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ABSTRACT
Treatment of the vortex motion in the superfluids of the inner crust and the outer core of neutron
stars is a key ingredient in modelling a number of pulsar phenomena, including glitches and
magnetic field evolution. After recalculating the microscopic vortex velocity in the inner crust,
we evaluate the velocity for the vortices in the outer core for the first time. The vortex motion
between pinning sites is found to be substantially faster in the inner crust than in the outer core,
vcrust

0 ∼ 107 cm s−1 � vcore
0 ∼ 1 cm s−1. One immediate result is that vortex creep is always

in the nonlinear regime in the outer core in contrast to the inner crust, where both nonlinear
and linear regimes of vortex creep are possible. Other implications for pulsar glitches and
magnetic field evolution are also presented.
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1 IN T RO D U C T I O N

Like all dense, strongly interacting Fermi systems under a certain
critical temperature, most parts of a neutron star are expected to
be in superfluid states (Migdal 1959). Observational evidence for
neutron star superfluidity comes from the long recovery time-scales
following glitches (Baym et al. 1969a) and more recently from the
rapid cooling of the neutron star inside the CasA supernova rem-
nant which indicates a transition into the superfluid/superconducting
phase (Page et al. 2011; Shternin et al. 2011). A superfluid can
achieve rotation only by forming quantized vortex lines. A neutron
star’s rotational dynamics is governed by the distribution and mo-
tion of these quantized vortex lines. Interaction of vortex lines with
the ambient matter plays a significant role in the glitches (Alpar
et al. 1984a; Ruderman, Zhu & Chen 1998; Sedrakian & Cordes
1999), thermal evolution (Alpar, Cheng & Pines 1989; Sedrakian
& Sedrakian 1993) and magnetic field evolution (Srinivasan et al.
1990; Jahan-Miri 2000). As the star spins down, the macroscopic
rotation rate �s of the superfluid will follow the normal matter ro-
tation rate �c at a lag ω = �s − �c. In modelling the neutron star
with a crust and a superfluid component, the equations of motion
are as follows:

Ic�̇c + Is�̇s = Next, (1)

and

�̇s = −2�svr(ω)

r
, (2)

� E-mail: egugercinoglu@gmail.com

where Next is the external braking torque, Ic(Is) and �̇c(�̇s) are
moment of inertia and spin-down rate of the crust (superfluid) com-
ponent, respectively. The superfluid regions follow the spin-down
of the neutron star’s crust by sustaining a continuous vortex current
in the radially outward direction with a rate

vr = − r�̇

2�
, (3)

where �̇ and � are the spin-down and rotation rates of the pul-
sar, respectively and r is the distance from the rotation axis. This
steady-state vortex motion corresponds to a steady-state value of
the lag ω attained as a result of the interactions of normal matter
cores of the vortices with the components of the star that couple
to the spin-down of the crust. Vortex cores interact with the elec-
trons, the crustal lattice, the superconducting protons in the neu-
tron star core and the quantized magnetic flux tubes of the proton
superconductor.

We calculate the microscopic vortex velocity both in the inner
crust and in the outer core by considering the Bernoulli force due
to the excess kinetic energy of local induced superfluid flow around
vortices arising from inhomogeneities presented by the nuclei and
flux tubes. In Section 2, we summarize the description of vortex
motion in neutron stars. In Section 3, we construct the basic formal-
ism for obtaining the microscopic vortex velocity. In Section 4, we
reevaluate the microscopic vortex velocity in the inner crust while
in Section 5 we obtain for the first time the microscopic vortex
velocity in the outer core where the dynamics is determined by the
interaction of the vortex lines with the quantized flux tubes of the
proton superconductor. In Section 6, we discuss the implications
of our findings for pulsar glitches and magnetic field evolution.
Section 7 presents our conclusions.
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2 D E S C R I P T I O N O F VO RT E X M OT I O N I N
N E U T RO N STA R S

The equation of motion of a (straight) vortex moving at velocity
vL is determined from the balance between the Magnus response
‘force’ which depends on the relative velocity of the vortex with
respect to the superfluid velocity vs, and the physical forces acting
on the vortex which depend on the vortex velocity with respect to
the velocity vc of the normal matter corotating with the crust. These
forces arise due to the interaction with lattice nuclei (Alpar 1977;
Epstein & Baym 1988) and phonons (Jones 1992) in the inner crust
or with electrons (Alpar, Langer & Sauls 1984b) and flux tubes
(Sidery & Alpar 2009) in the outer core. For drag forces linear in
the velocity difference vL − vc, the equation of motion is

ρsκ × (vL − vs) − η(vc − vL) = 0, (4)

where ρs is the superfluid mass density, κ = h/2mn is the vorticity
quantum, where mn is the neutron mass and h is Planck constant,
and η is the drag coefficient. The κ vector is directed along the
vortex and parallel to the rotation axis. In cylindrical coordinates
(r, φ, z), with the rotation axis and κ in the z direction, the vortex
velocity is given by (Bildsten & Epstein 1989)

vL = ωR

(
1

2
sin 2θd r̂ + cos2 θd φ̂

)
, (5)

where ω = �s − �c is the angular velocity lag between the super-
fluid and the crust, and the dissipation angle θd is defined by

tan θd ≡ η

ρsκ
. (6)

Then a vortex moves at an angle θd with respect to the superfluid
flow. Drag coefficients may differ by seven orders of magnitude for
various processes (Haskell, Pizzochero & Sidery 2012; Link 2014).
The drag coefficient and the dissipation angle are typically small,
so that the vortex lines flow with a velocity close to the azimuthal
macroscopic superfluid flow; vL

∼= vs = ωrφ̂, with a much smaller
radial speed of the vortex lines, vr ∝ η, whereby the drag force on
the vortex lines spins down the superfluid [equation (3)].

When the neutron superfluid is in a microscopically inhomo-
geneous medium, where the spacing between inhomogeneities is
much less than the mean spacing between the vortex lines lv =
(2�/κ)−1/2, the forces determining the vortex motion are due to
the local microscopic interaction with the inhomogeneities. In this
situation, the magnitude of the vortex line velocity with respect to
the normal matter, v0 ≡ |vL − vc|, will not scale with the macro-
scopic average velocity difference ωR between the superfluid and
the normal matter. The macroscopic average motion of the vortices,
in particular their radial average speed vr away from (towards) the
rotation axis, that determines the spin-down (or spin-up) of the su-
perfluid, is then related to a microscopic velocity v0 in a statistical
model. The directions of microscopic velocity are geometrically
random, as determined by the distribution of inhomogeneities.

The vortex creep model (Alpar et al. 1984a, 1989) is a statisti-
cal model describing the macroscopic dynamics resulting from the
vortex line interactions with the lattice of nuclei, at a lattice spac-
ing b � lv, in the inner crust superfluid. The microscopic vortex
velocity v0 is employed to give a trial rate of vortex lines against
potential pinning sites and barriers sustained by the nuclei. Thus, in
the vortex creep model the vortex velocity is defined as a trial or mi-
croscopic random velocity v0 times its rate in a preferred direction.
Even though there is pinning, vortex lines can overcome pinning
barriers due to the finite temperature T and migrate radially outward

as dictated by the external spin-down torque. This slow radial drift
(‘creep’) rate is

vr = 2v0e−Ep/kT sinh

(
Ep

kT

ω

ωcr

)
, (7)

where Ep is the pinning energy and ωcr is the maximum angular ve-
locity lag that can be maintained by pinning forces. The superfluid
transfers angular momentum to the charged normal matter continu-
ously in vortex creep, or in discrete glitch events via sporadic vortex
discharges. The microscopic vortex velocity is a crucial parameter
in determining the creep rate, and in particular whether creep has the
full nonlinear dependence on the lag ω. Comparing the steady-state
creep rate given by equation (3) with the model given in equation
(7), one can decide whether the dependence on the lag ω is lin-
ear or nonlinear for a given pinning energy Ep, temperature T and
microscopic vortex velocity v0. Vortex creep will be in the linear
(nonlinear) regime when Ep/kT is less (greater) than a transition
value (Alpar et al. 1989):(

Ep

kT

)
tr

= ln

(
4�v0

|�̇|r
)

, (8)

where r ≈ R∗ ∼= 106cm is neutron star’s radius. In the linear creep
regime equation (2) becomes

�̇s = − ω

τlin
. (9)

Linear creep responds to perturbations by exponential relaxation
with a time-scale inversely proportional to v0 (Alpar et al. 1989)

τlin = kT

Ep

rωcr

4�sv0
exp

(
Ep

kT

)
. (10)

In the nonlinear regime,

sinh

(
Ep

kT

ω

ωcr

)
∼= 1

2
exp

(
Ep

kT

ω

ωcr

)
.

The steady-state lag in the nonlinear regime is

ω∞ = ωcr

[
1 −

(
kT

Ep

)
ln

(
2�sv0

|�̇|∞r

)]
.

The post-glitch response of nonlinear creep is generally not simple
exponential relaxation. Characteristic nonlinear response can be
seen as the stopping of creep until a waiting time t0 = δω/|�̇|∞
determined from glitch induced change in the steady-state lag and
steady-state spin-down rate, or as a gradual power-law recovery
(Alpar et al. 1984a, 1989)

��̇(t) = ��̇(0)

(
1 − t

t0

)
, (11)

where ��̇(0) is the glitch induced offset in the spin-down rate.
As shown in equation (8), whether a given region of the superfluid
is in the nonlinear or linear creep regime depends on the micro-
scopic vortex velocity v0 as well as on Ep, kT and other parameters.
Although the dependence on v0 is logarithmic, the range of the
possibilities is wide. Both linear and nonlinear creep regimes ex-
ist in different parts of the neutron star superfluid. Pulsars exhibit
very nonlinear post-glitch behaviour, as in equation (11), along with
simple exponential relaxation.

3 D E T E R M I NAT I O N O F T H E M I C RO S C O P I C
VO RT E X V E L O C I T Y

The procedure for determining the microscopic vortex velocity v0

is based on superfluid current conservation around a vortex while
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Microscopic vortex velocity for neutron stars 1455

maintaining the quantized circulation κ . This is used to obtain the
Bernoulli force which originates from the kinetic energy variation
of local superfluid flow around the vortex (Alpar 1977). We will
follow the highly simplified graphical description of Alpar (1977)
for the interaction of nuclei and vortices in the crust lattice. Later
treatments employing the method of images (Shaham 1980) and
employing the velocity field of a vortex against a nuclear potential
in the complex plane (Epstein & Baym 1988) give similar results.
Taking into account the superfluid density difference inside and
outside of an inhomogeneity (lattice nuclei in the inner crust, flux
tubes in the outer core) current continuity and vorticity equations for
the superfluid velocity around a vortex can be expressed as follows:

ρinvin(r) = ρoutvout(r), (12)

and

r [φ0vin(r) + (2π − φ0)vout(r)] = κ, (13)

where ρ in(ρout) and vin(vout) are the superfluid density and the vortex
velocity inside (outside) of the inhomogeneity, respectively and φ0

is the angle defining the angular size of the inhomogeneity as seen
from the vortex axis. From equations (12) and (13) we obtain:

vin(r) = ρout

φ0ρout + (2π − φ0)ρin

κ

r
, (14)

vout(r) = ρin

φ0ρout + (2π − φ0)ρin

κ

r
. (15)

The Bernoulli force can be estimated by using a simple geometry.
In our configuration adopted from Alpar (1977), an inhomogeneity
with its centre at a distance R away from the vortex axis will af-
fect the superfluid velocity field around a vortex only in a region
bounded with R − RL < r < R + RL, 0 < φ < 2RL

R
, 0 < z < 2RL

in cylindrical coordinates centred on the vortex axis. Here RL is
the length-scale, actually the effective radius, of the inhomogeneity.
The kinetic energy increment due to this density inhomogeneity
around a vortex is given by

�E = 2RL

∫ R+RL

R−RL

rdr

( ∫ φ0

0

1

2
ρinv

2
in(r)dφ

+
∫ 2π

φ0

1

2
ρoutv

2
out(r)dφ −

∫ 2π

0

1

2
ρout

[ κ

2πr

]2
dφ

)

= RLρoutκ
2

(
ln

R + RL

R − RL

)

×
(

ρinR

2RL(ρout − ρin) + 2πρinR
− 1

2π

)
. (16)

The gradient of the above expression yields the Bernoulli Force:

FB = −d�E

dr

= −RLρoutκ
2

[ (
ln

R + RL

R − RL

) (
2ρin�ρRL

(2RL�ρ + 2πρinR)2

)

− 2RL

R2 − R2
L

(
ρinR

2RL�ρ + 2πρinR
− 1

2π

) ]
, (17)

where we defined �ρ = ρout − ρ in. The Bernoulli force appears
because if the inhomogeneity is brought closer to the vortex the
superfluid pressure will be lower on the side of the line where the
induced circulation around it due to the density inhomogeneity adds
constructively with the background flow, and higher on the opposite

side. Thus, this force is attractive for ρ in < ρout and repulsive for ρout

< ρ in (Alpar 1977; Shaham 1980). The resulting pressure gradient
must be balanced with the Magnus response ‘force’ from which the
microscopic vortex velocity is obtained as

FB

R
= ρκv0. (18)

Vortex lines will have typical velocities v0 with respect to the
background, average azimuthal flow of the superfluid. The direc-
tion of the vortex motion will depend on the dynamical position and
orientation of the vortex line with respect to the inhomogeneities.
Until recently, the setting for vortex creep was taken to be the inner
crust of the neutron star, where nuclei in the crustal lattice can pin
to the vortex lines of the neutron superfluid. This changed with the
realization (Chamel 2005, 2012) that the neutron effective mass in
the crust lattice will be different from the bare mass, due to Bragg
scattering of the neutrons. As a consequence of this ‘entrainment ef-
fect’ the crust superfluid may not provide enough mass and moment
of inertia to explain the observed post-glitch relaxation (Chamel &
Carter 2006; Andersson et al. 2012; Chamel 2013). In an earlier
paper, we pointed out that pinning and creep of vortex lines against
toroidal flux tubes in the outer core can supply the needed addi-
tional component of the post-glitch relaxation (Gügercinoğlu & Al-
par 2014). The microscopic vortex velocity around flux tubes needs
to be considered in this new context of pinning and creep against
toroidal flux tubes in the outer core of the neutron star. In subse-
quent sections we will use equation (18) to deduce the v0 value both
in the inner crust and in the outer core, where the inhomogeneities
posed by quantized flux tubes are treated.

4 VO RT E X V E L O C I T Y I N T H E IN N E R C RU S T

The physical state of the inner crust with its neutron rich nuclei
and dripped neutron superfluid interspersed with them is well es-
tablished since the pioneering work of Negele & Vautherin (1973).
The superfluid density inside a nucleus is found to be somewhat
larger than the outside dripped superfluid, ρ in > ρout, in most parts
of the inner crust. This means that the superfluid velocity at points
equidistant from the vortex axis is lowered inside a nucleus and
becomes higher outside of it as compared to the homogeneous su-
perfluid. This effect results in an increase in the total kinetic energy
of the superfluid and thus brings about a Bernoulli force which
keeps vortex lines away from the nucleus. For this case the rele-
vant intersection length-scale is the nuclear radius, RL = RN, the
distance from vortex axis to the nucleus is the lattice constant,
R = b, the opening angle is φ0 = 2RN/b and in the densest pinning
layer (where baryon density is nB = 7.89 × 10−2 fm−3 and ρ in =
4.8 × 1011 g cm−3) with the aid of equation (17) one obtains ∼1.2
× 1018 dyne cm−1for the Bernoulli force per unit length (Alpar
1977). Equation (18) gives the typical value of v0 = 107 cm s−1for
the microscopic vortex velocity in the inner crust. The Bernoulli
force will be radial, and the vortex motion will be in tangential
directions as dictated by the Magnus response ‘force’. In the inner
crust regions where ρout > ρ in, the Bernoulli force and vortex ve-
locity directions will be reversed. In any case, the estimate of v0

is based on a straight vortex line, interacting with a single nucleus.
In reality the vortex will be bent and its motion is geometrically
frustrated in the lattice, but v0, as a trial rate at neighbouring nuclei,
is expected to lie within the estimated order of magnitude. Thus,
vortex lines move comparatively fast between the pinning centres
in the inner crust superfluid. Similar values of v0 were estimated
by Shaham (1980) and Epstein & Baym (1988). Bragg scattering
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of dripped superfluid neutrons from lattice nuclei, the entrainment
effect (Chamel 2005, 2012), does not have a significant effect on
these calculations.

The value of v0 is crucial in determining the workings of vortex
creep, in particular whether the vortex creep is in the full nonlin-
ear regime or in a linear regime. The rotational dynamics of the
superfluid–normal matter system has a steady state in which the
superfluid and normal matter spin-down at the same rate at con-
stant lag ω. The steady-state value of the macroscopic radial vortex
flow rate vr = ∣∣�̇∣∣ R/2�, together with the value of v0, determines
whether vortex creep is in the nonlinear regime, in which the re-
sponse to a glitch induced offsets δω in ω is highly nonlinear, or
in the linear regime, where the response is linear in δω, behav-
ing as for drag forces with simple exponential relaxation. Link
(2014) assumed that once a vortex unpins it moves with the local
angular velocity lag value ω = �s − �c � 1 rad s−1, taking the
macroscopic azimuthal velocity vφ = ωR ∼ 105 cm s−1instead of
the microscopic randomly oriented speed v0 ∼ 107 cm s−1. This
leads Link (2014) to the conclusion that there is no linear creep
regime within the entire inner crust. However, when the micro-
scopic interactions are taken into account with v0 ∼ 107 cm s−1one
cannot rule out the possibility of linear creep regions in the
inner crust.

Recently, Haskell & Melatos (2016) conducted numerical simu-
lations of the vortex velocity in the inner crust by obtaining the lines’
mean free path among adjacent pinning sites, i.e. crustal nuclei, with
geometrical cross-sections implicit. They found qualitative agree-
ment with the vortex creep model of Alpar et al. (1984a), which
from the beginning takes into account of the microscopic random
velocities v0 ∼ 107 cm s−1and therefore includes both nonlinear
and linear creep regimes.

5 VO RT E X V E L O C I T Y I N T H E O U T E R C O R E

The microscopic velocity of vortices which is required to assess
the creep motion of vortex lines against the flux tubes has not
been evaluated properly before. Either the crustal value of v0 ∼
107 cm s−1was used (Sidery & Alpar 2009) or the expression that
stems from the globally averaged value vφ = ωR appropriate for
homogeneous drag forces (Link 2014) was employed. Here we will
make a rough estimate for the microscopic vortex velocity in the
outer core by taking neutron star core physical circumstances into
account.

During the early stages of the neutron star’s life, the proton phase
transition from normal to superconducting fluid is accompanied by
the formation of a mixed state for which magnetic flux is con-
fined into discrete flux tubes with flux quantum �0 = hc/2e = 2
× 10−7 G cm2(Baym, Pethick & Pines 1969b). Numerical simula-
tions in non-superfluid (Braithwaite 2009) and in superconducting
(Lander, Andersson & Glampedakis 2012; Lander 2014) canonical
neutron stars show that for a stable magnetic field configuration
inside neutron stars, a toroidal component of the magnetic field
stronger than the surface field, localized in the outer layers of the
core is necessary. For magnetars such a type II superconductivity
is also expected (Lander 2014; Fujisawa & Kisaka 2014); the up-
per critical field for superconductivity is not exceeded since the
Hall effect causes conversion of some part of the toroidal field’s
energy into the poloidal field and weakening of the interior toroidal
field compared to the surface poloidal field. Due to the very high
electrical conductivity of the neutron star core (Baym, Pethick &
Pines 1969c), any stable magnetic field configuration will persist in
equilibrium for a long time. However, flux tubes’ interaction with

the expanding vortex array in a spinning down neutron star may
carry some magnetic flux out of the core. This possibly determines
the long-term magnetic and rotational evolution of the neutron star
(Srinivasan et al. 1990; Jahan-Miri 2000; Jones 2006).

In contrast to the poloidal field configuration, toroidal arrange-
ment of the flux tubes offers topologically inevitable pinning sites
for vortex lines and provides creep conditions similar to the in-
ner crust (Sidery & Alpar 2009; Gügercinoğlu & Alpar 2014).
During their motion, the neutron superfluid’s vortex lines will
inevitably face intersections with toroidally oriented flux tubes.
Two relevant length-scales pertaining to the flux tubes, the mag-
netic field’s London penetration depth �∗ and the distance l� be-
tween flux tubes, are given by (Alpar et al. 1984b; Gügercinoğlu &
Alpar 2014),

�∗ � 95

[(
m∗

p/mp

0.5

) ( xp

0.05

)−1
(

ρ

1014 g cm−3

)−1
]1/2

fm, (19)

and

l� =
(

Bφ

�0

)−1/2

� 450

(
Bφ

1014G

)−1/2

fm, (20)

where xp is the proton fraction, mp and m∗
p are proton bare and

effective mass, respectively and Bφ is the toroidal component of the
magnetic field.

For r ≤ �∗, the ambient pressure of the neutron star matter is
partially screened by the magnetic and Bernoulli pressures asso-
ciated with the flux tube, leading to a pressure drop in the region
ξp ≤ r ≤ �∗ (ξ p, the coherence length, being flux tube core radius)
from the flux tube axis. The pressure drop inside a flux tube is
(Muslimov & Tsygan 1985; Wendell 1988)

�P (r) = H 2(r)

8π
+ 1

2
ρpv

2
p(r)

� 1

8π

[
�0

2π�2∗
ln

(
�∗
r

)]2

+ 1

2
ρpv

2
p(r), (21)

and this pressure drop causes a small decrement in the surrounding
density

�ρ(r) � dρ

dP
= �P (r)

ρ

�P
�P (r), (22)

where � is the adiabatic index and vp = κ/2πr is the velocity
field around a flux tube. We will calculate the density difference at
r = ξ p. The coherence length is (Mendell 1991)

ξp = 16x1/3
p ρ

1/3
14

mp

m∗
p

�p(MeV)−1fm, (23)

where ρ14 is the density in terms of 1014 g cm−3, �p is the proton
pairing energy gap. To find �ρ/ρ we exploit the equation of state
parameters from Akmal, Pandharipande & Ravenhall (1998) and
proton superconductor parameters from Baldo & Schulze (2007):
ρ ≈ 2 × 1014 g cm−3, P ≈ 2.035 × 1033 dyne cm2, xp = 0.041, �

≈ 2.7, �p ≈ 1.2 MeV, m∗
p/mp ≈ 0.9. With these numerical values

in equations (21)–(23) we arrive at �ρ/ρ∼=1.5 × 10−5. For the
outer core conditions the relevant flux tube–vortex line intersection
length-scale is the London penetration depth, RL = �∗, the average
distance from vortex axis to the flux tube is of the order of the flux
tube separation, R = l�, and the opening angle is φ0 = 2�∗/l�. In
the end by using equations (17)–(20) we find v0 � 0.7 cm s−1for
microscopic vortex velocity in the outer core. The reasons for such
a low microscopic velocity in the outer core compared to the corre-
sponding value in the inner crust are as follows:
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(i) the difference in the superfluid density contrast between inside
and outside of inhomogeneities (nuclei or flux tubes) and especially,

(ii) the large difference between the respective length-scales, the
lattice spacing in the inner crust b, and the spacing of toroidal flux
tubes l� in the outer core.

From the value of v0 one can discriminate whether vortex creep
against toroidal flux tubes is in the linear or nonlinear regime. The
linear to nonlinear creep transition is determined from equation
(8). Typical parameters for the Vela pulsar, interior temperature
T ≈ 108K, spin-down rate |�̇| ∼= 10−10 rad s−2, angular velocity
�∼=70 rad s−1, give Ep|tr = 0.12 MeV for linear to nonlinear creep
transition value of pinning energy. There are two estimates for the
pinning energy of vortex−flux tube junctions in the literature, one
accounts for change in the condensation energies of vortex and flux
tube cores and the other considers the interaction energy contained
in magnetic fields of the concurrent structures. The pinning energy
arising from proton density fluctuations is (Muslimov & Tsygan
1985; Sauls 1989)

Ep = 3

8
nn

�2
p

E2
Fp

�2
n

EFn

(
ξ 2

n ξp

)

= 1

π5

�p

xp

(
m∗

n

mn

)−2 (
m∗

p

mp

)−1

� 0.13MeV

(
�p

1MeV

) ( xp

0.05

)−1

×
(

m∗
n/mn

1

)−2 (
m∗

p/mp

0.5

)−1

, (24)

where �p is the proton pairing energy gap, EF is Fermi energy, ξ is
coherence length, m∗/m is the effective to bare mass ratio, subscripts
‘n’ and ‘p’ refer to neutrons and protons, respectively and nn is the
neutron number density. In the neutron star core, vortex lines are
strongly magnetized due to proton supercurrents dragging around
them. This endows each vortex line with a field intensity Bv com-
parable to that of a flux tube B� ∼ 1015G (Sedrakian, Shahabasian
& Movsissian 1983; Alpar et al. 1984b). The pinning energy con-
tribution coming from the overlap of the magnetic fields of the flux
tube−vortex line reads (Mendell 1991; Jones 1991; Chau, Cheng
& Ding 1992) 1

Ep = 2 �BV · �B�

8π

(
π�2

∗��

) = �2
0

16π2

��

�2∗

δm∗
p

mp
ln

(
�∗
ξp

)
cos θ, (25)

where �� and θ denote the overlap length and the angle between
the flux tube and the vortex line, respectively, δm∗

p = |m∗
p − mp|.

For a simple geometry, the overlap length can be expressed in
terms of the London penetration depth and the angle between a flux
tube and a vortex line as follows:

�� � 2�∗
sin θ

. (26)

As neither the flux tube nor the vortex line have infinite rigidity,
both structures can bend at the junction. A vortex line has a finite
energy per unit length (tension) given by

Tv = ρsκ
2

4π
ln

lv

ξn
. (27)

1 Note that there is an unfortunate typo in Ruderman et al. (1998) [propagated
in Link (2012)] of a factor π rather than 1/π in the magnetic energy. This
leads to a factor of π2 ∼ 10 times larger pinning energies.

This originates from the kinetic energy associated with the velocity
field ∝r−1 around the vortex line. In terms of typical parameters
vortex line tension in neutron stars is (Andersson, Sidery & Comer
2007)

Tv � 109

(
ρs

2 × 1014 g cm−3

)
erg cm−1, (28)

with

ln
lv

ξn
≈ 20 − 1

2
ln

(
�

100 rad s−1

)
. (29)

On the other hand, the flux tube tension is given by (Harvey, Rud-
erman & Shaham 1986)

T� =
(

�0

4π�∗

)2

ln

(
�∗
ξp

)
∼ 107

(
m∗

p/mp

0.5

)−1 ( xp

0.05

)

×
(

ρs

2 × 1014 g cm−3

)
erg cm−1. (30)

As can be seen from equations (28) and (30) a vortex line is
∼100 times stiffer than a flux tube. When a vortex line and a flux
tube come closer and intersect we can safely assume that the vortex
line remains almost straight while the flux tube bends and twists.
Some part of the energy gained by the overlapping of a vortex line
with a flux tube goes over to the flux tube’s lengthening during
this bending process. When this effect is taken into account, the net
energy gain becomes

E+ = Ep − ���T�. (31)

The lengthening of the flux tube around a vortex line amounts to

�� ≈ 2�∗

(
1

sin θ
− 1

)
, (32)

since the attraction range is the circulating supercurrent’s length-
scale �∗. To find the value of θ that makes energy gain maximum,
we substitute equations (25), (26), (30), (32) in equation (31) for
E+ and then vary the ensuing expression with respect to θ to get

θ = arccos

(
1

2

δm∗
p

mp

)
. (33)

Thus, the net energy gain arising from the vortex line−flux tube
magnetic pinning becomes

E+ = �2
0

8π2�∗
ln

(
�∗
ξp

) [ (
δm∗

p

mp

)
cot

(
arccos

(
1

2

δm∗
p

mp

))

− 2

sin
(

arccos
(

1
2

δm∗
p

mp

)) + 2

]
≈ 4.8 MeV

(
m∗

p/mp

0.5

)−1/2

×
( xp

0.05

)1/2
(

ρs

2 × 1014 g cm−3

)1/2
[ (

δm∗
p/mp

0.5

)
cot

×
(

arccos

(
1

2

δm∗
p/mp

0.5

))

− 2

sin
(

arccos
(

1
2

δm∗
p/mp

0.5

)) + 2

]
. (34)

This can be compared with the magnetic pinning energy estimate
used earlier in the literature, i.e. equation (25), which does not
take properly flux tube bending and lengthening into account. With
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�� = 2�∗ and cos θ = 1 one obtains for equation (25),

Ep ≈ 40MeV

(
δm∗

p/mp

0.5

) (
m∗

p/mp

0.5

)−1/2

×
( xp

0.05

)1/2
(

ρs

2 × 1014 g cm−3

)1/2

. (35)

Thus, the energy disposed for flux tube bending reduces the
magnetic pinning energy estimate by a factor ∼8. In order to de-
termine net pinning energy gain in toroidal field region close to
the crust−core interface, we use once again the equation of state
parameters from Akmal et al. (1998) and proton superconductor
parameters from Baldo & Schulze (2007): ρ ≈ 2 × 1014 g cm−3,
xp = 0.041, �p ≈ 1.2 MeV, m∗

p/mp ≈ 0.9. These numerical val-
ues give E+ � 0.5 MeV. For both of the pinning energy estimates
given in equation (24) and for the realistic case with magnetic and
bending energies are taken into account in (34), Ep > Ep|tr = 0.12
MeV. We conclude that the vortex creep across the toroidal flux tube
configuration is always in the nonlinear regime, as expected from
the postglitch relaxation analysis of Gügercinoğlu & Alpar (2014).

The critical angular velocity lag that can be sustained by pin-
ning forces is found by equating the pinning force to the Magnus
‘response’ force, E+/(�∗l�) = ρsκR∗ωcr, and is given by

ωcr
∼= 6.3 × 10−2 rad s−1

(
δm∗

p/mp

0.5

) (
m∗

p/mp

0.5

)−1

×
( xp

0.05

) (
Bφ

1014G

)1/2

. (36)

In the nonlinear creep regime vortex lines migrate radially outwards
with a steady-state angular velocity lag ω∞, which is related to the
critical lag ωcr

ωcr − ω∞ = kT

ρκR∗�∗l�
ln

(
2�sv0∣∣�̇∣∣ R∗

)
. (37)

6 IM P L I C AT I O N S FO R P U L S A R G L I T C H E S
A N D M AG N E T I C - F I E L D E VO L U T I O N

Application of the creep model to the Vela and the Crab glitches
(Alpar et al. 1984a, 1996) suggests that crustquakes may be trig-
gering the glitches. The superfluid plays the role of amplifying the
glitch event to the observed magnitude via sudden unpinning of
a large number of the vortex lines in the inner crust. Since these
vortices travel radially outward, the vortex lines within the toroidal
field region in the outer core will not participate in making the
glitch but will contribute to the post-glitch relaxation in response
to the offset in the lag due to the change in the rotational state of
the crust ��c. Creep in the toroidal field region not only meets
the requirement of extra moment of inertia to resolve the problem
raised by entrainment but also fits the post-glitch behaviour of the
Vela pulsar (Gügercinoğlu & Alpar 2014) and of pulsars of different
ages (Gügercinoğlu 2016a).

Exceptionally large glitches in PSR B2334+61 (Yuan et al. 2010)
and PSR J1718–3718 (Manchester & Hobbs 2011) with magnitudes
��c/�c � 2 × 10−5 requires involvement of the toroidal field
region in the glitch event itself. Evaluating equation (37) for vortex
creep in the toroidal field region, we find that, here the steady-state
lag ω∞ is much closer to the critical lag ωcr, which is the threshold

for an unpinning avalanche, than is the case in the crust superfluid:

(ωcr − ω∞)crust

(ωcr − ω∞)core
≈ �∗l�

bξn

ln
(

2�sv
crust
0|�̇|R∗

)
ln

(
2�sv

core
0|�̇|R∗

) ∼ 200

(
�∗

100 fm

)

×
(

l�

500 fm

) (
b

50 fm

)−1 (
ξn

10 fm

)−1

. (38)

Here the neutron star interior is taken to be isothermal from the in-
ner crust superfluid into the core. We take �s = 100 rad s−1, |�̇| =
10−10 rad s−2, r = R∗ ∼= 106 cm values in the logarithmic expres-
sions. It is seen that the difference between steady-state lag and the
critical lag for unpinning in the outer core is two orders of magni-
tude less than the case in the inner crust. In typical Vela and other
pulsar glitches of magnitude ��c/�c ∼ 10−6, the unpinning event
starts in the crust superfluid, with the help of a crustquake acting
as trigger. The exceptionally large glitches may have started in the
toroidal flux region, as self-organized events involving the vortex
unpinning and creep process only. Possible superfluid based triggers
include r-modes (Glampedakis & Andersson 2009) and superfluid
turbulence (Peralta et al. 2006; Gügercinoğlu (in preparation)) for
large scale self-organized vortex unpinning. If these mechanisms,
effective in the core superfluid, are involved, the largest glitches
should start from these deepest pinned superfluid regions as pre-
dicted by Sidery & Alpar (2009). Despite the relative closeness of
ω∞ and ωcr, such events proceeding from the core are still rare. The
reasons for very large glitches like in PSR B2334+61 (Yuan et al.
2010) and PSR J1718–3718 (Manchester & Hobbs 2011) being rare
may be particularly favourable relative orientation or radial exten-
sion of the toroidal field region with respect to the rotational axis in
these pulsars.

This discussion of vortex microscopic motion and creep against
flux tubes is based on the expectation that the flux tubes are sta-
tionary in the crust and normal matter frame of reference, to a good
approximation. As a result of the low microscopic vortex veloc-
ity in the outer core, presumably vortex lines cannot push the flux
tube network enough and this may delay the magnetic flux expul-
sion from the core. Let us elaborate on this point. The vortex lines
move outwards through the core in response to the spin-down of the
normal matter, mediated by various forces on them. The resulting
effective force that the vortices exert on flux tubes was dubbed the
‘vortex acting force’ by Ding, Cheng & Chau (1993). This force
tends to accelerate the magnetic field decay via motion of flux tubes
with a magnitude in proportion to the ratio of number densities of
vortex lines to the flux tubes (Ding et al. 1993; Jahan-Miri 2000)

Fn = nv

n�

FM = 2�0ρRcore�s(t)ω(t)

Bcore(t)
êr, (39)

where Rcore ≈ R∗ is radius of the location of the crust–core inter-
face. In this expression it is implicitly assumed that forces on vortex
lines are instantaneously communicated to the flux tube array. These
authors estimated the force per unit length on a flux tube due to its in-
teractions with vortex lines as the force that sustains the macroscopic
velocity lag ω∞R between the superfluid and the normal matter via
the Magnus effect. In reality, the relative velocity between flux tubes
and vortex lines is the microscopic velocity vcore

0
∼= 1 cm s−1 sus-

tained by the local Bernoulli force, which is much less than the
macroscopic velocity difference ω∞R ∼= 104 cm s−1. This leads to
a much lower estimate of the force per unit length of the flux tube
applied by vortex lines by a factor of (vcore

0 /ω∞R) ∼ 10−4. As a
result, the effect of vortex lines is negligible on the relaxation of the
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global magnetic field configuration:

Fv−� ≈ 2�0ρ�s(t)vcore
0

Bcore(t)
∼ 8 × 10−3

(
�s

100 rad s−1

)

×
(

ρs

2 × 1014 g cm−3

) (
Bcore

1012 G

)−1

×
(

vcore
0

1 cm s−1

)
dyne cm−1. (40)

Thus, with our estimate of the microscopic velocity vcore
0 in the

toroidal field line region, the effect of vortex lines in the dynamics of
the flux tubes is negligible in comparison to magneto-hydrodynamic
forces which typically have magnitudes F � 10 dyne cm−1 (Jahan-
Miri 2000). This result is important, as it justifies the implicit as-
sumption of Ruderman et al. (1998), who compares the secular
relaxation times of the vortices and the flux tubes on the basis of
separate dynamics, neglecting the interaction between the two sys-
tems. During vortex creep the flux tubes can be taken to be stationary
in the frame of charged matter and normal crust.

The poloidal and toroidal flux tube configuration, like any mag-
netic field configuration, has a tendency to relax by diffusion, buoy-
ancy and other effects. Jones (2006) calculated the flux tube velocity
in connection with the bulk force resulting from the divergence of
the stress tensor for the type II proton superconductor and obtained
v� ≈ 4 × 10−7 cm s−1. He assumed only poloidal configuration for
flux tubes and neglected interactions with the surrounding vortices.
Such a high flux tube velocity would result in a complete mag-
netic field expulsion from the entire core in a rather short time-scale
τdecay ≈ Rcore/v� ∼ 105 yrs � τOhmic comparable to the Ohmic dis-
sipation time-scale of the crustal currents. However, the stabilizing
effect of the toroidal field arrangement of the flux tubes as well
as the vortex lines kept within the same region through pinning
and creep will resist further field decay. Thus, in the end a residual
magnetic field that does not diffuse out will be expected at the late
stages of the evolution. Note also that in the creep process the time
at which a single vortex line remained pinned to numerous flux
tubes is of the order of 2�∗/v0 ∼ 10−11s at each encounter so that
the amount of the magnetic flux tubes carried by vortices during
spin-down might be smaller than that predicted by Srinivasan et al.
(1990). The implications of these results on the flux tube–vortex
line interaction, regarding flux expulsion induced by spin-down on
evolutionary time-scales will be considered in a separate work.

7 C O N C L U S I O N S

In the vortex creep model, the mean creep rate is simply a mi-
croscopic vortex velocity v0 times the jump rate in a preferred
direction which is radially outward as dictated by the external spin-
down torque. For a vortex line in an inhomogeneous medium, the
microscopic vortex velocity stems from Bernoulli forces caused
by inhomogeneities within the superfluid, with the conditions that
superfluid current circulation around a vortex line must be con-
tinuous and total vorticity should be equal to vorticity κ . For the
inner crust superfluid, the presence of nuclei leads to different vor-
tex velocity fields inside and outside of the region bounded by the
coherence length. As a consequence, the superfluid’s kinetic en-
ergy differs from that of a homogeneous superfluid. With the extra
kinetic energy vortices experience a Bernoulli force and gain a mi-
croscopic vortex velocity. Alpar (1977) found v0 ∼ 107 cm s−1for
the inner crust circumstances which we reproduced here. Sidery &
Alpar (2009) assumed the inner crust value v0 ∼ 107 cm s−1for the

neutron star core, despite the different physical circumstances. For
the outer core superfluid, the presence of flux tubes leads to different
vortex velocity fields inside and outside of the region limited by the
London penetration depth. We have presented the first calculation
of the microscopic velocity of the vortex lines which are creeping
against the toroidal arrangement of flux tubes in the outer core.
This velocity is found to be significantly smaller than the crustal
value, vcrust

0 ∼ 107 cm s−1 � vcore
0 ∼ 1 cm s−1. Due to the very low

microscopic velocity of vortex lines interspersed with flux tubes,
the vortex creep against toroidal flux tubes will always be in the
nonlinear regime as Gügercinoğlu & Alpar (2014) have predicted.
For vortex line–flux tube pinning we take flux tube bending into
account and obtain an order of magnitude reduction for the result-
ing pinning energy compared to the estimates used earlier in the
literature. Our findings have bearing conclusions for pulsar glitches
and magnetic field decay from the neutron star core. The size of
the pinning centre and the range of the pinning interaction are both
larger in the outer core than they are in the inner crust, �∗ > ξn and
l� > b, respectively. As a consequence, local fluctuations can raise
flow of vortex lines relative to the background steady-state creep
rate ω∞ to ωcr above which vortex discharges occur rather easily
in the neutron star core compared to the inner crust. We speculate
that fluid instabilities related to r modes or superfluid turbulence
may initiate the largest glitches in the toroidal field region which
is the innermost pinning region inside the neutron star. Due to the
very low vortex velocity vicinity of a flux tube, vortex lines cannot
push flux tubes array enough. Also since there is no perfect pinning
inside neutron stars, vortex lines cannot carry most flux tubes with
them during their motion. In a future paper, we plan to address the
problem of flux tubes’ expulsion coupled to the motion of vortex
lines and spin-down on evolutionary time-scales.
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