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ABSTRACT
Differential privacy has gained attention from the commu-
nity as the mechanism for privacy protection. Significant
effort has focused on its application to data analysis, where
statistical queries are submitted in batch and answers to
these queries are perturbed with noise. The magnitude of
this noise depends on the privacy parameter ε and the sen-
sitivity of the query set. However, computing the sensitivity
is known to be NP-hard.

In this study, we propose a method that approximates the
sensitivity of a query set. Our solution builds a query-region-
intersection graph. We prove that computing the maximum
clique size of this graph is equivalent to bounding the sen-
sitivity from above. Our bounds, to the best of our know-
ledge, are the tightest known in the literature. Our solution
currently supports a limited but expressive subset of SQL
queries (i.e., range queries), and almost all popular aggre-
gate functions directly (except AVERAGE). Experimental
results show the efficiency of our approach: even for large
query sets (e.g., more than 2K queries over 5 attributes), by
utilizing a state-of-the-art solution for the maximum clique
problem, we can approximate sensitivity in under a minute.
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1. INTRODUCTION
Protecting databases against disclosure of private data of

individuals through statistical analysis of the database has
been studied since the early 1980s [1]. On this subject,
known as statistical database security, Dwork has proven
a very interesting conjecture: statistical database security
cannot offer any strict guarantees to individuals like seman-
tic security in cryptography [4]. In a semantically secure
cryptosystem, a cipher-text does not reveal any informa-
tion about the plain-text. The implications of this result
are very discouraging: regardless of the protection mecha-
nism in place, every form of statistical interface to a private
database brings together some risk of disclosure of private
data. More fearsome is the fact that such disclosure might
even harm persons whose record is not part of the database.

Differential privacy is a protection mechanism that was
designed with this result in mind. Consider an individual,
say Alice, who is trying to decide if she should place her
record r into a statistical database D. The two worlds re-
sulting from this decision are as follows: (a) D ← D ∪ {r},
(b) D′ ← D ∪ {r′}, where r′ is the record of someone else.
Differential privacy encourages participation (world (a)) by
minimizing the risks Alice will be taking.
ε-differential privacy [4] offers Alice exactly the following

guarantee: the probability that D and D′ give the same
results to a query set is bounded by eε. In the Laplace
mechanism, this is achieved by adding noise to query re-
sponses. The noise magnitude depends on ε, and the L1
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Figure 1: Work flow of the solution

sensitivity of the query set Q. This value, denoted SL1(Q),
is the largest effect of any single record (such as r of Alice)
on the responses to Q. SL1(Q) is a function of the query set
and does not depend on database D.

One of the main difficulties in differential privacy is to
compute SL1(Q), which requires studying the outcome of
Q on all possible databases D, D′ differing in one record.
Xiao and Tao prove in [24] that computing the sensitivity of
a query set is NP-hard. This, in part, has led to the adop-
tion of alternative approaches such as smooth sensitivity and
sample and aggreagate [19], that either measure sensitivity
locally (e.g., at one point) and then calibrate it to the whole
database, or break the data into sample blocks, run Q on
each block and then privately aggregate the results. How-
ever, it is often difficult to apply such techniques to arbitrary
Q. Another approach is to assume a safe, worst-case upper
bound for SL1(Q) that satisfies differential privacy, but this
often yields higher magnitudes of noise and destroys the util-
ity of the private answers.

In this paper, we attempt to alleviate the difficulty of
computing the sensitivity of a query set. We bound SL1(Q)
from above for statistical range queries in SQL and present
algorithms that realize these bounds to compute an approx-
imation of SL1(Q). Although there has been some work in
calculating sensitivity for the likes of relational algebra [20],
SQL is still by far the most popular query language in to-
day’s RDBMSs. Therefore, calculating SL1(Q) for queries
written in SQL is of great interest. Our solution is based on
determining the ranges of statistical SQL queries, and us-
ing these ranges to convert Q to a graph. We then employ
well-studied graph algorithms to approximate SL1(Q).

The intended work flow of our solution is depicted in
Fig. 1. We assume that an analyst (say, Bob) submits his
query set Q to our differential privacy interface. Q will be
parsed, and invalid queries will be left out to build Q′ ⊆ Q.

The interface then approximates SQ′
≥ SL1(Q′) and sub-

mits Q′ to the RDBMS. Based on the privacy budget ε and

the approximate sensitivity SQ′
, the query answers will be

perturbed with Laplace noise drawn from L(0, SQ′
/ε) and

returned to Bob. The interface currently works with statisti-
cal queries satisfying the grammar in Sec. 2.3, and databases
with numeric, categorical or ordinal attributes.

SQ′
is approximated using a graph G(V,E) built from

Q′. Suppose that Q′ consists of the following queries on a
2-dimensional table T :

• Q1: SELECT COUNT(*) FROM T WHERE Age BETWEEN

5 AND 30 AND Height BETWEEN 160 AND 190

• Q2: SELECT COUNT(*) FROM T WHERE Age BETWEEN

15 AND 25 AND Height BETWEEN 130 AND 170

Figure 2: Regions of queries in Q′

Figure 3: Graph mapped from Q′

• Q3: SELECT COUNT(*) FROM T WHERE Age BETWEEN

40 AND 50 AND Height BETWEEN 165 AND 185

• Q4: SELECT SUM(Age) FROM T WHERE Age BETWEEN

35 AND 45 AND Height BETWEEN 110 AND 155

First, we determine the range of each query (i.e., each
query region) in Q′. We plot the regions of Q1-Q4 in Fig. 2.
Using this plot, G(V,E) is obtained as follows: We set V =
Q′, i.e., each query is represented with a vertex in G. Two
vertices are connected if their query regions intersect. The
resulting graph in this case is shown in Fig. 3.

We show, theoretically, that it is possible to find an up-
per bound on SL1(Q′) based solely on G. To the best of
our knowledge, this upper bound improves the best-known
bound in the literature, i.e., it is a tighter version of the
bound presented in [24]. We show that computing this
bound relies on solving the maximum clique problem (MCP)
on G. Even though MCP is NP-hard (with a brute force so-

lution that has O(2|V |) complexity), it is one of the most
heavily studied problems in computer science and there ex-
ist efficient algorithms that give an exact solution. One of
the primary strengths of our approach is the exploitation of
these works.

Contributions of this work can be listed as follows:

• We propose methods to map a given set of statisti-
cal queries into a graph, without requiring additional
knowledge apart from the queries themselves and the
domain of numerical attributes (e.g., age, height).

• We describe a novel solution for approximating the
sensitivity of a query set. We theoretically prove that
finding an upper bound on sensitivity is equivalent to
solving the maximum clique problem on the graph.

• We utilize state-of-the-art libraries for the maximum
clique problem and experimentally show that this up-
per bound can be computed efficiently and easily.

• We provide a proof-of-concept implementation for a re-
stricted but very expressive subset of standard SQL, in
which graph generation and sensitivity calculation can



be done automatically. We expect integrating this im-
plementation into commercial RDBMSs to be straight-
forward, so that analysts can work with the familiar
SQL interface.

The rest of this paper is organized as follows. In Sec. 2.1
and Sec. 2.2, we give a brief introduction to differential pri-
vacy and the maximum clique problem. In Sec. 2.3, we list
the assumptions we make on the database schema and define
the types of queries that can be handled with our approach.
Sec. 3 explains how a query set Q can be modelled as a
graph. We bound the L1 sensitivity SL1(Q) of Q in Sec. 4.
Implementation details and experimental results on the ef-
ficiency of our solution are given in Sec. 5. We review the
related work in Sec. 6 and conclude in Sec. 7.

2. PRELIMINARIES

2.1 Differential Privacy
Differential privacy aims to ensure that the result of an

analysis is not overly dependent on one data record. To
achieve this, it conjectures that there should be a strong
probability that a privacy-preserving interface produces the
same result even if one record in the database was changed.
The definitions below formalize this notion.

Definition 1 (Neighboring databases). Two data-
bases D, D′ are called neighboring databases, if they have the
same schema and cardinality, and differ in only one record.

Definition 2 (ε-Differential privacy). A random-
ized algorithm A is ε-differentially private (ε-DP) if for all
neighboring databases D,D′ and for all possible outcomes of
the algorithm S ⊆ Range(A),

Pr[A(D) ∈ S] ≤ eε × Pr[A(D′) ∈ S]

where the probabilities are over the randomness of A.

In ε-DP, the user poses a set Q of queries with numeric
outputs to a database, which are then answered by adding
independent random noise to the true output of each query.
The noise is calibrated according to the sensitivity of the
query set.

Definition 3 (SL1(Q): L1 Sensitivity of Q). Let
q(D) denote the output of query q on database D. Given a
set of queries Q, the sensitivity of Q, denoted SL1(Q), is:

SL1(Q) = max
D,D′

(
∑
q∈Q

|q(D)− q(D′)|)

where D,D′ are any two neighboring databases.

In the Laplace mechanism [4] random noise is sampled
from the Laplace distribution. Scale of the distribution is
determined by the privacy budget ε and SL1(Q) as defined
below.

Definition 4 (Laplace mechanism). Let Lap(σ) de-
note a random variable sampled from the Laplace distribu-
tion with mean 0 and scale parameter σ. For queries q :
D → R, the algorithm A that answers each q by A(q,D) =
q(D) + Lap(λ) is ε-DP if λ ≥ SL1(Q)/ε.

We refer to λ as the noise magnitude. Based on this defi-
nition, from a privacy point of view, it is fine to overestimate
SL1(Q). This would only cause the noise magnitude to be
higher than it actually could be, but would nevertheless sat-
isfy ε-DP. However, this is not desirable from a utility point
of view, because query outputs would be more noisy than
theoretically necessary.

For example, let Bob have |Q| = 100 count queries. Being
a naive user, Bob decides to play safe and assume that his
query set has sensitivity 100, whereas SL1(Q) is actually 30.
Bob sets λ = 100/ε and ends up getting answers that have
excess noise, which deteriorates the quality of his results.
If he had known that SL1(Q) = 30, he could have set λ =
30/ε and obtained more accurate results using the same ε
as before.

2.2 Maximum Clique Problem
Since our work is based on modelling query sets as graphs,

in this section we give a brief introduction to graph termi-
nology and the clique problem.

Let G(V,E) be an undirected graph with vertex set V
and edge set E ⊆ V × V . A clique C of G is a subset
of V such that every two vertices in C are adjacent, i.e.,
∀u, v ∈ C, (u, v) ∈ E. A maximal clique is a clique to which
no more vertices can be added. In other words, a maximal
clique is not contained by any other clique. A clique is a
maximum clique if its cardinality is the largest among all the
cliques of the graph. A maximum clique is also maximal. A
graph may contain multiple maximum cliques.

Definition 5 (Maximum clique problem). Given a
graph G(V,E), the maximum clique problem is to find a
clique C of G that has the highest cardinality. We denote
the cardinality/size of C, often called the clique number of
G, with MCS(G).

For example, in Fig. 5, {Q2, Q4} is a maximal clique, but
it is not maximum. Clique {Q1, Q2} is neither maximal,
nor maximum. {Q1, Q2, Q3} is a maximum clique, and so
is {Q5, Q6, Q7}. In this graph, MCS(G) = 3.

The maximum clique problem (MCP) has a wide range of
applications, and is among the most studied combinatorial
problems. Even though MCP is NP-complete [10], due to
its practical relevance, there has been significant effort for
finding efficient solutions. We refer the interested reader to
[23] for a recent survey on algorithms for the MCP.

Although some variations of the MCP exist (e.g., listing
all maximum cliques or finding a maximum weight clique
in a weighted graph) our work is mostly concerned with
MCS(G). For this, it suffices to find one maximum clique
and retrieve its size. Hence, the vast literature on solving
the original MCP is directly applicable to our work.

2.3 Statistical Range Queries in SQL
Our sensitivity approximation techniques apply to non-

interactive differential privacy for a restricted schema struc-
ture and a restricted subset of structured query language
(SQL) queries. Details of the types of attributes and queries
that are handled are given below.

We consider a databaseD containing a single d-dimensional
table T with attributes A1, A2, ..., Ad. Domain of attribute
Ai is denoted with Ω(Ai).

There are three requirements on the schema of T :



• For each attribute Ai, the domain Ω(Ai) is finite. Fi-
nite domains allow bounding the effect of a single record
on the output of domain-specific aggregate functions,
such as SUM.

• Attributes are either numeric, categorical or ordinal.
Some attribute types (e.g., binary objects, dates) can
be easily transformed into numeric values. Other at-
tribute types (e.g., strings) cannot be supported, due
to the difficulty in reducing their domain into finite,
well-defined values.

• Domains of numeric attributes are normalized to the
range [0, 1). This requirement removes any domain de-
pendence in sensitivity analysis. It can be achieved
trivially when Ω(Ai) is finite, and min(Ω(Ai)) and
max(Ω(Ai)) are known in advance.

Differential privacy allows only statistical database queries.
We further limit these to queries that select a range in every
dimension written in SQL. Queries of the following form are
supported:

SELECT AGG
FROM T
WHERE pred(A1) AND ... AND pred(Ad)

where AGG is any valid SQL aggregate function but
AVERAGE(Ai), which we suggest be queried explicitly through
a SUM(Ai) followed by a COUNT(*). pred(Ai) is a predicate
on attribute Ai. The following predicates are allowed:

• Ai op x, where x ∈ Ω(Ai) and op ∈ {=, >,<,≥,≤},

• Ai BETWEEN (x, y), where x, y ∈ Ω(Ai),

• pred(Ai) is omitted, i.e., no constraints on the ith

attribute.

Notice that the predicates are chosen such that the con-
dition on Ai expresses an interval1 in Ω(Ai). Since disjunc-
tions (i.e., OR) are disallowed in the selection condition, any
query in the above grammar has a query region that is a
hyper-rectangle2 in the d-dimensional domain of table T .

One can notice that all of the queries in Sec. 1 follow these
conditions. However, the following queries do not:

• Qa: SELECT Age FROM T ...

Qa is not a statistical range query since its SELECT

clause contains an attribute name rather than an ag-
gregate function. An answer to Qa contains raw data,
i.e., actual age values from the database.

• Qb: SELECT COUNT(*) FROM T WHERE Age > 10 AND

Age > 20

Qb is not valid since its WHERE clause contains two pred-
icates on the same attribute, age.

• Qc: SELECT COUNT(*) FROM T

WHERE Height / Age > 20

Qc is not valid since its WHERE clause contains a predi-
cate that is a function of two attributes.

1A point p in Ω(Ai) is the interval [p, p]
2We consider planes and points in d-dimensions to also be
hyper-rectangles since this does not affect the correctness of
our analyses.

q Query
q.where WHERE condition of q

q.where[Ai] Condition of q on attribute Ai

Q or Qs Set of queries
rangeq Range of q

rangeAi
q Range of q on attribute Ai

rangeQs Range-intersection of queries in Qs

SL1(Qs) L1 sensitivity of Qs

G(V,E) or G Graph
MCS(G) Maximum clique size of G

Table 1: Our notation

We believe that the above is a useful subset of SQL. COUNT
queries with rectangular ranges alone are sufficient for many
important data analysis tasks such as training ID3 classi-
fiers, building Naive Bayes models, releasing histograms and
mining frequent patterns. Still, there are several SQL key-
words and operators that we plan to add in the future, e.g.,
the NOT IN and NOT BETWEEN predicates, and the GROUP BY

and HAVING clauses.
We use an SQL parser to check if given queries comply

with the requirements above. Any query that does not fit
into this grammar will be identified by the parser and elim-
inated from the sensitivity analysis. This also applies to
non-statistical queries that try to retrieve raw data from the
database.

3. GRAPH MODELLING OF A QUERY SET
We start with some notation on a single query q, and a

query set Qs. Throughout this section, we assume that both
q and elements of Qs are statistical range queries that fit the
grammar given in Sec. 2.3. The notation that will be used
this section onwards is summarized in Table 1.

Let q be a query that contains a selection condition ex-
pressed in the WHERE clause, denoted by q.where. The pred-
icate on a specific attribute Ai can be fetched through an
index on the attributes, as in q.where[Ai], which is an in-
terval (i.e., a range) on Ω(Ai). This interval is denoted by
rangeAi

q . In d-dimensional space, the range of query q be-
comes a d-dimensional hyper-rectangle, which we denote by
rangeq.

Based on this notation, we make the following definition
of the range-intersection of a set of queries.

Definition 6. Range-intersection of a set of queries. For
a query set Qs such that |Qs| > 1, the range-intersection is
denoted with rangeQs and represents a range that is con-
tained by the ranges of all elements of Qs. That is:

rangeQs = ∩
q∈Qs

rangeq.

Essentially, the range-intersection is the common inter-
section of all queries in Qs. For example, in Fig. 4, if
Qs = {Q1, Q2, Q3}, then rangeQs is the area denoted 3a.
If Qs = {Q1, Q2, Q4}, then rangeQs is empty. If Qs =
{Q5, Q6}, then rangeQs is equal to rangeQ6.

3.1 Graph generation
In Alg. 2, we outline a mapping algorithm that generates

an undirected graph G(V,E) from a set Q of queries. The
graph contains one vertex for each query in Q. Therefore
|Q| = |V |. The edge-set E of the graph G is constructed



Figure 4: Regions of queries in Q

based on a function given in Alg. 1 that determines whether
the query regions of a pair of queries (p, q) intersect or not.

Algorithm 1 Comparing regions of queries p and q

1: function INTERSECTS(Query p, Query q)
2: for Each att. Ai listed in both p.where

and q.where do
3: rangeAi

p ← p.where[Ai]

4: rangeAi
q ← q.where[Ai]

5: if rangeAi
p ∩ rangeAi

q = ∅ then
6: return false
7: return true

Alg. 1 operates on attributes Ai that are referenced in the
where clause of both queries. In other words, both queries
contain a predicate on attribute Ai, i.e., pred(Ai). For
each such attribute, the corresponding ranges are retrieved
in steps 3 and 4. The regions of queries p and q intersect
if and only if they intersect on every attribute Ai of the
table. If p.where conditions on an attribute Ai but q.where
does not, we conclude that q.where[Ai] = (−∞,∞) and the
intersection on dimension Ai is non-empty trivially.

Algorithm 2 Mapping Q to G(V,E)

1: function GEN-GRAPH(Query set Q)
2: V ← ∅
3: for Each query q ∈ Q do
4: V ← V ∪ {q}
5: E ← ∅
6: for Each query p ∈ Q do
7: for Each query q ∈ Q, p 6= q do
8: if INTERSECTS(p, q) then
9: E ← E ∪ {(p, q)}

10: return G(V,E)

The mapping algorithm that generates the actual graph
is given in Alg. 2. Vertices are inserted into V in steps 3-4.
Edges are inserted into E in steps 6-9. For each possible pair
of queries (p, q), a call to Alg. 1 is made. If the query regions
intersect, then in G, vertices p and q will be connected.

At this point we introduce the examples in Fig. 4 and
Fig. 5. Suppose that we have a query set Q = {Q1, ..., Q6}
with the ranges plotted in Fig. 4. rangeQ1 and rangeQ3 in-
tersect in both dimensions (the intersection is the union of

Figure 5: Graph mapped from Q

areas denoted 2a and 3a) and therefore there is an edge be-
tween Q1 and Q3 in Fig. 5. On the other hand, if we study
Q3 and Q4, we observe that rangeheightQ3 and rangeheightQ4 in-

tersect, but rangeageQ3 and rangeageQ4 do not. Hence, rangeQ3∩
rangeQ4 = ∅. Consequently, in Fig. 5, there is no edge be-
tween Q3 and Q4. If we study Q5, Q6 and Q7, we observe
that rangeQ7 ⊆ rangeQ6 ⊆ rangeQ5, hence they all have a
common intersection, rangeQ7. Therefore in Fig. 5 they are
pairwise connected to one another.

Complexity of Alg. 1 is O(d), where d is the dimensionality
of the table. Alg. 2 calls this function for each pair of queries.
Consequently, the overall complexity of generating G from
Q is O(d× |Q|2).

3.2 Some useful properties of the graph
The graph generated according to Alg. 2 for a query set

Q has some properties that will be useful for bounding the
sensitivitiy of Q in Sec. 4. In this section, we present and
prove these properties.

Before delving into a discussion over d-dimensional ranges,
we look at the simpler case of one-dimensional spaces (1D).
In 1D, a range becomes an interval. We denote an interval
with I = [l, h], and say the lower bound of I is l = l(I) and
upper bound of I is h = h(I). Our first theorem is on the
intersection of intervals.

Theorem 1. Let I, J,K be intervals. If these 3 inter-
vals pairwise intersect, then the common intersection of the
triplet should be non-empty. Formally:

I ∩ J 6= ∅, I ∩K 6= ∅, J ∩K 6= ∅ =⇒ I ∩ J ∩K 6= ∅

Proof. Intersection of two intervals I and J is empty in
the following two cases:

1. I is to the left of J : h(I) < l(J) or,

2. J is to the left of I: h(J) < l(I).

Therefore, I ∩ J 6= ∅ implies: l(I) ≤ h(J) ∧ l(J) ≤ h(I).
We first observe that l(I ∩ J) = max(l(I), l(J)). Since

I ∩K 6= ∅, l(I) ≤ h(K). Due to J ∩K 6= ∅, l(J) ≤ h(K).
Consequently, l(I ∩ J) = max(l(I), l(J)) ≤ h(K).

Similarly, h(I ∩ J) = min(h(I), h(J)). Since I ∩ K 6= ∅,
l(K) ≤ h(I). Due to J∩K 6= ∅, l(K) ≤ h(J). Consequently,
h(K) ≤ h(I ∩ J) = min(h(I), h(J)).

Together, l(I ∩ J) ≤ h(K) ∧ l(K) ≤ h(I ∩ J) implies that
(I ∩ J) ∩K 6= ∅ and we are done.

Next, we generalize Th. 1 to sets of intervals.

Theorem 2. Let I = {I1, I2, . . . , In} be a set of n in-
tervals. If these n intervals pairwise intersect, then their
common intersection should be non-empty. Formally:

∀
1≤i,j≤n,i6=j

Ii ∩ Ij 6= ∅ =⇒ ∩
1≤i≤n

Ii 6= ∅



Proof. Consider a triplet (I1, I2, Ij) for j > 2. By Th. 1,
I1 ∩ I2 ∩ Ij 6= ∅ for all j > 2. This means, we can remove
I1 and I2 from the set I and insert I1−2 = I1 ∩ I2. This
operation allows us to reduce I in size: I = {I1−2, I3, ..., In}.

Repeated application of this operation will yield
I = {I1−2−...−(n−1), In}, where I1−2−...−(n−1) is the non-
empty interval ∩

1≤i≤n−1
Ii and the pair of intervals

(I1−2−...n−1, In) intersect. Consequently, ∩
1≤i≤n

Ii 6= ∅.

Having shown these properties for 1-dimensional intervals,
we are now ready to extend them to d-dimensional ranges
and draw conclusions on the graph G.

Theorem 3. For vertex set Qs ⊆ V such that |Qs| > 1,
if Qs is a clique of G, then the range-intersection of the
queries represented by Qs is non-empty. Formally:

Qs ×Qs ⊆ E =⇒ rangeQs 6= ∅

Proof. Consider two vertices p, q of G. If (p, q) ∈ E,
then rangep ∩ rangeq 6= ∅. Intersecting ranges imply inter-
section on every dimension i. Therefore rangeip ∩ rangeiq 6=
∅.

By definition of cliques, all vertices of the clique Qs are
connected. Consequently, for all p, q ∈ Qs and every dimen-
sion i, rangeip ∩ rangeiq 6= ∅. Here, applying Th. 2 yields
that on dimension i, the range-intersection is non-empty:
rangeiQs

6= ∅.
Since rangeiQs

6= ∅ on all dimensions i, we conclude that
rangeQs 6= ∅.

Theorem 4. For a query set Qs such that |Qs| > 1, if
the range-intersection of the queries is non-empty, then Qs

represents a clique of graph G. Formally:

rangeQs 6= ∅ =⇒ Qs ×Qs ⊆ E

Proof. For any p, q ∈ Qs, we have rangeQs ⊆ rangep
and rangeQs ⊆ rangeq. Consequently, rangep ∩ rangeq ⊇
rangeQs 6= ∅. By construction of the graph G in Alg. 2, this
implies that (p, q) ∈ E.

Since Qs ⊆ V and (p, q) ∈ E for any p, q ∈ Qs, Qs is a
clique of graph G by definition.

Together, Th. 3 and Th. 4 indicate the equivalance of the
two problems: finding a clique of the graphG built according
to Alg. 2 and finding a subset of queries in an input query
set whose range-intersection is non-empty.

We go back to Fig. 4 and 5 to illustrate this with ex-
amples. We observe that {Q1, Q2, Q3} and {Q5, Q6, Q7}
are cliques in the graph, and their range-intersections are
3a and 3b respectively (i.e., they have non-empty range-
intersections). Subsets of these cliques are also cliques, e.g.,
{Q1, Q2} constitute a clique, and their range-intersection is
the area (3a ∪ 2b). Furthermore, {Q4, Q5} is a clique with
a range-intersection denoted 2 in Fig. 4. Continuing in this
fashion, one can see that all cliques have a non-empty com-
mon intersection.

4. BOUNDING SENSITIVITY
Differential privacy defines the sensitivity of a query set

over all neighboring databases D and D′, where each differ
from the other in only one record (please see Def. 1 and
Def. 3). Let T be the set of records common to D and D′

and, r and r′ denote the records that are different. Specifi-
cally, T = D ∩D′, r = D −D′ and r′ = D′ −D.

We start our analysis with a critical observation. If the
assumptions given in Sec. 2.3 on attribute domains Ω(Ai)
hold and the queries q fit into the grammar, the effect of
a single record change (i.e., r → r′) on the query q can be
bounded easily.

Theorem 5. For any query q and any neighboring da-
tabases D,D′; under the assumptions of Sec. 2.3, |q(D) −
q(D′)| ≤ 1.

Proof. q may be a COUNT, a SUM or a MIN/MAX query.
Each of these cases is covered independently below.
COUNT queries:

|q(D)− q(D′)| = |q(T ∪ {r})− q(T ∪ {r′})|
= |q(T ) + q({r})− q(T )− q({r′})|
= |q({r})− q({r′})| ≤ 1.

If r ∈ rangeq, q({r}) is 1, otherwise it is 0. The same
holds for r′. Therefore, there are four possible combinations
based on whether r ∈ rangeq and r′ ∈ rangeq. For all these
combinations, it easy to see that |q({r})− q({r′})| is either
0 or 1.
SUM queries:
Similar to above, we have |q(D) − q(D′)| = |q({r}) −

q({r′})| ≤ 1. Notice that Ω(Ai) is normalized to [0, 1).
Consequently, if r ∈ rangeq, q({r}) ∈ [0, 1), 0 otherwise.
The same holds for r′.
MIN/MAX queries:
For this case, we observe that q(.) ∈ [0, 1) due to domain

normalization. Therefore, |q(D)− q(D′)| ≤ 1 holds.

Notice that we have bounded in Th. 5, the summation term
in the sensitivity definition (please see Def. 3). A straight-
forward application of this bound gives a crude upper bound
on SL1(Q).

Theorem 6. For any query set Q, under the assumptions
of Sec. 2.3, SL1(Q) ≤ |Q|.

Proof.

SL1(Q) = max
D,D′

(
∑
q∈Q

|q(D)− q(D′)|

≤ max
D,D′

(
∑
q∈Q

1)

≤ |Q|.

Theorem 7. For any query set Q, under the assumptions
of Sec. 2.3, SL1(Q) ≤ 2 ×MCS(G), where G is the graph
generated according to Alg. 2 and MCS(G) represents the
size of the maximum clique of G.

Proof. Let r = D − D′ and r′ = D′ − D. We partition
queries q in Q into 4 mutually exclusive and collectively ex-
haustive sets based on whether r ∈ rangeq and r′ ∈ rangeq.
These cases are as follows:

• Qr!r′ = {q ∈ Q : r ∈ rangeq ∧ r′ /∈ rangeq}.

• Q!rr′ = {q ∈ Q : r /∈ rangeq ∧ r′ ∈ rangeq}.

• Qrr′ = {q ∈ Q : r ∈ rangeq ∧ r′ ∈ rangeq}.



• Q!r!r′ = {q ∈ Q : r /∈ rangeq ∧ r′ /∈ rangeq}.

If we denote the term |q(D)− q(D′)| with ∆, sensitivity will
be calculated as follows.

SL1(Q) = max
D,D′

(∑
Q

∆

)
(1)

= max
D,D′

∑
Qr!r′

∆ +
∑
Q!rr′

∆ +
∑
Qrr′

∆ +
∑

Q!r!r′

∆

 (2)

= max
D,D′

∑
Qr!r′

∆ +
∑
Q!rr′

∆ +
∑
Qrr′

∆ + 0

 (3)

≤ max
D,D′

∑
Qr!r′

∆ +
∑
Q!rr′

∆ +
∑
Qrr′

∆ +
∑
Qrr′

∆

 (4)

≤ max
D,D′

∑
Qr

∆ +
∑
Qr′

∆

 (5)

≤ max
D,D′

(|Qr|+ |Qr′ |) (6)

≤ max
D,D′

(MCS(G) +MCS(G)) (7)

≤ 2×MCS(G) (8)

Here, Eq. 2 opens up the sum on the 4 exclusive and ex-
haustive cases. Eq. 3 sets one sum to 0. If a query is not
affected by r and r′, then its answer on D and D′ should be
equal (since it depends on only D ∩D′).

In Eq. 4, we introduce another sum to the expression and
obtain an inequality. Eq. 5 merges Qr!r′ (i.e., queries af-
fected by r but not r′) and Qrr′ (i.e., queries affected by
both r and r′) into Qr (i.e., queries affected by r). Simi-
larly, Q!rr′ and Qrr′ are merged into Qr′ .

Th. 5 proves that ∆ ≤ 1. Eq. 6 uses this to simplify
the sum. In Eq. 7, we observe that r ∈ rangeQr and r′ ∈
rangeQr′ . Based on Th. 3, both Qr and Qr′ should be
cliques of G. The largest possible size of Qr or Qr′ is the
maximum-clique-size MCS(G) of G.

Recall that Th. 3 works only for cliques of size 2 or more.
For the sake of completeness, we should also cover the cases
where MCS(G) = 1 (i.e., none of the queries in Q intersect).
These cases are trivial, since r and r′ each affect at most one
(possibly distinct) query and the total effect is bounded by
2 = 2×MCS(G) from above.

Together, Th. 6 and Th. 7 gives the tightest bound avail-
able in the literature on the sensitivity of a query set:
SL1(Q) ≤ min(|Q|, 2×MCS(G)). Using this bound, we give
the following simple algorithm for approximating SL1(Q).

Algorithm 3 Approximating SL1(Q)

1: function APPROX-SENS(Query set Q)
2: G←GEN-GRAPH(Q)
3: MCS ←MCS(G)
4: return min(|Q|, 2×MCS)

Alg. 3 is very simple but expresses the main advantages
of our approach: The graph G encodes all necessary infor-
mation for bounding the sensitivity of the queries in Q. In
addition, by separating the graph generation and MCS(G)

finding steps, we allow the plethora of work on computing
MCS(G) to be directly applicable to approximate SL1(Q).

Next, we discuss the intuition behind our sensitivity bound.
Recall that at the beginning of this section, we presented a
change in one record as r → r′. This can be thought of as
removing r from the database and adding r′ instead. The
effect of this operation is maximized when both r and r′ af-
fect a maximum number of queries. That is, if r and r′ are
in the range-intersection of a large number of queries, then
all those queries will be affected by r → r′. Since cliques are
equivalent to range-intersections, a maximum clique yields
an area of range-intersection that affects the maximum num-
ber of queries.

For the example in Fig. 4 and Fig. 5, the maximum cliques
are C1 = {Q1, Q2, Q3} and C2 = {Q5, Q6, Q7}. Therefore,
if we place r ∈ rangeC1 (i.e., r is in range-intersection of
{Q1, Q2, Q3}, denoted 3a) and r′ ∈ rangeC2 (i.e., r′ is in
range-intersection of {Q4, Q5, Q6}, denoted 3b) the removal
of r will affect three queries and the addition of r′ will affect
three queries. The actual sensitivity in this case is at most
3 + 3 = 6, which we find exactly using Alg. 3 by 2× 3 = 6.
Notice that (r, r′) is symmetric, i.e., if we interchanged r
and r′ we would have obtained the same result. Also notice
that a higher change in the output cannot be obtained, e.g.,
if we placed r in 2b and r′ in 3b, the total change would be
at most 5. The definition of L1 sensitivity is concerned with
the maximum possible change, hence this is not useful.

We finally remark that Alg. 3 is still an upper bound, and
does not necessarily yield the exact sensitivity of a query
set. To illustrate this, we study the example in Fig. 2 and
Fig. 3. In this example, the maximum change is obtained
when r ∈ (rangeQ1 ∩ rangeQ2) and r′ ∈ rangeQ3. The
sensitivity of this query set is 3. However, Alg. 3 would
approximate it as 2 ×MCS(G) = 2 × |{Q1, Q2}| = 4. As
discussed earlier, an over-estimation is not a problem from
a privacy point of view, but undesirable from a utility point
of view.

5. IMPLEMENTATION AND
EXPERIMENTS

5.1 Implementation Details
We implemented a working prototype for estimating the

sensitivity of a query set using Alg. 3. The prototype is
available for use via a simple web interface3. We plan to
extend this prototype in the future and host the full version
on-line as a web interface or convert it to an open source
plug-in for popular commercial RDBMSs via open database
connectivity (ODBC) libraries.

The current prototype was coded almost entirely in
node.js. SQL queries are parsed with the Flora SQL parser4,
and the data is stored in a MySQL database. MCS(G)
is computed by a state-of-the-art maximum clique solver,
MaxCLQ [14][15]. MaxCLQ solver runs on 64-bit Linux
systems. Next, we outline the usage of the prototype, an
overview of which was previously depicted in Fig 1.

Our first step is to obtain a query set from the user.
Queries can be uploaded as a plain-text file or typed manu-
ally through the web interface. We instruct our SQL parser
to validate the syntax of the queries and eliminate any query

3http://sky.sabanciuniv.edu:8000/
4https://github.com/godmodelabs/flora-sql-parser



that is either not syntactically valid, or does not obey the
grammar in Sec. 2.3. In the prototype, the user learns which
queries were thrown out through the noisy responses.

In the second step, we convert the query set to the graph
model discussed in Section 3. The time complexity of this
step is O(d× |Q|2), where d is the dimensionality and |Q| is
the query set size (only valid queries are relevant).

Then we approximate SL1(Q) according to Alg. 3 and
display the result (together with other useful information,
e.g., number of queries that were invalid) to the user.

We also support providing ε-DP answers to valid queries
using the Laplace Mechanism. This step is optional, and
requires a MySQL database connection to be established
(via the web interface) before the queries are posed. The
user also needs to specify the level of privacy, i.e., ε, before
the queries can be answered.

An interesting aspect of the system is that the sensitivity
of a query set can be calculated without database integra-
tion or connection. In this case, the schema of the underlying
database is inferred automatically from the queries. (Here,
we also need to make the implicit assumption that queries
involving numerical attributes (e.g., age) are already nor-
malized to [0,1)). Also, this allows the user to keep his data
private. That is, the data need not be shared with our sys-
tem before sensitivity approximation. We believe that this
is important due to two reasons: (1) The sensitive nature of
the data. The user might not feel safe disclosing his local,
private database to a third-party software. Therefore we al-
low the user to obtain SL1(Q) and use it independently, e.g.,
in his local data analysis task. (2) Technical difficulties. If
the data is distributed, or stored in a remote location, then
it might not be trivial for an everyday user to integrate his
database into our system.

Due to the reasons above, we are not in conflict with those
systems that sit as an additional layer of privacy between
the user and the database (e.g., PINQ[16], GUPT[18]). Our
system can be used for this purpose, too. On the other
hand, it can also be used to complement such systems: after
deciding on a Q, the user obtains SL1(Q) using our system
and then the privacy parameter ε in PINQ is determined
accordingly.

5.2 Experimental Results
One of the main goals of this work is to efficiently ap-

proximate the sensitivity of a query set. Since computing
sensitivity exactly is NP-hard (and, clique finding is also
NP-hard) it is crucial to see that our system achieves these
tasks in reasonable time.

We therefore ran various experiments to quantify the effi-
ciency of our approach. The two most relevant parameters
that affect execution time are dimensionality and query set
size. Dimensionality measures how many predicates exist in
a query’s WHERE clause. Higher dimensionality requires more
time to parse each query, and more time to execute Alg. 1.

A larger query set adversely affects execution time in var-
ious ways. When discovering the edges of graph G, Alg. 2
will call Alg. 1 many more times. A larger query set will
also result in a larger graph, and finding a maximum clique
in a larger graph is expected to take considerably more time
than in a smaller graph.

To experimentally quantify the effects of these two param-
eters, we first wrote a simple query generator. Given a table
with t attributes, the desired average query dimensionality

Figure 6: Execution time vs. varying dimensionality
(query set size = 1000)

Figure 7: Execution time vs. varying query set size
(dimensionality = 5)

d and the query set size s, the query generator randomly
generates s queries that follow the grammar in Sec. 2.3 and
have average dimensionality d. We used t = 15. In the
first set of experiments, we fixed s = 1000 and generated
20 query sets for each d = 1, 2, ..., 10 in increments of 1. In
the second set of experiments, we fixed d = 5 and generated
20 query sets for each s = 100, 200, ..., 2000 in increments of
100.

We measure the execution time of the two steps in Alg. 3
separately. We denote the time spent on parsing queries and
generating the graph by “Parsing and Graph Generation” in
Fig. 6 and Fig. 7. The total execution time of the algorithm,
i.e., from query submission to obtaining the approximate
sensitivity, is denoted by “Total” in the figures.

The results are given in Fig. 6 and Fig. 7. Each experiment
was repeated 10 times for statistical significance. We draw
several conclusions from these results. First, our methods
are efficient. For 2000 queries, our system is able to return an
answer in less than a minute, which we believe is a reasonable
time frame. In more practical and reasonable scenarios (e.g.,
where the user has 400-500 queries with dimensionality 5)
an answer can be returned in under 3 seconds. This is a very
minor overhead for solving an NP-hard problem. This result
is also thanks to MaxCLQ, our maximum clique solver. The
time it takes to find a maximum clique of a graph with less
than 1000 vertices seems to be negligible (see Fig. 7). For



1000 queries, it takes around 2-3 seconds (see the difference
between the two curves in Fig. 6). Solving the maximum
clique problem starts being a significant overhead only after
the query set size reaches 1300. In other cases, query parsing
and graph generation seem to dominate execution time.

In addition, we have stated earlier that the time complex-
ity of query parsing and graph generation is O(d × |Q|2).
This seems to hold in practice. The relationship between
execution time and dimensionality is linear in Fig. 6, as ex-
pected. The relationship between execution time and query
set size seems to be superlinear (possibly quadratic) in Fig. 7,
which is also expected.

6. RELATED WORK
Differential privacy (DP) was introduced by Dwork in [4],

and has gained significant attention ever since. In DP, the
data analyst poses a data analysis task once and uses his pri-
vacy budget ε to obtain noisy, private answers. Our study
focuses on cases where the data analysis task consists of
SQL queries, but in general, more complex analyses and al-
gorithms can also be run (e.g., machine learning, data release
algorithms).

We first discuss the most influential advances in DP. For
queries with real-valued outputs, the Laplace mechanism
was shown to achieve DP [4]. Even though this result was
initially only for count queries, Dwork et al. extended the
Laplace mechanism to functions like sums, linear algebraic
functions and distance measures [6]. Later, for queries with
integer-valued outputs, the geometric mechanism was pro-
posed in [8]. A further improvement is due to McSherry
et al. through the introduction of the exponential mecha-
nism [17]. The exponential mechanism can handle queries
whose responses are members of arbitrary sets, which is
especially useful for mechanism design. In [16], McSherry
proved the composability of multiple DP mechanisms, i.e.,
the sequential and parallel composition properties.

The DP definition was relaxed in many ways to increase
its deployability in practical situations. The most notable
relaxation is (ε, δ)-DP [5], where Def. 2 would instead be
written as: Pr[A(D) ∈ S] ≤ eε × Pr[A(D′) ∈ S] + δ. (ε, 0)-
DP is equivalent to ε-DP. Another relaxation is obtained
by switching from the notion of global sensitivity (where all
possible neighboring databases (D,D′) are considered, as in
our work) to local sensitivity (where only the neighbors of a
fixed DB D are considered) [19].

A fundamental task that has received much effort in DP
is to answer statistical range queries with high utility. A
prominent method is output perturbation. Xiao et al. show
in [24] how new count queries can be answered privately,
using responses to previous queries. Their solution is based
on a histogram approach that partitions the data space into
non-overlapping subspaces. This study also proves that com-
puting SL1(Q) is NP-hard, and provides an upper bound on
SL1(Q).Their result is similar to our bound, however we
would like to emphasize that our query model works also for
MIN, MAX, SUM queries, and the bounds we provide are tighter
than those in [24]. Additionally, even though [24] does not
implement a solution to achieve their bound in practice, we
provide a solution that realizes our bound efficiently.

Objective perturbation is an alternative to output pertur-
bation. In objective perturbation, [3] proposes that the data
analysis task (e.g., the queries) is perturbed, instead of the
queries’ outputs, to satisfy privacy. This is orthogonal to

our approach. Furthermore, efforts have also focused specif-
ically on answering count queries and linear queries. These
efforts do not provide an interface that can directly be in-
tegrated into mainstream RDBMS that support SQL, and
some efforts assume subsets of the query and data models
we present. Among notable works in this domain are the
MWEM [9] and DAWA [11] algorithms, and the matrix [12,
13] and low-rank mechanisms [25].

Also related to our work are practical studies that pro-
pose differentially private systems and languages, which can
be employed for private data analysis. The PINQ system
provides a querying interface built on LINQ of the C# lan-
guage [16]. PINQ is a purely compositional DP interface.
Sensitivity of basic, heavily used operators (such as noisy
count and noisy sum) are hardcoded for sequential composi-
tion. Airavat guarantees differential privacy for MapReduce
computations [22]. GUPT uses a novel approach for manag-
ing sensitivity and the privacy budget ε: It degrades privacy
over time, so that utility can be better preserved [18]. In
comparison, we allow the user to specify the level of privacy
for each query set, and aim to maximize utility for a given
privacy budget that does not change over time. These sys-
tems do not compute SL1(Q), and are not comparable to
our solution. However, they can be used in complementary
fashion. For example, upon learning SL1(Q) using our sys-
tem, the data analyst can set the parameters in PINQ or
GUPT accordingly (e.g., by modifying the privacy budget)
before obtaining noisy answers for queries that are executed
in batch mode. In addition, we refer the reader to [2] for
a survey on using programming language techniques to for-
mally verify that a given system satisfies DP.

Finally, we study the related work on sensitivity calcula-
tion for DP. As mentioned earlier, among the results of [24]
is an upper bound on SL1(Q) for count queries. [20] aims
to calculate the sensitivity of queries written in relational
algebra. They use constraint systems to model the behavior
of relational algebra operators (e.g., selection, projection).
[21] proposes Fuzz, a functional programming language with
a calculus that supports the generation of differentially pri-
vate functions. For functions written in this particular lan-
guage, they show that sensitivity is always well-defined and
bounded. DFuzz [7], the successor of Fuzz, extends the work
to a larger class of queries and functions including those
whose sensitivity depends on runtime information.

7. CONCLUSION
The primary difficulty of applying non-interactive differ-

ential privacy to an analysis task is to compute the sensitiv-
ity of a query set Q. In this study, we work with a restricted
yet very expressive subset of statistical range queries in SQL.
We model Q as a graph whose vertices are the queries in Q.
Edges of the graph indicate that the ranges of the connected
queries intersect. We prove that SL1(Q) is less than or equal
to the minimum of |Q| and 2 ×MCS(G), where MCS(G)
is the maximum clique size of the graph mapped from Q.
These bounds are the tightest available in the literature.
Computing MCS(G) can be done efficiently due to existing
work on the maximum clique problem. Empirical analysis
on complex query sets (e.g., 2K queries over 5 attributes)
show the efficiency of our approach, as the result can be
computed in under a minute.

In future work, we plan to improve our sensitivity bounds
further and also aim for an exact solution. These will likely



require additional constraints on the data and query model.
Another alternative direction, that is more of practical value,
will be strengthening the prototype implementation to sup-
port commercial RDBMSs in a more trivial way - such as
an ODBC connection.
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