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Abstract—Recent BCI-based stroke rehabilitation studies focus
on exploiting information obtained from sensorimotor EEG activ-
ity. In the present study, to extend this focus beyond sensorimotor
rhythms, we investigate associative brain areas that are also re-
lated with motor learning skills. Based on experimental data from
twenty-one healthy subjects, resting-state EEG recorded prior to
the experiment was used to predict motor learning performance
during a force-field adaptation task in which subjects performed
center-out reaching movements disturbed by an external force-
field. A broad resting-state beta-power configuration was found
to be predictive of motor adaptation rate. Our findings suggest
that resting EEG beta-power is an indicator of subjects’ ability to
learn new motor skills and adapt to different sensorimotor states.
This information can be further exploited in a novel BCI-based
stroke rehabilitation approach we propose.

Index Terms—brain-computer interfaces; EEG; resting-state;
motor learning; force-field adaptation

I. INTRODUCTION

Electroencephalogram (EEG) based brain-computer inter-
faces (BCIs) are used for direct brain communication in
paralysis and motor restoration in stroke [1]. Utility of BCI
technology in stroke rehabilitation gained particular interest
arguing that it reinforces neural plasticity and supports motor
recovery [2], [3]. In such protocols, BCIs are often used to
decode movement intent from sensorimotor rhythms that is
synchronized to a rehabilitation robot with haptic feedback
[4], [5], [6]. Providing sensorimotor feedback has been shown
to support modulation of sensorimotor rhythms and enhance
post-stroke recovery [7]. Motivated by these results and con-
sidering the relevance of a variety of brain rhythms beyond
sensorimotor areas to the extent of motor deficits [8], [9],
we propose to extend the current focus of BCI-based stroke
rehabilitation beyond sensorimotor rhythms to also include
associative brain areas.

Stroke recovery is a form of motor learning [10]. Hence,
identifying the large-scale cortical networks involved in motor
learning is of importance in this context. To that end, the
relation of resting-state EEG and motor learning; either in
the form of motor adaptation or skill learning [11], should
be investigated. In the next step, understanding how stroke-
related disturbances of these resting-state networks relate to
motor deficits would in turn yield knowledge about how these

networks can be exploited in a BCI-based rehabilitation set-
ting. Particularly, a healthy reconfiguration of these networks
via neurofeedback training, as proposed in [12], is likely
to support motor recovery. With a similar approach, several
studies have previously focused on BCI-based sensorimotor
training to improve motor behavior during a reaction-time task
[13] or a joystick-based cursor-movement task [14].

In this study, we address the issue of identifying resting-state
EEG correlates of motor learning in a force-field adaptation
task. Based on experimental data from twenty-one healthy
subjects, we show that resting-state EEG recorded prior to
the experiment can be used to predict motor adaptation with
features extracted in the β-band. These findings are consistent
with studies on the relation of broad β-activity and motor
maintenance.

II. METHODS

A. Subjects

Twenty-one right handed healthy subjects (14 male, 7
female; mean age 23.8 ± 3.1) participated in this study. All
subjects were naive to the force-field adaptation task. Before
the experiments, all participants gave their informed consent
after the experimental procedure was explained to them.

B. Study Design

The subjects sat in front of a horizontally placed board
constructing the task workspace. Subjects were holding a han-
dle, henceforth referred to as an end-effector, with their right
hands that was suspended from above onto the board. The end-
effector was attached to a 3 degrees-of-freedom modified delta
robot which had constrained motion on z-axis. Using the task
workspace, the subjects performed the force-field adaptation
task (see section II-C) with simultaneous EEG recordings. The
goal of the task was to perform center-out reaching movements
under an unknown force-field, as straightly as possible. The
end-effector was only capable of two-dimensional movements
that were restricted to fall within a circle with a radius of
200 mm. Idle position of the end-effector corresponded to the
center of this circle. There were four target locations placed on
the circle at the northeast, northwest, southeast, and southwest
positions. The target locations were indicated with holes over
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Fig. 1. Illustration of the task workspace. Four target locations are placed on
the board (with equal distances of 200 mm from the center).

the board containing LEDs inside. An illustration of the task
workspace is provided in Figure 1.

All subjects performed a pre-flight phase of eight trials
before the experiments to get familiar with the task workspace
and trial flow. As part of the force-field adaptation task, each
subject performed 200 trials in total, which were divided into
three blocks of 40, 80, and 80 trials. Within each of these
blocks, there were equal number of trials per target location.
After the task, subjects also performed a washout phase of 20
trials which involved no force-field. Alongside the force-field
adaptation task, four blocks of resting-state EEG recordings
were performed throughout the experiment, each lasting for
five minutes. During resting-state recordings, subjects were
placed approximately 1.5 meters in front of a computer screen.
The subjects were instructed to relax with eyes open, looking
at a fixation cross displayed in the middle of the screen. Flow
of the experiment is presented in Figure 2.

C. Force-Field Adaptation Task

The force-field adaptation task involved two-dimensional
center-out reaching movements. Goal of the subjects was
to follow a straight line path from starting position to the
target location. During reaching movements, subjects’ motions
were disturbed by an external force-field. Within the task
workspace, a velocity dependent force-field was applied to
the end-effector by the robotic setup. Specifically, end-effector
velocity vector ~v was multiplied with a constant matrix B,
representing the viscosity of the imposed environment, to
compute ~f = B~v at each time point, where ~f represented
the forces that the robotic setup is programmed to produce on

the end-effector as the subject performed reaching movements.
The constant matrix B was the same as in [15]. During pre-
flight and washout phases the subjects performed the reaching
movements without an external force-field disturbance, but
with the same trial flow.

Each trial began with a planning phase, where the subjects
were instructed to hold the end-effector at the starting position
(i.e., center of the circle on the board) and plan the upcoming
movement. During this phase, one of the four possible targets
is selected randomly and indicated by a blinking LED light.
The planning phase lasted 2.5–3.5 seconds, chosen randomly
from a uniform distribution. At the end of the planning phase,
the LED turned on constantly, signaling the beginning of the
go phase. In the go phase, the subjects were instructed to reach
for the target by moving the end-effector over the board. The
trial was considered complete when the subject moved the
end-effector to within 20 mm of the target or if the subject
exceeded a time limit of 3 s. After the go phase, the subjects
were instructed to move the end-effector back to the starting
position. At the end of the trials, to quantify motor adaptation
amount, a calculated score within a range of 0–100 was read
out to the subjects through a speaker. Each trial began with a
new target location. Among a total of 200 trials, the number
of trials corresponding to each of the four targets were equal.

The score in each trial indicated how straight the movement
trajectory was in the corresponding trial. To calculate the
score, we first computed the sum of perpendicular distances
of each point on the movement trajectory to the ideal path
(i.e., straight line from center to target). Secondly, this sum
served as an input variable to a sigmoid function, indicating
a gradually diminishing increase [16]. Third, the value of the
sigmoid function was multiplied by the elapsed time of the
trial as a penalty on the score. At the end of each trial, the
subjects were informed about their movement performance by
inversely mapping this value to a range of 0–100; a higher
score denoting a faster and more straight reaching movement.
Aim of the subjects was to increase the score.

D. Experimental Data

Throughout the experiments, the robotic setup recorded data
at 1 kHz sampling rate and a 64-channel EEG was recorded
at 512 Hz sampling rate, using active EEG electrodes and
a BioSemi ActiveTwo amplifier (Biosemi Inc., Amsterdam,
The Netherlands). Electrodes were placed according to the 10-
20 system. All data were re-referenced to common average
reference offline.

Fig. 2. Flow of the experiment. Before the experiment the subjects performed a pre-flight phase. Green blocks indicate four resting-state recordings each
lasting for five minutes. Red blocks indicate three blocks of force-field adaptation task which in total consisted of 200 trials. Before the fourth resting-state
recording, the subjects performed a washout phase of 20 trials. Blocks are separated by brief intermissions of one to two minutes.



E. Resting-State EEG Analysis

Feature space to predict motor adaptation was obtained by
first transforming the resting-state EEG recordings into a small
number of relevant features. This was achieved by reducing
the dimensionality of the EEG data. Specifically, we pooled all
resting-state EEG data from all subjects, by concatenating high
pass filtered data at 3 Hz, and separated this data into group-
wise statistically independent components (ICs). This was
done by first reducing the data into 64 principal components
and then running the SOBI-algorithm [17]. We inspected each
IC manually and rejected those which were not of cortical
origin [18]. The remaining six IC topographies are shown at
the bottom row of Figure 5. We then computed resting-state
log-bandpowers of each non-artifactual IC in θ- (4–7 Hz), α-
(8–14 Hz), β- (15–30 Hz) and γ- (55–85 Hz) bands of all
subjects, using an FFT in conjunction with a Hanning window.
These bandpowers served as a feature space to a multivariate
linear regression model to predict motor adaptation of the
subjects.

F. Motor Adaptation Prediction

In order to monitor learning effects, we recomputed au-
ditory feedback scores offline. Individual motor adaptation
performance measures were extracted from scores of the first
block of 40 trials, where the initial exposure and most of
the adaptation to the force-field occurs. Specifically for each
subject, the ratio of average scores of the first ten trials
over average scores of the last ten trials of the first block
is computed. These motor adaptation performance measures
served as the dependent variable for a multivariate linear
regression model.

Each subject’s six IC log-bandpowers in one of the four
frequency bands from the first resting-state block were used
as independent variables in the multivariate linear regression
model to predict motor adaptation using a leave-one-subject-
out cross-validation protocol. Prediction was done for all
frequency bands to investigate if any resting-state neural corre-
lates exist for motor adaptation performance in a particular fre-
quency band. For each frequency band, to quantify the strength
of the prediction model, the correlation coefficient between
actual and predicted performance measures was computed.
Significance of this correlation was tested with a permuta-
tion test. To test the null-hypothesis of zero correlation, we
randomly permuted the assignment of performance measures
to features across subjects 10,000 times and estimated the
frequency at which the prediction model achieved a higher
correlation coefficient than with the true assignment of brain
rhythms to performance measures as the p-value.

III. RESULTS

The change in grand average scores was investigated to
observe motor learning effects. As we were interested in a
general improvement rather than trial-to-trial changes in score,
we plotted 20-trial-averaged subject scores which followed a
power law (see Figure 3).

Fig. 3. 20-trial-averaged subject scores. Trial groups represent the sequential
order of the 200 trials grouped in 20 trials each. Each point on the blue curve
represents an average score of 20 trials. Error bars indicate standard deviation
across subjects. Red curve is the exponential fit using nonlinear Nelder-Mead
least-squares regression in the form Si = Aei/τ +C, where Si is the score
for trial group i, A represents the amount of learning, τ is the time-constant,
and C represents the steady-state value.

Fig. 4. Measured versus predicted motor adaptation performance measures
for the β-band linear regression model. One dot represents one subject.

Fig. 5. Normalized weights of the β-band regression model for each IC.
Topographies of the six non-artifactual ICs used for prediction are shown in
the bottom row.



Investigating the correlation coefficients between actual and
predicted performance measures, we observed that the predic-
tion models did not provide statistically significant results in
θ-band (ρ = -0.0208, p = 0.58) , α-band (ρ = 0.2477, p =
0.15) or γ-band (ρ = -0.2153, p = 0.33). Using resting-state
features extracted in β-band, we significantly predicted motor
adaptation performance (ρ = 0.5363, p = 0.02, see Figure
4). Significance decreased in comparison to a single β-band
prediction, if pairs of frequency bands were used as features in
the regression model (e.g., both α- and β-powers as features: ρ
= 0.4736, p = 0.05). Figure 5 shows linear regression weights
of each IC, averaged over all cross-validation folds, for the β-
band prediction model. Regarding the weights, we claim that
most informative features are observed in cortical areas that
are likely to represent sensorimotor processes (IC 5) and areas
linked to fronto-parietal attention networks (ICs 1, 3, 4) [19].

IV. DISCUSSION

We have presented empirical evidence that resting-state
EEG recorded prior to the experiment can be used to predict
motor adaptation in a force-field adaptation task. Using β-
powers of resting-state ICs as features in a multivariate linear
regression model, significant prediction of the improvement
rate of feedback scores in the first block of the experiment
was obtained. Our results on relevance of a broad β-band
activity is consistent with evidence in literature suggesting a
causal influence of multiple cortical sources on motor learning
performance [20]. Moreover, previous studies claim that a
broad β-band network is informative of mechanisms related to
motor maintenance [21], [22]. This further supports reliability
of our findings on motor adaptation as a form of a change
in current or upcoming sensorimotor state. Nonetheless, it is
noteworthy that even though this study suggests significant
results for a continuous force-field case, these results may not
be extended to sudden or gradual force-fields, which are likely
to tap into different brain processes [23].

Previously, relation of brain activities beyond primary sen-
sorimotor areas and visuomotor learning performance were
investigated [24], [25]. Here, we separate the motor learning
task from additional visual processing. We claim that a broad
resting-state β-band activity contributes to performance during
a purely motor learning task in healthy subjects. Once we
can translate these findings to stroke patients, in the context
of our novel approach to BCI-based stroke rehabilitation, a
further phase would be to investigate how these resting-state
networks are disturbed due to stroke and how it relates to
motor deficits. Then using BCI-based neurofeedback as a tool,
a healthy reconfiguration of these networks can be obtained to
support post-stroke motor recovery.
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[12] O. Özdenizci, T. Meyer, M. Çetin, and M. Grosse-Wentrup, “Towards
neurofeedback training of associative brain areas for stroke rehabilita-
tion,” in Proceedings of the 6th International Brain-Computer Interface
Conference, 2014.

[13] C. Boulay, W. Sarnacki, J. Wolpaw, and D. McFarland, “Trained
modulation of sensorimotor rhythms can affect reaction time,” Clinical
Neurophysiology, vol. 122, no. 9, pp. 1820–1826, 2011.

[14] D. J. McFarland, W. A. Sarnacki, and J. R. Wolpaw, “Effects of train-
ing pre-movement sensorimotor rhythms on behavioral performance,”
Journal of Neural Engineering, vol. 12, no. 6, p. 066021, 2015.

[15] R. Shadmehr and F. A. Mussa-Ivaldi, “Adaptive representation of
dynamics during learning of a motor task,” The Journal of Neuroscience,
vol. 14, no. 5, pp. 3208–3224, 1994.

[16] N. Leibowitz et al., “The exponential learning equation as a function of
successful trials results in sigmoid performance,” Journal of Mathemat-
ical Psychology, vol. 54, no. 3, pp. 338–340, 2010.

[17] A. Belouchrani, K. Abed-Meraim, J.-F. Cardoso, and E. Moulines, “A
blind source separation technique using second-order statistics,” IEEE
Transactions on Signal Processing, vol. 45, no. 2, pp. 434–444, 1997.

[18] A. Delorme et al., “Independent EEG sources are dipolar,” PloS one,
vol. 7, no. 2, p. e30135, 2012.

[19] S. L. Bressler and V. Menon, “Large-scale brain networks in cognition:
emerging methods and principles,” Trends in Cognitive Sciences, vol. 14,
no. 6, pp. 277–290, 2010.
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