
Towards Having a Cloud of Mobile Devices
Specialized for Software Testing

Mehmet Cagri Calpur
Sabanci University

Faculty of Engineering and Natural Sciences
Orhanli, Tuzla, Istanbul 34956, Turkey
mehmetcagri@sabanciuniv.edu

Cemal Yilmaz
Sabanci University

Faculty of Engineering and Natural Sciences
Orhanli, Tuzla, Istanbul 34956, Turkey

cyilmaz@sabanciuniv.edu

ABSTRACT
This paper proposes a novel cloud testing platform special-
ized for software testing. Our novel approach aims to per-
form dynamic analysis on mobile application binaries, gen-
erate the model of the application, its test cases and test
input sets on the run. Domain information generated via
dynamic analysis and utilization of combinatorial interac-
tion testing for test case and input set analysis will be used
for improving the systems coverage capability. The system
will be a self learning system in the sense that the lessons
learned from testing one application will be used to test an-
other application.

Keywords
Automated Software Testing, Cross Cutting Testing Con-
cerns, Mobile Applications, Mobile Application Testing En-
vironment,Cloud of Mobile Devices, Combinatorial Interac-
tion Testing

1. INTRODUCTION AND BACKGROUND
Mobile platforms are becoming the predominant comput-

ing environments. Mobile devices come in various operating
systems, sizes, computing powers, hardware settings and
have many areas of use. This is commonly known as the
“fragmentation problem”. Extensive budgets are spent for
procuring required hardware to increase device coverage.

The mobile device, its operating system, and the related
programming APIs are often relatively new and untested.
The working mechanics of the complete system is very com-
plex. This aspect of mobile platforms increases the need for
domain expertise.

We envision a cloud of mobile devices specialized for test-
ing mobile applications. The first goal of the system is to
automatically explore a given application, discover a be-
havioural model of the application, generate test cases ac-
cording to the interaction and action library formed from the
application under test and generate test case input equiva-
lence classes. The second goal is to conduct test runs on

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE ’16 May 16-17 2016, Austin, TX, USA
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4178-3/16/05.

DOI: http://dx.doi.org/10.1145/2897073.2897109

any number of target operating systems and devices gener-
ating test output. The third goal is to refine the test cases
by utilizing machine learning methods. Gathered informa-
tion will build up a domain and expert knowledge pool and
will be used to home in on vital testing concerns for future
applications under test.

The “Fragmentation Problem” and the importance of ap-
plication testing on many real devices has been addressed
by Vilkomir et al. [8]. The empirical results obtained from
this research strongly suggest that device-specific failures are
commonplace. For example, at least 13 mobile devices were
required to reveal all previously known defects.

Starov et al. [?] introduce the idea of multidirectional
testing on cloud of devices and emphasize the importance of
a combined testing effort from application developers, oper-
ating system developers, and hardware developers.

There are already some existing commercial clouds [2, 1],
offering test environments on real mobile devices. These
clouds typically provide capture and replay-type of services
and runs the test cases on a spectrum of mobile devices.

Random testing is one of the most frequently used ways
of testing mobile applications. Therefore, mobile platform
typically offer random testing frameworks and tools, such
as the Monkey tool [?] for Android. Many researchers,
Amalfitano et al. [3] and Liu et al. [5] are just a few to
name, have been working on improving random testing for
mobile applications.

In another work, Amalfitano et al. [4] crawl the graphi-
cal user interface (GUI) of an application and generate test
cases/inputs on the fly by utilizing GUI related events and
actions. Evolutionary testing [7] of mobile applications is
another emerging concept for testing mobile applications.
These approaches typically extract a model of the appli-
cation using static analysis and then the inferred model is
leveraged to further test the application with the goal of
achieving high code coverage [6].

2. APPROACH AND IMPLEMENTATION
The cloud testing platform that we propose can be decom-

posed into three main components and hardware infrastruc-
ture. The architectural representation of the system can be
found in Figure 1.

The Device Control component facilitates the communi-
cation between the devices and the testing environment,
sending in commands that will be executed on a device and
returning the feedback about the actions performed. This
component is based on the android debug bridge tools pro-
vided with the android platform, specifically the dalvik de-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sabanci University Research Database

https://core.ac.uk/display/78366819?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Figure 1: Architecture of the cloud testing system.

bug monitor api library. The android application framework
includes required software packages and programming APIs
to control a mobile device and/or an application running on
the device. The programs and services from the linux kernel
also enables interaction with the physical layer of the device
for generating input and events.

Model Generator component is responsible for crawling
the application via the device control system, exploring the
application and generating the model. System states and
transition functions compiled from input and performable
action possibilities form up the component and the output
is a formal finite state machine representation of the system.
Input equivalence classes and concrete input set generation
is handled according to the model/fsm information.

Test Case Refiner component utilizes combinatorial inter-
action testing (CIT) to analyse the input set for impossible
or negligible input combinations to reduce the size of the
test input space. The model and test input information ag-
gregated are processed with machine learning techniques to
infer domain and expert knowledge information about the
classified applications, which will be used by the testing sys-
tem to improve the testing capability.

We envision a system that performs dynamic analysis and
testing of mobile applications. The dynamic nature of the
system removes the source code requirement. The user up-
loads the binary into the system and the application is in-
stalled in real devices on the cloud.

2.1 Combinatorial Interaction Testing (CIT)
The test input combinations will be generated by cover-

ing arrays specialized for the system for identifying testing
concerns. The output of application runs with these combi-
nations will be shaping up the FSM model of the application.
CIT methods will be employed to distinguish test input and
test run combinations that are improving the test coverage.

2.2 FSM and CIT
The finite state machine and the information from combi-

natorial interaction testing will be the training input of the
machine learning methods that will be used for classifica-
tiob. The motivation behind employing machine learning is
automating the generation of domain and expert informa-
tion pool for applications that are classified in same group
because of their GUI, execution and FSM model. The test
cases and testing concerns that have been used on previous
applications of a class will be directly used for new software-
under-test for improving the testing success.

2.3 Cross Cutting Testing Concerns
Cross Cutting Testing Concerns is the term that we coined

to address the special testing concerns that needs to be in-
cluded in test cases according to the domain knowledge. Pri-
oritization and injection of these concerns along with the
regular testing artifacts for the actual functionality of the
system is very similar to the well known aspect oriented
programming concept of cross cutting concerns.

A very preventable, yet easily ignored defect generating
aspect of activity mechanic in the Android devices is the
destruction and restarting of applications when the screen
orientation is changed, applications are switched or phys-
ical buttons like back button are pressed. The restarting
behaviour causes the loss of system state. Our proposed
system aims to utilize its domain knowledge, such as the
previously mentioned property for activity restarts, to au-
tomatically insert test conditions into suitable locations in
the running test flow, which is known to cause manifesta-
tion of such defects. The accumulated domain and expert
knowledge pool from previously tested applications will be
the basis for such precise interventions.

3. CONCLUSION
The mobile computing ecosystem still lacks full automa-

tion of mobile application testing and intelligent testing sys-
tems. Current testing practices relies heavily on the con-
tribution and commitment of the development team to the
testing process. However, the mobile ecosystem is still in its
infancy stage and expert and domain knowledge is scarce.
We believe that the cross cutting testing concern concept
will be the key for complete test coverage.

4. REFERENCES
[1] Keynote. http://www.keynote.com.

[2] Perfecto mobile. http://www.perfectomobile.com.

[3] D. Amalfitano, N. Amatucci, A. R. Fasolino,
P. Tramontana, E. Kowalczyk, and A. M. Memon.
Exploiting the saturation effect in automatic random
testing of android applications. In Mobilesoft15
Conference Proceedings, pages 33–43. ACM, May 2015.

[4] D. Amalfitano, A. R. Fasolino, P. Tramontana,
S. De Carmine, and A. Memon. Using gui ripping for
automated testing of android applications. In ASE12
Conference Proceedings, pages 258–261. IEEE/ACM,
September 2012.

[5] Z. Liu, X. Gao, and X. Long. Adaptive random testing
of mobile application. In ICCET10 Conference
Proceedings Volume 2, pages V2–297 – V2–301. IEEE,
April 2010.

[6] A. Machiry, A. Tahiliani, and N. Naik. Dynodroid: An
input generation system for android apps. In
ESEC/FSE13 Conference Proceedings, pages 224 – 234.
ACM, August 2013.

[7] R. Mahmood, N. Mirzaei, and S. Malek. Evodroid:
Segmented evolutionary testing of android apps. In
FSE14 Conference Proceedings, pages 599–609. ACM,
November 2014.

[8] S. Vilkomir, K. Marszalkowski, C. Perry, and
S. Mahendrakar. Effectiveness of multi-device testing
mobile applications. In MobileSoft15 Conference
Proceedings, pages 44–47. ACM, May 2015.


