measurement results are given in Table 4.4.

Processing Time Number of Files Proportion

Less than 1 second 518 56.24%

Less than 10 seconds 628 68.19%

Less than 30 seconds 680 73.83%

Between 30 seconds and 5 minutes 76 8.25%

More than 5 minutes 165 17.92%

Table 4.4: The improved time performance evaluation results of MathLet v3

There are 165 files which require more than 5 minutes to be processed by MathLet

v3. The number of strokes included by the MEs in these files is also analyzed.

The number of strokes varies between 13 and 54. Table 4.5 shows the relationship

between the number of strokes included in MEs and the processing time of them

obtained on the improved MathLet v3.

Number of Strokes Processing Time

Less than 9 Less than 0.8 seconds

Less than 10 Less than 7.9 seconds

More than 40 More than 5 minutes

Table 4.5: Improved stroke number-processing time relationship in MathLet v3

Finally, the accuracy of MathLet v3 is evaluated. There are 142 exact matches
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among 921 training files. That is to say that, MathLet v3 can fully recognize 15.42%

of the training files after improvements.

4.2.4 Comparison of Measurement Results

Table 4.2 and Table 4.4 show that the time performance of MathLet v3 has been

improved. The proportion of the files which take more than 5 minutes to process is

decreased from 30.62% to 17.92%. The proportion of the files which take less than

1 second to process is increased from 45.06% to 56.24%. MathLet v3 can process

73.83% of the files within less than 30 seconds after improvements while initially it

can process 61.45% of them.

A ME with 10 strokes may be processed within more than 5 minutes in initial

measurements, while MathLet v3 can process it within less time after improvements.

The minimum number of strokes for the files which take more than 5 minutes to

process is increased from 10 to 13.

As seen from Table 4.3 and Table 4.5, the maximum processing time for MEs

having less than 9 strokes is decreased from 1.1 seconds to 0.8 seconds after im-

provements. Furthermore, improvements provide saving 37 seconds’ time for the

MEs containing less than 10 strokes. Due to some idiosyncracies of the data, the

MEs with 10 strokes seem to take much more time to be processed by both initial

and improved MathLet v3 compared to the MEs with 9 strokes, even though such

a discontinuity between these MEs would not be expected.

Finally, the expression-level recognition rate of MathLet v3 which is improved

is greater than the recognition rate obtained in initial measurements. MathLet

v3 can fully recognize 15.42% of 921 training files which are the MEs containing

Part-II symbols and provided by CROHME organizers, while it can fully recognize

11.73% of them in the initial measurements. This fact provides that improvements

on MathLet v3 do not have any negative effects on the expression-level recognition

rate of it.
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5 CROHME Competition

CROHME has been organized since 2011 with the goal of bringing the researchers

who study on the area of the recognition of handwritten MEs under a common

platform. In this platform, there is an opportunity for researchers to share the same

dataset. Furthermore, researchers can report their performance on common test

data. Researchers also find an opportunity to compare their work with other works

and to identify the strengths and weaknesses of their systems compared to other

benchmark systems. Competition also provides the documentation of challenges

and advancements in the area of handwritten ME recognition. Each CROHME

has been organized along with an international conference. CROHME 2011 [20],

CROHME 2012 [21] and CROHME 2013 were held at ICDAR 2011 [22], ICFHR

2012 [23] and ICDAR 2013 respectively.

The organizers of CROHME 2011 and 2012 were from three different universities

in three different countries. First group of organizers was from University of Nantes,

France. The name of organizers from this university are Harold Mouchère and

Christian Viard-Gaudin. Second group consisted of Dae Hwan Kim and Jin Hyung

Kim from KAIST, Republic of Korea. The third organizer was Utpal Garain from

Indian Statistical Institute, India. In addition to these organizers, CROHME 2013

has had one more organizer who has been Richard Zanibbi from Rochester Institute

of Technology, NY, USA.

The number of participants in CROHME 2011 was four. In addition to four

systems which were developed by participants, there was also one more system

developed by one of the organizing groups. Participants were from universities in

USA, Turkey, Spain and Greece. The system which was developed by organizer was

from University of Nantes, France. The number of participants was increased in

CROHME 2012. There were six participant systems in CROHME 2012. Similar

to CROHME 2011, there was a system from one of the organizers in CROHME
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2012. Research groups which had participated in CROHME 2011 also participated

in CROHME 2012. In other words, in CROHME 2012 there were two newcomer

systems. One of the newcomer systems was from University of Waterloo, Canada,

while the other one was the commercial system developed by Vision Objects.

CROHME organizers provided a package for participants. Training data which

are InkML files were provided for CROHME 2011 and 2012. Training data consists

of MEs which contain symbols and relationships which are appropriate for defined

grammar, i.e., Part-I. Training and test datasets were different from each other in

each CROHME contest. Organizers also provided evaluation tool for participants in

order to enable the participants for evaluating their systems before submission. For

CROHME 2013, organizers have provided a wider package. The package consists of

papers which are written about previous CROHME contests, training and test data

of CROHME 2011 and CROHME 2012. Organizers have provided a tool which can

be used to view MEs included by InkML files. A view of one example ME “T
∫

∆dl”

which is included in an InkML file provided by CROHME organizers as a training

data is shown in 5.1. In addition to these, they have provided output result files of

all participants in CROHME 2011 and 2012.

Figure 5.1: A view of the ME “T
∫

∆dl” included in Part-IV training files

5.1 Data Format

In CROHME, participating systems take an input file which contains information on

handwritten ME to be recognized. Then, the recognition result of the participating

system for the input file is returned in an output file. In CROHME, both files are in

InkML [24] format which is the data format designed to represent ink data. InkML

also provides the interchange of ink data between different applications which run

across different devices and platforms.
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An InkML file consists of three information about ink data. First of these infor-

mation are the coordinates of points that form a trace or in other words stroke. A

set of strokes then forms the symbol. Hence, first information included in InkML

file is stroke-level. Second information included in InkML file is symbol-level. It

provides information on the segmentation and the label of the symbols included in

handwritten ME. The third information provided by InkML file is the MathML code

of ME and this information is expression-level.

Some further information may also be annotated in InkML files such as the

gender, age and handedness of the writer, the channels such as X, Y , T , the ground

truth LATEX code of ME. An example of an InkML file for the ME “a+c = b” is shown

in Table 5.1. In the InkML file shown in Table 5.1, there are some information about

writer. The writer of that ME is 26 years old and rigt-handed male. Identification

codes for the ME and writer are also given. Channels are identified as X and Y

together with their types which are decimal.

In the example InkML file, there are 7 strokes for 5 symbols. The symbols “+”

and “=” have two strokes while the ohers have one stroke. This information can be

extracted from segmentation information given at the end of InkML file. Here, the

“traceGroup” element with identifier xml:id=“9” references to two strokes by their

ids which are “1” and “2”. The same “traceGroup” element has also a reference to

the element in MathML which has id “+ 1”. This reference links those two strokes

to the symbol “+”. The view of the ME “a + c = b” which is viewed by the tool

provided by CROHME organizers is shown in Figure 5.2. In this figure, the strokes,

the segmentation of strokes and points which form strokes can be seen clearly. It

should be noted that these information are extracted from InkML file given in Table

5.1. This InkML file was also provided by CROHME organizers as a training data.

MathML [25] is the name of the standard developed for better understanding of

the representation of MEs and the content of them. MathML is used to encode the

structure of MEs. MathML also provides displaying, manipulating and sharing the

MEs over the World Wide Web [26]. MathML consists of two markups; presentation

markup and content markup. First one deals with the appearance of MEs while the

latter deals with the mathematical meaning of them. For instance, content markup

gives the mathematical content of the ME “c multiplied by b”, while presentation
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markup defines that it is presented as “cb”, “c× b” or “c · b”.

<ink xmlns=“http://www.w3.org/2003/InkML”>
<traceFormat>
<channel name=“X” type=“decimal”/>
<channel name=“Y” type=“decimal”/>
</traceFormat>
<annotation type=“UI”>2011 IVC DEPART F004 E023</annotation>
<annotation type=“writer”>depart004</annotation>
<annotation type=“truth”>$a+c=b$</annotation>
<annotation type=“age”>26</annotation>
<annotation type=“gender”>M</annotation>
<annotation type=“hand”>R</annotation>
<annotationXML type=“truth” encoding=“Content-MathML”>
<math xmlns=‘http://www.w3.org/1998/Math/MathML’>
<mrow>
<mi xml:id=“a 1”>a</mi>
<mrow>
<mo xml:id=“+ 1”>+</mo>
<mrow>
<mi xml:id=“c 1”>c</mi>
<mrow>
<mo xml:id=“= 1”>=</mo>
<mi xml:id=“b 1”>b</mi>

</mrow>
</mrow>

</mrow>
</mrow>

</math>
</annotationXML>
<trace id=“0”>9.68215 25.7205, ... , 9.78647 25.9974</trace>
...
<trace id=“6”>12.19 25.9934, ... , 12.852 25.7847</trace>
<traceGroup xml:id=“7”>
<annotation type=“truth”>Segmentation</annotation>
<traceGroup xml:id=“8”>...</traceGroup>
<traceGroup xml:id=“9”>
<annotation type=“truth”>+</annotation>
<traceView traceDataRef=“1”/>
<traceView traceDataRef=“2”/>
<annotationXML href=“+ 1”/>

</traceGroup>
...

</traceGroup>
</ink>

Table 5.1: An example of an InkML file for the ME “a+ c = b”

The MathML code of the ME “a+ c = b” which is included in InkML file shown
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in Table 5.1 is an example of presentation markup in MathML. Presentation markup

is generally used by web browsers or graphics packages for the purpose of displaying

MEs. Presentation markup can also be defined as the XML equivalent of TEX

math [27]. Presentation markup consists of elements each representing a syntactic

structure in ME. For instance, “mi” element is used to represent variables, function

names or symbolic constants and “mo” element is used for representing operator

symbols. Other examples for elements used in presentation markup are “mfrac”

element which is used for fractions, “msqrt” element which is used for square roots

and “mrow” element which is used to horizontally group subexpressions. There are

about 30 elements in presentation markup in MathML. In CROHME, MEs included

in input and output files are encoded in presentation markup in MathML.

Figure 5.2: A view of the ME “a+ c = b” included in a Part-I training InkML file

The representation of the ME “a+c = b” in content markup in MathML is given

in Table 5.2. Mathematical processing packages and documents mostly use content

markup. Content markup in MathML generally consists of elements which encode

an expression tree. Examples of elements used in content markup in MathML are

“ci” element which is used to represent variables and “apply” element which is used

to apply operators or functions. Further examples for elements of content markup

are “plus”, “minus” and “times” elements which are used for addition, subtraction

and multiplication respectively and “root” element which is used to extract roots.

There are about 120 elements in content markup in MathML.

5.2 Task and Evaluation Metrics

The task of recognition differs in each CROHME contest. In CROHME 2011, there

were two different symbol sets. These sets were named Part-I and Part-II. Part-

II had more number of symbols than Part-I. Part-II had 57 symbols while Part-I

had 37 symbols. The ME shown in Figure 5.2 is an example of Part-I MEs, while
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Figure 5.3 shows the view of ME “
∫

(2x − 3ex)dx” which is an example of the MEs

included in Part-II. In addition to these symbol sets, in CROHME 2012 there was

one more symbol set named Part-III which had 75 symbols. Moreover, there has

been fourth symbol set which has been named Part-IV in CROHME 2013. Part-IV

has consisted of 102 symbols. Example MEs for Part-III MEs and Part-IV MEs

are shown in Figure 5.4 and Figure 5.1 respectively. Each part contains all of the

symbols which were included in the previous parts. For instance, 57 of 75 symbols

of Part-III were the symbols which had been included in Part-II. In addition to

the differences in symbol sets, each part had also some differences according to the

logical relationships which they could contain. For instance, in Part-I fraction of

fractions such as “ 1
1
2

” is not allowed.

<apply>
<eq/>
<apply>
<plus/>
<ci>a</ci>
<ci>c</ci>

</apply>
<ci>b</ci>

</apply>

Table 5.2: The content MathML code of the ME “a+ c = b”

In CROHME 2011, organizers evaluated the participating systems in four as-

pects, stroke-level classification rate, symbol segmentation rate, symbol recognition

rate and expression-level recognition rate. Stroke-level classification rate, ST rec, is

used to show the percentage of strokes with the correct symbol. Symbol segmenta-

tion rate, SYM seg, defines the percentage of symbol which are segmented correctly.

The symbol recognition rate, SYM rec, computes the performance of symbol classifier

when considering only the correct segmented symbols. Expression-level recognition

rate, EXP rec, shows the percentage of MEs which are totally recognized. This

measure is very harsh so that the tiniest mistake in ME causes a decrease in the

expression-level recognition rate.

In CROHME 2012, there was one more aspect which was MathML structure

recognition rate, STRUCT , and shows the percentage of MEs which have correct
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MathML structure without considering the label of leaves. For instance, two MEs

“a2 + 5” and “bk + c” have the same MathML structure. In CROHME 2012 and

CROHME 2013, organizers has also evaluated the expression-level recognition rates

of systems with having at most one, two and three errors. These rates have been

denoted as EXP rec−1, EXP rec−2 and EXP rec−3 respectively. These errors may

be in symbol label or MathML node tag. In each contest as a final rating of the

participating systems expression-level recognition rates are used and the system

developed by one of the organizing groups does not compete with other systems.

Figure 5.3: A view of the ME “
∫

(2x − 3ex)dx” included in Part-II training files

Figure 5.4: A view of the ME “[bx{(a
b
)x + 1}] 1

x ” included in Part-III training files

5.3 Evaluation Results of MathLet

MathLet v2 participated in CROHME 2011 with two different versions which were

developed for specifically Part-I and Part-II. Table 5.3 shows the evaluation results

of MathLet v2 obtained in CROHME 2011.

MathLet v2 took the fourth place among five participants for both Part-I and

Part-II grammars in CROHME 2011. The reason of this low evaluation result was

the fact that for some MEs, MathLet v2 generated outputs with wrong MathML
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structure while it correctly recognized them.

Grammar ST rec SYM seg SYM rec EXP rec

Part-I 22.39% 27.98% 82.11% 0.55%

Part-II 22.11% 28.25% 83.76% 0.29%

Table 5.3: The evaluation results of MathLet v2 in CROHME 2011

In CROHME 2012, there were three grammars Part-I, Part-II and Part-III. Or-

ganizers tested the systems with different datasets from the datasets in CROHME

2011. In addition to the results evaluated with these new datasets, organizers also

provided expression-level recongition rate of the systems on the test dataset used in

CROHME 2011. Table 5.4 shows the expression-level recognition rate of MathLet

v3 in CROHME 2012 on the test dataset of CROHME 2011 together with the results

obtained in CROHME 2011. Evaluation results of MathLet v3 on new datasets can

be found in Table 5.5. Furthermore, MathLet v3’s expression-level recognition rates

with the errors on Part-III dataset can be found in Table 5.6. MathLet v3 took the

sixth place among seven participants in CROHME 2012.

Grammar MathLet v2 MathLet v3

Part-I 0.55% 30.94 %

Part-II 0.29% 18.68 %

Table 5.4: The expression-level recognition rates of MathLet v3 in CROHME 2012

with the test dataset of CROHME 2011

Grammar ST rec SYM seg SYM rec STRUCT EXP rec

Part-I 61.33% 72.11% 87.76% 37.04% 22.22%

Part-II 49.06% 61.09% 88.36% 17.61% 7.97%

Part-III 45.42% 59.20% 84.27% 14.75% 4.92%

Table 5.5: The evaluation results of MathLet v3 in CROHME 2012
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Grammar EXP rec EXP rec−1 EXP rec−2 EXP rec−3

Part-III 4.92% 10.66% 14.14% 14.96%

Table 5.6: MathLet v3’s expression recognition rates with errors in CROHME 2012

Expression-level recognition rates of MathLet v3 in CROHME 2013 can be seen

from Table 5.7. In CROHME 2013, MathLet v3 has taken the fifth place among six

participants.

Grammar EXP rec EXP rec−1 EXP rec−2 EXP rec−3

Part-IV 8.35% 19.08% 24.44% 26.23%

Table 5.7: MathLet v3’s expression recognition rates with errors in CROHME 2013

5.4 CROHME Evaluation Results

The evaluation results obtained in CROHME 2011 are given in Table 5.8. System-

I was developed at Rochester Institute of Technology in United States, System-II

was MathLet v2, System-III was developed at Universitat Politècnica de València in

Spain, System-IV was Math-ILSP system and developed at Institute for Language

and Speech Processing, Athena Research Center in Greece and the System-V was

developed at Université de Nantes in France.

System EXP rec - Part I EXP rec - Part II

System-I 4.42% 2.59%

Sytem-II 0.55% 0.29%

System-III 29.28% 19.83%

System-IV 0.00% 0.00%

System-V 40.88% 22.41%

Table 5.8: The evaluation results of CROHME 2011

Table 5.9 shows the evaluation results obtained in CROHME 2012. System-

I was developed at Universitat Politècnica de València in Spain, System-II was
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Math-ILSP system and developed at Institute for Language and Speech Process-

ing, Athena Research Center in Greece, System-III was developed at Université de

Nantes in France, System-IV was developed at Rochester Institute of Technology

in United States, System-V was MathLet v3, System-VI was Waterloo recognizer

which was developed at University of Waterloo in Canada, System-VII was a com-

mercial system developed by Vision Objects. First five systems had also participated

in CROHME 2011.

System EXP rec - Part I EXP rec - Part II EXP rec - Part III

System-I 35.19% 33.89% 22.75%

System-II 8.33% 6.64% 3.69%

System-III 57.41% 38.87% 25.61%

System-IV 28.70% 14.29% 9.43%

System-V 22.22% 7.97% 4.92%

System-VI 51.85% 49.17% 40.16%

System-VII 81.48% 75.08% 62.50%

Table 5.9: The evaluation results of CROHME 2012

The evaluation results obtained in CROHME 2013 are given in Table 5.10.

System EXP rec - Part IV

System-I 60.36%

System-II 23.40%

System-III 19.97%

System-IV 9.39%

System-V 8.35%

System-VI 2.68%

Table 5.10: The evaluation results of CROHME 2013
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6 Conclusions

In this thesis, the improvements on MathLet v2 which is the software developed to

recognize handwritten MEs are presented. The improved system presented in this

thesis is called as MathLet v3.

The contributions of this thesis are as follows:

• Symbol recognition in MathLet v3 is done by combining online and offline

classifiers each returning prediction probability over classes.

• The accuracy of MathLet is increased from 0.55% to 8.35% according to results

obtained in CROHME while the recognition task becomes more difficult. In

addition to symbol recognition which is introduced above, also parsing process

plays a key role in this increase. Parsing process of MathLet v3 has special

handling method for mistaken symbols. Moreover, MathML parsing provides

a huge gain in the accuracy of MathLet v3.

• The time performance of MathLet v3 is measured and also improved by using

new symbol recognition and parsing approaches introduced above. In addition

to these, parallel programming which is implemented in the parsing process of

MathLet v3 also provides an increase in the time performance of MathLet v3.

• MathLet v3 has four applications and two of them can be accessed through

the Web.

MathLet v3 uses two classifiers for the purpose of symbol recognition. One of

these two classifiers uses offline features, while the other one uses online features of

training symbol. Offline features are extracted from the image of training symbol.

Online features are extracted from resampled training symbol after scaling operation.

The symbol is resampled such that it contains 20 equidistant points, then it is

scaled and features are extracted as the difference between x and y coordinates of
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consecutive points of scaled resampled symbol. Hence, 38 delta features are used

as online features. MathLet v3 combines online and offline classifiers according to

the prediction probability of the most probable symbol returned by these classifiers.

These prediction probabilities are compared and the result returned by the classifier

which returns higher prediction probability for the most probable symbol is chosen

as the result of symbol recognition.

The prediction probability of recognized symbol is used in parsing mistaken

symbols such as the symbols “1”-“|” and the symbols “+”-“t”. If one of the mistaken

symbols is recognized, the other symbol is added as an alternative if the prediction

probability is low. Moreover, in order to distinguish the symbols “×” and “x”,

contextual checks are involved. Parallel programming is also used in parsing phase.

These improvements on parsing step provide an increase in the time performance of

MathLet v3. The time performance of MathLet v3 is measured by the time which

parsing phase takes Mathlet v3 to process. The initial time performance evaluations

of MathLet v3 show that 30.62% of MEs cannot be processed within 5 minutes and

56.89% of MEs can be processed within less than 10 seconds. Improved MathLet v3

can process 68.19% of MEs within less than 10 seconds. Furthermore, the proportion

of MEs which MathLet v3 cannot process within 5 minutes is decreased from 30.62%

to 17.92%.

MathLet v2 obtained low accuracy rates in CROHME 2011. The reason of this

fact was that MathLet v2 generated wrong MathML codes for some MEs included

in output InkML files, while it correctly recognized these MEs. In order to gen-

erate correct MathML codes for the recognized MEs, additional MathML parsing

is implemented in MathLet v3. This additional implementation along with symbol

recognition and parsing steps described above provides a huge gain in the accuracy

of MathLet v3. MathLet v3 obtains 8.35% in expression level recognition rate in

CROHME 2013 while MathLet v2 obtained 0.55% in CROHME 2011. It should

also be noted that the recognition task in CROHME 2013 is more difficult than it

was in CROHME 2011.

MathLet v3 has four applications. MathLet v3’s console and Windows applica-

tion also exist in MathLet v2. Other two applications of MathLet v3 are accessed

through the Web. One of these applications provides that a user can upload an input

57



InkML file and get top-5 recognition results as an output. Other application pro-

vides that a user writes his/her own ME on the Web page and get top-5 recognition

results for it.

Despite of the fact that MathLet v3 has contributions, some future work can still

be done. The number of mathematical symbols that can be recognized by MathLet

should be increased. The mathematical symbols that belong to set theory such as

⊂, ⊆, ∩, ∪ should be recognized in the next versions of MathLet. In addition to

these symbols, the symbols which belong to propositional logic such as ∧, ∨, ⊕ may

be added to the list of recognized symbols of MathLet’s next versions. Moreover,

the recognition of matrices should also be provided.

As it can be seen from CROHME results, symbol segmentation in MathLet

needs to be improved. The improvements in symbol segmentation will provide an

improved symbol recognition. Hence, the expression-level accuracy of MathLet will

be improved too.

The interface of Windows application and Web application of MathLet may

be modified for better human-computer interaction. Web interface also needs a

modification to be viewed in all web browsers. With the increase in the popularity

of mobile devices and tablet computers, the development of a mobile application for

MathLet may be one of the future work.
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