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Abstract A Nash-Cournot model for oligopolistic markets with concave cost
functions and a di↵erentiated commodity is analysed. Equilibrium states are
characterized through Ky Fan inequalities. Relying on the minimization of a
suitable merit function, a general algorithmic scheme for solving them is pro-
vided. Two concrete algorithms are therefore designed that converge under
suitable convexity and monotonicity assumptions. The results of some numer-
ical tests on randomly generated markets are also reported.
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1 Introduction

An oligopoly is a market structure with a small number of competing firms
that produce the same kind of commodity. Since Cournot introduced and anal-
ysed the celebrated duopoly, models for oligopolies have been widely stud-
ied in economics (see, for instance, Bonanno (1990); Fudenberg and Tirole
(1986); von Mouche and Quartieri (2016); Okuguchi and Szidarovszky (1990);
Vives (1989)). The analysis of the competition typically exploits the tools of
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game theory to predict the behaviour of the firms (see, for instance, Friedman
(1977)). In turn, if no cooperation between firms is allowed, game theoretic
models can be formulated as variational problems (Harker, 1984; Murphy et al,
1982) and optimization techniques can be exploited to solve them (see, for in-
stance, Fl̊am and Ben-Israel (1990); Harker (1984); Kolstad and Mathiesen
(1991); Krawczyk and Uryasev (2000); Marcotte (1987); Nagurney (1988);
Salant (1982)).

Generally, these game theoretic models shares two features that seem a
bit restrictive. The costs increase at least linearly with the produced quantity,
while usually the cost per unit does decrease as the production increases. As a
consequence, costs should generally increase less than linearly. The commodity
is supposed to be homogeneous, i.e., all the firms produce the identical product
with even no slight di↵erence, so that a unique unitary price is set for all the
firms (by the market) through an inverse demand function. Commodities of
di↵erent firms, though similar, have their own characteristics and are rarely
identical. Moreover, firms generally try to di↵erentiate their products from
those of their competitors to improve their market share (see, for instance,
Okuguchi and Szidarovszky (1990); Singh and Vives (1984)). As a consequence,
the dynamics of the price should depend also on the considered firm. To the
best of our knowledge, a first attempt to analyse product di↵erentiation with
concave costs can be found in Muu et al (2008) where piecewise linear cost
functions have been considered modeling the market through mixed variational
inequalities.

This paper provides another step in this direction. In Section 2 a Nash-
Cournot model for oligopolistic markets with concave quadratic cost functions
and a di↵erentiated commodity is introduced and formulated as Ky Fan in-
equalities. Section 3 describes a general algorithmic scheme for Ky Fan in-
equalities based on the minimization of a suitable merit function. Moreover,
two concrete descent algorithms based on gap and D-gap functions are pro-
vided and their global convergence is deduced from the general scheme under
suitable convexity and monotonicity assumptions. The uniqueness of the solu-
tion is also investigated. Finally, Section 4 provides numerical tests of the two
algorithms for randomly generated markets. The sensitivity of the algorithms
with respect to their parameters are reported and some market scenarios are
analysed.

2 Di↵erentiated oligopoly models and Ky Fan inequalities

Consider n producers that supply the same kind of commodity to some market
and compete over quantity in a noncooperative way. Each producer i chooses a
quantity x

i

to produce and supply at a cost c
i

(x
i

) for some given cost function
c

i

: R+ ! R. The largest unitary price at which the market requires a quantity
x

i

of the commodity of producer i depends also upon the quantities that the
other producers supply. Since the commodities of the producers may di↵er
in features and/or quality, then this price can be represented by an inverse
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demand function p

i

: Rn

+ ! R that is peculiar of each producer. Therefore,
the goal of producer i is to maximize its profit

f

i

(x1, . . . , xn

) = x

i

p

i

(x1, . . . , xn

)� c

i

(x
i

)

that is a↵ected by the choices of the other producers. An equilibrium state
of the market is reached when the levels of supply are such that no producer
would increase its profit by changing its level while the other firms keep the
same. Mathematically, x⇤ = (x⇤

1, . . . , x
⇤
n

) 2 Rn

+ is an equilibrium state if and
only if x⇤

i

2 [0, T
i

] and
f

i

(x⇤) � f

i

(y
i

, x

⇤
�i

)

hold for all y
i

2 [0, T
i

] and all i = 1, . . . , n, where x

⇤
�i

= (x⇤
j

)
j 6=i

denotes
the levels of supply of all the producers other than i while T

i

> 0 denotes
its maximum capacity of production. It is well-known that a feasible x

⇤ is an
equilibrium state if and only if it solves the following Ky Fan inequalities

f(x⇤
, y) � 0, 8 y 2 [0, T1]⇥ · · ·⇥ [0, T

n

], (1)

where f : Rn

+ ⇥ Rn

+ ! R is the Nikaido-Isoda aggregate bifunction

f(x, y) =
nX

i=1

⇥
f

i

(x)� f

i

(x�i

, y

i

)
⇤
,

which measures the overall losses of the players when switching from level x
i

to y

i

, one at a time while all the others stick to levels x�i

.
In classical models the cost functions c

i

are generally supposed to be a�ne
(or even convex). As already remarked, often this assumption is not realistic
and concave cost functions would sound more adequate. Therefore, in this
paper the cost functions are supposed to be quadratic and concave, i.e.,

c

i

(x
i

) = `

i

x

i

+ q

i

x

2
i

for some `
i

> 0 and q

i

< 0 with `
i

� �2T
i

q

i

so that c
i

is increasing on [0, T
i

].
The inverse demand functions are supposed to decrease linearly with the

total production, i.e.,

p

i

(x1, . . . , xn

) = m

i

� d

i

(x1 + · · ·+ x

n

)

for some m
i

> `

i

and d

i

> �q

i

. Under these assumptions a unitary production
guarantees a positive profit in a monopolistic setting, i.e., when x�i

= 0. If all
the rates d

i

are equal, the e↵ect of the product di↵erentiation does not mean-
ingfully impact the dynamics of prices and moreover the equilibrium states
coincide with the maxima of the sum of all the profit functions (see (Monderer
and Shapley, 1996, Theorem 4.5)) just like in the case no di↵erentiation occurs.
Therefore, the rates d

i

are supposed to be not all equal.
Under all these assumptions the Nikaido-Isoda bifunction reads

f(x, y) = hPx+Qy + r, y � xi (2)



4 Giancarlo Bigi, Mauro Passacantando

for r = (`1 �m1, . . . , `n �m

n

) 2 Rn and the matrices

P =

2

66664

d1 + q1 d1 · · · d1

d2
. . .

. . .
...

...
. . .

. . .
d

n�1

d

n

. . . d

n

d

n

+ q

n

3

77775
, Q =

2

66664

d1 + q1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 d

n

+ q

n

3

77775
.

Notice that the nonzero entries of Q are positive and hence it is a positive
definite matrix. As a consequence, f(x, ·) is a strongly convex function for
any x. On the contrary, f(·, y) may not be concave as the symmetric part
sym(P ) = (P + P

T )/2 of P is not necessarily positive semidefinite, but it is
yet continuous. Furthermore the feasible region is a box, and hence convex
and compact, so that the Ky Fan inequalities (1) admit at least one solution
(see Bigi et al (2013)).

3 A general descent algorithm for Ky Fan inequalities

Consider the Ky Fan inequalities

find x

⇤ 2 C s.t. f(x⇤
, y) � 0, 8 y 2 C, (KFI )

where f : Rn⇥Rn ! R is any continuously di↵erentiable bifunction satisfying
f(x, x) = 0 for all x 2 Rn, and C ✓ Rn is a nonempty, closed and convex set.
Ky Fan inequalities turned into optimization problems through suitable merit
functions. Given a closed set X ✓ Rn,  : Rn ! R is a merit function on X for
(KFI) if it is nonnegative on X and its zeros on X coincide with the solutions
of (KFI), i.e, if it satisfies

–  (x) � 0 for any x 2 X,
– x

⇤ solves (KFI) if and only if x⇤ 2 X and  (x⇤) = 0.

Therefore, (KFI) can be formulated as the global optimization problem

min{ (x) : x 2 X},

where the set X does not necessarily coincide with the feasible set C of the
Ky Fan inequalities. In order to solve it,  is supposed to be continuously
di↵erentiable and to satisfy the following two properties:

(P1) X is convex and the sublevel sets {x 2 X :  (x)  c} are bounded for
any c > 0.

(P2) There exist ⌫ > 0 and continuous functions d : Rn ! Rn and � : Rn ! R
such that any x 2 X not solving (KFI) satisfies x + d(x) 2 X, �(x) > 0
and

hr (x), d(x)i  �⌫�(x).
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Notice that (P2) implies that the global minima and the stationary points
of  over X coincide even though  is not necessarily convex. Therefore,
descent techniques can be exploited to minimize it, or equivalently solve (KFI),
just moving away form the current iterate x

k along the direction d(xk) with a
step provided by a standard linesearch rule.

Descent algorithm

Step 0. Choose x

0 2 X, set ⌘ 2 (0, ⌫), � 2 (0, 1), k = 0.

Step 1. If  (xk) = 0 then stop.

Step 2. Set d

k = d(xk), �k = �(xk) and compute the smallest non-negative
integer s such that

 (xk + �

s

d

k)   (xk)� ⌘�

s

�

k

Step 3. Set t
k

= �

s, xk+1 = x

k + t

k

d

k, k = k + 1 and go to Step 1.

Notice that (P2) guarantees that the linesearch procedure at Step 2 is finite.
Otherwise, the inequality

 (xk + �

s

d

k)�  (xk) > �⌘�s�k

would hold for all s 2 N. Taking the limit as s ! +1 would lead to

hr (xk), dki � �⌘�k

> �⌫�k

in contradiction with (P2) since x

k does not solve (KFI). The convexity of X
guarantees that the sequence {xk} is feasible and the theorem below shows its
convergence properties.

Theorem 1 Suppose there exists a merit function  on X for (KFI) such that

(P1) and (P2) hold. Then, either the descent algorithm stops at a solution to

(KFI) after a finite number of iterations or it produces a bounded sequence

{xk} such that any of its cluster points solves (KFI).

Proof If the algorithm stops at xk after a finite number of iterations at Step
2, then x

k solves (KFI) since  is a merit function.
Now, suppose the algorithm generates an infinite sequence {xk}. Such se-

quence is bounded since the sequence { (xk)} is monotone decreasing and the
sublevel sets of  are bounded. Let x

⇤ be any cluster point of the sequence
and let x̂

` ! x

⇤ for some subsequence {x̂`}, i.e., x̂` = x

k` for some k

`

" +1
as ` " +1. The continuity of d and z guarantees d̂

` = d(x̂`) ! d(x⇤) = d

⇤

and �̂` = �(x̂`) ! �(x⇤) = �

⇤.
By contradiction, suppose x

⇤ does not solve (KFI) and hence �⇤
> 0 by

(P2). Since the sequence { (xk)} is also bounded by below, it has a limit and
thus

lim
`!1

⇥
 (x̂`)�  (x̂`+1)

⇤
= 0
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holds as well. Moreover, the stepsize rule guarantees

 (x̂`)�  (x̂`+1) �  (xk`)�  (xk`+1) � ⌘ t̂

`

�̂

`

> 0

for t̂

`

= t

k` , Therefore, t̂` ! 0 as ` ! +1 since �⇤
> 0. On the other side,

the inequality

 

⇣
x̂

` + t̂

`

�

�1
d̂

`

⌘
�  (x̂`) > � ⌘ (t̂

`

�

�1) �̂`

holds for all ` 2 N by the linesearch procedure, while the mean value theorem
guarantees the existence of some ✓

`

2 (0, 1) such that

 

⇣
x̂

` + t̂

`

�

�1
d̂

`

⌘
�  (x̂`) = hr (x̂` + ✓

`

t̂

`

�

�1
d̂

`), t̂
`

�

�1
d̂

`i.

Hence, the two inequalities together provide

hr (x̂` + ✓

`

t̂

`

�

�1
d̂

`), d̂`i > � ⌘ �̂

`

.

Taking the limit, the inequalities

hr (x⇤), d⇤i � � ⌘ �

⇤
> �⌫�⇤

,

contradict (P2). Therefore, x⇤ solves (KFI). ut

Since the sequence {xk} is bounded, the above convergence theorem yields
the existence of a solution of the Ky Fan inequalities as well.

Corollary 1 If there exists a merit function  on X for (KFI) such that

properties (P1)-(P2) hold, then (KFI) admits at least one solution.

No assumptions other than smoothness are actually made on f in the
above results. Indeed, the tools for the convergence of the algorithm all lie
in the properties (P1) and (P2). Concrete merit functions that satisfy them
are given in the next subsections and suitable convexity and monotonicity
assumptions on f are required.

3.1 Gap functions

A possible measure for the quality of a candidate solution x 2 C of (KFI) is
the gap between zero and minimum value of f(x, y) over all y 2 C. To facilitate
its computation, a regularization term is usually added leading to the value
function

'

↵

(x) := sup{ �(f(x, y) + ↵ ky � xk2/2) : y 2 C } (3)

for some ↵ 2 R (see Bigi and Passacantando (2016)), also known as gap
function. In order to guarantee that '

↵

is a merit function, the parameter ↵
must be related to the modulus of strong convexity of f(x, ·).
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Definition 1 Given ⌧ 2 R, a function g : Rn ! R is called ⌧ -convex on C if
any u, v 2 C and t 2 [0, 1] satisfy

g(t u+ (1� t) v)  t g(u) + (1� t) g(v)� ⌧

2
t (1� t) ku� vk2.

If ⌧ = 0, the above inequality provides the usual definition of convexity. If
⌧ > 0, the inequality is strengthened and g is called strongly convex. Indeed,
g is ⌧ -convex on C if and only if g(x) � ⌧ kxk2/2 is convex on C (see Vial
(1983)). Similarly, g is called ⌧ -concave on C if �g is ⌧ -convex on C.

If the functions f(x, ·) are ⌧ -convex for any x 2 C and ↵+ ⌧ > 0, then the
objective function of the optimization problem in (3) is strongly convex and
its minimum point is unique so that the map

y

↵

(x) = argmin{ �(f(x, y) + ↵ ky � xk2/2) : y 2 C }

is well defined. In order to guarantee good descent properties for '
↵

also some
monotonicity assumptions on f are needed.

Definition 2 f is �-c-monotone on C if any x, y 2 C satisfy

f(x, y) + hr
x

f(x, y), y � xi � �ky � xk2.

If � = 0, the above definition collapse to the concavity type condition intro-
duced in Bigi et al (2009). Indeed, if the functions f(·, y) are 2�-concave for
any y 2 C, then f is �-c-monotone on C. Indeed, the concavity of the function
g(x) = f(x, y) + �kxk2 implies g(y)  g(x) + hrg(x), y � xi that reads

�kyk2  f(x, y) + �kxk2 + hr
x

f(x, y) + 2�x, y � xi

which is equivalent to the inequality in the above definition.
The main properties of '

↵

are given below provided that the above con-
vexity and monotonicity conditions hold for suitable moduli.

Theorem 2 Suppose that there exists ⌧ � 0 such that f(x, ·) is ⌧ -convex for

any x 2 C. Then, the following hold for any ↵ > �⌧ :

a) '

↵

is a merit function on C for (KFI);

b) x

⇤
solves (KFI) if and only if y

↵

(x⇤) = x

⇤
;

c) the map y

↵

is continuous on Rn

;

d) '

↵

is continuously di↵erentiable on C and

r'
↵

(x) = �r
x

f(x, y
↵

(x)) + ↵ (y
↵

(x)� x).

Furthermore, suppose f is �-c-monotone for some � 2 R. Then, the following

hold whenever � + ⌧/2 > 0:

e) If x 2 C does not solve (KFI), then

hr'
↵

(x), y
↵

(x)� xi  � (� + ⌧/2) ky
↵

(x)� xk2 < 0.
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Proof See, for instance, Bigi and Passacantando (2016) for a) and d) and
Konnov (2003) for b) and c).

e) If x 2 C does not solve (KFI), then the monotonicity and convexity as-
sumptions of f imply that the direction y

↵

(x)� x satisfies

hr'
↵

(x), y
↵

(x)� xi = �hr
x

f(x, y
↵

(x)), y
↵

(x)� xi+ ↵ky
↵

(x)� xk2

 f(x, y
↵

(x))� �ky
↵

(x)� xk2 + ↵ky
↵

(x)� xk2

 hr
y

f(x, y
↵

(x)), y
↵

(x)� xi

�(� + ⌧/2)ky
↵

(x)� xk2 + ↵ky
↵

(x)� xk2

 �(� + ⌧/2)ky
↵

(x)� xk2

< 0

where the third inequality follows from the first-order optimality condition
for y

↵

(x). ut

Therefore, '
↵

is a merit function on C for (KFI) whenever ↵ > �⌧ is chosen
and it satisfies (P1) provided that C is bounded and (P2) for ⌫ = � + ⌧/2,
d(x) = y

↵

(x)� x and �(x) = kd(x)k2.
The Nikaido-Isoda aggregate bifunction (2) is ⌧ -convex for ⌧ = 2�min(Q) =

2min{d
i

+ q

i

: i = 1, . . . , n} > 0, that is twice the minimum eigenvalue of Q,
and it is also �-c-monotone for � = �min(sym(P )), that is the minimum eigen-
value of the symmetric part of P (for which no simple formula is available).

3.2 D-gap functions

A class of merit functions on the whole space Rn is given by the di↵erence of
two gap functions, i.e., '

↵�

(x) := '

↵

(x)� '

�

(x) with ↵ < � (see Pappalardo
et al (2016)). Good descent properties for '

↵�

are guaranteed by another kind
of monotonicity assumption.

Definition 3 f is µ-r
xy

-monotone on C if for any x, y, z 2 C

hr
x

f(x, y)�r
x

f(x, z), y � zi � µky � zk2.

If µ > 0, then r
xy

-monotonicity amounts to the strong monotonicity of
r

x

f(x, ·) and it has already been exploited in the framework of D-gap func-
tions in Charitha (2013); Konnov and Pinyagina (2003).

If f is µ-r
xy

-monotone on C and f(x, ·) is convex, then f is µ-c-monotone
on C. Indeed,

f(x, y) + hr
x

f(x, y), y � xi � f(x, y) + hr
x

f(x, x), y � xi+ µky � xk2

= f(x, y)� hr
y

f(x, x), y � xi+ µky � xk2

� µky � xk2,
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where the last inequality is due to the convexity and the equality follows since
f(x, x) = 0 for all x 2 Rn implies the equality of the two partial gradients
above.

The joint exploitation of '
↵

and '
�

would suggest to rely on the direction

r(x) = y

↵

(x)� y

�

(x).

However, r(x) could be zero even when x does not solve (KFI). The gradient
of '

↵�

provides the additional term

s(x) = ↵(x� y

↵

(x))� �(x� y

�

(x))

that is useful together with r(x) to characterize Ky Fan inequalities.
The main properties of '

↵�

are given below provided that the convexity
and monotonicity conditions hold for suitable moduli.

Theorem 3 Suppose that there exists ⌧ � 0 such that f(x, ·) is ⌧ -convex for

any x 2 C. Then, the following hold for any � > ↵ > �⌧ :

a) '

↵�

is a merit function on Rn

for (KFI).

b) x

⇤
solves (KFI) if and only if r(x⇤) = s(x⇤) = 0.

c) '

↵�

is continuously di↵erentiable on Rn

and

r'
↵�

(x) = r
x

f(x, y
�

(x))�r
x

f(x, y
↵

(x))� s(x).

d) If C is bounded, then the sublevel sets {x 2 Rn : '
↵�

(x)  c} are bounded

for all c > 0.

Moreover, suppose f is µ-r
xy

-monotone on Rn

for some µ 2 R and r
x

f(x, ·)
is Lipschitz on Rn

with modulus L > 0 for any x 2 Rn

. Then, the following

hold whenever µ+ ⌧ > 0 and 0 < ⇢  min{1/(µ+ ⌧), (µ+ ⌧)/(µ+ ⌧ + L)2}:

e) If x 2 Rn

does not solve (KFI), then

hr'
↵�

(x), r(x) + ⇢s(x)i  �2�1(µ+ ⌧)(kr(x)k+ ⇢ks(x)k)2 < 0.

Proof

a) By definition '
↵

(x) � '

�

(x) for any x 2 Rn, so that '
↵�

is non-negative
everywhere. If x⇤ solves (KFI), then '

↵

(x⇤) = '

�

(x⇤) = 0 by Theorem 2 a).
Viceversa, if '

↵�

(x⇤) = 0, then

0 = '

↵�

(x⇤) = '

↵

(x⇤)� '

�

(x⇤) � �f(x⇤
, y

�

(x⇤))� ↵ky
�

(x⇤)� xk2/2

+f(x⇤
, y

�

(x⇤)) + �ky
�

(x⇤)� x

⇤k2/2

= (� � ↵)ky
�

(x⇤)� x

⇤k2/2.

implies that x⇤ = y

�

(x⇤), hence x

⇤ solves (KFI) by Theorem 2 b).
b) If x⇤ solves (KFI), then x

⇤ = y

↵

(x⇤) = y

�

(x⇤) by Theorem 2 b) and hence
r(x⇤) = s(x⇤) = 0. Viceversa, if r(x⇤) = 0, then y

↵

(x⇤) = y

�

(x⇤) so that
0 = s(x⇤) = (↵��)(x⇤�y

↵

(x⇤)) implies x⇤ = y

↵

(x⇤), i.e., x⇤ solves (KFI).
c) It is a straightforward consequence of Theorem 2 c).
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d) See Zhang and Han (2009).
e) The first-order optimality conditions guarantee that y

↵

(x) and y

�

(x) satisfy

hr
y

f(x, y
↵

(x)) + ↵(y
↵

(x)� x), y
�

(x)� y

↵

(x)i � 0,

hr
y

f(x, y
�

(x)) + �(y
�

(x)� x), y
↵

(x)� y

�

(x)i � 0,

so that summing up the two inequalities provides

hr
y

f(x, y
�

(x))�r
y

f(x, y
↵

(x)) + s(x), r(x)i � 0.

The convexity of f(x, ·) implies that r
y

f(x, ·) is strongly monotone (see
(Hiriart-Urruty and Lemarchal, 1993, Theorem 6.1.2)), and therefore the
above inequality guarantees also

hs(x), r(x)i � hr
y

f(x, y
↵

(x))�r
y

f(x, y
�

(x)), r(x)i � ⌧kr(x)k2. (4)

Let d = r(x) + ⇢s(x). Therefore, the following chain of equalities and
inequalities holds

hr'
↵�

(x), di = hr
x

f(x, y
�

(x))�r
x

f(x, y
↵

(x)), r(x)i

+⇢hr
x

f(x, y
�

(x))�r
x

f(x, y
↵

(x)), s(x)i

�hs(x), r(x)i � ⇢ks(x)k2

 �µkr(x)k2 + ⇢hr
x

f(x, y
�

(x))�r
x

f(x, y
↵

(x)), s(x)i

�hs(x), r(x)i � ⇢ks(x)k2

 �(µ+ ⌧)kr(x)k2

+⇢hr
x

f(x, y
�

(x))�r
x

f(x, y
↵

(x)), s(x)i � ⇢ks(x)k2

 �(µ+ ⌧)kr(x)k2 + ⇢Lkr(x)kks(x)k � ⇢ks(x)k2

= (µ+ ⌧)(kr(x)k+ ⇢ks(x)k)2/2

�(
p
µ+ ⌧ kr(x)k � p

⇢ ks(x)k)2/2 + [(� + ⌧)⇢� 1]/2

+
p
⇢ [
p
⇢ (µ+ ⌧ + L)�

p
µ+ ⌧ ] kr(x)kks(x)k

 �(kr(x)k+ ⇢ks(x)k)2/2

< 0

where the first inequality is due to the r
xy

-monotonicity of f , the second
to (4), the third to the Lipschitz continuity of r

x

f(x, ·), the fourth to the
assumption on ⇢ and the last to b). ut

Therefore, '
↵�

is a merit function on Rn for (KFI) whenever � > ↵ > �⌧
are chosen and it satisfies (P1) provided that C is bounded and (P2) for
⌫ = (µ+ ⌧)/2, d(x) = r(x) + ⇢s(x) and �(x) = (kr(x)k+ ⇢ks(x)k)2.

The resulting descent algorithm had already been proposed in Charitha
(2013); Konnov and Pinyagina (2003) just for µ > 0 and ⌧ = 0, while it is
enough to require µ+ ⌧ > 0 as shown above.
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The Nikaido-Isoda aggregate bifunction (2) is µ-r
xy

-monotone for µ =
�min(sym(P �Q)), that is the minimum eigenvalue of the symmetric part of
P�Q, while the partial gradient map r

x

f(x, ·) is Lipschitz with L = kP�Qk.

3.3 Uniqueness of the solution

The convexity and monotonicity conditions of the previous subsections yield
also the uniqueness of the solution of the Ky Fan inequalities.

Theorem 4 Suppose there exists ⌧ � 0 such that f(x, ·) is ⌧ -convex for any

x 2 C. Then, there exists a unique solution of (KFI) provided that any of the

following statements holds:

a) f is twice continuously di↵erentiable and �-c-monotone on C for some

� 2 R satisfying � + ⌧/2 > 0;
b) f is µ-r

xy

-monotone on Rn

for some µ 2 R with µ+ ⌧ > 0.

Proof

a) Let ✓ = � + ⌧/2 and consider g(x, y) = f(x, y) + ✓(kxk2 � kyk2)/2. The
following chain of equalities and inequalities

hr
x

g(x, y) +r
y

g(x, y), y � xi =

hr
x

f(x, y) +r
y

f(x, y), y � xi � ✓ky � xk2 =

f(x, y) + hr
x

f(x, y), y � xi � [f(x, y) + hr
y

f(x, y), x� yi]�✓ky � xk2 �

�ky � xk2 � f(x, x) + ⌧ky � xk2/2� ✓ky � xk2 = 0

follows from the �-c-monotonicity of f and the ⌧ -convexity of f(x, ·). As a
consequence, setting y(t) = (1 � t)x + ty for any given pair x, y 2 C, the
function !(t) = hr

x

g(x, y(t)) +r
y

g(x, y(t)), y(t)� xi is non-negative on
[0, 1] and !(0) = 0 so that

0  !

0(0) = hr
xy

f(x, y) +r
yy

f(x, y), y � xi � ✓ky � xk2

= hy � x, JF (x)(y � x)i � ✓ky � xk2

holds for any x, Y 2 C, where JF (x) denotes the Jacobian of the map
F (z) = r

y

f(z, z) at x. Therefore, F is strongly monotone on C and the
variational inequality

find x

⇤ 2 C s.t. hF (x⇤), y � x

⇤i � 0, 8 y 2 C

has a unique solution (see Facchinei and Pang (2003)). Since the above vari-
ational inequality is equivalent to (KFI) (see Castellani and Giuli (2010);
Konnov (2003)), the thesis follows.
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b) The auxiliary problem principle (see (Bigi and Passacantando, 2016, Corol-
lary 3.3)) guarantees that (KFI) is equivalent to the Ky Fan inequalities
with f�⌧

. Furthermore, f�⌧

is (µ+ ⌧)-r
xy

-monotone as

hr
x

f�⌧

(x, y)�r
x

f�⌧

(x, z), y � zi

= hr
x

f(x, y)�r
x

f(x, z), y � zi+ h(�⌧)(x� y) + ⌧(x� z), y � zi

= hr
x

f(x, y)�r
x

f(x, z), y � zi+ ⌧ky � zk2

� (µ+ ⌧)ky � zk2.
Since µ + ⌧ > 0, f�⌧

is strongly r
xy

-monotone on C. As strong r
xy

-
monotonicity implies strong monotonicity (Bigi and Passacantando, 2015b,
Theorem 3.1), the existence of a unique solution follows (see, for instance,
(Bigi and Passacantando, 2016, Corollary 3.4)). ut

Twice di↵erentiability of f can be dropped from point a) if �-c-monotonicity is
replaced by the 2�-concavity of the functions f(·, y) (Bigi and Passacantando,
2016, Corollary 3.7).

4 Numerical tests

The two algorithms described in the previous section have been implemented in
MATLAB R2015b to compute the equilibria of oligopolistic markets through
the resolution of the Ky Fan inequalities (1) where f is the Nikaido-Isoda
aggregate bifunction (2).

First, some preliminary tests have been run to analyse the impact of the
parameters on the e�ciency of the two algorithms. Afterwards, a few mar-
ket scenarios with di↵erent kinds of producers and di↵erent levels of product
di↵erentiation are analysed in details.

Random instances have been produced using MATLAB generators in such
a way that all the coe�cients and bounds are pseudorandom values drawn
from the uniform distribution over given intervals.

The e�ciency of the algorithms has been evaluated relying just on the
number of iterations. In fact, the computation of the values of the gap ad D-
gap functions '

↵

and '
↵�

, which is generally the heaviest task as it aumounts
to solving optimization problems, can be done by closed-form formulas. Indeed,
the optimization problem in (3) can be decomposed into n one-dimensional
quadratic optimization problems over intervals. In details, the decomposition

'

↵

(x) =
nX

i=1

max
yi2[0,Ti]

h
f

i

(y
i

, x�i

)� ↵(y
i

� x

i

)2/2
i
�

nX

i=1

f

i

(x)

=
nX

i=1

max
yi2[0,Ti]

8
<

:y

i

⇥
m

i

� d

i

(y
i

+
X

j 6=i

x

j

)
⇤
� `

i

y

i

� q

i

y

2
i

� ↵(y
i

� x

i

)2/2

9
=

;

�
nX

i=1

(
x

i

⇥
m

i

� d

i

nX

i=1

x

i

⇤
� `

i

x

i

� q

i

x

2
i

)
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entails

[y
↵

(x)]
i

= min

⇢
T

i

,max

⇢
0,

m

i

� `

i

+ ↵x

i

� d

i

P
j 6=i

x

j

2(d
i

+ q

i

) + ↵

��
, i = 1, . . . , n.

4.1 Preliminary tests

The two concrete descent algorithms with the choices given in Section 3.1 and
3.2 will be briefly referred to as the gap and D-gap algorithm. Instances have
been produced for n = 5 taking the coe�cients m

i

, `
i

and the bounds T

i

in
the ranges [150, 250], [30, 50] and [3, 7], respectively. The coe�cients d

i

have
been drawn from [5, 20] and sorted in increasing order, while the coe�cients
q

i

have been obtained by dividing each d

i

by a pseudorandom number in
[�10,�2.5] and then sorting the outcome in decreasing order. In this way
a smaller decrease rate for prices matches a smaller discount from a linear
growth of costs. Each instance has been validated only if `

i

+ 2q
i

T

i

� 0, so
that cost functions c

i

are increasing on [0, T
i

], and µ+ ⌧ > 5, since the D-gap
algorithm is unlikely to perform well when µ+ ⌧ is close to zero (see Bigi and
Passacantando (2015a)).

Pseudorandom starting points have been taken and the stopping criterion
kxk�y

↵

(xk)k < 10�3 has been used relying on Theorem 2 b), since the values
of gap functions are not scale free. A first set of tests suggested to set ↵ = 1,
� = 0.5 and ⌘ = 0.8⌫ for the gap algorithm while ↵ = 1, � = 100, � = 0.5 and
⌘ = 0.2⌫ for the D-gap algorithm.

Intensive computational tests have been carried out to analyse the sensi-
tivity of the algorithms with respect to di↵erent values of the parameters �, ⌘,
↵ and ⇢ by running the algorithms for 1000 random instances for each choice.
Table 1 reports the sensitivity with respect to � and ⌘: each row gives the
average number of iterations that have been performed. The results suggest
that the choice of these parameters has a weak impact on the performance of
the algorithms.

Table 2 reports the performance of the gap algorithm when di↵erent values
of ↵ are chosen. The results show that a good performance is obtained when
↵ is neither too close to the minimum value �⌧ nor too large.

Finally, the sensitivity of the D-gap algorithm with respect to ⇢ has been
tested. Table 3 suggests that the best performance is obtained when it is equal
to the maximum value ⇢

max

= min{1/(µ+ ⌧), (µ+ ⌧)/(µ+ ⌧ +L)2} that can
be set (see Theorem 3).

As the gap algorithm generally perfoms better than the D-gap algorithm,
the test for the market scenarios have been carried out just exploiting the
former.
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Table 1 Sensitivity of the algorithms with respect to � and ⌘.

� ⌘ gap D-gap
(# iter.) (# iter.)

0.3 0.2 ⌫ 18.77 39.27
0.3 0.4 ⌫ 18.62 39.27
0.3 0.6 ⌫ 18.53 39.27
0.3 0.8 ⌫ 18.47 39.35
0.5 0.2 ⌫ 17.54 37.97
0.5 0.4 ⌫ 17.41 38.00
0.5 0.6 ⌫ 17.33 38.07
0.5 0.8 ⌫ 17.34 38.12
0.7 0.2 ⌫ 25.60 40.28
0.7 0.4 ⌫ 24.35 40.21
0.7 0.6 ⌫ 20.50 39.93
0.7 0.8 ⌫ 19.30 39.86

Table 2 Sensitivity of the gap algorithm with respect to ↵.

↵ gap
(# iter.)

�0.5 ⌧ 23.93
0 17.99
1 17.62
5 22.61
10 22.49

Table 3 Sensitivity of the D-gap algorithm with respect to ⇢.

⇢ D-gap
(# iter.)

0.2 ⇢
max

177.24
0.4 ⇢

max

89.96
0.6 ⇢

max

61.14
0.8 ⇢

max

46.80
⇢
max

38.37

4.2 Market scenarios

A few scenarios have been generated to try and analyse the e↵ect of product
di↵erentiation on oligopolistic markets. The decrease rates d

i

of prices have
been considered as a measure for the di↵erentiation from the average commod-
ity: higher di↵erentiation calls for smaller rates as the price of a commodity
with an high level of di↵erentiation is likely to be less a↵ected by the total
production available on the market.

Scenarios with 5 producers have been considered, supposing that 2 produce
a commodity of high quality while the other 3 produce a commodity of lower
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quality. Notice that here quality is meant merely with respect to the technical
manufacture of the commodity and not to those features that may di↵erenti-
ate it. Quality has been addressed through higher costs and maximum prices
m

i

. Higher costs have been given through both larger coe�cients l

i

and also
smaller maximum percentage discounts |q

i

|T
i

/l

i

from a linear growth. In par-
ticular, the coe�cients l

i

and m

i

have been chosen in the ranges [30, 50] and
[250, 350] with a maximim percentage discount between 5% and 10% for the
“high quality” producers h1 and h2, while in the ranges [15, 25] and [150, 250]
with a maximim percentage discount between 10% and 30% for the “lower
quality” producers l1, l2 and l3.

Scenarios in which both “high” and “lower quality” producers do and don’t
di↵erentiate their commodity much (coe�cients in the ranges [1, 4] and [5, 10])
have been considered with capacity bounds in the ranges [3, 7] for the former
and [5, 11] for the latter. Table 4 reports the average results of 1000 random
instances for each pair of choices, where “work load” denotes the percentage of
the maximum capacity T

i

that is actually produced. The table suggests that
the most beneficial situation for the overall market is when all the produc-
ers highly di↵erentiate their commodity, while the behaviour of one type of
producers does not a↵ect much the profit of the other.

Table 4 Th1, Th2 2 [3, 7], Tl1, Tl2, Tl3 2 [5, 11]

dh dl h1 h2 l1 l2 l3
[5, 10] [1, 4] 6.21 7.68 2.70 3.21 3.62

di↵erentiation [1, 4] [1, 4] 2.33 3.15 2.01 2.69 3.33
[5, 10] [5, 10] 6.66 8.30 6.23 7.49 8.73
[1, 4] [5, 10] 2.95 3.54 6.18 7.31 8.54
[5, 10] [1, 4] 91.60 53.77 99.93 99.48 97.40

work load [1, 4] [1, 4] 100.00 100.00 99.97 99.17 96.48
[5, 10] [5, 10] 99.11 92.36 80.99 46.54 20.47
[1, 4] [5, 10] 100.00 100.00 77.56 48.13 19.36
[5, 10] [1, 4] 14.62 8.47 26.57 25.41 24.94

market share [1, 4] [1, 4] 15.03 14.84 24.02 23.22 22.88
[5, 10] [5, 10] 23.68 22.23 30.27 16.35 7.47
[1, 4] [5, 10] 24.50 23.78 27.98 16.89 6.86
[5, 10] [1, 4] 332.90 133.00 834.97 668.86 549.23

profit [1, 4] [1, 4] 946.24 787.85 946.84 730.77 569.26
[5, 10] [5, 10] 611.70 417.86 398.89 156.39 52.77
[1, 4] [5, 10] 1052.76 959.41 362.31 167.54 48.79

A scenario in which “high quality” producers di↵erentiate their commod-
ity meaningfully and the other don’t but prefer to increase their production
capacities T

i

has been considered as well. Table 5 reports the average results
of 1000 random instances for capacities T

i

in the ranges [3, 7] [5, 11] and [9, 21],
suggesting that the e↵ect of their increase is small and not necessarily positive,
in any case definitely not valuable as product di↵erentation.
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Table 5 Th1, Th2 2 [3, 7], dh1, dh2 2 [1, 4], dl1, dl2, dl3,2 [5, 10].

Tl h1 h2 l1 l2 l3
di↵erentiation 2.90 3.50 6.09 7.19 8.46

[3, 7] 100.00 100.00 96.19 85.06 60.32
work load [5, 11] 100.00 100.00 84.92 62.03 30.94

[9, 21] 100.00 100.00 49.15 23.17 8.11
[3, 7] 13.08 12.87 30.04 25.93 18.08

market share [5, 11] 15.69 15.29 33.75 23.53 11.74
[9, 21] 24.99 24.32 31.04 14.38 5.27
[3, 7] 484.40 451.87 399.07 278.21 148.21

profit [5, 11] 637.29 581.04 446.33 245.28 93.45
[9, 21] 1126.73 1012.60 401.71 144.74 39.92
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