
MULTICOMMODITY NETWORK FLOW PROBLEM WITH
SUBSTITUTION

Ekin Köker

Submitted to the Graduate School of Engineering and Natural Sciences
in partial fulfillment of the requirements for the degree of

Master of Science

Sabanci University

August, 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sabanci University Research Database

https://core.ac.uk/display/78366959?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

to my family...

Acknowledgements

This thesis would not have been possible without the support of many people. The author
wishes to express his gratitude towards his family, who has always been there for him,
his supervisor Assoc. Prof. Dr. Güvenç Şahin, who inspired him in so many ways, his
graduate friends, who shared the burden and made it easier for him and his professors at
the Sabanci University, who has guided him through the journey.

iv

c© Ekin Köker 2013

All Rights Reserved

İkameli Çok Ürünlü Ağ Akışı Problemi

Ekin Köker

Endüstri Mühendisliği, Yüksek Lisans Tezi, 2013

Tez Danışmanı: Güvenç Şahin

Anahtar Kelimeler: Çok Ürünlü Ağ Akışı Problemi, İkame Edilebilir Ürünler,
Ünimodüler Matrisler, NP-zorluk.

Özet

Birden fazla ürünün ayrıt kapasiteleri gibi ortak kaynakları paylaştığı çok ürünlü ağ akış
problemleri, tek ürünlü ağ akış problemlerinin genelleşmiş bir halidir. Tek ürünlü prob-
lemlerde ayrıtlar üzerindeki akış miktarları tam sayı olmaya zorlansa bile problem poli-
nom zamanda çözülmesine karşın, problemin çok ürünlü ve ayrıt kapasiteli versiyonu
NP-zor bir problemdir. Bu çalışmada çok ürünlü ağ akış probleminin ürünler arasında
ikamenin mümkün olduğu daha da genelleşmiş bir halini tanımlıyoruz. İki veya üç ürünün
yer aldığı, hem genel hem de ürüne özgü ayrıt kapasitelerin var olduğu problemlerin
doğrusal tam sayılı programlama gösterimlerini matematiksel modeller olarak geliştiriyoruz.
Kapasitesiz versiyonların matematiksel programlama gösterimlerindeki kısıt matrisinin
tamamen ünimodüler olduğunu kanıtlıyoruz. Hipotez testi yöntemiyle rastgele yaratılan
problemler üzerinden problem gösterimlerinin kapasiteli versiyonlarının deneysel hesaplama
zorluğunu istatistiksel analiz yoluyla inceliyoruz. Kapasitelerin ve problem büyüklüğünün
çözüm zamanına etkisini araştırıyoruz. Sonuçlarımız hem iki hem de üç ürünlü prob-
lemlerde hem genel hem de ürüne özgü kapasiteler probleme dahil edildiğinde çözüm
zamanının önemli derecede arttığını gösteriyor. Problem boyutu büyüdükçe de çözüm
zamanının arttığı ortaya çıkıyor. Son olarak iki ve üç ürünlü matematiksel modelleri çok
ürünlü problem için genelleştiriyoruz.

vi

MULTICOMMODITY NETWORK FLOW PROBLEM WITH
SUBSTITUTION

Ekin Köker

Industrial Engineering, Master’s Thesis, 2013

Thesis Supervisor: Assoc. Prof. Dr. Güvenç Şahin

Keywords: Multicommodity Network Flows, Substitutable Products, Unimodular
Matrices, NP-hardness.

Abstract

Multicommodity network flow problems are generalizations of single commodity net-
work flow problems, where a number of commodities flow through the network often
sharing common resources such as arc capacities. While the single commodity problem
can be solved in polynomial time even when the flow quantities are imposed as integer
values only, the integer multicommodity version of the problem with arc capacities is NP-
hard. We introduce a generalization of the multicommodity network flow problem where
substitution is possible amongst commodities. We develop mathematical models as the
linear integer programming formulations of two-commodity and three-commodity prob-
lems with both commodity-specific and overall arc capacities. We prove that constraint
matrices are totally unimodular in the mathematical programming formulations for the
uncapacitated versions. We investigate the empirical computational difficulty of capaci-
tated versions of the problem formulations through a computational study with randomly
generated problems and statistical analysis with hypothesis testing. In particular, we ex-
plore the effect of capacities and the problem size on solution time. Our results show
that solution time significantly increases for both two-commodity and three-commodity
problems when both overall and commodity-specific capacities exist. Solution time sig-
nificantly increases when problem size is increased. Finally, we generalized the two and
three-commodity models for the multicommodity problem.

vii

Contents

1 Introduction 1

2 Literature Review on Network Flow Problems 6

3 Two-commodity Network Flow Formulation with Substitution 10
3.1 Computational Complexity of the Capacitated Two-commodity Network

Flow Problem . 16
3.2 Computational Experiments . 18

4 Three-commodity Network Flow Formulation with Substitution 27
4.1 Non-transitivity in Substitution for Three-Commodity Network Flow For-

mulation . 37
4.2 Computational Complexity of the Capacitated Three-commodity Network

Flow Problem . 38
4.3 Computational Experiments . 41

5 Multicommodity Network Flow Formulation with Substitution 47

6 Concluding Remarks 49

viii

List of Tables

3.1 Results of hypothesis testing for comparing the solution times of config-
uration with commodity-specific capacities and uncapacitated configuration 23

3.2 Results of hypothesis testing for comparing the solution times of config-
uration with overall capacities and uncapacitated configuration 23

3.3 Results of hypothesis testing for comparing the solution times of configu-
ration with both commodity-specific and overall capacities and uncapaci-
tated configuration . 24

3.4 Results of hypothesis testing for comparing the solution times of configu-
ration with overall capacities calculated as the sum of commodity-specific
capacities and configuration with commodity-specific capacities 24

3.5 Results of hypothesis testing for comparing the solution times of levels
for configuration with commodity-specific capacities 25

3.6 Results of hypothesis testing for comparing the solution times of levels
for configuration with overall capacities 25

3.7 Results of hypothesis testing for comparing the solution times of problem
sizes for uncapacitated configuration . 26

4.1 Results of hypothesis testing for comparing the solution times of config-
uration with commodity-specific capacities and uncapacitated configuration 43

4.2 Results of hypothesis testing for comparing the solution times of config-
uration with overall capacities and uncapacitated configuration 43

4.3 Results of hypothesis testing for comparing the solution times of configu-
ration with both commodity-specific and overall capacities and uncapaci-
tated configuration . 44

4.4 Results of hypothesis testing for comparing the solution times of configu-
ration with overall capacities calculated as commodity-specific capacities
and configuration with commodity-specific capacities 44

ix

4.5 Results of hypothesis testing for comparing the solution times of levels
for configuration with commodity-specific capacities 45

4.6 Results of hypothesis testing for comparing the solution times of levels
for configuration with overall capacities 45

4.7 Results of hypothesis testing for comparing the solution times of problem
sizes for uncapacitated configuration . 46

x

Chapter 1

Introduction

Multicommodity network flow problems are generalizations of single commodity net-
work flow problems, where a number of commodities flow through the network often
sharing common resources such as arc capacities. The single commodity problem can be
solved in polynomial time with the network simplex algorithm which is a specialized ver-
sion of the simplex method for linear programming problems. Even in the integer version
of the problem where the flow quantities may take integer values only, the solution can
be obtained with the same method as the constraint matrix of the corresponding linear
programming problem formulation is totally unimodular. Integrality conditions together
with arc capacities make the problem NP-hard. In the well-known version of the multi-
commodity problem, demand and supply are independent amongst commodities yet they
may share the common arc capacities of the network. In this study, we introduce a gener-
alization of the multicommodity network flow problem in which substitution is possible
amongst commodities.
In the literature, substitutable commodities are mostly considered in two problem envi-
ronments: inventory planning and empty container allocation. Inventory planning context
has many examples that consider substitutable commodities. Inventory planning issues
and corresponding mathematical/analytical models are irrelevant within the boundaries
of this study, but the current literature includes many real-life examples where substitu-
tion among commodities is possible.
Deflem and Nieuwenhuyse [8] provide an extensive and comprehensive review of the
inventory planning research on substitutable commodities; we provide here a subset of
their references in order to exemplify the real life examples where substitution among
commodities is observed:

1

• Khouja et al. [14] discuss the grocery stores that sell a produce with two grades:
a regular grade and a premium grade. Regular grade may substitute the premium
grade since the premium grade is more expensive, it might be costly to store. Cus-
tomers may prefer regular grade if they cannot find the premium grade. They also
exemplify this case with fresh seafood markets; expensive seafood might be costly
to keep in stock while cheap seafood might be a substitute for the expensive one.
These examples may be considered as upward-substitution, since a lower-quality
product is used to substitute an upper-quality product.

• An example of downward-substitution is provided by Bassok et al. [3]. In their
paper, they discuss the semiconductor industry, and in particular, the integrated cir-
cuits. A circuit with higher performance characteristics (e.g. speed) can substitute a
circuit with lower performance characteristics (hence, the downward substitution).
Substituting the circuit with lower performance characteristics for the circuit with
upper performance characteristics is not possible because if the circuit with lower
performance characteristics is used to substitute the circuit with upper performance
characteristics, it would not perform as required. A food substitution may not be
very problematic for the customer but if the circuits do not perform as wanted, it
would be a big problem for the companies or end-customers that use them in com-
plicated computations. Bassok et al. [3] also discuss the usage of higher capacity
memory chips to substitute for lower capacity memory chips. Last example by Bas-
sok et al. [3] is in the steel industry; steel beams of a higher strength can substitute
for beams of lesser strength.

• Hillier [10] discuss substitution of common products for unique products:

– Universal power supplies can substitute regionally specific power supplies.

– Multi-language manuals can substitute regionally-written manuals.

– A single common microprocessor can substitute many differentiated unique
microprocessors.

– A single CD including Mac and IBM software can substitute both CDs that
include Mac or IBM software.

– An adjustable wrench can substitute various sizes of fixed wrench.

• Tibben and Bassok [20] discuss Benetton’s dyeing system which can be considered
as a substitution procedure. In this system, instead of dyeing the sweaters at the

2

beginning of production, they send non-dyed fabrics to regions and then dye them
there according to the final demand that depends on current fashion. By this logic,
non-dyed fabrics are substitutes for the dyed fabrics.

• Bayindir et al. [4] provide the example of remanufactured products. They point
out that remanufactured products can be substituted by the new ones. Remanu-
factured product examples include reconditioned photocopiers, retreated tires and
reconditioned (upgraded) computers.

• Liu and Lee [17] focuses on power transformers. A transformer with higher capac-
ity can be used instead of that with a lower capacity but not vice versa. This is also
an example of downward substitution.

These are all inventory planning examples where substitution among commodities is pos-
sible.
Another problem environment that substitution is considered is empty container alloca-
tion:

• Crainic et al. [7] mention substitution rules for containers; for example, a 40-foot
container may substitute two 20-foot containers but vice versa may not be possible
if the load is longer than 20-foot.

• Ioannou et al. [12] also focus on substitutability based on size, i.e. the length of the
containers, and formulate substitution problem as a transportation problem.

• Di Francesco et al. [9] consider a more general pattern where container types can
substitute each other.

• Chang et al. [5] explicitly define the substitution rules for their problem context;
these rules also depend on sizes of containers. Chang et al. [6] have the same
problem basis with Chang et al. [5]; but, they expand their two-commodity model
to a multicommodity model.

Container allocation problems are more relevant within the context of our study as empty
containers are transported from one location to another which can also be casted using a
network flow problem/model.
Another problem environment that does consider substitution but does not consider it
within a network flow context is the energy systems planning. Substitution is mostly
considered within a market-share framework in the energy sector. Some examples are:

3

• Kamimura et al. [13] consider natural gas as a substitute for traditional natural
energy resources in Brazil.

• Aguliera and Ripple [1] analyse the market shares of gases, liquids and solids which
can be substituted for each other as energy resources in the Asia Pacific.

• Xingang and Pingkuo [22] consider the biomass energy as a substitute for fossil
fuel in China.

• Iniyan et al. [11] analyse the substitution of renewable energy sources for non-
renewable energy sources in India.

A significant share of energy consumption is electricity production. Weidlich [21] note
that real-world electricity markets have a wide heterogeneity in terms of the sources and
resources used for production. This heterogeneity can be represented within a network
flow context using different types of commodities. And although the characteristics of
the sources differ, they can be substituted for each other since these characteristics do
not matter for the end consumer. To exemplify the heterogeneity in electricity markets,
Weidlich [21] points out that generator agents differ in size and spatial position, they
own and operate different generating assets (e.g. fossil fuel fired, nuclear or renewable
power plants) with different marginal costs and technical attributes, or they have different
strategic characteristics (e.g. vertically integrated or not). All of these characteristics can
be represented using a multicommodity model. Network flow models are already being
used within the context of electricity transmission planning. Some examples are

• Kumar and Chebiyam [15] uses a generalized network flow model to analyse a
thermal power system.

• Kumar and Radhakrishna [16] uses a network flow model to project GHG Emission
caused by thermal power generation for India.

• Quelhas et al. [18] uses a multiperiod generalized network flow model for the
U.S. integrated energy system. Quelhas and McCalley [19] presents the simulation
results of the model by Quelhas et al. [18]

If the production and the transmission of the electricity are integrated within a network
flow context, using substitutable commodities within the mathematical model would be a
wise approach and a possible research area.

4

We focus on a general modelling approach that can be used in all kinds of network prob-
lems that substitution may occur instead of focusing on logistics of a particular product
or commodity group. We introduce mathematical models for two and three-commodity
network flow problems with substitution. We prove that in uncapacitated versions of
our models from a computational difficulty point of view, constraint matrices are totally
unimodular. Furthermore, we explore the computational properties of the capacitated ver-
sions of our models through random problem generation and hypothesis testing. Specif-
ically, we explore the effect of capacities and problem size on solution time. Our results
show that solution time significantly increases on both two and three commodity prob-
lems when in the problem both overall and commodity-specific capacities are introduced.
Also, when problem size is increased, solution time significantly increases.
To sum up, we contribute to the literature by

• introducing a new network flow problem and develop mathematical models regard-
ing that problem

• submit a theorem related to the computational complexity of the problem and prove
the theorem

• investigate empirical computational complexity of the problem and present the re-
sults.

The remainder of this work is organized as follows. In Chapter 2, we review the literature
on network flow problems. In Chapter 3, we introduce the two-commodity network flow
problem with substitution, present mathematical models and computational experiments
regarding the models. In Chapter 4, we introduce the three-commodity network flow
problem with substitution, present mathematical models and computational experiments
regarding the models. In Chapter 5, we introduce n-commodity network flow problem
with substitution and present mathematical models. Finally, we close with concluding
remarks in Chapter 6.

5

Chapter 2

Literature Review on Network Flow Problems

In order to introduce our multicommodity network flow problem with substitution, we
must first introduce network flow problems and multicommodity flows. These problems
are covered very well by Ahuja, Magnanti and Orlin [2] so we will summarize their work
to provide a general view on network flows. They refer the minimum cost flow model as
the most fundamental of all network flow problems. Since our model is a generalization
of multicommodity network flow problem, which is a generalization of the minimum cost
flow problem, we would like to state the base problem by their words: a least cost ship-
ment of a commodity through a network has to be determined in order to satisfy demands
at certain nodes from available supplies at other nodes. There are many applications of
this model, such as the distribution of a product from manufacturing plants to warehouses,
or from warehouses to retailers; the flow of raw material and intermediate goods through
the various machining stations in a production line; the routing of automobiles through an
urban street network; and the routing of calls through the telephone system.
The minimum cost flow problem is described by Ahuja, Magnanti and Orlin [2] as fol-
lows: G(N,A) is a directed network defined by a set N of n nodes and a set A of m
directed arcs. Each arc (i, j) ∈ A has

• an associated cost cij that denotes the cost per unit flow on that arc.

• a capacity uij that denotes the maximum amount that can flow on that arc.

• a lower bound lij that denotes the minimum amount that must flow on that arc.

Each node i ∈ N is associated with an integer number b(i) representing its supply/demand.
If

6

• b(i) > 0, node i is a supply node.

• b(i) < 0, node i is a demand node.

• b(i) = 0, node i is a transshipment node.

The decision variables of minimum cost flow problem are arc flows and they are repre-
sented by xij . Then, the minimum cost flow problem is formulated as an optimization
problem as follows:

Minimize
∑

(i,j)∈A

cijxij (2.1)

subject to
∑

j:(i,j)∈A

xij −
∑

j:(j,i)∈A

xji = b(i) ∀i ∈ N (2.2)

lij ≤ xij ≤ uij ∀(i, j) ∈ A (2.3)

There are many special and generalizing version of the minimum cost flow problem,
which we will summarize as follows:

• Shortest path problem: In this problem, there is only one supply node (also known
as source node) and one demand node (also known as sink node) and the supply
and demand is equal to 1. The problem is then to find the shortest path from source
to sink.

• Maximum flow problem: This problem is somehow complementary to the short-
est path problem. We try to maximize the flow from source to sink through the
capacitated network.

• Assignment problem: In this problem, we try to pair each object in one set to another
object in a second set at minimum possible cost. Sets are equally sized. Objects in
first set are represented by supply nodes, which have a supply of 1 and objects in
second set are represented by demand nodes, which have a demand of 1. Possible
pairs are represented by arcs with a capacity of 1.

• Transportation problem: Transportation problem is somehow similar to assignment
problem, however, sets may not be equally sized and supply and demand of nodes
and capacities are not necessarily 1.

7

• Circulation problem: This problem is a minimum cost flow problem with only
transshipment nodes. We try to find a feasible flow that honours the lower and
upper bounds and circulates around the network.

• Convex cost flow problems: It is assumed that the cost is linear in the minimum
cost flow problem. If the cost is a convex function of the amount of flow, then the
problem becomes a convex cost flow problem.

• Generalized flow problems: Arcs conserve flows in the minimum cost flow prob-
lem. Arcs may consume or generate flow in generalized flow problems.

• Multicommodity flow problems: Minimum cost flow problem considers only one
type of commodity. Multicommodity flow problems arise when several commodi-
ties use the same network. Commodities may differentiate by their characteristics
or their origin-destination pairs. Our problem is a generalization of the multicom-
modity flow problems where substitution is possible among commodities.

Since our problem is a generalized version of the multicommodity flow problem, we
would like to introduce multicommodity flow model as follows: G(N,A) is a directed
network defined by a set N of n nodes and a set A of m directed arcs. Let k be the set of
commodity types. Each arc (i, j) ∈ A has

• an associated cost ckij that denotes the cost per unit flow of commodity k on that arc.

• an overall capacity uij that denotes the maximum amount that can flow on that arc.

• commodity-specific capacities uk
ij that denotes the maximum amount of commodity

k that can flow on that arc.

Each node i ∈ N is associated with an integer number b(i)k representing its supply/demand
of commodity k. If

• b(i)k > 0, node i is a supply node for commodity k.

• b(i)k < 0, node i is a demand node for commodity k.

• b(i)k = 0, node i is a transshipment node for commodity k.

The decision variables of minimum cost flow problem are arc flows of commodities and
they are represented by xk

ij . Then, the multicommodity flow problem is formulated as an

8

optimization problem as follows:

Minimize
∑

(i,j)∈A

∑
k∈K

ckijx
k
ij (2.4)

subject to
∑

j:(i,j)∈A

xk
ij −

∑
j:(j,i)∈A

xk
ji = b(i)k ∀i ∈ N,∀k ∈ K (2.5)

lij ≤
∑
k∈K

xk
ij ≤ uij ∀(i, j) ∈ A (2.6)

ikij ≤ xk
ij ≤ uk

ij ∀(i, j) ∈ A,∀k ∈ K (2.7)

Regarding the complexity of our problem, we first need to address that integer version of
multicommodity flow problems are NP-hard. However, Ahuja, Magnanti and Orlin [2]
note that uncapacitated multicommodity flow problem have totally unimodular constraint
matrices, which provide integral optimal solutions to LP-relaxations of IP models. While
investigating our problem, we solely focus on mathematical programming formulation
and the computational complexity of the problem rather than possible problem contexts.

9

Chapter 3

Two-commodity Network Flow Formulation with
Substitution

We consider two types of commodities, namely, A and B. A is a superior commodity that
can also satisfy the demand for commodity B, whereas B is the inferior commodity that
can not satisfy the demand for A. Therefore, commodity A substitutes for commodity
B. We consider a minimum cost-flow problem on a network G(N,A) where N is the set
of nodes and A is the set of arcs. K denotes the set of commodity types, which include
commodities A and B. Supply or demand of node i ∈ N of commodity type k ∈ K

is represented by bk(i). If bk(i) > 0, then node i is a supply node for commodity k; if
bk(i) < 0, it is a demand node and if bk(i) = 0, it is a transshipment node. cij is the unit
cost of flow on arc (i, j).
For feasibility, total supply and total demand must be balanced, however, by the nature
of the problem, commodity A has abundant supply while commodity B has a shortage
in supply. Therefore, total supply of A is greater than total demand of A, whereas total
supply of B is smaller than total demand of B. Surplus of A and deficit of B is equal.
These assumptions are necessary only for our model. They could be unnecessary for an-
other type of modelling approach. If a node has supply of A and demand of B, then,
within that node, the demand of B can be satisfied by the supply of A. This is called
within-node supply. In order to reflect the possibility for within-node supply in the net-
work flow model, G(N,A) is transformed to G(N

′
, A
′
). If there is a node i ∈ N for

which bA(i) > 0, bB(i) < 0, then:

• a new node is created, namely, node iB−;

• the demand for commodity B of node i is transferred to this new node: bB(iB−) =

10

bB(i), bA(iB−) = 0;

• bB(i) = 0, bA(i) = bA(i);

• a new arc (i, iB−) is created and ci,iB− = 0.

As a result, N ′ includes additional nodes and A
′ includes additional arcs with zero cost.

In order to differentiate the commodity flows, we define three types of flow: AA, AB and
BB. AA represents the flow of commodity A to satisfy the demand of commodity A. AB
represents the flow of commodity A to satisfy the demand of commodity B. Therefore,
flow type AB is required to represent the substitution of commodity A for commodity
B. BB represents the flow of commodity B to satisfy the demand of commodity B. We
denote the set of flow types as F and a flow type with f ∈ F . The subset of flow types
that can be satisfied using commodity k is defined by F k. Thus, FA includes AA and AB

whereas FB includes BB.
In the mathematical programming formulation of the problem, xf

ij represents the flow of
type f on arc (i, j) ∈ A and uf (i) represents the net in-flow/out-flow of type f on node
i ∈ N . Auxiliary variable uf (i) is used for the sake of clarity in presenting the mathe-
matical model. The linear programming formulation of the two-commodity network flow
problem with substitution is

Minimize
∑

(i,j)∈A′

∑
f∈F

(cijx
f
ij) (3.1)

subject to
∑

j:(i,j)∈A′
xAA
ij −

∑
j:(j,i)∈A′

xAA
ji = uAA(i) ∀i ∈ N

′
: bA(i) > 0 (3.2)

∑
j:(i,j)∈A′

xAA
ij −

∑
j:(j,i)∈A′

xAA
ji = − uAA(i) ∀i ∈ N

′
: bA(i) < 0 (3.3)

∑
j:(i,j)∈A′

xAA
ij −

∑
j:(j,i)∈A′

xAA
ji = 0 ∀i ∈ N

′
: bA(i) = 0 (3.4)

∑
j:(i,j)∈A′

xBB
ij −

∑
j:(j,i)∈A′

xBB
ji = uBB(i) ∀i ∈ N

′
: bB(i) > 0 (3.5)

∑
j:(i,j)∈A′

xBB
ij −

∑
j:(j,i)∈A′

xBB
ji = − uBB(i) ∀i ∈ N

′
: bB(i) < 0 (3.6)

11

∑
j:(i,j)∈A′

xBB
ij −

∑
j:(j,i)∈A′

xBB
ji = 0 ∀i ∈ N

′
: bB(i) = 0 (3.7)

∑
j:(i,j)∈A′

xAB
ij −

∑
j:(j,i)∈A′

xAB
ji = uAB(i) ∀i ∈ N

′
: bA(i) > 0 (3.8)

∑
j:(i,j)∈A′

xAB
ij −

∑
j:(j,i)∈A′

xAB
ji = − uAB(i) ∀i ∈ N

′
: bB(i) < 0 (3.9)

∑
j:(i,j)∈A′

xAB
ij −

∑
j:(j,i)∈A′

xAB
ji = 0 ∀i ∈ N

′
: bA(i) ≤ 0,bB(i) ≥ 0 (3.10)

uAA(i) + uAB(i) = bA(i) ∀i ∈ N
′
: bA(i) > 0 (3.11)

− uAA(i) = bA(i) ∀i ∈ N
′
: bA(i) < 0 (3.12)

uBB(i) = bB(i) ∀i ∈ N
′
: bB(i) > 0 (3.13)

− uAB(i)− uBB(i) = bB(i) ∀i ∈ N
′
: bB(i) < 0 (3.14)

xf
ij ≥ 0 ∀(i, j) ∈ A

′
,∀f ∈ F (3.15)

uf (i) ≥ 0 ∀f ∈ F, ∀i ∈ N
′

(3.16)

The objective function (3.1) minimizes the total cost of flow on all arcs. For commodity
A, constraint set (3.2) and constraint set (3.3) calculate the net out-flow on node i as
uAA(i), respectively for supply nodes and demand nodes of commodity A. Since out-
flow is greater than in-flow for supply nodes and vice-versa for demand nodes, uAA is
multiplied by -1 on the right hand side of constraint (3.3). For transshipment nodes of
commodity A, constraint set (3.4) ensures that difference between out-flow and in-flow
of flow type AA is zero. Constraint sets (3.5)-(3.7) do the same for commodity B and
flow type BB as constraints (3.2)-(3.4) for commodity A.
Constraint set (3.8) and constraint set (3.9) calculate the net out-flow on node i as uAB(i),
respectively for supply nodes of commodity A and demand nodes of commodity B. For
the nodes that are not supply nodes of commodity A or demand nodes of commodity B,
constraint set (3.10) ensures that difference between out-flow and in-flow of flow type
AB is zero. For supply nodes of commodity A, constraint set (3.11) calculates the sum of
net out-flow of flow type AA and net out-flow of flow type AB as supply of commodity
A. For demand nodes of commodity A, constraint set (3.12) calculates net out-flow of
flow type AA as demand of commodity A. For supply nodes of commodity B constraint
set (3.13) calculates the net out-flow of flow type BB as supply of commodity B. For
demand nodes of commodity B, constraint set (3.14) calculates the sum of net out-flow of
flow type AB and net out-flow of flow type BB as demand of commodity B. Constraint

12

sets (3.15) - (3.16) define variable domains, which are all non-negative.
In order to develop a matrix notation for the formulation of the problem, we define the
vector form of the parameters and variables as follows:

• c represents the cost vector, which consists of elements cij .

• xf denotes the vector of x variables and uf represent the vector of u variables.

• bA denotes supply/demand vector of commodity A

• bB denotes supply/demand vector of commodity B.

Then, we can rewrite the problem formulation (3.1)-(3.16) in the matrix notation as fol-
lows:

Minimize
∑
f∈F

cxf (3.17)

subject to

Q 0 0 ĨA 0 0

0 Q 0 0 ĨB 0

0 0 Q 0 0 ĨAB

0 0 0 −ĨA 0 −ĨA+

0 0 0 0 −ĨB −ĨB−

xAA

xBB

xAB

uAA

uBB

uAB

=

0

0

0

bA

bB

 (3.18)

x ≥ 0 (3.19)

u ≥ 0 (3.20)

where Q is the node-arc incidence matrix of the network G(N
′
, A
′
) and ĨA, ĨB, ĨAB,

−ĨA, −ĨB, −ĨA+, −ĨB− are all (n x n) matrices, which are variants of identity matrix
such that

13

[ĨA]ii =

−1 ∀i ∈ N

′
: bA(i) > 0

0 ∀i ∈ N
′
: bA(i) = 0

1 ∀i ∈ N
′
: bA(i) < 0

[ĨB]ii =

−1 ∀i ∈ N

′
: bB(i) > 0

0 ∀i ∈ N
′
: bB(i) = 0

1 ∀i ∈ N
′
: bB(i) < 0

[ĨAB]ii =

−1 ∀i ∈ N

′
: bA(i) > 0

0 ∀i ∈ N
′
: bA(i) ≤ 0, bB(i) ≥ 0

1 ∀i ∈ N
′
: bB(i) < 0

[−ĨA]ii =

1 ∀i ∈ N

′
: bA(i) > 0

0 ∀i ∈ N
′
: bA(i) = 0

−1 ∀i ∈ N
′
: bA(i) < 0

[−ĨB]ii =

1 ∀i ∈ N

′
: bB(i) > 0

0 ∀i ∈ N
′
: bB(i) = 0

−1 ∀i ∈ N
′
: bB(i) < 0

[−ĨA+]ii =

1 ∀i ∈ N

′
: bA(i) > 0

0 ∀i ∈ N
′
: bA(i) = 0

0 ∀i ∈ N
′
: bA(i) < 0

[−ĨB−]ii =

0 ∀i ∈ N

′
: bB(i) > 0

0 ∀i ∈ N
′
: bB(i) = 0

−1 ∀i ∈ N
′
: bB(i) < 0

According to this matrix notation of the problem formulation, we investigate the unimod-
ularity property of the constraint matrix. We exploit the matrix unimodularity through
this property: if there exists at most one +1 and one -1 on a (1,0,-1) matrix, the matrix is
totally unimodular. Therefore, we conduct a columnwise analysis of the constraint matrix
as follows:

Property 1 Q is a node-arc incidence matrix. Therefore, each column in Q contains only

one +1 and only one -1.

Property 2 In the first three blocks of m columns, the only non-zero entries are the entries

of Q matrices. Therefore, in each column of these three blocks, there exists only one +1

and only one -1.

14

Property 3 For the fourth block of n columns including column 3m+1 through 3m+n,

the non-zero entries belong to ĨA and −ĨA. In each column of ĨA, there exists at most

either one +1 or one -1. In each column of −ĨA, the entry has the opposite sign of the

entry in the same column of ĨA. Therefore, in each column there exists at most one +1

and one -1.

Property 4 For the fifth block of n columns including column 3m+n+1 through 3m+2n,

the non-zero entries belong to ĨB and −ĨB. In each column of ĨB, there exists at most

either one +1 or one -1. In each column of −ĨB, the entry has the opposite sign of the

entry in the same column of ĨB. Therefore, in each column there exists at most one +1

and one -1.

Property 5 In G(N
′
, A
′
), there exists no node i ∈ N where bA(i) > 0 and bB(i) < 0.

Thus, if bA(i) > 0, then bB(i) ≥ 0.

Property 6 In the sixth block of columns including column 3m+2n+1 through 3m+3n,

the non-zero entries belong to diagonal elements of ĨAB, −ĨA+ and −ĨB−. Based on the

entries of ĨAB, we observe the following cases:

Case 1. If there exists a -1 in column 3m + 2n + i, then bA(i) > 0. In the same

column in−ĨA+, the entry is +1 since bA(i) > 0. In the same column in−ĨB−, the

nonzero entry is 0 as bB(i) 6≤ 0 due to Property 5.

Case 2. If there exists a +1 in column 3m + 2n + i, then bB(i) < 0. In the same

column in −ĨA+, the nonzero entry is 0 since bA(i) 6≥ 0 due to Property 5. In the

same column in −ĨB−, the entry is -1 since bB(i) < 0.

Case 3. If there exists a 0 in column 3m + 2n + i, then bA(i) ≤ 0 and bB(i) ≥ 0.

In the same column in −ĨA+, the nonzero entry is 0. In the same column in −ĨB−,

the nonzero entry is 0.

Therefore, in each column, there exists at most one +1 and at most one -1. As a result of
Property 2, Property 3, Property 4 and Property 6, we prove the next theorem.

15

Theorem 1 The constraint matrix of the two-commodity network flow formulation with

substitution is totally unimodular.

In (3.1)-(3.16) and (3.17)-(3.18), we formulate the uncapacitated version of the two-
commodity network flow problem with substitution. If wk

ij denotes the commodity-
specific capacity of arc (i, j) ∈ A

′ , then the commodity-specific capacity constraint is:∑
f∈Fk

xf
ij ≤ wk

ij , ∀(i, j) ∈ A
′
, ∀k ∈ K (3.21)

If vij denotes the overall capacity of arc (i, j) ∈ A
′ , then the overall capacity constraint is∑

f∈F

xf
ij ≤ vij ,∀(i, j) ∈ A

′
(3.22)

As a result, the capacitated version of the problem is formulated as (3.1)-(3.16) along with
(3.21) and (3.22).

3.1 Computational Complexity of the Capacitated Two-
commodity Network Flow Problem

We discuss the computational complexity of the capacitated two-commodity network
flow problem with substitution through its relation with the common two-commodity net-
work flow problem as it is well-known that the common problem is NP-hard. The two-
commodity network flow problem with substitution is a generalized version of the com-
mon two-commodity network flow problem. In other words, the common 2-commodity
network flow problem is a special case of 2-commodity network flow problem with sub-
stitution. In order to show this relationship formally, we work with mathematical model
(3.1)-(3.16), (3.21),(4.2) of the problem with substitution. We need to show that our
mathematical model is the same as the network flow model of the common problem when
substitution is not allowed. In order to avoid substitution, we first eliminate the flow
variable AB since it represents substitution of commodity A for commodity B. Then,
constraint sets (3.8)-(3.10) drop completely from the model. Moreover, constraint sets

16

(3.11) and (3.14) become:

uAA(i) = bA(i) ∀i ∈ N
′
: bA(i) > 0 (3.23)

− uBB(i) = bB(i) ∀i ∈ N
′
: bB(i) < 0 (3.24)

With this arrangement, we now do not need u variables any more and we can eliminate
constraint sets (3.23), (3.12), (3.13), (3.24) and (3.16) by replacing uAA(i) in constraint
set (3.2) with bA(i) and −uBB(i) in constraint set (3.6) with bB(i), eliminating constraint
sets (3.23) and (3.24), respectively. Moreover, we replace −uAA(i) in constraint set (3.3)
with bA(i) and uBB(i) in constraint set (3.5) with bB(i), eliminating constraint sets (3.12)
and (3.13), respectively. Finally, we replace the zeros in constraint sets (3.4) and (3.7)
with bA(i) and bB(i) respectively because bA(i) = 0 and bB(i) = 0 for (3.4) and (3.7),
respectively. As a result, constraint sets (3.2)-(3.4) become

∑
j:(i,j)∈A′

xAA
ij −

∑
j:(j,i)∈A′

xAA
ji = bA(i), ∀i ∈ N

′
, bA(i) > 0 (3.25)

∑
j:(i,j)∈A′

xAA
ij −

∑
j:(j,i)∈A′

xAA
ji = bA(i), ∀i ∈ N

′
, bA(i) < 0 (3.26)

∑
j:(i,j)∈A′

xAA
ij −

∑
j:(j,i)∈A′

xAA
ji = bA(i), ∀i ∈ N

′
, bA(i) = 0. (3.27)

(3.25)-(3.27) can be rewritten as∑
j:(i,j)∈A′

xAA
ij −

∑
j:(j,i)∈A′

xAA
ji = bA(i) ∀i ∈ N

′
(3.28)

Constraint sets (3.5)-(3.7) become∑
j:(i,j)∈A′

xBB
ij −

∑
j:(j,i)∈A′

xBB
ji = bB(i), ∀i ∈ N

′
, bB(i) > 0 (3.29)

∑
j:(i,j)∈A′

xBB
ij −

∑
j:(j,i)∈A′

xBB
ji = bB(i), ∀i ∈ N

′
, bB(i) < 0 (3.30)

∑
j:(i,j)∈A′

xBB
ij −

∑
j:(j,i)∈A′

xBB
ji = bB(i), ∀i ∈ N

′
, bB(i) = 0 (3.31)

17

Similarly, (3.29)-(3.31) can be rewritten as∑
j:(i,j)∈A′

xBB
ij −

∑
j:(j,i)∈A′

xBB
ji = bB(i) ∀i ∈ N

′
(3.32)

Capacity constraints do not change∑
f∈Fk

xf
ij ≤ wk

ij , ∀(i, j) ∈ A
′
,∀k ∈ K (3.21)

∑
f∈F

xf
ij ≤ vij ,∀(i, j) ∈ A

′
(3.22)

Then, the mathematical model becomes

Minimize
∑

(i,j)∈A′
(cijx

AA
ij + cijx

BB
ij) (3.33)

subject to
∑

j:(i,j)∈A′
xAA
ij −

∑
j:(j,i)∈A′

xAA
ji = bA(i) ∀i ∈ N

′
(3.28)

∑
j:(i,j)∈A′

xBB
ij −

∑
j:(j,i)∈A′

xBB
ji = bB(i) ∀i ∈ N

′
(3.32)

∑
f∈Fk

xf
ij ≤ wk

ij ∀(i, j) ∈ A
′
,∀k ∈ K (3.21)

∑
f∈F

xf
ij ≤ vij ∀(i, j) ∈ A

′
(3.22)

xf
ij ≥ 0 ∀(i, j) ∈ A

′
,∀f ∈ F (3.34)

The mathematical model (3.33), (3.28), (3.32), (3.21), (3.22), (3.34) is equivalent to the
network flow model for the two-commodity problem. Therefore, we have shown that our
problem is a generalization of the common two-commodity network flow problem and
it is at least as hard as the common problem. Since the integer version of the common
problem is NP-hard as pointed out by Ahuja, Magnanti and Orlin [2], our problem is also
NP-hard.

3.2 Computational Experiments

In order to investigate how the size of the problem along with the capacity tightness
affect the model, we conduct computational experiments that explore the change in the

18

solution time of the problem with respect to the size and the arc capacities. For this
purpose, we build the mathematical model on CPLEX Studio 12.4 environment. We first
generate random instances of the capacitated 2-commodity network flow problem with
substitution and solve both the linear programming relaxation and integer programming
problem. Computational experiments are conducted on a 8-core computer with a Intel
Core i7 CPU @3.20 gHz and 24.0 GB of RAM. CPU times and objective function values
are reported after the instances are solved.
While generating the problem instances, we pay particular attention to the distribution
of the parameter values along a controllable range. In order to achieve this, for each
parameter, we first generate an upper bound and a lower bound, and then we generate a
parameter value within this range randomly. These input parameters are;

• arc density of the network;

• minimum total supply, maximum total supply;

• minimum arc cost, maximum arc cost;

• minimum commodity-specific arc capacity, maximum commodity-specific arc ca-
pacity;

• minimum overall arc capacity, maximum overall arc capacity;

• overall capacity density;

• capacity densities for commodities.

We generate problem instances of six different sizes with respect to the number of nodes:
10, 50, 100, 200, 300, 500. For each node size, 10 different generation seeds are used.
Arc capacities are calculated depending on total supply and number of nodes. In order
to examine the effect of arc capacities, different levels of arc capacities are developed.
To develop these capacities, two coefficients are introduced, one for commodity-specific
and one for overall capacities. Total supply divided by number of nodes is multiplied by
these capacity coefficients. Thus, we developed different capacity levels, making some
instances tighter on capacity and some instances looser on capacity. For further examina-
tion, different capacity settings are also developed:

• only commodity-specific capacities are introduced

• only overall capacities are introduced

19

• both capacities are introduced

• both capacities are introduced but overall capacities are calculated as the sum of
commodity-specific capacities

• uncapacitated setting.

The pseudo-code for the algorithm that generates the problem instances is given in Algo-
rithm (1).

Algorithm 1 Algorithm that generates the problem instances for two-commodity problem

Begin
Read generation parameters
Initialize a node-to-node adjacency matrix P of size nxn of 0’s
for each Pij(i 6= j) do

if random number < arc density then
Pij := 1

end if
end for
Calculate row and column sums
for each Pij(i 6= j) do

if Pij := 1 then
Generate the corresponding arc
Generate the random cost of corresponding arc
if random number < overall capacity density then

Generate random overall capacity for the arc
end if
for Each commodity do

if random number < commodity capacity density then
Generate random capacity for that commodity for the arc

end if
end for

end if
end for

20

for Each commodity do
Generate total supply
total demand = total supply

end for
for Superior commodity do

Increase total supply by a random ratio of total supply
end for
for Inferior commodity do

Increase total demand as much as the increase of supply of superior commodity
end for
Using row and column sums, determine pure supply nodes, pure demand nodes and
transshipment nodes
for Each commodity do

Assign random transshipment nodes as supply nodes, demand nodes and pure trans-
shipment nodes

Distribute total supply among supply nodes randomly around average
Distribute total demand among demand nodes randomly around average

end for
End

The main reason for designing different capacity configurations is to create problems
whose nature is different with respect to tightness of the capacities. Eventually, we want
to observe which type of capacity configuration is more effective on the difficulty of the
problem. We use following parameters while generating the random problems:

• minimum supply is 100, 500, 1000, 2000, 3000, 5000 for node sizes 10, 50, 100,
200, 300, 500

• maximum supply is 500, 2500, 5000, 10000, 15000, 25000 for node sizes 10, 50,
100, 200, 300, 500

• minimum cost is 10

• maximum cost is 50

• commodity specific capacity coefficient has 5 levels; 0.05, 0.075, 0.1, 0.25, 0.5

• minimum commodity specific capacity equals to commodity specific capacity co-
efficient times minimum supply over number of nodes

• maximum commodity specific capacity equals to commodity specific capacity co-
efficient times maximum supply over number of nodes

21

• overall capacity has 3 levels; 0.1, 0.25, 0.625

• minimum overall capacity equals to overall capacity coefficient times minimum
supply over number of nodes

• maximum overall capacity equals to overall capacity coefficient times maximum
supply over number of nodes

• arc density is 0.8

• overall capacity density is 0.5

• bound density of commodity A is 0.6

• bound density of commodity B is 0.4.

As a result, we generate 50 problems for each size of the network. For each size, we use
5 different capacity configurations.
While investigating the effect of capacities and the network size, we use a hypothesis
testing framework to determine whether our inferences are statistically significant or not.
In this manner, we would like to answer the following questions:

• How much of an effect do commodity-specific capacity constraints have on solution
time?

• How much of an effect do overall capacity constraints have on solution time?

• How much of an effect do both capacity constraints together have on solution time?

• How much of an effect does inclusion of overall capacity constraints over commodity-
specific capacity constraints have on solution time? (i.e. sum of commodity-specific
capacities are introduced as overall capacities.)

• How much of an effect does the tightening of capacity constraints have on solution
time?

• How much of an effect does problem size have on solution time?

Two-sample two-tailed t-tests are used for all hypotheses because we would like to com-
pare means of two samples (solution times of different configurations). The null hypothe-
ses assume that their means are equal. StatTools software is used to perform the tests.
The results are presented in Table (3.1) through Table (3.7).

22

Table 3.1: Results of hypothesis testing for comparing the solution times of configuration
with commodity-specific capacities and uncapacitated configuration

Commodity-Specific Uncapacitated

Sample Summaries Data Set #1 Data Set #1
Sample Size 59 60
Sample Mean 8461.61 6565.00
Sample Std Dev 10086.47 7518.91

Equal Unequal
Hypothesis Test (Difference of Means) Variances Variances
Hypothesized Mean Difference 0 0
Alternative Hypothesis 6= 0 6= 0
Sample Mean Difference 1896.61 1896.61
Standard Error of Difference 1629.02116 1632.969151
Degrees of Freedom 117 107
t-Test Statistic 1.1643 1.1614
p-Value 0.2467 0.2480

Table 3.2: Results of hypothesis testing for comparing the solution times of configuration
with overall capacities and uncapacitated configuration

overall Uncapacitated

Sample Summaries Data Set #1 Data Set #1
Sample Size 60 60
Sample Mean 7954.98 6565.00
Sample Std Dev 9444.79 7518.91

Equal Unequal
Hypothesis Test (Difference of Means) Variances Variances
Hypothesized Mean Difference 0 0
Alternative Hypothesis 6= 0 6= 0
Sample Mean Difference 1389.98 1389.98
Standard Error of Difference 1558.515273 1558.515273
Degrees of Freedom 118 112
t-Test Statistic 0.8919 0.8919
p-Value 0.3743 0.3744

23

Table 3.3: Results of hypothesis testing for comparing the solution times of configuration
with both commodity-specific and overall capacities and uncapacitated configuration

Full Capacity Uncapacitated

Sample Summaries Data Set #1 Data Set #1
Sample Size 57 60
Sample Mean 9542.56 6565.00
Sample Std Dev 11317.35 7518.91

Equal Unequal
Hypothesis Test (Difference of Means) Variances Variances
Hypothesized Mean Difference 0 0
Alternative Hypothesis 6= 0 6= 0
Sample Mean Difference 2977.56 2977.56
Standard Error of Difference 1768.045868 1785.859363
Degrees of Freedom 115 96
t-Test Statistic 1.6841 1.6673
p-Value 0.0949 0.0987

Table 3.4: Results of hypothesis testing for comparing the solution times of configura-
tion with overall capacities calculated as the sum of commodity-specific capacities and
configuration with commodity-specific capacities

Commodity Specific Sum of Commodity Specific

Sample Summaries Data Set #1 Data Set #1
Sample Size 59 59
Sample Mean 8461.61 8851.94
Sample Std Dev 10086.47 10576.17

Equal Unequal
Hypothesis Test (Difference of Means) Variances Variances
Hypothesized Mean Difference 0 0
Alternative Hypothesis 6= 0 6= 0
Sample Mean Difference -390.33 -390.33
Standard Error of Difference 1902.684289 1902.684289
Degrees of Freedom 116 115
t-Test Statistic -0.2051 -0.2051
p-Value 0.8378 0.8378

24

Table 3.5: Results of hypothesis testing for comparing the solution times of levels for
configuration with commodity-specific capacities

Level 1 Level 5

Sample Summaries Data Set #2 Data Set #2
Sample Size 59 59
Sample Mean 8564.76 7949.71
Sample Std Dev 10215.94 9345.70

Equal Unequal
Hypothesis Test (Difference of Means) Variances Variances
Hypothesized Mean Difference 0 0
Alternative Hypothesis 6= 0 6= 0
Sample Mean Difference 615.05 615.05
Standard Error of Difference 1802.576231 1802.576231
Degrees of Freedom 116 115
t-Test Statistic 0.3412 0.3412
p-Value 0.7336 0.7336

Table 3.6: Results of hypothesis testing for comparing the solution times of levels for
configuration with overall capacities

Level 1 Level 3

Sample Summaries Data Set #3 Data Set #3
Sample Size 60 60
Sample Mean 8565.37 7703.93
Sample Std Dev 10337.55 9054.22

Equal Unequal
Hypothesis Test (Difference of Means) Variances Variances
Hypothesized Mean Difference 0 0
Alternative Hypothesis 6= 0 6= 0
Sample Mean Difference 861.43 861.43
Standard Error of Difference 1774.091263 1774.091263
Degrees of Freedom 118 115
t-Test Statistic 0.4856 0.4856
p-Value 0.6282 0.6282

25

Table 3.7: Results of hypothesis testing for comparing the solution times of problem sizes
for uncapacitated configuration

10 50

Sample Summaries Data Set #4 Data Set #4
Sample Size 10 10
Sample Mean 1218.70 1402.00
Sample Std Dev 21.35 28.02

Equal Unequal
Hypothesis Test (Difference of Means) Variances Variances
Hypothesized Mean Difference 0 0
Alternative Hypothesis 6= 0 6= 0
Sample Mean Difference -183.30 -183.30
Standard Error of Difference 11.13956911 11.13956911
Degrees of Freedom 18 16
t-Test Statistic -16.4549 -16.4549
p-Value < 0.0001 < 0.0001

The only significant results are achieved when the capacity configuration with both com-
modity specific and overall capacities are compared against uncapacitated configuration
(See Table 3.3) and different problem sizes are compared against each other within the un-
capacitated configuration (See Table 3.7). For the configuration with both capacities, null
hypothesis is rejected at 10% significance level since its p-value is around 0.09 (See Table
3.3). For problem sizes, p-value is significantly small so that null hypothesis is rejected at
any significance level (See Table 3.7). Therefore, we conclude that when both capacities
are active, solution time significantly increases. Moreover, as problem size increases, so-
lution time significantly increases. Thus, we imply that if both capacities are active in the
problem or if the problem size is increased, the problem becomes more difficult to solve.

26

Chapter 4

Three-commodity Network Flow Formulation with
Substitution

So far, we discussed a problem where two commodities flow through the network. More
commodities can be included to the problem. In this chapter, we consider three types of
commodities, namely, A, B and C. Through substitution, A can satisfy the demand for
both B and C, and B can satisfy the demand of C. Therefore, commodity A substitutes
for commodities B and C, and commodity B substitutes for commodity C. We consider
a minimum-cost flow problem on a network G(N,A) where N is the set of nodes and A

is the set of arcs. Let K denotes the set of commodity types, which include commodities
A, B and C. Supply or demand of node i ∈ N of commodity type k ∈ K is represented
by bk(i). If bk(i) > 0, then node i is a supply node for commodity k; if bk(i) < 0, it is a
demand node and if bk(i) = 0, it is a transshipment node. cij is the unit cost of flow on
arc (i, j).
As discussed for the two-commodity problem, total supply and total demand must be bal-
anced, however, by the nature of the problem, commodity A has abundant supply while
commodity C has a shortage in supply. Commodity B can have abundant or shortage
in supply depending on the supply of A and C. Therefore, total supply of A is greater
than total demand of A, whereas total supply of C is smaller than total demand of C.
Within-node supply is also considered.
In order to reflect the possibility for within-node supply, in the network flow model,
G(N,A) is transformed to G(N

′
, A
′
). If there is a node i ∈ N for which bA(i) >

0, bB(i) < 0 or i ∈ N : bA(i) > 0, bC(i) < 0, or i ∈ N : bB(i) > 0, bC(i) < 0, then

• a new node is created, namely, node iB−, or node iC−;

27

• the demand for commodity B or C of node i is transferred to this new node:
bB(iB−) = bB(i), bA(iB−) = 0 or bC(iC−) = bC(i), bA(iC−) = 0 or bC(iC−) =
bC(i), bB(iC−) = 0;

• bB(i) = 0, bA(i) = bA(i) or bC(i) = 0, bA(i) = bA(i) or bC(i) = 0, bB(i) =

bB(i);

• a new arc (i, iB−) or (i, iC−) is created and ci,iB− = 0 or ci,iC− = 0.

As a result, N ′ includes additional nodes and A
′ includes additional arcs with zero cost.

In order to differentiate the commodity flows, we define six types of flow: AA, AB, BB,
AC, BC and CC. AA represents the flow of commodity A to satisfy the demand of
commodity A. AB represents the flow of commodity A to satisfy the demand of com-
modity B. Therefore, flow type AB is required to represent substitution of commodity
A for commodity B. BB represents the flow of commodity B to satisfy the demand of
commodity B. AC represents the flow of commodity A to satisfy the demand of com-
modity C. Therefore, flow type AC is required to represent substitution of commodity
A for commodity C. BC represents the flow of commodity B to satisfy the demand of
commodity C. Therefore, flow type BC is required to represent substitution of commod-
ity B for commodity C. CC represents the flow of commodity C to satisfy the demand
of commodity C. We denote the set of flow types as F and a flow type with f ∈ F . The
subset of flow types that can be satisfied using commodity k is defined by F k. Thus, FA

includes AA, AB, and AC whereas FB includes BB and BC and FC includes CC.
In the mathematical programming formulation of the problem, xf

ij represents the flow of
type f on arc (i, j) ∈ A and uf (i) represents the net in-flow/out-flow of type f on node
i ∈ N . Auxiliary variable uf (i) is used for the sake of clarity in presenting the mathemat-
ical model. The linear programming formulation of the three-commodity network flow
problem with substitution is

28

Minimize
∑

(i,j)∈A′

∑
f∈F

(cijx
f
ij) (4.1)

subject to
∑

j:(i,j)∈A′
xAA
ij −

∑
j:(j,i)∈A′

xAA
ji = uAA(i) ∀i ∈ N

′
: bA(i) > 0 (4.2)

∑
j:(i,j)∈A′

xAA
ij −

∑
j:(j,i)∈A′

xAA
ji = − uAA(i) ∀i ∈ N

′
: bA(i) < 0 (4.3)

∑
j:(i,j)∈A′

xAA
ij −

∑
j:(j,i)∈A′

xAA
ji = 0 ∀i ∈ N

′
: bA(i) = 0 (4.4)

∑
j:(i,j)∈A′

xBB
ij −

∑
j:(j,i)∈A′

xBB
ji = uBB(i) ∀i ∈ N

′
: bB(i) > 0 (4.5)

∑
j:(i,j)∈A′

xBB
ij −

∑
j:(j,i)∈A′

xBB
ji = − uBB(i) ∀i ∈ N

′
: bB(i) < 0 (4.6)

∑
j:(i,j)∈A′

xBB
ij −

∑
j:(j,i)∈A′

xBB
ji = 0 ∀i ∈ N

′
: bB(i) = 0 (4.7)

∑
j:(i,j)∈A′

xCC
ij −

∑
j:(j,i)∈A′

xCC
ji = uCC(i) ∀i ∈ N

′
: bC(i) > 0 (4.8)

∑
j:(i,j)∈A′

xCC
ij −

∑
j:(j,i)∈A′

xCC
ji = − uCC(i) ∀i ∈ N

′
: bC(i) < 0 (4.9)

∑
j:(i,j)∈A′

xCC
ij −

∑
j:(j,i)∈A′

xCC
ji = 0 ∀i ∈ N

′
: bC(i) = 0 (4.10)

∑
j:(i,j)∈A′

xAB
ij −

∑
j:(j,i)∈A′

xAB
ji = uAB(i) ∀i ∈ N

′
: bA(i) > 0 (4.11)

∑
j:(i,j)∈A′

xAB
ij −

∑
j:(j,i)∈A′

xAB
ji = − uAB(i) ∀i ∈ N

′
: bB(i) < 0 (4.12)

∑
j:(i,j)∈A′

xAB
ij −

∑
j:(j,i)∈A′

xAB
ji = 0 ∀i ∈ N

′
: bA(i) ≤ 0,bB(i) ≥ 0

(4.13)

29

∑
j:(i,j)∈A′

xAC
ij −

∑
j:(j,i)∈A′

xAC
ji = uAC(i) ∀i ∈ N

′
: bA(i) > 0 (4.14)

∑
j:(i,j)∈A′

xAC
ij −

∑
j:(j,i)∈A′

xAC
ji = − uAC(i) ∀i ∈ N

′
: bC(i) < 0 (4.15)

∑
j:(i,j)∈A′

xAC
ij −

∑
j:(j,i)∈A′

xAC
ji = 0 ∀i ∈ N

′
: bA(i) ≤ 0,bC(i) ≥ 0 (4.16)

∑
j:(i,j)∈A′

xBC
ij −

∑
j:(j,i)∈A′

xBC
ji = uBC(i) ∀i ∈ N

′
: bB(i) > 0 (4.17)

∑
j:(i,j)∈A′

xBC
ij −

∑
j:(j,i)∈A′

xBC
ji = − uBC(i) ∀i ∈ N

′
: bC(i) < 0 (4.18)

∑
j:(i,j)∈A′

xBC
ij −

∑
j:(j,i)∈A′

xBC
ji = 0 ∀i ∈ N

′
: bB(i) ≤ 0,bC(i) ≥ 0 (4.19)

uAA(i) + uAB(i) + uAC(i) = bA(i) ∀i ∈ N
′
: bA(i) > 0 (4.20)

− uAA(i) = bA(i) ∀i ∈ N
′
: bA(i) < 0 (4.21)

uBB(i) + uBC(i) = bB(i) ∀i ∈ N
′
: bB(i) > 0 (4.22)

− uAB(i)− uBB(i) = bB(i) ∀i ∈ N
′
: bB(i) < 0 (4.23)

uCC(i) = bC(i) ∀i ∈ N
′
: bC(i) > 0 (4.24)

− uAC(i)− uBC(i)− uCC(i) = bC(i) ∀i ∈ N
′
: bC(i) < 0 (4.25)

xf
ij ≥ 0 ∀(i, j) ∈ A

′
,∀f ∈ F (4.26)

uf (i) ≥ 0 ∀f ∈ F, ∀i ∈ N
′

(4.27)

The objective function (4.1) minimizes the total cost of flow on all arcs. For commod-
ity A, constraint set (4.2) and constraint set (4.3) calculate the net out-flow on node i as
uAA(i), respectively for supply nodes and demand nodes of commodity A. Since out-
flow is greater than in-flow for supply nodes and vice-versa for demand nodes, uAA is
multiplied by -1 on the right hand side of constraint (4.3). For transshipment nodes of
commodity A, constraint set (4.4) ensures that difference between out-flow and in-flow
of flow type AA is zero. Constraint sets (4.5)-(4.7) and (4.8)-(4.10) do the same for
commodity B and flow type BB and commodity C and flow type CC respectively as
constraints (4.2)-(4.4) do for commodity A.
Constraint set (4.11) and constraint set (4.12) calculate the net out-flow on node i as
uAB(i), respectively for supply nodes of commodity A and demand nodes of commodity
B. For the nodes that are not supply nodes of commodity A or demand nodes of com-
modity B, constraint set (4.13) ensures that difference between out-flow and in-flow of

30

flow type AB is zero. Constraint sets (4.14)-(4.16) and (4.17)-(4.19) do the same for flow
types AC and BC respectively as (4.11)-(4.13)does for flow type AB. For supply nodes
of commodity A, constraint set (4.20) calculates the sum of net out-flow of flow type AA,
net out-flow of flow type AB and net out-flow of flow type AC as supply of commodity
type A. For demand nodes of commodity A, constraint set (4.21) calculates net out-flow
of flow type AA as demand of commodity A. For supply nodes of commodity B con-
straint set (4.22) calculates the sum of net out-flow of flow type BB and net out-flow of
flow type BC as supply of commodity B. For demand nodes of commodity B, constraint
set (4.23) calculates the sum of net out-flow of flow type AB and net out-flow of flow
type BB as demand of commodity B. For supply nodes of commodity C, constraint set
(4.24) calculates the net out-flow of flow type CC as supply of commodity C. For de-
mand nodes of commodity C, constraint set (4.25) calculates the sum of net out-flow of
flow type AC, net out-flow of flow type BC and net out-flow of flow type CC as demand
of commodity C. Constraint sets (4.26) - (4.27) define variable domains, which are all
non-negative.
In order to develop a matrix notation for the formulation of the problem, we define the
vector form of the parameters and variables as follows:

• c denotes the cost vector, which consists of elements cij .

• xf denotes the vector of x variables and uf represent the vector of u variables.

• bA denotes supply/demand vector of commodity A.

• bB denotes supply/demand vector of commodity B.

• bC denotes supply/demand vector of commodity C.

Then, we can rewrite the problem formulation for (4.1)-(4.27) in the matrix notation as
follows:

31

Minimize
∑
f∈F

cxf (4.28)

subject to

Q 0 0 0 0 0 ĨA 0 0 0 0 0

0 Q 0 0 0 0 0 ĨB 0 0 0 0

0 0 Q 0 0 0 0 0 ĨC 0 0 0

0 0 0 Q 0 0 0 0 0 ĨAB 0 0

0 0 0 0 Q 0 0 0 0 0 ĨAC 0

0 0 0 0 0 Q 0 0 0 0 0 ĨBC

0 0 0 0 0 0 −ĨA 0 0 −ĨA+ −ĨA+ 0

0 0 0 0 0 0 0 −ĨB 0 −ĨB− 0 −ĨB+

0 0 0 0 0 0 0 0 −ĨC 0 −ĨC− −ĨC−

xAA

xBB

xCC

xAB

xAC

xBC

uAA

uBB

uCC

uAB

uAC

uBC

=

0

0

0

0

0

0

bA

bB

bC

(4.29)

x ≥ 0 (4.30)

u ≥ 0 (4.31)

32

where Q is the node-arc incidence matrix of the network G(N
′
, A
′
) and ĨA, ĨB, ĨC, ĨAB,

ĨAC , ĨBC , −ĨA, −ĨB, −ĨC, −ĨA+, −ĨB−, −ĨB+, −ĨC− are all (n x n) matrices, which
are variants of identity matrix such that

[ĨA]ii =

−1 ∀i ∈ N

′
: bA(i) > 0

0 ∀i ∈ N
′
: bA(i) = 0

1 ∀i ∈ N
′
: bA(i) < 0

[ĨB]ii =

−1 ∀i ∈ N

′
: bB(i) > 0

0 ∀i ∈ N
′
: bB(i) = 0

1 ∀i ∈ N
′
: bB(i) < 0

[ĨC]ii =

−1 ∀i ∈ N

′
: bC(i) > 0

0 ∀i ∈ N
′
: bC(i) = 0

1 ∀i ∈ N
′
: bC(i) < 0

[ĨAB]ii =

−1 ∀i ∈ N

′
: bA(i) > 0

0 ∀i ∈ N
′
: bA(i) ≤ 0, bB(i) ≥ 0

1 ∀i ∈ N
′
: bB(i) < 0

[ĨAC]ii =

−1 ∀i ∈ N

′
: bA(i) > 0

0 ∀i ∈ N
′
: bA(i) ≤ 0, bC(i) ≥ 0

1 ∀i ∈ N
′
: bC(i) < 0

[ĨBC]ii =

−1 ∀i ∈ N

′
: bB(i) > 0

0 ∀i ∈ N
′
: bB(i) ≤ 0, bC(i) ≥ 0

1 ∀i ∈ N
′
: bC(i) < 0

[−ĨA]ii =

1 ∀i ∈ N

′
: bA(i) > 0

0 ∀i ∈ N
′
: bA(i) = 0

−1 ∀i ∈ N
′
: bA(i) < 0

[−ĨB]ii =

1 ∀i ∈ N

′
: bB(i) > 0

0 ∀i ∈ N
′
: bB(i) = 0

−1 ∀i ∈ N
′
: bB(i) < 0

33

[−ĨC]ii =

1 ∀i ∈ N

′
: bC(i) > 0

0 ∀i ∈ N
′
: bC(i) = 0

−1 ∀i ∈ N
′
: bC(i) < 0

[−ĨA+]ii =

1 ∀i ∈ N

′
: bA(i) > 0

0 ∀i ∈ N
′
: bA(i) = 0

0 ∀i ∈ N
′
: bA(i) < 0

[−ĨB−]ii =

0 ∀i ∈ N

′
: bB(i) > 0

0 ∀i ∈ N
′
: bB(i) = 0

−1 ∀i ∈ N
′
: bB(i) < 0

[−ĨB+]ii =

1 ∀i ∈ N

′
: bB(i) > 0

0 ∀i ∈ N
′
: bB(i) = 0

0 ∀i ∈ N
′
: bB(i) < 0

[−ĨC−]ii =

0 ∀i ∈ N

′
: bC(i) > 0

0 ∀i ∈ N
′
: bC(i) = 0

−1 ∀i ∈ N
′
: bC(i) < 0

According to this matrix notation of the problem formulation, we investigate the unimod-
ularity property of the constraint matrix. We exploit the matrix unimodularity through
this property: if there exists at most one +1 and one -1 on a (1,0,-1) matrix, the matrix is
totally unimodular. Therefore, we conduct a columnwise analysis of the constraint matrix
as follows:

Property 7 Q is a node-arc incidence matrix. Therefore, each column in Q contains only

one +1 and only one -1.

Property 8 In the first six blocks of m columns, the only non-zero entries are the entries

of Q matrices. Therefore, in each column of these six blocks, there exists only one +1 and

only one -1.

Property 9 For the seventh block of n columns including column 6m+1 through 6m+n,

the non-zero entries belong to ĨA and −ĨA. In each column of ĨA, there exists at most

either one +1 or one -1. In each column of −ĨA, the entry has the opposite sign of the

entry in the same column of ĨA. Therefore, in each column there exists at most one +1

and one -1.

Property 10 For the eighth block of n columns including column 6m+n+1 through 6m+2n,

the non-zero entries belong to ĨB and −ĨB. In each column of ĨB, there exists at most

34

either one +1 or one -1. In each column of −ĨB, the entry has the opposite sign of the

entry in the same column of ĨB. Therefore, in each column there exists at most one +1

and one -1.

Property 11 For the ninth block of n columns including column 6m+2n+1 through 6m+3n,

the non-zero entries belong to ĨC and −ĨC. In each column of ĨC, there exists at most

either one +1 or one -1. In each column of −ĨC, the entry has the opposite sign of the

entry in the same column of ĨC. Therefore, in each column there exists at most one +1

and one -1.

Property 12 In G(N
′
, A
′
), there exists no node i ∈ N where bA(i) > 0 and bB(i) < 0.

Thus, if bA(i) > 0, then bB(i) ≥ 0.

Property 13 In G(N
′
, A
′
), there exists no node i ∈ N where bA(i) > 0 and bC(i) < 0.

Thus, if bA(i) > 0, then bC(i) ≥ 0.

Property 14 In G(N
′
, A
′
), there exists no node i ∈ N where bB(i) > 0 and bC(i) < 0.

Thus, if bB(i) > 0, then bC(i) ≥ 0.

Property 15 In the tenth block of columns including column 6m+3n+1 through 6m+4n,

the non-zero entries belong to diagonal elements of ĨAB, −ĨA+ and −ĨB−. Based on the

entries of ĨAB, we observe the following cases:

Case 1. If there exists a -1 in column 6m+3n+i, then bA(i) > 0. In the same column

in−ĨA+, the entry is +1 since bA(i) > 0. In the same column in−ĨB−, the nonzero

entry is 0 as bB(i) 6≤ 0 due to Property 12.

Case 2. If there exists a +1 in column 6m+3n+i, then bB(i) < 0. In the same

column in −ĨA+, the nonzero entry is 0 since bA(i) 6≥ 0 due to Property 12. In the

same column in −ĨB−, the entry is -1 since bB(i) < 0.

Case 3. If there exists a 0 in column 6m+3n+i, then bA(i) ≤ 0 and bB(i) ≥ 0. In

the same column in−ĨA+, the nonzero entry is 0. In the same column in−ĨB−, the

nonzero entry is 0.

Property 16 In the eleventh block of columns including column 6m+4n+1 through 6m+5n,

the non-zero entries belong to diagonal elements of ĨAC , −ĨA+ and −ĨC−. Based on the

entries of ĨAC , we observe the following cases:

35

Case 1. If there exists a -1 in column 6m+4n+i, then bA(i) > 0. In the same column

in−ĨA+, the entry is +1 since bA(i) > 0. In the same column in−ĨC−, the nonzero

entry is 0 as bC(i) 6≤ 0 due to Property 13.

Case 2. If there exists a +1 in column 6m+4n+i, then bC(i) < 0. In the same

column in −ĨA+, the nonzero entry is 0 since bA(i) 6≥ 0 due to Property 13. In the

same column in −ĨC−, the entry is -1 since bC(i) < 0.

Case 3. If there exists a 0 in column 6m+4n+i, then bA(i) ≤ 0 and bC(i) ≥ 0. In

the same column in −ĨA+, the nonzero entry is 0. In the same column in −ĨC−,

the nonzero entry is 0.

Property 17 In the twelfth block of columns including column 6m+5n+1 through 6m+6n,

the non-zero entries belong to diagonal elements of ĨBC , −ĨB+ and −ĨC−. Based on the

entries of ĨBC , we observe the following cases:

Case 1. If there exists a -1 in column 6m+5n+i, then bB(i) > 0. In the same column

in−ĨB+, the entry is +1 since bB(i) > 0. In the same column in−ĨC−, the nonzero

entry is 0 as bC(i) 6≤ 0 due to Property 14.

Case 2. If there exists a +1 in column 6m+5n+i, then bC(i) < 0. In the same

column in −ĨB+, the nonzero entry is 0 since bB(i) 6≥ 0 due to Property 14. In the

same column in −ĨC−, the entry is -1 since bC(i) < 0.

Case 3. If there exists a 0 in column 6m+5n+i, then bB(i) ≤ 0 and bC(i) ≥ 0. In

the same column in−ĨB+, the nonzero entry is 0. In the same column in−ĨC−, the

nonzero entry is 0.

Therefore, in each column, there exists at most one +1 and at most one -1.
As a result of Property 8, 9, 10, 11, 15, 16 and 17, we prove the next theorem.

Theorem 2 The constraint matrix of the three-commodity network flow formulation with

substitution is totally unimodular.

In (4.1)-(4.27) and (4.28)-(4.29), we formulate the uncapacitated version of the 3-commodity
network flow model with substitution. If wk

ij denotes the commodity-specific capacity of
arc (i, j) ∈ A

′ , then the commodity-specific capacity constraint is

∑
f∈Fk

xf
ij ≤ wk

ij , ∀(i, j) ∈ A
′
,∀k ∈ K (4.32)

36

If vij denotes the overall capacity of arc (i, j) ∈ A
′ , then the overall capacity constraint is∑

f∈F

xf
ij ≤ vij ,∀(i, j) ∈ A

′
(4.33)

As a result, the capacitated version of the problem is formulated as (4.1)-(4.27) along with
(4.32) and (4.33).

4.1 Non-transitivity in Substitution for Three-Commodity
Network Flow Formulation

Until now, it is assumed that substitution is transitive in three-commodity network flow
model. Transitivity imposes that if A can substitute B, and B can substitute C; A can
substitute C, hence the flow type AC. If the substitution is non-transitive, the flow type
AC is eliminated from the mathematical model. Then, the constraint sets (4.14)-(4.16)
should be completely withdrawn while constraint sets (4.20) and (4.25) change as below,
respectively;

uAA(i) + uAB(i) = bA(i) ∀i ∈ N
′
: bA(i) > 0 (4.34)

− uBC(i)− uCC(i) = bC(i) ∀i ∈ N
′
: bC(i) < 0 (4.35)

Eliminating the flow variable AC and modifying the model as described above does not
affect unimodularity. For the non-transitive problem, the mathematical model with the
matrix notation is

Minimize
∑
f∈F

cxf (4.36)

37

subject to

Q 0 0 0 0 ĨA 0 0 0 0

0 Q 0 0 0 0 ĨB 0 0 0

0 0 Q 0 0 0 0 ĨC 0 0

0 0 0 Q 0 0 0 0 ĨAB 0

0 0 0 0 Q 0 0 0 0 ĨBC

0 0 0 0 0 −ĨA 0 0 −ĨA+ 0

0 0 0 0 0 0 −ĨB 0 −ĨB− −ĨB+

0 0 0 0 0 0 0 −ĨC 0 −ĨC−

xAA

xBB

xCC

xAB

xBC

uAA

uBB

uCC

uAB

uBC

=

0

0

0

0

0

bA

bB

bC

(4.37)

x ≥ 0 (4.38)

u ≥ 0 (4.39)

As in (4.37), two columns and one row is eliminated from (4.29). This would not affect
the unimodularity of the model.

4.2 Computational Complexity of the Capacitated Three-
commodity Network Flow Problem

We discuss the computational complexity of the capacitated three-commodity network
flow problem with substitution through its relation with the common three-commodity
network flow problem as it is well known that the common problem is NP-hard. The three-
commodity network flow problem with substitution is a generalized version of the com-
mon three-commodity network flow problem. In other words, the common 3-commodity
network flow problem is a special case of 3-commodity network flow problem with sub-
stitution. In order to show this relationship formally, we work with the mathematical
model (4.1)-(4.27), (4.32), (4.33) of the problem with substitution. We need to show that
our mathematical model is the same as the network flow model of the common problem
when substitution is not allowed. In order to avoid substitution, we first eliminate the
flow variables AB, AC and BC since they represent substitution. Then, constraint sets
(4.11)-(4.19) drop completely from the model. Moreover, constraint sets (4.20), (4.22),

38

(4.23) and (4.25) become:

uAA(i) = bA(i) ∀i ∈ N
′
: bA(i) > 0 (4.40)

uBB(i) = bB(i) ∀i ∈ N
′
: bB(i) > 0 (4.41)

− uBB(i) = bB(i) ∀i ∈ N
′
: bB(i) < 0 (4.42)

− uCC(i) = bC(i) ∀i ∈ N
′
: bC(i) < 0 (4.43)

With this arrangement, we now do not need u variables any more and we can eliminate
constraint sets (4.40), (4.21), (4.41), (4.42), (4.24) , (4.43) and (4.27) by replacing uAA(i)

in constraint set (4.2) with bA(i) and uBB(i) in constraint set (4.5) with bB(i), eliminating
constraint sets (4.40) and (4.41), respectively. Moreover, we replace −uAA(i) in con-
straint set (4.3) with bA(i) and −uBB(i) in constraint set (4.6) with bB(i), eliminating
constraint sets (4.21) and (4.42), respectively. Also, we replace uCC(i) in constraint set
(4.8) with bC(i) and−uCC(i) in constraint set (4.9) with bC(i), eliminating constraint sets
(4.24) and (4.43), respectively. Finally, we replace zeros in constraint sets (4.4), (4.7) and
(4.10) with bA(i), bB(i) and bC(i) respectively because bA(i) = 0, bB(i) = and bC(i) = 0

for (4.4), (4.7) and (4.10).
As a result, constraint sets (4.2)-(4.4) become∑

j:(i,j)∈A′
xAA
ij −

∑
j:(j,i)∈A′

xAA
ji = bA(i), ∀i ∈ N

′
, bA(i) > 0, (4.44)

∑
j:(i,j)∈A′

xAA
ij −

∑
j:(j,i)∈A′

xAA
ji = bA(i)), ∀i ∈ N

′
, bA(i) < 0, (4.45)

∑
j:(i,j)∈A′

xAA
ij −

∑
j:(j,i)∈A′

xAA
ji = bA(i), ∀i ∈ N

′
, bA(i) = 0. (4.46)

(4.44)-(4.46) can be rewritten as∑
j:(i,j)∈A′

xAA
ij −

∑
j:(j,i)∈A′

xAA
ji = bA(i) ∀i ∈ N

′
(4.47)

39

Constraint sets (4.5)-(4.7) become∑
j:(i,j)∈A′

xBB
ij −

∑
j:(j,i)∈A′

xBB
ji = bB(i), ∀i ∈ N

′
, bB(i) > 0, (4.48)

∑
j:(i,j)∈A′

xBB
ij −

∑
j:(j,i)∈A′

xBB
ji = bB(i), ∀i ∈ N

′
, bB(i) < 0, (4.49)

∑
j:(i,j)∈A′

xBB
ij −

∑
j:(j,i)∈A′

xBB
ji = bB(i), ∀i ∈ N

′
, bB(i) = 0. (4.50)

Similarly, (4.48)-(4.50) can be rewritten as∑
j:(i,j)∈A′

xBB
ij −

∑
j:(j,i)∈A′

xBB
ji = bB(i) ∀i ∈ N

′
(4.51)

Also, constraint sets (4.8)-(4.10) become∑
j:(i,j)∈A′

xCC
ij −

∑
j:(j,i)∈A′

xCC
ji = bC(i), ∀i ∈ N

′
, bC(i) > 0, (4.52)

∑
j:(i,j)∈A′

xCC
ij −

∑
j:(j,i)∈A′

xCC
ji = bC(i), ∀i ∈ N

′
, bC(i) < 0, (4.53)

∑
j:(i,j)∈A′

xCC
ij −

∑
j:(j,i)∈A′

xCC
ji = bC(i), ∀i ∈ N

′
, bC(i) = 0. (4.54)

Similarly, (4.52)-(4.54) can be rewritten as∑
j:(i,j)∈A′

xCC
ij −

∑
j:(j,i)∈A′

xCC
ji = bC(i) ∀i ∈ N

′
(4.55)

Capacity constraints do not change∑
f∈Fk

xf
ij ≤ wk

ij ,∀(i, j) ∈ A
′
,∀k ∈ K (4.32)

∑
f∈F

xf
ij ≤ vij ,∀(i, j) ∈ A

′
(4.33)

40

Then, the mathematical model becomes

Minimize
∑

(i,j)∈A′
cijx

AA
ij + cijx

BB
ij + cijx

CC
ij (4.56)

subject to
∑

j:(i,j)∈A′
xAA
ij −

∑
j:(j,i)∈A′

xAA
ji = bA(i) ∀i ∈ N

′
(4.47)

∑
j:(i,j)∈A′

xBB
ij −

∑
j:(j,i)∈A′

xBB
ji = bB(i) ∀i ∈ N

′
(4.51)

∑
j:(i,j)∈A′

xCC
ij −

∑
j:(j,i)∈A′

xCC
ji = bC(i) ∀i ∈ N

′
(4.55)

∑
f∈Fk

xf
ij ≤ wk

ij ∀(i, j) ∈ A
′
,∀k ∈ K (4.32)

∑
f∈F

xf
ij ≤ vij ∀(i, j) ∈ A

′
(4.33)

xf
ij ≥ 0 ∀(i, j) ∈ A

′
,∀f ∈ F (4.57)

The mathematical model (4.56), (4.47), (4.51), (4.55), (4.57), (4.32), (4.33) is equivalent
to the network flow model of the three-commodity problem. Therefore, we have shown
that our problem is a generalization of the common three-commodity network flow prob-
lem and it is at least as hard as the common problem. Since the integer version of the
common problem is NP-hard as pointed out by Ahuja, Magnanti and Orlin [2], our prob-
lem is also NP-hard.

4.3 Computational Experiments

In order to investigate how the size of the problem along with the capacity tightness
affect the model, we conduct computational experiments that explore the change in the
solution time of the problem with respect to the size and the arc capacities. For this
purpose, we build the mathematical model on CPLEX Studio 12.4 environment. We first
generate random instances of the capacitated 3-commodity network flow problem with
substitution and solve both the linear programming relaxation and integer programming
problem. Computational experiments are conducted on a 8-core computer with a Intel
Core i7 CPU @3.20 gHz and 24.0 GB of RAM. CPU times and objective function values
are reported after the instances are solved.
Input parameters for three-commodity network flow problem instances are the same as

41

the input parameters in two-commodity network flow problem instances with the addition
of a distribution parameter of the abundant supply of commodity A between the shortages
of supply in commodities B and C, which is assigned as 0.5. Also, we had to determine a
commodity-specific capacity density for commodity C, which is also determined as 0.5.
Other than that, computational environment is totally similar to two-commodity network
flow problem instances.
While investigating the effect of capacities and network size, we use a hypothesis testing
framework to determine whether our inferences are statistically significant or not. In this
manner, we would like to answer the following questions:

• How much of an effect do commodity-specific capacity constraints have on solution
time?

• How much of an effect do overall capacity constraints have on solution time?

• How much of an effect do both capacity constraints together have on solution time?

• How much of an effect does inclusion of overall capacity constraints over commodity-
specific capacity constraints have on solution time? (i.e. sum of commodity-specific
capacities are introduced as overall capacities.)

• How much of an effect does the tightening of capacity constraints have on solution
time?

• How much of an effect does problem size have on solution time?

Two-sample two-tailed t-tests are used for all hypotheses because we would like to com-
pare means of two samples (solution times of different configurations). The null hypothe-
ses assume that their means are equal. StatTools software is used to perform the tests.
The results are presented in Table (4.1) through Table (4.7).

42

Table 4.1: Results of hypothesis testing for comparing the solution times of configuration
with commodity-specific capacities and uncapacitated configuration

Uncapacitated Commodity-specific

Sample Summaries Data Set #1 Data Set #1
Sample Size 60 59
Sample Mean 10948.77 14574.60
Sample Std Dev 14197.66 18916.64

Equal Unequal
Hypothesis Test (Difference of Means) Variances Variances
Hypothesized Mean Difference 0 0
Alternative Hypothesis 6= 0 6= 0
Sample Mean Difference -3625.83 -3625.83
Standard Error of Difference 3062.696483 3069.956007
Degrees of Freedom 117 107
t-Test Statistic -1.1839 -1.1811
p-Value 0.2389 0.2402

Table 4.2: Results of hypothesis testing for comparing the solution times of configuration
with overall capacities and uncapacitated configuration

Uncapacitated Overall

Sample Summaries Data Set #1 Data Set #1
Sample Size 60 60
Sample Mean 10948.77 12305.04
Sample Std Dev 14197.66 16078.59

Equal Unequal
Hypothesis Test (Difference of Means) Variances Variances
Hypothesized Mean Difference 0 0
Alternative Hypothesis 6= 0 6= 0
Sample Mean Difference -1356.28 -1356.28
Standard Error of Difference 2769.159512 2769.159512
Degrees of Freedom 118 116
t-Test Statistic -0.4898 -0.4898
p-Value 0.6252 0.6252

43

Table 4.3: Results of hypothesis testing for comparing the solution times of configuration
with both commodity-specific and overall capacities and uncapacitated configuration

Uncapacitated Full Capacity

Sample Summaries Data Set #1 Data Set #1
Sample Size 60 55
Sample Mean 10948.77 16808.06
Sample Std Dev 14197.66 20765.94

Equal Unequal
Hypothesis Test (Difference of Means) Variances Variances
Hypothesized Mean Difference 0 0
Alternative Hypothesis 6= 0 6= 0
Sample Mean Difference -5859.29 -5859.29
Standard Error of Difference 3293.776501 3346.639877
Degrees of Freedom 113 94
t-Test Statistic -1.7789 -1.7508
p-Value 0.0779 0.0832

Table 4.4: Results of hypothesis testing for comparing the solution times of configuration
with overall capacities calculated as commodity-specific capacities and configuration with
commodity-specific capacities

Commodity-specific Sum of Commodity-specific

Sample Summaries Data Set #1 Data Set #1
Sample Size 59 59
Sample Mean 14574.60 15331.96
Sample Std Dev 18916.64 19960.64

Equal Unequal
Hypothesis Test (Difference of Means) Variances Variances
Hypothesized Mean Difference 0 0
Alternative Hypothesis 6= 0 6= 0
Sample Mean Difference -757.36 -757.36
Standard Error of Difference 3580.233373 3580.233373
Degrees of Freedom 116 115
t-Test Statistic -0.2115 -0.2115
p-Value 0.8328 0.8328

44

Table 4.5: Results of hypothesis testing for comparing the solution times of levels for
configuration with commodity-specific capacities

Level 1 Level 5

Sample Summaries Data Set #2 Data Set #2
Sample Size 59 59
Sample Mean 14540.83 14596.93
Sample Std Dev 18525.37 19352.75

Equal Unequal
Hypothesis Test (Difference of Means) Variances Variances
Hypothesized Mean Difference 0 0
Alternative Hypothesis 6= 0 6= 0
Sample Mean Difference -56.10 -56.10
Standard Error of Difference 3487.794979 3487.794979
Degrees of Freedom 116 115
t-Test Statistic -0.0161 -0.0161
p-Value 0.9872 0.9872

Table 4.6: Results of hypothesis testing for comparing the solution times of levels for
configuration with overall capacities

Level 1 Level 3

Sample Summaries Data Set #3 Data Set #3
Sample Size 60 60
Sample Mean 12727.00 12051.88
Sample Std Dev 16424.77 15671.32

Equal Unequal
Hypothesis Test (Difference of Means) Variances Variances
Hypothesized Mean Difference 0 0
Alternative Hypothesis 6= 0 6= 0
Sample Mean Difference 675.12 675.12
Standard Error of Difference 2930.766442 2930.766442
Degrees of Freedom 118 117
t-Test Statistic 0.2304 0.2304
p-Value 0.8182 0.8182

45

Table 4.7: Results of hypothesis testing for comparing the solution times of problem sizes
for uncapacitated configuration

10 50

Sample Summaries Data Set #4 Data Set #4
Sample Size 10 10
Sample Mean 1210.70 1456.60
Sample Std Dev 36.78 22.16

Equal Unequal
Hypothesis Test (Difference of Means) Variances Variances
Hypothesized Mean Difference 0 0
Alternative Hypothesis 6= 0 6= 0
Sample Mean Difference -245.90 -245.90
Standard Error of Difference 13.58041891 13.58041891
Degrees of Freedom 18 14
t-Test Statistic -18.1070 -18.1070
p-Value < 0.0001 < 0.0001

The only significant results are achieved when the capacity configuration with both com-
modity - specific and overall capacities are compared against uncapacitated configuration
(See Table (4.3) and different problem sizes are compared against each other within the
uncapacitated configuration (See Table (4.7)). For the configuration with both capacities,
null hypothesis is rejected at 10% significance level since its p-value is around 0.09 (See
Table (4.3). For problem sizes, p-value is significantly small (See Table (4.7)) so that null
hypothesis is rejected at any significance level. Therefore, we conclude that when both
capacities are active, solution time significantly increases. Moreover, as problem size
increases, solution time significantly increases. Thus, we imply that if both capacities
are active in the problem or if the problem size is increased, the problem becomes more
difficult to solve.

46

Chapter 5

Multicommodity Network Flow Formulation with
Substitution

So far, we have covered two and three-commodity network flow problems with substi-
tution. In this chapter, we present the generalized mathematical model of our problem.
Within the boundaries of this study, we only present the model and do not perform any
computational complexity analysis. It is a research area that we hope to pursue in the
future.
We must first introduce a generalization structure for our model. First of all, the flow type
f ∈ F is composed of two indices in our previous models: one index for the supplying
commodity and one index for the demanding commodity. To exemplify, the flow type
AB represents the flow of commodity A for commodity B. Thus, in flow type AB, A is
the supplying commodity and B is the demanding commodity. In order to generalize the
flow types, we define f ∈ F with its contents: (s, d) pairs in F . s ∈ K is the index for the
supplying commodity and d ∈ K is the index for the demanding commodity. Secondly,
we define two new commodity subsets within K related with the new definition of the
flow types: Ds ∈ K and Sd ∈ K. Ds stands for the demanding commodities of commod-
ity s and Sd stands for the supplying commodities of commodity d. To exemplify, DA

includes commodities A, B and C in the three-commodity problem because the demand
of these commodities can be satisfied using the commodity A. Furthermore, SB includes
commodities A and B in two or three-commodity problem because the demand of com-
modity B can be satisfied using these commodities. Assuming the network is transformed
to reflect the within-node supply possibility and using other notation as before, the linear

47

programming formulation of the n-commodity network flow problem with substitution is

Minimize
∑

(i,j)∈A′

∑
(s,d)∈F

cijx
sd
ij (5.1)

subject to
∑

j:(i,j)∈A′

xsd
ij −

∑
j:(j,i)∈A′

xsd
ji = usd(i) ∀(s, d) ∈ F,∀i ∈ N

′
: bs(i) > 0 (5.2)

∑
j:(i,j)∈A′

xsd
ij −

∑
j:(j,i)∈A′

xsd
ji = − usd(i) ∀(s, d) ∈ F,∀i ∈ N

′
: bd(i) < 0 (5.3)

∑
j:(i,j)∈A′

xsd
ij −

∑
j:(j,i)∈A′

xsd
ji = 0 ∀(s, d) ∈ F,∀i ∈ N

′
: bs(i) ≤ 0, bd(i) ≥ 0 (5.4)

∑
d∈Ds

usd(i) = bs(i) ∀s ∈ K,∀i ∈ N : bs(i) > 0 (5.5)

−
∑
d∈Sd

usd(i) = bd(i) ∀d ∈ K,∀i ∈ N : bd(i) < 0 (5.6)

∑
(s,d)∈Fk

xsd
ij ≤ ws

ij ∀(i, j) ∈ A
′
,∀s ∈ K (5.7)

∑
(s,d)∈F

xsd
ij ≤ vij ∀(i, j) ∈ A

′
(5.8)

xsd
ij ≥ 0 ∀(i, j) ∈ A

′
,∀(s, d) ∈ F (5.9)

usd(i) ≥ 0 ∀(s, d) ∈ F,∀i ∈ N
′

(5.10)

The objective function (5.1) minimizes the total cost of flow on all arcs. For supplying
commodity s and demanding commodity d, constraint sets (5.2) and (5.3) calculates the
net out-flow on node i as usd(i), respectively for supply nodes of commodity s and de-
mand nodes of commodity d. Since out-flow is greater than in-flow for supply nodes and
vice-versa for demand nodes, usd is multiplied by -1 on the right hand side of constraint
(5.3). For other nodes, constraint set (5.4) ensures that difference between out-flow and
in-flow of flow type sd is zero. For supply nodes of commodity s, constraint set (5.5)
calculates the sum of net out-flow of flow types sd as supply of commodity s. For de-
mand nodes of commodity d, constraint set (5.6) calculates net out-flow of flow types
sd as demand of commodity d. Constraint sets (5.7) and (5.8) are capacity constraints.
Constraint sets (5.9) - (5.10) define variable domains, which are all non-negative.

48

Chapter 6

Concluding Remarks

In this study, we present a generalizing variant of the multicommodity network flow prob-
lem where substitution is possible among commodities. We develop mathematical models
for two-commodity and three-commodity network flow problems with substitution. To
the best of our knowledge, substitutable commodities are considered in two problem en-
vironments in the literature: inventory planning and empty container allocation. However,
a network flow model with substitution that does not depend on problem environment was
not previously developed earlier. New concepts such as flow types and within-node sup-
ply are introduced to reflect the nature of the problem for the very first time. Theorems
regarding complexity of the uncapacitated problem are proposed. Specifically, constraint
matrix of the uncapacitated problem is proven to be totally unimodular. Moreover, empir-
ical computational difficulty of capacitated versions of the problem formulations is inves-
tigated through a computational study with randomly generated problems and statistical
analysis with hypothesis testing. In particular, the effect of capacities and the problem
size on solution time are explored.
Our results show that solution time significantly increases for both two-commodity and
three-commodity problems when both overall and commodity-specific capacities exist.
Solution time significantly increases when problem size is increased. Unfortunately, our
computational experiments are not conclusive, specifically because of the fact that LP-
relaxations of even the capacitated models give integral solutions. We believe that other
problem generation methods should be implemented. In addition, more instances should
be generated and more experiments should be conducted while implementing other meth-
ods.
We conclude by pointing out that there is a grand research potential in network flow prob-

49

lems with substitution. To exemplify,

• In our model, it is assumed that cost structure is linear. Convex cost flows can be in-
troduced to multicommodity network flow with substitution, therefore generalizing
the model further.

• Different substitution structures can be included in the model. For example, if a
superior commodity can substitute two inferior commodities, there occurs a new
substitution structure that must be represented within the model.

• We assumed that substitution is costless. Substitution cost can also be considered.

• As mentioned before, the computational analysis of the n-commodity model is also
a future research area.

• Last but not least, real-life problems can be solved using the models presented in
this study.

Above points are the avenue of research that we hope to pursue in the future.

50

Bibliography

[1] Roberto F. Aguilera and Ronald D. Ripple. Modeling primary energy substitution
in the asia pacic. Applied Energy, 111:219–224, 2013.

[2] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network flows: the-

ory, algorithms and applications. Prentice–Hall, 1993.

[3] Yehuda Bassok, Ravi Anupindi, and Ram Akella. Single-period multiproduct inven-
tory models with substitution. Operations Research, 47(4):632–642, 1999.

[4] Z. Pelin Bayindir, Nesim Erkip, and Refik Gullu. Assessing the benets of remanu-
facturing option under one-way substitution. Journal of the Operational Research

Society, 56:286–296, 2005.

[5] Hwan Chang, Hossein Jula, Anastasios Chassiakos, and Petros Ioannou. Empty con-
tainer reuse in the los angeles/long beach port area. In Proceedings of the National

Urban Freight Conference, 2006.

[6] Hwan Chang, Hossein Jula, Anastasios Chassiakos, and Petros Ioannou. A heuristic
solution for the empty container substitution problem. Transportation Research,
44:203–216, 2008.

[7] Theodor Gabriel Crainic, Michel Gendreau, and Pierre Dejax. Dynamic and stochas-
tic models for the allocation of empty containers. Operations Research, 41(1):102–
126, 1993.

[8] Yannick Deflem and Inneke Van Nieuwenhuyse. Managing inventories with one-
way substitution: A newsvendor analysis. European Journal of Operational Re-

search, 228(3):484–493, 2013.

[9] Massimo Di Francesco, Antonio Manca, Alessandro Olivo, and Paola Zuddas. Op-
timal management of heterogenous fleets of empty containers. In Proceedings of In-

51

ternational Conference on Information Systems, Logistics and Supply Chain, pages
922–931, 2006.

[10] Mark S. Hillier. Using commonality as backup safety stock. European Journal of

Operational Research, 136:353–365, 2002.

[11] S. Iniyan, L. Suganthi, and Anand A. Samuel. Energy models for commercial energy
prediction and substitution of renewable energy sources. Energy Policy, 34:2640–
2653, 2006.

[12] Petros Ioannou, Anastasios Chassiakos, Hossein Jula, Hwan Chang, and Gil Valen-
cia. Development of methods for handling empty containers with applications in
the los angeles/long beach port area. Technical report, METRANS Transportation
Center, 2006.

[13] Arlindo Kamimura, Sinclair Mallet Guy Guerra, and Ildo Luis Sauer. On the substi-
tution of energy sources: Prospective of the natural gas market share in the brazilian
urban transportation and dwelling sectors. Energy Policy, 34:3583–3590, 2006.

[14] Moutaz Khouja, Abraham Mehrez, and Gad Rabinowitz. A two-item newsboy prob-
lem with substitutability. International Journal of Production Economics, 44:267–
275, 1996.

[15] John Arun Kumar and Radhakrishna Chebiyam. Thermal power system analysis
using a generalized network flow model. International Journal of Energy And Envi-

ronment, 3(3):447–460, 2013.

[16] John Arun Kumar and C. Radhakrishna. Thermal power generation and ghg emis-
sion projections for india using a network flow model. The IUP Journal of Electrical

and Electronics Engineering, 5(1):56–82, 2012.

[17] Jun Liu and Chi-Guhn Lee. Evaluation of inventory policies with unidirectional
substitutions. European Journal of Operational Research, 182:145–163, 2007.

[18] Ana Quelhas, Esteban Gil, James D. McCalley, and Sarah M. Ryan. A multiperiod
generalized network flow model of the u.s. integrated energy system: Part i-model
description. IEEE Transactions on Power Systems, 22(2):829–836, 2007.

52

[19] Ana Quelhas and James D. McCalley. A multiperiod generalized network flow
model of the u.s. integrated energy system: Part ii-simulation results. IEEE Trans-

actions on Power Systems, 22(2):837–844, 2007.

[20] Ronald S. Tibben-Lembke and Yehuda Bassok. An inventory model for delayed
customization: A hybrid approach. European Journal of Operational Research,
165:748–764, 2005.

[21] Anke Weidlich. Engineering Interrelated Electricity Markets: An Agent-Based

Computational Approach. Physica-Verlag, 2008.

[22] Zhao Xingang and Liu Pingkuo. Substitution among energy sources: An empirical
analysis on biomass energy for fossil fuel of china. Renewable and Sustainable

Energy Reviews, 18:194–202, 2013.

53

	Introduction
	Literature Review on Network Flow Problems
	Two-commodity Network Flow Formulation with Substitution
	Computational Complexity of the Capacitated Two-commodity Network Flow Problem
	Computational Experiments

	Three-commodity Network Flow Formulation with Substitution
	Non-transitivity in Substitution for Three-Commodity Network Flow Formulation
	Computational Complexity of the Capacitated Three-commodity Network Flow Problem
	Computational Experiments

	Multicommodity Network Flow Formulation with Substitution
	Concluding Remarks

