
BeamECOC: A Local Search for the Optimization
of the ECOC Matrix

Cemre Zor∗, Berrin Yanikoglu†, Erinc Merdivan†, Terry Windeatt∗, Josef Kittler∗, Ethem Alpaydin‡
∗Centre for Vision, Speech and Signal Processing (CVSSP), University of Surrey, Guildford, United Kingdom, GU2 7XH

{c.zor, t.windeatt, j.kittler} @surrey.ac.uk
†Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul, Turkey, 34956

{berrin, merdivan}@sabanciuniv.edu
‡Department of Computer Engineering, Bogazici University, Bebek, Istanbul, Turkey, 34342

alpaydin@boun.edu.tr

Abstract—Error Correcting Output Coding (ECOC) is a multi-
class classification technique in which multiple binary classifiers
are trained according to a preset code matrix such that each one
learns a separate dichotomy of the classes. While ECOC is one of
the best solutions for multi-class problems, one issue which makes
it suboptimal is that the training of the base classifiers is done
independently of the generation of the code matrix.

In this paper, we propose to modify a given ECOC matrix
to improve its performance by reducing this decoupling. The
proposed algorithm uses beam search to iteratively modify the
original matrix, using validation accuracy as a guide. It does not
involve further training of the classifiers and can be applied to
any ECOC matrix.

We evaluate the accuracy of the proposed algorithm (BeamE-
COC) using 10-fold cross-validation experiments on 6 UCI
datasets, using random code matrices of different sizes, and base
classifiers of different strengths. Compared to the random ECOC
approach, BeamECOC increases the average cross-validation
accuracy in 83.3% of the experimental settings involving all
datasets, and gives better results than the state-of-the-art in 75%
of the scenarios. By employing BeamECOC, it is also possible to
reduce the number of columns of a random matrix down to 13%
and still obtain comparable or even better results at times.

Index Terms—ECOC, Error correcting output codes, ensemble,
learning, beam search

I. INTRODUCTION

In many pattern recognition problems, an ensemble of clas-
sifiers is shown to achieve a higher expected generalization
ability than the individual classifiers (base classifiers) it is
composed of. The classifier combination methods can be as
simple as taking a vote between individual classifiers trained
to solve the given problem, or in more complex ways, where the
individual classifiers are trained to compensate for weaknesses
of previous classifiers. Over the last decade, considerable
research has been conducted on ensembles to investigate dif-
ferent methodologies for their construction and to seek their
theoretical underpinning [1].

Error Correcting Output Coding (ECOC) is an ensemble
classification technique proposed specially for multi-class clas-
sification problems [2]. In ECOC, a number of binary classifiers
are trained such that each one is assigned a separate dichotomy
of the classes, which is defined by a given ECOC matrix. The
phase where the ECOC matrix is constructed is called the
encoding/design stage, and there are various data dependent

and independent approaches for encoding the ECOC matrix,
which will be visited in Section II.

Consider a problem with K classes {c1 . . . cK} and L base
classifiers {h1 . . . hL}, and an encoded ECOC matrix M of size
K × L. In M , a particular element Mijε {+1,−1} indicates
the desired label for class ci to be used in training the base
classifier hj . In Fig. 1, an example ECOC matrix is given for
a 5 class problem to be solved using 6 base classifiers. Here, for
instance, the base classifier h1 is assigned the task of learning
samples from classes c1, c2, c3 as positive instances and c4, c5
as negative. The ith row of M , denoted as Mi, is the codeword
indicating the desired output for class ci.

Fig. 1: A sample code matrix for a 5-class classification
problem with 6 classifiers.

h1 h2 h3 h4 h5 h6

c1 +1 +1 +1 -1 -1 -1
c2 +1 -1 -1 +1 -1 -1
c3 +1 +1 -1 -1 -1 -1
c4 -1 -1 -1 +1 +1 -1
c5 -1 +1 +1 -1 +1 +1

In the decoding/testing stage, a given test sample x is firstly
classified by each base classifier, to obtain the output vector
y = [y1, ..., yL] where yj is the hard or soft output of the
classifier hj for x. Then, for all i, the distance between y and
the codeword Mi of class ci is computed by using a metric
such as the Hamming, Manhattan or Euclidean distance. The
class ck, for which the minimum distance is obtained, is chosen
as the estimated class label, such that

k = argmini=1...K d(y,Mi) (1)

Choosing the closest codeword enables the system to correct
some of the mistakes of the base classifiers, hence providing
some error correction. Specifically, while employing Hamming
Distance (HD), if the minimum HD between any pair of
codewords is d, then up to b(d− 1)/2c single bit errors can be
corrected.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sabanci University Research Database

https://core.ac.uk/display/78366575?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


It should be mentioned here that the ternary ECOC is later
on proposed by Allwein et al in [3] in order to simplify the
task of the dichotomizers. In this encoding, Mij can take values
from {+1, 0−1}, where the zero element is used to indicate the
classes that are to be taken out of the consideration of a base
classifier and not used in its training. During the decoding of
the ternary matrices, there are many distance metrics suggested
for properly handling the zero entries [4]. A straight-forward
decoding methodology would need to ignore the differences in
the zero entries, such that the distance metric d(y,Mi) used in
Eq. 1 becomes

d(y,Mi) =

∑
j=1..L |Mij ||yj −Mij |∑

j=1..L |Mij |
(2)

where the differences in non-zero entries that are summed in
the numerator are normalized by the number of non-zero entries
in Mi. In case the output has the same distance to two separate
code words, normalization gives more weight to the codeword
having a larger number of non-zero entries.

Although there are various ways to design (encode) and test
(decode) ECOC matrices, there has been relatively less interest
in the implementations of efficient update methodologies of
already encoded matrices. The rationale for an update strategy
is rooted in the decoupling of the ECOC matrix design and
base classifier training: Although the sub-problems assigned to
base classifiers are generally significantly simpler compared to
the overall classification problem, it is shown that some of the
base classifiers might still end up with accuracies close to 0%
for some classes in many problems and experimental settings
as analysed in [5].

In this study, we propose a novel problem-independent
update methodology, namely BeamECOC, which increases the
ensemble accuracy by modifying the preset ECOC matrix
so as to better match the trained base classifiers, using a
local iterative search technique by employing a validation set.
Experimental evidence demonstrates that the method improves
classification accuracy in 83.3% of the experimental settings,
and gives better results than the state-of-the-art in 75% of the
time. BeamECOC can also help reduce the size of an ensemble
down to 13% while still providing comparable or, in some
cases, even better results.

The organization of the paper is as follows. After review-
ing previous work carried out in this area in Section II,
the proposed optimization is described in Section III. The
experimental results are given in Section IV, and finally, an
evaluation of the proposed scheme together with suggestions
of future research directions are provided in Section V.

II. PREVIOUS WORK

Inspired by the concept of the ECOC method, many varia-
tions for the encoding and decoding steps have been suggested
in the literature. For the encoding of the ECOC matrix, there
are some commonly used problem-independent techniques such
as one-versus-all, one-versus-one, dense random and sparse
random where the base classifiers are assigned the tasks of
separating one class from the rest, one class from another, or

random dichotomies with few or many zeros, respectively [3].
In addition, there is the computationally expensive alternative
of exhaustive codes, but they do not guarantee the best perfor-
mance.

On the other hand, the idea in data-dependent ECOC designs
is to encode matrices by making use of the input training data
in order to end up with base classifiers which are meaningful
within a given domain. Pujol et al. in [6] have proposed Dis-
criminant ECOC (DECOC), which aims to create superclasses
that maximize the discriminability within a given problem
using mutual information. The superclasses, which are ranked
on a tree structure using floating search, are then embedded
into ECOC. Later on in Subclass Problem-Dependent Design
[7], DECOC has been modified in order to split the original
set of classes into more distinguishable subclasses. A further
extension of DECOC, namely Forest-ECOC has then been
proposed in [8] where the aim is to use multiple trees while
splitting the original set of classes into distinguishable ones.

It is important to mention here that although problem-
dependent coding approaches are successful, it has been the-
oretically and experimentally proven that randomly generated
long or deterministic equidistant code matrices deliver close to
optimum performance when used with strong base classifiers
[9], [10].

As for the decoding of ECOC, there are many strategies used
apart from standard decoding technique based on the Hamming
or Euclidean distance. Standard decoding can be perceived as
the minimization of the distance between a multidimensional
codeword vector and target vertices of the multidimensional
ECOC hypercube. However, if patterns belonging to a class
tend to form up a cluster, then the centroid of this cluster might
be a more suitable target vector for the class of interest than the
already existing ECOC codewords. In other words, each class
can end up re-defining its own representative. This decoding
method is called Centroid of Classes [9]. In Loss-based De-
coding [3], the aim is to find the class label among the set of
possible labels that minimizes the total loss computed using all
base classifier decisions for a given test instance, where the loss
function is dependent on the ‘margin’ of this instance. Finally
in Probabilistic-based Decoding [11], Passerini et al. suggest
making use of class conditional probabilities derived from base
classifiers for decoding. Detailed descriptions of the existing
decoding methodologies have been presented in [12] and [4].
Furthermore in [4], in order to overcome the problems arising
while decoding the zero symbol, novel decoding strategies to
be used with ternary matrices have been proposed.

In addition to the general work aiming to improve the ECOC
approach through better encoding or decoding strategies, there
has been little work done on the update of the ECOC matrix
as a post-processing step to further improve the accuracy. In an
early work aiming addressing the problem of joint optimization
of the base classifier training and the ECOC encoding [13], Al-
paydin and Mayoraz train a multilayer perceptron to update the
ECOC matrix, allowing small modifications from the original.

In ECOC-Optimizing Node Embedding (ECOC-One) pro-
posed in [14], the purpose is to extend any ECOC matrix



by adding a few dichotomizers based on a discriminability
criterion defined on the data domain. Iteratively, new base
classifiers are added to the coding design, by minimizing the
confusion matrix of classes using a validation set. As a result,
the HD between the classes that most overlap is aimed to be
increased, and the generalization performance to be improved.
A further contribution of ECOC-One is the use of a weighting
strategy to define the relevance of the base classifiers.

Later on in [15], Escalera et al. propose to update a one-
versus-one coding matrix in a problem-dependent way, re-
sulting in an increase in the generalization capability of the
system. In this approach, the original code matrix has many
zero entries and their method consists of changing a 0 entry
of a dichotomizer to +1 or -1, if the corresponding class
happens to be correctly classified by this dichotomizer. In a
more recent work, Zhong et al. address the idea of code op-
timization by formulating a framework that takes into account
the misclassification errors of test instances using SVMs as base
classifiers, along with the Hamming distance between different
columns [16]. In this method called JointECOC, it has been
reported that the problem is NP-complete whose exact solution
is computationally intractable and an approximate solution can
be obtained after relaxing some constraints. Finally, Bautista et
al. optimize the ECOC matrix by applying methods which are
genetically inspired, such as mutation and cross-over [17].

The work proposed in this study is based on updating the
preset ECOC matrix using operations of flip (changing +1 bits
to -1 and vice versa) and zero-ing (changing +1/-1 to 0), by
utilizing a local optimization technique. For this purpose, beam
search [18] is employed, as it is a well-known search algorithm
that limits the number of nodes expanded at each level of a
breadth-first search in order to deal with time and space issues
in exponential search problems. The proposed method, namely
BeamECOC, is described in Section III.

III. PROPOSED METHOD

Consider an ECOC matrix M and a set of base classifiers
that are trained according to this code matrix. If one measures
the accuracies of the trained classifiers on a validation set
separately for each class, we obtain what we call the accuracy
matrix, A, which is of the same size as M . To be precise,
Aij is measured as the proportion of the samples in class ci
that are correctly classified by hj according to the target value
specified by Mij . In other words, Mij indicates the target and
Aij indicates the accuracy of classifier hj for class ci. Our
approach has originated from the consideration of what the A
matrix may look like after training; how many of its elements
may have low values corresponding to bad performance, and
what it could tell us about the final solution.

The rationale can be explained using a simple example.
Assume that a classifier hj is fully wrong in classifying a
particular class ci when the target for this class is -1. I.e.
Mij = −1 and Aij = 0. In this situation, changing the Mij

value from -1 to +1 corresponds to matching the code matrix to
the trained classifier hj , as the classifier could not do this during

Algorithm 1 BeamECOC
Input: Code matrix M ; trained base classifiers H; thresholds α,
β; beam width k
Output: Modified code matrix M
Calculate the accuracy matrix A according to M and H;
Beam = {M}; . Start search from with the preset code matrix
while Beam 6= ∅ do . Expand as long as Beam is non-empty

NewNodes = ∅;
for each code matrix m in Beam do

for each possible update location (i, j) do

M ′ ← m; . Create a child node
if Aij < β then . Apply appropriate update

Flip M ′
ij ;

else if β ≤ Aij < α then
Zero M ′

ij ;
end if

∆gain←Accuracy[M ′]−Accuracy[m]; . Measure
improvement on validation set

if gain ≥ 0 then
NewNodes ← NewNodes ∪ M ′; . If gain is

positive, add M ′ to the new level
end if

end for
end for
Beam← the k best code matrices from NewNodes (last level)

end while
Return best code matrix found so far

the actual training. This modification results in changing Aij

to 100% while leaving other entries in A and M unchanged.
It is important to mention here that although the accuracy of

hj for ci increases in the updated scenario, the overall ECOC
classification accuracy may still decrease. This is mainly due
to the potential decrease in Hamming distance between class
ci and some of the remaining classes after the update, which
then brings about a lowered error-correcting capability. In order
to weight the overall effect of a codeword change such as the
one given in this example, we propose an algorithm, namely
BeamECOC, which modifies the code matrix M using beam
search. In each iteration, the accuracy matrix A guides the
search to potential changes, while the overall effects of these
changes are measured on the validation set to select the best
subset that form the beam. Note that the base classifiers remain
unchanged in this process.

We start by creating a search tree with the preset code matrix
M assigned to the root. At each step of the search, a parent
node is expanded to generate child nodes, each of which differs
from the parent in a single entry that corresponds to a low A
value. Specifically, each child node is assigned a new code
matrix, which is obtained by flipping an entry Mij if Aij < β,
or making Mij zero if β ≤ Aij < α. The aim here is to: 1)
Flip the entry if it belongs to a class whose patterns are mostly
misclassified by the associated base classifier 2) Take the entry
out of the consideration of the associated base classifier (make
it zero) if it belongs to a class whose patters mainly lay at
the confusion region. Hence, in BeamECOC, we suggest using
β and α values of ∼0.4 and ∼0.6, respectively. Note that the
number of child nodes derived from a parent node is as many



as the number of entries with corresponding A values less than
α.

Beam search is a constrained form of breadth-first search,
in which at each step of the search, only up to k nodes are
selected for expansion, where k is the beam width. Hence in
BeamECOC, at a given level, the selection of the best k out
of all constructed child nodes is accomplished according to
the validation set accuracy. The selected best k nodes then re-
enter the expansion procedure, and the search continues until no
further improvement is obtained in the validation set accuracy
or the node expansion is complete. Note that if k was unlimited,
beam search would be equal to breadth-first search.

Fig. 2: Illustration of beam search with a beam width of 3.

In Fig. 2, an example beam search is illustrated for k = 3.
The squares in the first level of the tree are the new code
matrices that differ from the original code matrix M in a single
entry. Then, these new code matrices are evaluated for their
performance on the validation set and the top 3 ones that show
the best improvement over M (filled squares in Fig. 2) are
expanded in the next iteration of the search. By considering
the validation accuracy in this process, we expect the method
to take care of the error correction capacity, and therefore carry
out updates without causing any degradation. The pseudo-code
for the algorithm is given Algorithm 1.

Although BeamECOC updating strategy can be applied to
any ECOC framework, in this study we focus on its application
to the random code matrices. It has been mentioned in Section
II that randomly generated long matrices are theoretically and
experimentally proven to give close to optimum performance
when they are used with strong base classifiers [9], [10]. Hence,
by varying the base classifier parameters and/or the number of
columns, it is possible to capture and analyse the effect of
BeamECOC on ensembles of different strength.

IV. EXPERIMENTS

In this section, we experimentally analyze the effect of the
proposed update strategy, BeamECOC, on randomly generated
code matrices of varying lengths (10 or 75 columns) when used
with base classifiers trained as Multilayer Perceptrons (MLPs)
of different strengths. The training is done using the Levenberg-
Marquart algorithm, for different durations varying between 2
and 15 epochs, and using a number of nodes between 2 and 8.

The aim is to show that BeamECOC can boost the gen-
eralization performance of random code matrices, even when
they give close to optimal performance as a result of consisting

# Training #Test #Attributes #Classes
Samples Samples

Dermatology 358 - 34 6
Glass Identif. 214 - 9 6

Satellite Image 4435 2000 36 6
Vehicle 946 - 18 4
Yeast 1484 - 8 10

Optical Digits 3823 1797 64 10

TABLE I: Summary of the UCI MLR datasets used in the
performance evaluation

of high number of columns and having associated strong
base classifiers. Moreover, the updated random matrices are
expected to perform better than the state-of-the-art (SOA)
algorithms in various scenarios, including the cases where they
are trained with weaker classifiers than those of the SOA.

The SOA methods investigated include one-versus-all,
one-versus-one, ECOC-One, DECOC and Forest-ECOC ap-
proaches. For the sake of simplicity, we use simple ternary
HD decoding (See Eq 2), during the decoding of the random
and BeamECOC-updated random matrices. However, Loss-
weighted Decoding (based on a linear loss function) has been
utilized instead of HD in the decoding of SOA, as it has been
shown to reveal better results when used with these algorithms
[4].

BeamECOC is analysed on 6 UCI Machine Learning Repos-
itory datasets [19] summarized in Table I. For the datasets
which include specific test sets, the validation set is built from
within the input training set. As for the sets that do not have
a designated test set, 10-fold cross-validation is used to create
the training and test sets, and a further random split of the
training samples into training and validation sets is carried out.
The size of the validation set has experimentally been evaluated
and is selected to be set as equal to that of the training. All
experiments have been repeated using 10 independent runs and
the results are averaged.

In Fig. 3, a comparison of BeamECOC applied to random
matrices with a high number of columns (75) against the SOA
is shown for weak base classifiers trained with 2 nodes and
2 epochs (a), and for strong classifiers trained with 8 nodes
and 15 epochs (b). The comparison also includes the random
coding before the application of the BeamECOC update. For
each dataset, the best generalization performances obtained are
indicated by bold whereas the second best are underlined.

Analysing both Fig. 3(a) and Fig. 3(b), it can be observed
that BeamECOC achieves the best overall performance in 75%
of the scenarios, and is among the top two most successful
algorithms 82% of the time. Moreover, the application of
BeamECOC over random coding matrices degrades the perfor-
mance only in 1 out of 12 settings, and improves it in 83.3%
of the cases.

At this point, it has to be borne in mind that the higher
the number of columns of a random matrix is and/or the
stronger its base classifiers get, the better its corresponding
generalization performance becomes. This fact shows its effect
as a reduction in the relative accuracy gain between the updated



approach and random coding when the results in Fig. 3(b) are
compared to those in Fig. 3(a). This may further be confirmed
by looking at a detailed comparison of the BeamECOC with
random coding on two example datasets given in Fig. 4 for
2 nodes (a) and 8 nodes (b), and for a varying number of
columns and epochs. Here, the best performances are indicated
in bold and the statistically significant differences between the
two methods based on t-test are underlined. Although in 91%
of the scenarios the BeamECOC update shows improvement
over random coding, as the ensemble gets stronger, e.g. for 75
columns and 15 epochs, the relative accuracy gain becomes
less significant as expected. As for the number of the average
flip and zero operations, we see that for weaker ensembles,
e.g. for those trained with 2 nodes / 2 epochs / 10 columns,
the total number of operations can be as high as 16.7%. Noting
that even in stronger ensembles, e.g. in those associated with
8 nodes / 2 epochs / 75 columns, there might be as many
as 13% operations encountered, proves that there is room for
improvement even for these ensembles.

(a) 2 nodes / 2 epochs

(b) 8 nodes / 15 epochs

Fig. 3: Comparison of BeamECOC with state-of-the-art algo-
rithms using weak (a) and strong base classifiers (b). Given in
terms of accuracy (%).

A follow-up question to the above analysis would be “If
long enough random matrices engaging strong enough base
classifiers give close to optimum performance, why would there
be a need for an update strategy?”. It has to be mentioned here
that, although the error rate of a random coding gets close to
optimum exponentially with the increasing number of columns
(and hence a convergence to ‘close to ideal’ performance is
achieved), the number of columns required for an optimum
performance would have to go to infinity [9]. Moreover, to
achieve the optimum performance, base classifiers used in this
ensemble would theoretically need to be the Bayes classifiers.
This means, despite long enough number of columns and
strong enough base classifiers, there will always be room for

(a) 2 nodes

(b) 8 nodes

Fig. 4: Detailed comparison of BeamECOC with random
coding, for 2 nodes (a), 8 nodes (b). Given in terms of accuracy
with std. deviation, and averaged number of flips and zeros (%).

Fig. 5: BeamECOC for 10 column random code matrices, used
with 8 nodes / 15 epochs. Given in terms of accuracy (%).

improvement in the random coding matrix.
Yet another advantage brought about by BeamECOC is the

possibility to employ simpler ensembles to achieve a better
generalization performance than the original random coding.
In Fig. 5, experiments given in Fig. 3 (b) for 8 nodes
and 15 epochs are repeated for random coding matrices of
10 columns (instead of the previously used 75 columns) and
their BeamECOC-updates. Comparing the two settings, the
cases where BeamECOC on 10 column codes achieve results
which are not significantly different from those of the original
coding with 75 columns are underlined. In other words, in 4
out of 6 datasets, it is possible to shrink the training complexity
to 13% by reducing the number of random columns from
75 to 10 followed by a BeamECOC update, and still obtain
significantly indifferent and/or better results. On the other hand,
when compared to the SOA, the cases where the 10 column
updated matrices obtain better results are indicated in bold:
For half of the datasets, it is still possible to achieve better
performances than the SOA even while using shorter random
matrices updated by BeamECOC. Using the same rationale,
these observations further suggest the possible use of weaker
base classifiers with longer matrices to obtain significantly



indifferent/better results compared to those (of the same length)
trained with strong base classifiers. These findings are of im-
portance for systems subject to time and complexity constraints
as well as high generalization performance.

V. SUMMARY

In this paper, we have presented a novel update scheme
applicable to already trained ECOC matrices, and analysed
its use with random coding matrices under different settings
while varying ensemble strength. The findings suggest that the
proposed algorithm improves performance for 83.3% of the
cases, and achieves the best overall generalization capability
compared to the state-of-the-art methodologies in 75% of the
scenarios. In our experiments, up to 16.7% of the code matrix
elements were modified as a result of the update processes. It
has also been shown that the use of the update methodology
brings about a reduction in ensemble complexity without sig-
nificantly degrading performance, which is an important feature
to be employed in systems with time/complexity constraints.

Future work will investigate the update scheme in con-
junction with different coding schemes rather than random,
and analysing the complexity/accuracy trade-off in more com-
prehensive scenarios including real-life datasets. Different de-
coding strategies taking care of the zero symbol are also
to be analysed so as to achieve even better generalization
performances.

ACKNOWLEDGEMENTS

This work was partially carried out as part of EPSRC project
“Signal processing in a networked battlespace” under contract
EP/K014307/1 and the MOD University Defence Research
Collaboration (UDRC) in Signal Processing.

REFERENCES

[1] L. I. Kuncheva, Combining Pattern Classifiers: Methods and Algorithms.
Wiley-Interscience, 2004.

[2] T. G. Dietterich and G. Bakiri, “Solving multiclass learning problems via
error-correcting output codes,” Journal of Artificial Intelligence Research,
vol. 2, pp. 263–286, 1995.

[3] E. L. Allwein, R. E. Schapire, and Y. Singer, “Reducing multiclass to
binary: a unifying approach for margin classifiers,” J. Mach. Learn. Res.,
vol. 1, pp. 113–141, September 2001.

[4] S. Escalera, O. Pujol, and P. Radeva, “On the decoding process in ternary
error-correcting output codes,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 32, pp. 120–134, January 2010.

[5] C. Zor, B. Yanikoglu, T. Windeatt, and E. Alpaydin, “FLIP-ECOC: a
greedy optimization of the ECOC matrix,” in Proceedings of the 25th
International Symposium on Computer and Information Sciences (ISCIS
2010). Springer, 2010, pp. 149 – 154.

[6] O. Pujol, P. Radeva, and J. Vitria, “Discriminant ecoc: A heuristic method
for application dependent design of error correcting output codes,” IEEE
Transactions Pattern Analysis and Machine Intelligence, vol. 28, no. 6,
pp. 1007–1012, 2006.

[7] S. Escalera, D. M. J. Tax, O. Pujol, P. Radeva, and R. P. W. Duin,
“Subclass problem-dependent design for error-correcting output codes,”
IEEE Transactions Pattern Analysis and Machine Intelligence, vol. 30,
no. 6, pp. 1041–1054, 2008.

[8] S. Escalera, O. Pujol, and P. Radeva, “Boosted landmarks of contextual
descriptors and forest-ECOC: A novel framework to detect and classify
objects in cluttered scenes,” Pattern Recognition Letters, vol. 28, no. 13,
pp. 1759–1768, 2007.

[9] G. M. James, “Majority vote classifiers: Theory and applications.” Ph.D.
dissertation, Department of Statistics, University of Standford, 1993.

[10] G. M. James and T. Hastie, “The error coding method and PICT’s,”
Computational and Graphical Statistics, vol. 7, no. 3, pp. 377 – 387,
1998.

[11] A. Passerini, M. Pontil, and P. Frasconi, “New results on error correcting
output codes of kernel machines,” IEEE Transactions on Neural Net-
works, vol. 15, no. 1, pp. 45–54, 2004.

[12] T. Windeatt and R. Ghaderi, “Coding and decoding strategies for multi-
class learning problems,” Information Fusion, vol. 4, no. 1, pp. 11 – 21,
2003.

[13] E. Alpaydin and E. Mayoraz, “Learning error-correcting output codes
from data,” in Proceedings of the 9th International Conference on
Artificial Neural Networks (ICANN 1999)., vol. 2, 1999, pp. 743 –748.

[14] S. Escalera and O. Pujol, “Ecoc-ONE: A novel coding and decoding
strategy,” in International Conference on Pattern Recognition (3), 2006,
pp. 578–581.

[15] S. Escalera, O. Pujol, and P. Radeva, “Recoding error-correcting output
codes,” in Proceedings of the 8th International Workshop on Multiple
Classifier Systems, ser. MCS ’09. Berlin, Heidelberg: Springer-Verlag,
2009, pp. 11–21.

[16] G. Zhong, K. Huang, and C.-L. Liu, “Learning ECOC and dichotomizers
jointly from data,” in ICONIP (1), 2010, pp. 494–502.

[17] M. Á. Bautista, S. Escalera, X. Baró, P. Radeva, J. Vitrià, and O. Pujol,
“Minimal design of error-correcting output codes,” Pattern Recognition
Letters, vol. 33, no. 6, pp. 693–702, 2012.

[18] W. Zhang, State-space search - algorithms, complexity, extensions, and
applications. Springer, 1999.

[19] A. Asuncion and D. J. Newman, “UCI ma-
chine learning repository,” 2007. [Online]. Available:
http://www.ics.uci.edu/∼mlearn/MLRepository.html


