
Università di Pisa

Dipartimento di Informatica

Technical Report

Incremental bundle methods using
upper models

Wim van Ackooij
EDF R&D OSIRIS

7 Boulevard Gaspard Monge, F-91120 Palaiseau Cedex, France, wim.van-ackooij@edf.fr

Antonio Frangioni
Dipartimento di Informatica, Università di Pisa

Largo B.Pontecorvo 3, 56127 Pisa, Italia, frangio@di.unipi.it

August 16, 2016

ADDRESS: Largo B. Pontecorvo 3, 56127 Pisa, Italy. TEL: +39 050 2212700 FAX: +39 050 2212726

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UnipiEprints

https://core.ac.uk/display/78366485?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Incremental bundle methods using upper models

Wim van Ackooij
EDF R&D OSIRIS

7 Boulevard Gaspard Monge, F-91120 Palaiseau Cedex, France, wim.van-ackooij@edf.fr

Antonio Frangioni
Dipartimento di Informatica, Università di Pisa

Largo B.Pontecorvo 3, 56127 Pisa, Italia, frangio@di.unipi.it

August 16, 2016

Abstract

We propose a family of proximal bundle methods for minimizing sum-structured convex nondif-
ferentiable functions which require two slightly uncommon assumptions, that are satisfied in many
relevant applications: Lipschitz continuity of the functions and oracles which also produce upper es-
timates on the function values. In exchange, the methods: i) use upper models of the functions that
allow to estimate function values at points where the oracle has not been called; ii) provide the oracles
with more information about when the function computation can be interrupted, possibly diminish-
ing their cost; iii) allow to skip oracle calls entirely for some of the component functions, not only at
“null steps” but also at “serious steps”; iv) provide explicit and reliable a-posteriori estimates of the
quality of the obtained solutions; v) work with all possible combinations of different assumptions on
the oracles. We also discuss introduction of constraints (or, more generally, of easy components) and
use of (partly) aggregated models.

Keywords: Nonsmooth optimization, bundle methods, incremental approach

1 Introduction

We are concerned with the following minimization problem

min
{
f(x) =

∑
k∈K f

k(x) : x ∈ X
}
, (1)

where K is a finite index set, X ⊆ Rn is closed, convex and “easy” in a sense specified later, and each
component fk : Rn → R of f is convex but possibly nondifferentiable. Customarily, we assume that each
fk is available through an (approximate) oracle, i.e., a procedure which, given x, returns (approximate)
information about the value of f(x) and the first-order behavior of f at x; our specific definition is given
in (2.2). Our development hinges on a somewhat stronger assumption than usual, though:

each fk is globally Lipschitz on X with known Lipschitz constant Lk. (2)

We are especially motivated by the case of a block-structured problem

sup
{ ∑

k∈K c
kuk :

∑
k∈KA

kuk = b , uk ∈ Uk k ∈ K
}
, (3)

where f is the Lagrangian function w.r.t. the “complicating” constraints that link together blocks of
variables that would otherwise be independent, i.e.,

f(x) = xb+
∑
k∈K(fk(x) = ν(1.3kx)) , (4)

with ν(·) denoting the optimal value of an optimization problem, and

sup
{

(ck − xAk)uk : uk ∈ Uk
}
. (1.3kx)

1

For each k ∈ K, any optimal solution uk∗ of (1.3kx) provides the function value fk(x) = (ck − xAk)uk∗
and the subgradient zk = −Akuk∗ ∈ ∂fk(x). For such f , (1.2) is often true, for instance because Uk

is compact and finite bounds −∞ < uk ≤ uk ≤ ūk < ∞ are known for each uk ∈ Uk (very often,
Uk ⊆ {0, 1}nk). Minimizing f solves the Lagrangian dual of (1.3), which has countless applications;
e.g., [4,5,12,16,17,24,27] among the many others. Typically (1.3) is “difficult”, due to either being large-
scale, NP-hard, or both. Hence, computing f is cheaper than solving (1.3), if only because it separates
into |K| smaller subproblems. However it may still be costly, as each (1.3kx) may still be NP-hard, |K|
may be large, or both. Thus, finding ways to reduce the function evaluation cost may be useful. An
attractive strategy is to compute f only approximately to within some error ε, an issue that has seen
substantial interest of late [9–11,13,29,32,33]. In our sum-function context, this may actually mean two
different things: that problems (1.3kx) are approximately solved, or that some of them are not solved at all.
Approaches doing the latter are called incremental. However, in all proposals so far [8, 13, 20], avoiding
the solution of some (1.3kx) is only possible at “bad” iterations where the f -value does not improve
(a.k.a. Null Steps, NS), while “good” iterations (Serious Steps, SS) require that all the fk are computed.
This is basically due to the fact that, in order to prove that any x ∈ X is approximately optimal to some
accuracy ε, one has to compute its function value f(x) with at least the same accuracy [7, Observation
2.7]. Yet, our development will clarify that what is really needed is an upper bound on f(x).

Upper bounds on f(x) are not directly mentioned in the literature, except in the recent [31] for a different
context. They are indirectly used in the fundamental reference [10]; in particular, the controllable lower
oracle there explicitly produces lower estimates only, but it has a known maximum error out of which
worst-case upper estimates can be derived. This is used to define the conservative decrease [10, (5.8)],
which is basically what we will use (cf. (3.4)), except that our upper estimates may be tighter than
the worst-case ones. Hence, the controllable bundle method [10, Algorithm 5.4] and the asymptotically
exact bundle method of [10, §7.1.4] are very close to the methods we analyze here. However, in our
analysis upper estimates take center stage: they are explicitly produced by the oracle, which can at
some iteration produce only them. As a consequence, we don’t require the accuracy to be nonincreasing,
as in [10, Remark 6.8], nor to be exactly zero when the function value is below a given target, as
in [10, §7.1.2] [20]. We also provide the oracle(s) with a full description of the conditions that are needed
from the returned information so that the optimization can proceed: two targets, an upper and a lower
one, and an accuracy. For the Lagrangian case (1.3)/(1.4), this allows to terminate early on the solution
of problems (1.3kx). Having upper estimates available also allows to complement the usual lower model(s
of the individual components fk) of f , that traditionally drive the optimization process, with an upper
model that provides upper estimates of f(x) even if no oracle has ever been called at x. This has already
been done in [1], but only on a small subset of the search space: exploiting (1.2) we extend the upper
model to all of X. This is the fundamental technical idea that allows us to prove convergence without
necessarily requiring that all components have been evaluated at SS.

This work is organized as follows. In §2 we introduce the different ingredients of the algorithm, their
rationale, and key notation. The algorithm is given in §3, where we also discuss the convergence analysis
in details. In §4 we extend the framework to two different classes of oracles that may not be able to
provide information with arbitrary accuracy, and we terminate with conclusions in §5.

2 Ingredients of the algorithm

We start by illustrating the main components that have to be assembled to form a complete algorithm.

2.1 The oracle

The oracle Ok of fk, when called at some fixed x ∈ X, has to provide information about both the
function value fk(x) and the first-order behavior of fk at x. For the latter we require a standard lower
linearization of fk; that is, some lower estimate fk ≤ fk(x) and a vector zk ∈ Rn such that

fk(·) ≥ fk +
〈
zk, · − x

〉
. (5)

In order to control the accuracy of fk (and therefore of zk) we extend the definition of the inexact,

informative, on-demand oracle of [31]: besides x ∈ X, the oracle inputs three parameters −∞ ≤ tark ≤

2

tar
k ≤ ∞ (the lower and upper targets, with tar

k
> −∞ and tark <∞) and 0 ≤ εk ≤ ∞ (the accuracy),

and provides

i) function value information: two values fk and f̄k s.t.

−∞ ≤ fk ≤ fk(x) ≤ f̄k ≤ ∞ and f̄k − fk ≤ εk;

ii) first-order information: if fk > −∞, a zk ∈ Rn s.t. (2.1) holds;

iii) s.t. at least one between f̄k ≤ tar
k

and fk ≥ tark holds.

(6)

It is easy to realize that it is always possible for the oracle to provide a correct answer, possibly at the
cost of computing fk(x) with high accuracy. Our setting is therefore biased towards subproblems (1.3kx)
that can be solved with arbitrary accuracy; however, the extension to more relaxed assumptions will be
provided in §4.

We will denote by Ok(tark, tar
k
, εk, x) a call to the oracle. Three parameters may seem somewhat

redundant, especially as all other approaches in the literature only use one or two. For instance, if both
f̄k ≤ tar

k
and fk ≥ tark, then f̄k − fk ≤ tar

k − tark, and εk might be deemed useless. Setting

tar
k

= ∞, tark = −∞ and εk < ∞ gives a standard εk-approximated oracle: since (2.2.i) holds with
εk <∞, both f̄k and fk must be finite, so (2.2.ii) together with (2.1) gives zk ∈ ∂εkfk(x). Hence,

Lemma 1 Under (1.2),
∥∥zk∥∥ ≤ Lk for each zk produced by (2.2).

Proof. Since zk is produced whenever fk > −∞, zk ∈ ∂εf
k(x) for some finite ε: if f̄k < ∞ then

ε = f̄k − fk < ∞ is known, otherwise use the unknown but finite f(x) in place of f̄k. It is well-

known that
∥∥zk∥∥ ≤ Lk for any zk ∈ ∂εf

k(x): this is immediate to prove by the very definition, or
use [22, Proposition 4.1.2].

However, (2.2) is more flexible than previous definitions of approximate oracles in that it allows εk =∞,
whereby it then requires only one between f̄k and fk to be finite. This is particularly relevant if (1.3kx)

is NP-hard, since then computing fk(x) typically amounts to three different processes:

1. finding a “good enough” feasible solution ūk ∈ Uk, providing both the lower bound fk = ckūk ≤
ν(1.3kx) and the first-order information zk = −Akūk, which requires (arbitrarily complex) heuris-
tics;

2. finding a “good enough” upper bound f̄k ≥ ν(1.3kx), which requires the exact solution of some
appropriate relaxation of the problem (itself possibly an arbitrarily complex process, considering
that the solution of (1.1) for (1.4) is often nothing but the computation of an upper bound on
ν(1.3));

3. if fk and f̄k are not “close enough” (cf. (2.2.i), perform an arbitrary amount of branching and/or
tightening (say, by valid inequalities) to make them so.

When, say, a general-purpose MILP solver is used to solve (1.3kx), these three processes are tightly
integrated; however, they nonetheless remain conceptually distinct. Thus, any such solver typically
produces candidate values fk ≤ ν(1.3kx) ≤ f̄k, and gradually reduces the distance between the two.
Given the three parameters in (2.2) it is easy to stop the solution process (e.g., via appropriate callback

functions) as soon as the required conditions are satisfied. The parameters are not redundant to each

other: while tar
k

and tark set specific targets on ν(1.3kx), but are independent from one another, εk

requires both bounds, but it makes no assumptions on where ν(1.3kx) lies. For εk = ∞, this means that
the computation can be interrupted without having one of the two bounds at all. For instance, if ūk ∈ Uk
is found such that ckūk ≥ tark one can entirely avoid to compute any relaxation, since then f̄k = ∞
is allowed. Symmetrically, if a bound ν(1.3kx) ≤ f̄k ≤ tar

k
is obtained, one can stop without producing

any ūk ∈ Uk, and therefore any zk, since fk = −∞ is allowed. This is more flexible than all approaches
proposed so far in the literature. For instance, [9, 31] for the non-sum case (the former a level method,
the latter for a discrete case) produce upper estimates (the former implicitly, the latter explicitly) but
only have one target, and must always produce zk. The recent [8] for the sum case do not set any target
to the individual oracles, although a global (upper) target is set for f . Our setting therefore has the
potential to reduce the number of iterations in which fk is computed—i.e., (1.3kx) is solved—with high
accuracy.

3

2.2 Lower models

Bundle methods sample the solution space in a sequence {x`} of iterates. Assuming for simplicity that
all components are evaluated at each x`, they therefore have at their disposal the corresponding set of
triples { (x`, z`, f`) } satisfying (2.1) for the whole of f . These are customarily used to construct the
(lower) bundle B = { (zi, αi) } and the corresponding (aggregated) cutting plane model

f̌B(x) = max
{
〈zi, x〉 − αi : i ∈ B

}
, (7)

with the useful shorthand “i ∈ B” for “(zi, αi) ∈ B”. Upon first reading one may assume i = ` and
αi = 〈zi, xi〉 − fi, which, via (2.1), immediately proves that f̌B ≤ f , i.e., f̌B is a lower model of f . In
general the pairs in B may not be directly correlated with the iterates, as we shall see. While f̌B is not
the only possible (lower) model of f [2, 28], our development only uses cutting plane models.

The issue with f̌B is that it requires to compute all components at all iterations, which is precisely
what we would like to be able to avoid. For this it is useful to employ individual lower models for each
component, i.e.,

f̌kB(x) = max
{ 〈

zki , x
〉
− αki : (zki , α

k
i) ∈ Bk

}
≤ fk(x) (8)

depending on individual (lower) bundles Bk = { (zki , α
k
i = 〈zi, xi〉 − fi) }. Whenever possible we will

not distinguish between (2.3) and the disaggregated lower model f̌B(x) =
∑
k∈K f̌

k
B(x) ≤ f(x). Note

that here we are disregarding possible “simple” terms in f , like the linear one in (1.4) associated to the
right-hand-side of the relaxed coupling constraints, or constraints x ∈ X; these will be dealt with in §3.6.

It has to be remarked that the choice between aggregated and disaggregated lower models is by no means
inconsequential. In fact, while using (2.4) is well-known to improve, often substantially, the convergence
speed of the algorithm, it may also come at a significant cost in terms of solution time of the master
problem (cf. §2.4). So, while (2.4) is often preferable (e.g., [19]), there are cases where (2.3) is more
efficient. In the recent [34], for instance, both models are actually used depending on the type of iteration
(NS or SS). While we initially present our approach with the use of disaggregated models, different choices
will be discussed in §3.5.

2.3 Upper models

Our oracle definition allows us to define upper models of fk, which is perhaps the main technical innovation
of our approach. For each k ∈ K we define the upper bundle Pk = { (xi, f̄

k
i) }; upon first reading one may

again assume that i = ` and fk(xi) ≤ f̄ki < ∞ is the oracle output, but again things will be somewhat
more complex. Yet, using the standard shorthand, it is clear that

ḟkP(x) = inf
{ ∑

i∈Pk f̄ki θ
k
i :

∑
i∈Pk xiθ

k
i = x , θk ∈ Θk

}
≥ f(x) (9)

for all x ∈ X, with Θk the unitary simplex in appropriate dimension. The issue with ḟkP is that (2.5) may

admit no solution: ḟkP(x) = ∞ for x /∈ X̄k
P = conv({xi : i ∈ Pk }). Furthermore, since f̄ki � fk(xi)

may happen, there is no guarantee that ḟkP satisfies (1.2) with Lk. Yet, exploiting (1.2) we can improve

ḟkP by defining

f̂kP(x) = min{ ḟkP(w) + Lk‖x− w‖2 : w ∈ X }

= min
{ ∑

i∈Pk f̄ki θ
k
i + Lk‖sk‖2 :

∑
i∈Pk xiθ

k
i + sk = x , θk ∈ Θk

}
. (10)

Clearly, fk(x) ≤ f̂kP(x) < ∞: (1.2) implies that fk(x) ≤ fk(w) + Lk ‖x− w‖2 ≤ ḟkP(w) + Lk ‖x− w‖2
for any x ∈ X and arbitrary w. This kind of regularization has been studied in [21, §XI.3.4]; Proposition

XI.3.4.5 there proves that f̂kP(x) = ḟkP(x) ⇐⇒ ∃zk ∈ ∂ḟkP(x) such that ||zk|| ≤ Lk. As previously

remarked this may not happen, not even for x ∈ int X̄k
P ; thus, f̂kP both extends and (potentially) improves

ḟkP . As (2.6) shows, f̂kP can be computed “cheaply”; thus, the same holds for the global upper model

f̂P(x) =
∑
k∈K f̂

k
P(x) ≥ f(x). Clearly, f̂P <∞ whenever Pk 6= ∅ for all k ∈ K.

Introducing f̂P is instrumental in avoiding the asymmetry that was present in all previous analyses of
incremental bundle approaches: while f̌B < ∞ for all x ∈ X, and therefore producing lower estimates
on f(x) has always been easy, proving that z ∈ ∂εf(x) requires to actually produce an upper bound
f̄ ≥ f(x), i.e., some f̄k ≥ fk(x) for all k ∈ K. This is why all incremental bundle approaches so far have
required computing all the components, at least in selected iterations. As we will see, the availability of

4

f̂kP(x) <∞ will allow us to relax this strong requirement.

2.4 The master problem

The main use of the lower model is to drive the search for the next iterate. In the standard cutting-plane
approach this would be done by minimizing f̌B over X, but this is well-known to suffer from instability
issues. This is why bundle methods try to ensure that the next iterate lies in an appropriate (most
often, implicitly defined) neighborhood of a suitably chosen point x̄ ∈ X, called the stability center. In
particular, proximal bundle methods as those studied here obtain this by solving the stabilized master
problem

x+ = argmin
{
f̌B(x) + 1

2t ||x− x̄ ||
2
2

}
. (11)

The stabilizing term ||x− x̄||22/(2t), governed by the stabilization parameter t > 0, ensures that x+ will be
“near” x̄, thereby limiting the violent oscillations of the iterates typical of the un-stabilized cutting plane
method, and responsible for its slow convergence. Additionally, it ensures that (2.7) is always bounded
from below.

The introduction of the stability center x̄ suggest to translate the lower models (2.4) using x̄ as the origin.
In the context of exact bundle methods, it is customary to also set the origin of the objective axis to
f(x̄), i.e., the reference value against which the decrease of f (and of fB) is measured. In inexact bundle
methods it is necessary to choose a reference value to replace f(x̄); in [10] this is the (lower) level l ≤ f(x̄),
which is used to compute the crucial model decrease [10, (3.8)]. That general choice allows to analyze
convergence of many different inexact bundle variants, among which those with upper oracles that do
not even guarantee (2.1). However, the model decrease using l as the reference can then be compared
with an effective decrease that uses instead an upper estimate f̄ ≥ f(x̄) ≥ l as reference value [10, (5.8)].
Our simpler setting, where upper estimates are always available (thanks to both the oracle providing
them and the upper model) rather suggests to use the same f̄ ≥ f(x̄) as the reference for measuring both
decreases. This boils down to redefining the αi as

αki (x̄, f̄k) = f̄k − [fk
i

+ zki (x̄− xi)] , (12)

called the linearization errors of zki w.r.t. x̄ (and the given upper estimate f̄k). In an exact bundle
approach, where f̄k = fk(x̄), these are uniquely defined once x̄ is set; in our case, instead, they also
depend on the value of f̄k which, as we will see, may change even if x̄ doesn’t. However, convexity of fk,
fk
i
≤ fk(xi) and f̄k ≥ fk(x̄) give

αki (x̄, f̄k) ≥ 0 =⇒ zki ∈ ∂αk
i (x̄,f̄k)f

k(x̄) . (13)

That is, αki (x̄, f̄k) measures the accuracy of zki as first-order information of fk in x̄. This measure is
easily recomputed if the stability center is updated to any other x̃ (with corresponding f̃ ≥ f(x̃)) by the
well-known information transport property

αki (x̃, f̃k) = zki (x̄− x̃) + αki (x̄, f̄k) + (f̃k − f̄k) (≥ 0) . (14)

Since x̄ is usually clear from the context, to alleviate the notation we will whenever possible use just
αki in place of αki (x̄, f̄k). This hides the fact that the αki depends not only on x̄ but also on f̄k, which
can independently vary; thus, in the following we will take specific care to comment on this dependency
whenever necessary. It is also important to remark that, with our definition, the linearization errors
“take into account the gap f̄k − f̌kB(x̄) ≥ 0” between the upper and lower estimate on fk(x̄). Indeed,

plug f̌kB(x̄) ≥ fk
i

+ zki (x̄− xi) into (2.8) to obtain

f̄k − f̌kB(x̄) = min {αki : i ∈ Bk } ≤ αki ∀i ∈ Bk . (15)

Given x̄ and f̄k, the (disaggregated, cf. (2.4)) master problem (2.7) can then be written

min
{ ∑

k∈K v
k + 1

2t ||d||
2 : vk ≥ zki d− αki i ∈ Bk , k ∈ K

}
(16)

and its optimal solution d∗ gives x+ = x̄+d∗, where f is typically evaluated. Note that vk ≥ f̌kB(x+)− f̄k
(cf. (2.8)), and therefore for the optimal value vk∗

v∗ = f̌B(x+)− f̄ =
∑
k∈K

(
vk∗ = f̌kB(x+)− f̄k

)
, (17)

a relationship that will be crucial later on. The usefulness of defining the linearization errors precisely

5

via (2.8) lies in the fact that the dual of (2.12) is

min
{

1
2 t
∥∥∑

k∈K
∑
i∈Bk zki θ

k
i

∥∥2
+
∑
k∈K

∑
i∈Bk αki θ

k
i : θk ∈ Θk , k ∈ K

}
, (18)

where Θk is the unitary simplex of dimension |Bk|. Standard duality theory guarantees that ν(2.12) =
−ν(2.14), and the relationships

d∗ = −tz∗ , v∗ = −t||z∗||2 − α∗ =
∑
k∈K(d∗z

k
∗ − αk∗) =

∑
k∈K v

k
∗ (19)

between the primal and dual optimal solutions, where

zk∗ =
∑
i∈Bk zki θ

k
∗i, αk∗ =

∑
i∈Bk αki θ

k
∗i, z∗ =

∑
k∈K z

k
∗ , α∗ =

∑
k∈K α

k
∗ (20)

“translate in the (z, α)-space” the dual optimal solution θ∗ of (2.14). These relationships are crucial in
the analysis of the method, since their obvious consequence

zk∗ ∈ ∂αk
∗
fk(x̄) k ∈ K =⇒ z∗ ∈ ∂α∗f(x̄) (21)

(cf. (2.9)) formally proves that z∗ = 0 (=⇒ d∗ = 0) and α∗ = 0 imply that 0 ∈ ∂f(x̄), i.e., x̄ is optimal.
In practice one therefore stops when ‖z∗‖ and α∗ are “small”. Hence, whenever one does not stop, v∗ < 0
(cf. (2.15)); in particular it is not “small”, i.e., d∗ is a (significant) descent direction. Note that this is
not true for the individual components, i.e., vk∗ > 0 may happen for some (but not all) k. The predicted
descent (2.13) is crucial in the analysis: its component-wise characterization

f̌kB(x+) = f̄k + d∗z
k
∗ − αk∗ = f̄k + vk∗ (22)

(cf. (2.13) and (2.15)) shows that v∗ also “includes the gap f̄ − f̌B(x̄) ≥ 0”, since (2.11) implies αk∗ ≥
f̄k − f̌kB(x̄), which in turn gives

− v∗ ≥ α∗ =
∑
k∈K α

k
∗ ≥

∑
k∈K

(
f̄k − f̌kB(x̄)

)
= f̄ − f̌B(x̄) . (23)

3 The base algorithm

We now describe a first version of the algorithm, that mimics as closely as possible those for the exact
case, and discuss its convergence.

3.1 Notation

Extending the convergence arguments to our setting requires a few notational contraptions. Since the aim
is to avoid calling all the oracles at x+, we will have to deal with subsets of components. For instance,
S ⊂ K will be the subset of components where the oracle has been called (at least once), producing
fk

+
≤ fk+ = fk(x+) ≤ f̄k+, and Z ⊂ S that for which a subgradient zk has been produced as well. We will

frequently need to restrict sums to subsets of K, e.g., as in

f̄S+ =
∑
k∈S f̄

k
+ , fS

+
=
∑
k∈S f

k

+
, zZ =

∑
k∈Z z

k , αZ =
∑
k∈Z α

k .

We will use “−H” to refer to (sums over) the complement of H, i.e., K \ H; taking “k” to mean “{ k }”,
“−k” then has to be intended as K \ { k }.
Each time we obtain function value estimates from the oracle, we ensure they are consistent with the
currently available models by the obvious

f̄kP(x+) = min{ f̄k+ , f̂kP(x+) } , fkB(x+) = max{ fk
+
, f̌kB(x+) } . (24)

Whenever possible we will avoid to distinguish between f̄kP(x+) and f̄k(x+), using the same notation f̄+

for both, and similarly for lower estimates. We will also short-hand f̂kP(x+) and f̌kB(x+) with f̂k+ and f̌k+,
respectively. Minimal care in the handling of Bk and Pk will ensure that

−∞ < f̌k+ = f̄k + vk∗ ≤ f
k

+
≤ fk+ ≤ f̄k+ ≤ f̂k+ <∞ , (25)

so that (3.1) allows us to always assume f̄k+ <∞ and fk
+
> −∞, even though Ok has not been called yet

(or has produced infinite ones). It is also necessary to estimate the linearization error of zk w.r.t. x̄: the
fact that x+ = x̄+ d∗ gives, using (2.8)

αk = f̄k − fk
+

+ zkd∗ . (26)

6

3.2 Presentation of the algorithm

The pseudo-code of the algorithm is:

0 (input and initializations) Fix the accuracy parameters δ1 ≥ 0, δ2 ≥ 0 and the algorithmic
parameters 0 < m1 < m2 < 1. ` := 1. Choose arbitrarily x̄1 and t1 > 0. For all k ∈ K, call
Ok(−∞,∞, εk, x̄1) with arbitrary 0 ≤ εk < ∞, collect −∞ < fk

1
≤ fk(x̄1) ≤ f̄k1 < ∞ and zk1 .

Bk1 := { (zk1 , α
k
1(x̄1, f̄

k
1)) }. Pk1 := { (x̄1, f̄

k
1) }.

1 (master problem) For each k ∈ K, if (x̄`, f̄
k) ∈ Pk with f̄k > f̄k` then update Pk so that

(x̄`, f̄
k
`) ∈ Pk. Solve (2.12)/(2.14) to produce the optimal solutions d∗,`, v

k
∗,`, θ

k
∗,`, z

k
∗,` and αk∗,` for

all k ∈ K.

2 (stopping condition) if ||z∗,`|| ≤ δ1 and α∗,` ≤ δ2 then stop. else ∆∗,` := ν(2.14) =
t`||z∗,`||2/2 + α∗,` = −ν(2.12) = −v∗,` − ||d∗,`||2/(2t`) (> 0), ε` := m2(−v∗,`) − m1∆∗,` (> 0),

x`+1 := x̄` + d∗,`, f
k

+,`
:= f̌kB(x`+1), f̄k+,` := f̂kP(x`+1) (cf. (2.18)/(2.6)) for all k ∈ K. f̄k`+1 := f̄k` for

all k ∈ K. Define the global upper target

tar` :=
(
f

+,`
= f̌B(x`+1) = f̄` + v∗,`

)
−m2v∗,` (< f̄`). (27)

Select arbitrarily convex combinators βk` ≥ 0 (such that
∑
k∈K β

k
` = 1), ∆k

∗,` := βk` ∆∗,` (≥ 0).
S := Z := S ′ := S ′′ := ∅.

3 (oracle interaction) Select k ∈ −S ′′ arbitrarily.

3.1 (define oracle parameters) Define the upper and lower targets for k

tar
k
` := max

{
(f̄k` + vk∗,`)−m2β

k
` v∗,` , tar` − f̄−k+,`

}
tark` := min

{
(f̄k` + vk∗,`) +m1∆k

∗,` ,

(f̄Z` + vZ∗,`) +m1∆∗,` − fZ\{k}+,`

(28)

if k ∈ −S then εk` :=∞, else if k ∈ −S ′ then εk` := tar
k
` − tark` , else εk` := βk` ε`.

3.2 (oracle call) Call Ok(tark` , tar
k
` , ε

k
` , x`+1), collect fk

+,`
, f̄k+,` and possibly zk` . Update fk

+,`

according to (3.1).

3.3 (upper information management) Add (x`+1, f̄
k
+,`) to Pk` . Compute f̂kP(x̄`) according to

(2.6). ∆f̄k` := f̄k`+1 − f̂kP(x̄`). if ∆f̄k` > 0 then f̄k`+1 := f̂kP(x̄`), α
k
i,` := αki,`(x̄`, f̄

k
`+1) :=

αki,` −∆f̄k` for all i ∈ Bk` , αk∗,` := αk∗,` −∆f̄k` , and α∗,` := α∗,` −∆f̄k` (note that vk∗,`, v∗,` and
∆∗,` and tar` are not updated accordingly).

3.4 (lower information management) if fk
+,`

> −∞ (i.e., zk` has been produced) then Z :=

Z ∪ {k} and add (zk` , α
k
`,`(x̄`, f̄

k
`+1)) to Bk` . Update fk

+,`
according to (3.1).

3.5 (accuracy sets management) S := S ∪ { k }. if f̄k+,` − f
k

+,`
≤ tar

k
` − tark` then S ′ :=

S ′ ∪ { k }. if f̄k+,` − f
k

+,`
≤ βk` ε` then S ′′ := S ′′ ∪ { k }.

4 (NS/SS test) if the condition

f̄+,` ≤ tar` (29)

holds then possibly perform a Serious Step (SS): x̄`+1 := x`+1, f̄k`+1 := f̄k+,` for all k ∈ K and go to
Step 5. if instead the condition

∆fZ :=
∑
k∈Z

(
∆fk := fk

+,`
− (f̄k` + vk∗,`)

)
≥ m1∆∗,`

≡ fZ
+,`
≥ (f̄Z` + vZ∗,`) +m1∆∗,`

(30)

holds then possibly perform a Null Step (NS): x̄`+1 := x̄` and go to Step 5. if neither a SS nor a
NS has been performed then go to Step 3.

5 (bookkeeping) For each k ∈ K construct Pk`+1 and Bk`+1 using Pk` and Bk` appropriately. Select
t`+1 appropriately. ` := `+ 1 and go to Step 1.

7

3.3 Discussion

We now comment on some choices in the algorithm.

1. At Step 0, εk1 < ∞ is arbitrary: Ok have to provide finite but arbitrarily loose upper and lower
estimates, which should be “cheap”. It would be possible to call Ok at a different x̄k1 for each
k ∈ K and arrange Bk1/Pk1 accordingly—(3.1) still gives finite estimates at x̄1—but this would
hardly make sense.

2. The index ` counts major iterations, i.e., solutions to the master problem. Each major iteration
includes one or more minor iterations—loops between Step 3 and Step 4—where different Ok are
called (possible multiple times) on x`+1.

3. If the stopping condition at Step 2 holds, then x̄` is approximately optimal (cf. (2.17)). However,
unlike in exact bundle methods, the fact that the stopping condition does not hold does not imply
d∗,` 6= 0. That is, the algorithm may produce d∗,` = 0 =⇒ x`+1 = x̄`, but α∗,` � 0. This is not an
issue: the master problem correctly selects x̄` as the best estimate of the optimum of f , but the
gap between f̄` and f

`
, which is “comprised” in the αki and therefore in α∗,` (cf. (2.11)/(2.19)), is

too large to stop. As in [7], this means that the function estimates in x`+1 = x̄` will be improved.

4. It is easy to check (cf. (3.5)) that tar
k
` − tark` ≥ m2β

k
` (−v∗,`)−m1∆k

∗,` > 0, as required by (2.2).

Setting m1 ≈ 0 and m2 ≈ 1 should make the oracle cheaper. Also, tar
k
` ≥ tark` ≥ f̌kB(x`+1) =

f̄k` + vk∗,`, as expected: targets below the value of the lower models would not make sense. In view
of the standard analysis of bundle methods, it would have been more natural to set the targets with
vk∗,` rather than using the somewhat “artificial” combinators βk` . This is, however, not possible:

vk∗,` > 0 would then lead to tar
k
` < tark` < f̌kB(x`+1).

5. Besides being necessary for the reason outlined above, the convex combinators βk` also make sense.
The “desired amount of increase m1∆∗,`/decrease (1 −m2)v∗,`”, which are defined for the whole
of f , have to be somehow “subdivided” among the components. Since this is used to make targets
for the oracles, it has to be done a-priori: hence, some sort of “guess” about the individual values
fk(x`+1) is unavoidable. The selection of the βk` may be significant computationally. Intuitively, it
should take into account factors such as “how hard is each component to evaluate” (“easier” ones
might get smaller βk` , as computing them with high accuracy is less demanding), and that some
components may have significantly larger values than others, thereby being more influential on the
overall value of f . A simple formula taking into account the latter factor (but not the former) is

γk` = |vk∗,`|/|f̄k` | , βk` = γk` /
∑
h∈K γ

h
` .

6. Due to (2.2.iii), at least one of the “partial” SS/NS conditions

i) f̄k+,` ≤ tar
k
` , ii) fk

+,`
≥ tark` (31)

must be satisfied for all k ∈ K, whatever the value of εk` . The targets tar
k
` and tark` have been

chosen so that (3.8.i) for all k ∈ K =⇒ (3.6), and similarly (3.8.ii) for all k ∈ K =⇒ (3.7).
Hence, initially calling Ok with εk` = ∞ (k ∈ S) makes sense: if the oracles of all components
satisfy the same relation in (3.8), then either a SS or a NS is done, possibly without having ever
produced a single lower/upper estimate. Actually, this may happen even if S ⊂ K: due to the
use of the upper/lower models, a SS/NS can be performed even (quite) before having computed
all components. However, this may not happen; for instance, some oracle may return an upper
estimate but no lower one, and some may do the converse. Thus, selecting a finite (but possibly
“large”) εk` (k ∈ S ′) may be necessary to force all oracles to provide both estimates. This may be
enough to decide between SS and NS, or not; thus, a “small” εk` (k ∈ S ′′) may ultimately have to
be used to ensure that one among (3.6) and (3.7) holds, even if it comes at a larger oracle cost.
Note that the algorithm checks if Ok actually produce information with higher accuracy than the
required one, and updates the sets accordingly (for instance, k may “go straight from −S to S ′′”).

7. Calling the oracle more than once with the same iterate x`+1 but decreasing εk` (cf. Lemma 3.1 be-
low) also makes computational sense: in many cases the oracle will be able to reoptimize efficiently.
Typically, state-of-the-art optimization solvers allow one to terminate the search for an optimal
solution early by specifying a coarse optimality tolerance, and then resume the computation of

8

a more accurate solution at little or no extra cost by keeping all their internal data structures
updated and just “jumping into the main loop”.

8. The upper information management Step 3.3 is specific of our setting. It concerns the fact that
computing f̄k at x`+1 may, through the upper model, change the upper estimate at the stability
center x̄`: when (x`+1, f̄

k
+,`) is added to Pk` , f̂kP(x̄`) may decrease, which in turn causes the αki to

decrease. It is therefore necessary to distinguish the value of the upper estimate at the beginning
of a major iteration ` (f̄k`) from the one that is dynamically revised during the minor iterations
(f̄k`+1). However, the algorithm does not update v∗,` and ∆∗,`, and therefore the targets, that

also depend on the αki . This is made clear by consistently using f̄k` —which does not vary during
the major iteration—and vk∗,`/v∗,` and ∆∗,`—that are explicitly excluded from the update in Step
3.3—to define all the crucial rules of the algorithm (3.4), (3.5), (3.6), (3.7).

9. Avoiding to update the main algorithmic thresholds during major iterations has somewhat counter-
intuitive consequences that are worth commenting upon: the algorithm may perform “fake” SS
or NS. Indeed, assume that in Step 3.3 one has ∆f̄k` > 0, i.e., f̄k`+1 decreases. The algorithm
may then perform a SS, which means that (3.6) holds. However, if one were to recompute the
target using f̄k`+1 = f̄k` − ∆f̄k` and the corresponding v′∗,` = v∗,` + ∆f̄k` , it may well be that

f̄+,` > (f̄k`+1 + v′∗,`) −m2v
′
∗,` = (f̄` + v∗,`) −m2(v∗,` + ∆f̄k`) = tar

k
` −m2∆f̄k` . In other words,

the “true” decrease due to moving the stability center to x`+1 is smaller than what (3.6) requires.
Yet, this is not really an issue, as f̄k`+1 is indeed “significantly smaller” than f̄k` : that part of the
decrease could have also been obtained by keeping x̄`+1 = x̄` is, in the end, irrelevant. This is tied
to point 3: x`+1 = x̄` is possible, in which case the SS is actually only improving the upper estimate
at x̄`. This may even happen infinitely many times (say, if x̄1 is optimal and zk = 0 throughout):
basically, instead of asking to the Ok exact information from the start, one is continuously asking
them more and more refined one. Analogously, the NS condition (3.7) is designed to ensure that
the newly introduced information zk` “decreases enough the value of ν(2.14)” (cf. Lemma 3.14).
Because α∗,` = α∗,` − ∆f̄k` , ν(2.14) already decreases even if Bk is not changed: however, once
again the desired reduction of ν(2.14) is achieved, and this is enough to ensure convergence.

10. One may add specific checks to speed-up the algorithm if ∆f̄k` > 0 in Step 3.3. For instance,
since α∗,` decreases, one may re-check the stopping condition. Also, one may check if f̄`+1 ≤
f̄` + (1 −m2)v∗,` (cf. Theorem 3.3), and in case immediately perform a “SS/NS”: set x̄`+1 = x̄`
and immediately return to Step 1, but declare this as a SS (which, in particular, means that the
Bk may be entirely cleared, cf. Assumption 3(i)). Similarly, one may check if ∆f̄k` ≥ δ for some
fixed δ > 0: this means that ν(2.14) has decreased by at least δ (cf. Theorem 3.5), which allows to
declare a NS and return to Step 1.

11. Appropriate rules for managing Bk and Pk will be discussed in §3.4 (cf. Assumptions 2 and 3).
These can exploit the well-known (for the lower bundle) aggregation technique: the dual optimal
solutions (2.16) can be used to define the poorman’s lower bundles

Bk∗ = { (zk∗ , α
k
∗) } k ∈ K , (32)

so that f̌kB∗(d∗) = f̌kB(d∗) = vk∗ (cf. Lemma 3.14). The same technique also applies to Pk: the

optimal solution (θk∗ , s
k
∗) to (2.6) for x̄` immediately provides the aggregated primal pair and the

corresponding poorman’s upper bundles

Pk∗ =
{

(xk∗ , f
k
∗) =

(∑
i∈Pk xiθ

k
∗,i + sk∗ ,

∑
i∈Pk f̄ki θ

k
∗,i + Lk‖sk∗‖2

) }
(33)

so that f̂kP∗(x̄`) = f̂kP(x̄`).

3.4 Convergence analysis

The first step is specific to our development, and concerns the fact that a SS or a NS must occur after
finitely many minor iterations.

Lemma 2 For any k ∈ K and `, the three values that εk` can assume during the major iteration ` are
nonincreasing. As a consequence, S ′′ ⊆ S ′ ⊆ Z ⊆ S.

Proof. Because ∆∗,` = −v∗,` − ||d∗,`||2/(2t`) ≤ −v∗,` and m1 ≤ m2, one has

0 ≤ βk` (m2(−v∗,`)−m1∆∗,`) = βk` ε` .

9

Now, tar
k
` ≥ (f̄k` + vk∗,`)−m2β

k
` v∗,` and tark` ≤ (f̄k` + vk∗,`) +m1∆k

∗,` (cf. (3.5)) gives

βk` ε` =
(

(f̄k` + vk∗,`)−m2β
k
` v∗,`

)
−
(

(f̄k` + vk∗,`) +m1∆k
∗,`
)
≤ tar

k
` − tark` <∞. (34)

The chain inclusion between the sets is obvious; in particular, for k ∈ S ′ or k ∈ S ′′ to hold a fk
`
> −∞

has to have been produced, which means k ∈ Z as well.

To proceed, a (pretty obvious) assumption is needed. Indeed, while the algorithm is written in such a
way that it is not necessary to perform a SS/NS as soon as (3.6)/(3.7) is satisfied, ultimately a SS/NS
has to be done.

Assumption 1 In Step 4, if S ′′ = K and at least one between (3.6) and (3.7) hold true, then either a
SS or a NS (whatever appropriate) is indeed made.

Lemma 3 (sequence of minor iterations) Under Assumption 1 the algorithm performs at most 3 |K|
minor iterations in any major iteration.

Proof. In view of Assumption 1 we just have to prove that, after at most 3 |K| minor iterations, S ′′ = K
and at least one among (3.6) or (3.7) holds. At each minor iteration one k ∈ K is selected; it is obvious
(cf. Lemma 3.1) that the first time k moves (at worst) into S, the second into S ′ (and therefore Z), the
third into S ′′. Thus, after at most 3 minor iterations with the same k, Step 3.3 necessarily yields

f̄k+,` − f
k

+,`
≤ βk` ε` . (35)

Hence, at length (3.12) holds for all k ∈ S ′′ = Z = K, giving

f̄+,` − f+,`
=
∑
k∈K(f̄k+,` − f

k

+,`
) ≤

∑
k∈K β

k
` ε` = ε` .

If neither (3.6) nor (3.7) holds true, then, using fZ = fK = f , one has

f̄+,` − fZ+,` > tar` − fZ+,` −m1∆∗,` = (f̄` + v∗,`)−m2v∗,` − (f̄Z` + vZ∗,`)−m1∆∗,`

= −m2v∗,` −m1∆∗,` = ε`,

readily yielding a contradiction and thereby concluding the proof.

It may be useful to remark again (cf. §3.3.6) that S ′′ = K is only the “worst case scenario”: it is entirely
possible that a SS/NS be declared if Z = S ′ = ∅, and even if S ⊂ K, i.e., only a (small) subset of the
components have been evaluated.

The analysis now follows well-established guidelines. With δ1 = δ2 = 0, we prove:

1. in an infinite sequence of Serious Steps, ‖z∗,`‖ → 0 and α∗,` → 0, which means that the correspond-
ing sequence { x̄` } is a minimizing one;

2. in an infinite sequence of consecutive Null Steps, ‖z∗,`‖ → 0 and α∗,` → 0, which means that the
(fixed) corresponding stability center x̄ is optimal.

Hence, with δ1 > 0 and δ2 > 0, the algorithm finitely terminates.

We start from the first point: let LSS be the index set of SS, and assume |LSS| = ∞. Rules for “appro-
priate” handling of Pk and t at Step 5 are now required.

Assumption 2 (Upper model management) (i) For all ` and for k ∈ K, let (θk∗,`, s
k
∗,`) be the

optimal solution to (2.6) with x = x̄` having produced the value f̄k` , which has been computed either

in Step 0 or in Step 3.3 (in the latter case, either when computing f̂kP(x` = x̄`), if a SS has been

done at ` − 1, or when computing f̂kP(x̄`−1), if a NS has been done at ` − 1). Then, either all the
(xi, f̄

k
i) ∈ Pk`−1 such that θki,∗,` > 0 also belong to Pk` , or (xk∗ , f

k
∗) of (3.10) belongs to Pk` .

(ii) if |LSS| =∞, then there exists a t̄ > 0 such that t` ≤ t̄ <∞ for all ` ∈ LSS, and
∑
`∈LSS

t` =∞.

Assumption 2(i) is required to ensure that f̄` ≥ f̄`+1 always holds: (3.7) works for a SS, and the
assumption ensures that the optimal solution of (2.6) at iteration ` always remains feasible (albeit, if
(3.10) has been used, in a “surrogate form”) at iteration `+ 1, so that the optimal value cannot increase.

10

As discussed in §3.3.8, f̄` can actually decrease when a NS is performed; however, this just means that
it is a fortiori nonincreasing. Assumption 2(ii) is written in an abstract form, since it is impossible to
know beforehand if |LSS| = ∞; however, it is easy to define mechanisms that ensure that it holds (for
instance, ensure 0 < t ≤ t` ≤ t̄ <∞ for all `).

Theorem 4 (infinite sequence of SS) Under Assumptions 1 and 2, if |LSS| =∞ then limLSS3`→∞ f̄` =
lim infLSS3`→∞ f(x̄`) = ν(1.1). In addition, if (1.1) admits any optimal solution then the sequence { x̄` }
converges to one.

Proof. Assumption 1 ensures that eventually either a SS or a NS is performed. Assumption 2(i)
guarantees that the sequence { f̄` } is nonincreasing, and therefore it has a limit f̄∞. If f̄∞ = −∞, then
ν(1.1) ≤ limLSS3`→∞ f(x̄`) ≤ f̄∞ = −∞, i.e., { x̄` }`∈LSS

is a minimizing sequence (which cannot converge
to an optimal solution to (1.1) since there is none). For the case where f̄∞ > −∞, since (3.6) holds at SS

f̄`+1 ≤ f̄` + (1−m2)v∗,` ≤ f̄` − (1−m2)
(

∆∗,` = t`||z∗,`||2/2 + α∗,`
)

=⇒∑
`∈LSS

(
t`||z∗,`||2/2 + α∗,`

)
<∞ =⇒ t` ‖z∗,`‖2 → 0 and α∗,` → 0. (36)

Using (3.13) together with (2.19) and the fact that f̄`−f(x̄`) ≥ f̄`−f̌B(x̄`) gives limLSS3`→∞ f̄`−f(x̄`) = 0:
asymptotically, the upper estimate becomes tight. Hence, limLSS3`→∞ f̄` = lim infLSS3`→∞ f(x̄`). The
rest follows from [6]: for ` ∈ LSS, one is performing a step of t` along z∗,` ∈ ∂α∗,`f(x̄`) (cf. (2.17)). Then,
limLSS3`→∞ f̄` = ν(1.1) comes from [6, Proposition 1.2] (in particular, Assumption 2(ii) is [6, (1.4)]).
Furthermore, we can reproduce the more detailed analysis of [6, §4], (3.13) being [6, (4.16)]; the argument
in [6, Theorem 4.4] gives the second part of the assertion.

We now turn to the case |LSS| <∞: the “last SS” ¯̀
SS occurs, after which only NS are performed, which

means that x̄ is fixed. We of course need something akin to Assumption 2 for B:

Assumption 3 (Lower bundle management) (i) For all ` > ¯̀
SS and k ∈ K, let θk∗,` be the optimal

solution to (2.14) (computed in Step 2). Then, either all the (zki , α
k
i) ∈ Bk` such that θki,∗,` > 0 also

belong to Bk`+1, or (zk∗ , α
k
∗) ∈ Bk`+1 (cf. (3.9)).

(ii) There exists `′ ≥ ¯̀
SS such that t` is nonincreasing for all ` ≥ `′.

Assumption 3 is again written in an abstract form, in that it only has to hold within the last infinite
sequence of consecutive NS (if any). Since it is impossible to say if ` > ¯̀

SS, the conditions have to hold,
at length, within any sequence of consecutive NS. Yet, as soon as a SS is performed, each Bk can be
entirely reset: hence, Assumption 3(i) is weaker than Assumption 2(i). Assumption 3(ii) allows on-line
tuning of t`, which is well-known to be crucial in practice: it is not necessarily true that “the best” t`+1

after a NS is smaller than t` (e.g., [1]). Yet, the combined effect of (i) and (ii) is that, during a sequence
of consecutive NS, at length the values ν(2.14) are nonincreasing. Indeed, the previous optimal solution
of (2.14) remains feasible (albeit, if (3.9) has been used, in a “surrogate form”), so that ν(2.14) cannot
increase, since t is also nonincreasing. The rest of analysis in fact all hinges on the following technical
Lemma, which estimates how much the insertion of the new pairs (zk` , α

k
`) for k ∈ Z changes ν(2.14).

To simplify the notation, in the Lemma we drop the iteration index ` (≥ `′ ≥ ¯̀
SS), and we denote with

(2.14+) and t+ (≤ t), respectively, the master problem and the stabilization parameter at iteration `+ 1.

Lemma 5 Under Assumption 3,

ν(2.14)− ν(2.14+) ≥ ∆fZ

2
min

{
1 ,

∆fZ

t+||zZ∗ − zZ ||2

}
, (37)

where ∆fZ =
∑
k∈Z(fk

+
− (f̄k + vk∗)) (cf. (3.7)) and we intend 1/0 =∞.

Proof. We define the “minimal, aggregated” form of (2.14+) as

min
{

1
2 t
∥∥z−Z∗ + (1− θ)zZ∗ + θzZ

∥∥2
+ α−Z∗ + (1− θ)αZ∗ + θαZ : θ ∈ [0, 1]

}
. (38)

Clearly, (3.15) is a restriction of (2.14+) even under the minimal assumption that Bk = Bk∗ ∪ {(zk, αk)}
(cf. (3.9)). Indeed, (3.15) is the dual of (2.7) using the aggregated model (2.3) (cf. (3.19))—as opposed
to the sum of individual models (2.4) as in (2.12)—with

B =
{

(z∗, α∗) , (z̄Z , ᾱZ) =
(
zZ + z−Z∗ , αZ + α−Z∗

) }
. (39)

11

In other words, (3.15) is a restriction of (2.14+)—with “minimal” dual bundle—where θk = θ for all
k ∈ K. Whichever way it is looked at, it is clear that, under Assumption 3, ν(3.15) ≥ ν(2.14+) holds
(using t+ ≤ t). Hence, we want to estimate

ν(2.14)− ν(2.14+) ≥ ζ = ν(2.14)− ν(3.15) ≥ 0 ,

where the last inequality comes from the fact that (z∗, α∗) is optimal for (2.14), θ = 0 is feasible in (3.15)
and produces the same solution. Estimating ζ requires simple but tedious algebra, starting with

ζ = t
2 ‖z∗‖

2
+ α∗ − min

θ∈[0,1]

{
t
2

∥∥z−Z∗ + (1− θ)zZ∗ + θzZ
∥∥2

+ α−Z∗ + (1− θ)αZ∗ + θαZ
}

= max
θ∈[0,1]

{
t
2 ‖z∗‖

2
+ α∗ − t

2

∥∥z−Z∗ + (1− θ)zZ∗ + θzZ
∥∥2 − α−Z∗ − (1− θ)αZ∗ − θαZ

}
and then using z∗ = z−Z∗ + zZ∗ , α∗ = α−Z∗ + αZ∗ to rewrite the objective function as

t
2

∥∥z−Z∗ + zZ∗
∥∥2 − t

2

∥∥z−Z∗ + (1− θ)zZ∗ + θzZ
∥∥2

+ θ(αZ∗ − αZ) =

= t
2

[
||z−Z∗ ||2 + 2z−Z∗ zZ∗ + ||zZ∗ ||2 − ||z−Z∗ ||2 − (1− θ)2||zZ∗ ||2 − θ2||zZ ||2

− 2(1− θ)z−Z∗ zZ∗ − 2θz−Z∗ zZ − 2(1− θ)θzZ∗ zZ
]

+ θ(αZ∗ − αZ)

=− t
2θ

2||zZ∗ − zZ ||2 + θ
[
t(zZ∗ + z−Z∗)zZ∗ − t(z−Z∗ + zZ∗)zZ + αZ∗ − αZ

]
=− t

2θ
2||zZ∗ − zZ ||2 + θ

(
− d∗zZ∗ + d∗z

Z + αZ∗ − αZ
)
,

where in the last step we have used d∗ = −t(z∗ = zZ∗ + z−Z∗). By summing (3.3) and (2.18) over k ∈ Z
we obtain, respectively, fZ

+
− f̄Z = zZd∗ − αZ and d∗z

Z
∗ − αZ∗ = vZ∗ . Plugging these in the last line of

the above derivation we finally conclude

ζ ≥ max
{
h(θ) = θ∆fZ − 1

2θ
2MZ : θ ∈ [0, 1]

}
, (40)

where MZ = t||zZ∗ − zZ ||2 (≥ 0), and ∆fZ = fZ
+
− (f̄Z + vZ∗) (≥ 0). Obviously, ν(3.17) ≥ 0 (θ = 0 is

feasible), showing that ζ ≥ 0. Since h′(θ) = ∆fZ −MZθ, if MZ = 0 ≡ zZ = zZ∗ then h is linear and
h′ = ∆fZ ≥ 0: hence, the optimal solution to (3.17) is θ∗ = 1. Otherwise, the unconstrained maximum
of h is θ̄ = ∆fZ/MZ ≥ 0. If θ̄ ≤ 1 then θ∗ = θ̄, with h(θ∗) = h(θ̄) = (∆fZ)2/(2MZ). If, instead, θ̄ > 1,
then again θ∗ = 1, and therefore h(θ∗) = h(1) = ∆fZ −MZ/2. Hence,

∆fZ ≤MZ =⇒ ζ ≥ (∆fZ)2/(2MZ)

∆fZ > MZ =⇒ h(1) = ∆fZ − 1
2M

Z > 1
2∆fZ =⇒ ζ ≥ 1

2∆fS .

Furthermore ∆fZ ≤ MZ ≡ ∆fZ/MZ ≤ 1 ≡ (∆fZ)2/(2MZ) ≤ 1
2∆fZ , which finally allows us to

conclude that

ζ ≥ ν(3.17) ≥ min

{
∆fZ

2
,

(∆fZ)2

2MZ

}
=

∆fZ

2
min

{
1 ,

∆fZ

t||zZ∗ − zZ ||2

}
,

i.e., (3.14) holds. The formula also works when zZ∗ = zZ =⇒ θ∗ = 1 =⇒ ζ ≥ ∆fZ by considering
min{ 1 , ∆fZ/0 } = min{ 1 , ∞} = 1.

It may be useful to remark again that (3.14) estimates the decrease of ν(2.14) under the hypothesis
α∗,` = α∗,`+1, which may not be true because the αki may decrease in Step 3.3; this, however, makes the
estimate a fortiori valid. We are now ready to analyze the case of an infinite sequence of consecutive NS.

Theorem 6 (infinite sequence of consecutive NS) Under Assumptions 1 and 3, if |LSS| <∞ then
‖z∗,`‖ → 0 and α∗,` → 0. Therefore, x̄ is optimal for (1.1) and lim inf`→∞ f̄` = lim sup`→∞ f

`
= f(x̄) =

ν(1.1).

Proof. We claim that ∆∗,` = ν(2.14`) → 0 as ` → 0, which implies ‖z∗,`‖ → 0 and α∗,` → 0.
Once the claim is proven, the thesis easily follows: (2.17) proves that 0 ∈ ∂f(x̄), and lim inf`→∞ f̄` =
lim sup`→∞ f

`
= f(x̄) = ν(1.1)—asymptotically, both the upper and the lower estimates become tight—is

proven exactly as in Theorem 3.3.

By contradiction, assume ∆∗,` ≥ ε > 0 for all `. Because NS are always performed, (3.7) always holds:
∆fZ` ≥ m1∆∗,` ≥ m1ε > 0. The hypotheses of Lemma 3.4 are satisfied, and therefore (3.14) holds for

12

all ` (≥ `′). By Lemma 2.1, ||zki || ≤ Lk; being zk∗,` a convex combination, ||zk∗,`|| ≤ Lk as well. Hence,

||zZ∗,` − zZ` || is bounded above by some constant, and since t`+1 ≤ t`, t` is bounded above: hence, the

denominator of the rightmost term in (3.14) is also bounded above. Therefore, since ∆fZ` ≥ m1ε > 0,
the whole rightmost term in (3.14) is bounded away from zero: hence, ν(2.14`+1) < ν(2.14`)− δ for some
δ > 0. But this means that ν(2.14`) → −∞ as ` → ∞, which contradicts ν(2.14) ≥ 0, thereby proving
the claim and concluding the proof.

For future reference we remark that if it ever happens that z∗,` = 0, then the algorithm provides a correct
a-posteriori estimate of the error: x̄` is, then, α∗,`-optimal. This is specific of our setting, and due to the
fact that the oracles produce upper estimates, whose gap with the lower ones is “incorporated” in the
αki . All in all:

Theorem 7 (Overall Convergence) Under Assumptions 1, 2 and 3, { x̄` } is a minimizing sequence
which converges to an optimal solution of problem (1.1), if any.

3.5 The (partly) aggregated case

Using a disaggregated approach—with model (2.4), and therefore master problems (2.12)/(2.14)—is nat-
ural in our setting. Besides, this has been reported over and over again (e.g., [3, 19, 23]) to be the most
efficient approach, in view of the much faster convergence speed. Yet, the downside is the (much, if |K| is
large) larger size of the master problems and therefore their computational cost, that can easily dominate
the overall running time (e.g., [19]). In some cases [34], it might therefore be beneficial to rather use
the aggregated approach, in which B = { (zi =

∑
k∈K z

k
i , αi =

∑
k∈K α

k
i) }, and the aggregated master

problems

min
{
v + 1

2t ||d||
2 : v ≥ zid− αi i ∈ B

}
(41)

min
{

1
2 t
∥∥∑

i∈B ziθi
∥∥2

+
∑
i∈B αiθi : θ ∈ Θ

}
(42)

are solved instead of (2.12)/(2.14). The fact that one has to sum over all k ∈ K seems to fly squarely in
the face of an incremental method, where at each iteration one is trying to compute as few components
as possible.

Yet, in Step 0 sufficient information for computing the aggregated (z1, α1) is indeed generated, so at least
the algorithm can be started. In order to keep it going, the following strategy can be used: although
(3.18)/(3.19) are solved, the disaggregated representation of each zi and αi in terms of their individual
components zki and αki are kept. This allows to reconstruct the individual vk∗ , z

k
∗ and αk∗ by just using

the unique solution θ∗ of (2.14) uniformly for all k ∈ K. On the upper side disaggregated bundles Pk
has to be keept, but this can be inexpensive; for the “poorman’s” (3.10) with x∗ = x̄`, it only amounts
to keeping the separate values f̄k together with the aggregated one f̄ . Once this is done, the algorithm
remains the same: all the necessary information is available. In particular, the SS condition (3.6) only
depends on the aggregated v∗; for Theorem 3.3, (2.12) and (3.18) are indistinguishable. The individual
f̄k and vk∗ are required to form the targets (3.5) and therefore the accuracy εk` of each k ∈ K, but as
soon as (3.6) is obtained—possibly with S (K, which is the aim of the whole exercise—a SS can be
performed. Forming a unique (z`, α`) even if (3.7) is triggered with Z (K—which is the aim of the whole
exercise—is also easy: one just has to use (z̄Z , ᾱZ) of (3.16). Indeed, this is all that is needed to form the
“approximated” master problem (3.15), which is the crux of Lemma 3.4 providing the crucial estimate
(3.14), and therefore Theorem 3.5 still works (with the obvious modification to Assumption 3(i)).

Keeping the disaggregated representation (zki , α
k
i) for all k ∈ K of each (zi, αi) may come at a considerable

memory cost, and the computational cost of forming the individual vk∗ , z
k
∗ and αk∗ may be non negligible,

too. This can actually be avoided by an alternative approach that, to the best of our knowledge, has
been never discussed before: insert partly aggregated cuts/variables∑

k∈Z v
k ≥ zZi d− αZi (43)

in the primal/dual disaggregated master problems (2.12)/(2.14). It is easy to see that using (3.20) does
not impair the fundamental property of the master problem, i.e., that vk∗ ≤ fk(x̄ + d∗): indeed, (3.20)
is the surrogate constraint of the |Z| constraints vk ≥ zki d − αki , and therefore (2.12) with (3.20) is a
relaxation of (2.12) with these. In the dual, the variable θZi associated to (zZi , α

Z
i) participates to the

simplex constraints for all (and only) the k ∈ Z. Actually, nothing prevents arbitrarily partitioning Z =

13

Z1∪Z2∪ . . .∪Zp, and inserting the corresponding p partly aggregated cuts in (2.14): p = |Z| reproduces
the disaggregated approach. Hence, the trade-off between master problem size/cost and convergence
speed can be explored, ranging from fully aggregated models, to fully disaggregated ones, to “anything
in between”. Choosing the best aggregation level can only be done computationally; alternatively, along
the lines of [26, 30] one may consider versions wherein the partition automatically adapts. To the best
of our knowledge, neither has ever been done before; although these approaches seem interesting, this
article is not the appropriate venue to pursue them.

3.6 The constrained case

We now discuss dealing with constraints x ∈ X in (1.1). Actually, in the spirit of [19] we will treat a
more general case: that where f has components K = { 0 } ∪ K′′, where f0 is “easy” in the sense that it
can be effectively written into the master problem. This covers different situations, such as:

1. f0 = 1IX with X represented by “few, simple” (say, conic) constraints;

2. f0(x) = bx, with b the RHS of the relaxed constraints in (1.4);

3. f0 = ν(1.30
x) where U0 can be represented with “few, simple” constraints [19].

In all these cases (and the combinations thereof), the natural way to deal with f0 is just to insert it
unmodified in the master problem, which then becomes

min
{
f0(x̄+ d) +

∑
k∈K v

k + 1
2t ||d||

2 : vk ≥ zki d− αki i ∈ Bk , k ∈ K
}
. (44)

For instance, when f0 = 1IX this amounts to adding the constraints “x̄+ d ∈ X” to (2.12), which ensure
that x+ = x̄ + d∗ is feasible. The underlying assumption is that (3.21) is still efficiently solvable, which
of course depends on the specific form of f0; however, there are plenty of cases where this happens. The
setting obviously extends to the case where K = K′ ∪ K′′ with K′ the set of “easy components”, but for
simplicity of notation we will stick to K′ = { 0 }. The dual of (3.21) is (see e.g., [18]){

min 1
2 t
∥∥z0 +

∑
k∈K

∑
i∈Bk zki θ

k
i

∥∥2
+
∑
k∈K

∑
i∈Bk αki θ

k
i − x̄z0 + (f0)∗(z0)

s.t. θk ∈ Θk k ∈ K
(45)

where (f0)∗(z0) = supx{xz0 − f0(x) } is Fenchel’s conjugate of f0 (e.g., [25]). It is possible to give a
more specific description to (3.22) depending on the exact form of f0, but this is not necessary for our
development. Indeed, it is not difficult to check that, by employing (3.21)/(3.22) in place of (2.12)/(2.14)
in Step 1 of the algorithm, “everything just works” with the few modifications necessary to adapt to the
fact that the “model” for f0 is not a cutting-plane one but the original function:

- The function f0 in (3.21) is not translated in value, because it is in general difficult to translate a
generic function—unlike the cutting-plane model(s), where this is simply achieved by changing the
linearization errors. Accordingly, the global predicted descent now is v∗ = f0(x̄ + d∗) − f0(x̄) +∑
k∈K v

k
∗ , where f0(x̄ + d∗) is exactly known as a by-product of solving (3.21). There is a minor

difficulty for ` = 1 as f0(x̄1) is not known, but this is not hard to circumvent: just assume
f0(x̄1) =∞, forcing a SS at the first iteration.

- At each iteration one initializes S := Z := S ′ := S ′′ := { 0 } (= K′), as there is no need to call
any oracle for f0: f̄0

+ = f̄0 + v0
∗, with v0

∗ = f0(x̄ + d∗) − (f̄0 = f0(x̄)), is easily computed from
the solution of (3.21) whatever the exact form of f0 is. There is no need to ever compute (2.6)
for k = 0, as the exact value of f0 is always known; note that for f0 = 1IX the value is always
0. Analogously, there is no need to compute any z0 for f0, as there is no B0 to be filled: the full
description of f0 is already present in (3.21), although in a different form.

- The individual targets (3.5) need not be defined for f0, since k = 0 will never happen. Yet, f0

does contribute in setting them for k ∈ K′′ (cf. the rightmost terms in the minimum/maximum of

(3.5)). Note, however, that while f0 may contribute positively to tar
k

(or not: as for any other
fk, there is no guarantee that v0

∗ < 0), it surely does not contribute to tark, in that f̄0 + v0
∗ = f0

+
.

In other words, while f0 may contribute to a SS—it may be so even with S = { 0 }, i.e., on the
grounds of the 0-component and the upper models alone, without having called any oracle—it

14

will never contribute to (3.7) being satisfied. In fact, a NS is aimed at accruing more information
to improve the lower models (and therefore d∗), but there is no way—and need—to improve the
model of f0. Note that for f0 = 1IX one always has f̄0 = 0, hence the 0-th component will not
contribute to (3.6) either (but it will enforce feasibility of the iterates).

- Solving the (3.21) means also solving its dual (3.22), which produces a z0
∗, albeit not as a convex

combination of z0
i (typically, as dual optimal solutions of some constraints [18]). Similarly, it is

possible to define a correct α0
∗. However, there is no use for (z0

∗, α
0
∗): it does not have to be

added to B0, and v0
∗ is not computed through it. Yet, one has to be aware that the constant

“+f0(x̄)” has to be added to ν(3.22) in order for ∆k = ν(3.22) + f0(x̄) to behave precisely as
ν(2.14) (∆k = 0 ⇐⇒ x̄ optimal).

Ultimately, it is easy to see that the convergence analysis of §3.4 still applies. This also extends, mutatis
mutandis, to the case of §3.5: the (partly) aggregated master problems (3.18)/(3.19) can be modified
similarly to (3.21)/(3.22) with the explicit term for f0. That is, the k ∈ K′′ can be aggregated while f0

remains disaggregated from them. This can have a surprisingly large effect on the convergence speed [19].

4 Uncooperative oracles and noise reduction

The treatment so far has hinged on a “gentleman agreement” between the algorithm and the oracle: while
the former always tries to ask as little accuracy as possible, providing the oracle with all possible clues
about when it is possible to stop the computation without having attained an exact solution, the latter
obliges itself to find a solution as accurate as required. Some oracles may find it very time consuming,
or even impossible, to do that. It is therefore important to consider the case of an uncooperative oracle
that may not be capable, or willing, to satisfy (2.2). Hence, tar

k
, tark and εk cease to be orders and

become suggestions: the oracle can stop as soon (2.2) is satisfied, but it may elect to stop sooner. We
will analyze two types of uncooperative oracles, corresponding to different assumptions on the solution
approaches available for (1.3kx).

Common to both cases is the fact that bundle methods have a simple way to deal with uncooperative
oracles: exploiting the fact that t is, in fact, almost a “free parameter”. Hence, if O is uncooperative
at x+, one may just try to generate a different iterate by changing t, and hope that the oracle will, for
whatever reason, be cooperative there. Any such mechanism requires some safeguard to ensure that one
is not sampling X forever with the oracles stubbornly refusing to provide any valuable information. As
we shall see, the safeguard is that, eventually, the stability parameter grows.

4.1 Faithful uncooperative oracles

The first kind of oracle closely mirrors those encountered in the literature, accounting for our more
complex interface: a faithful boundedly uncooperative oracle, when called with εk < ∞, returns −∞ <
fk ≤ fk(x) ≤ f̄k <∞ and zk such that for a fixed—but possibly unknown—ε̄k <∞

fk(x)− fk ≤ f̄k − fk ≤ ε̄k ≡ zk ∈ ∂ε̄kfk(x) . (46)

An uncooperative oracle may not be able to satisfy (2.2.iii), in particular if tar
k − tark < ε̄k; yet, it

is “faithful” in that, at least, the lower and upper estimates are indeed so. This is the case of solution
methods for (1.3kx) that can provide upper and lower bounds but cannot (or are not willing to) guarantee
that these will be arbitrarily close; examples are approximation methods with worst-case guarantees, or
exact methods with a tight bound on the computational resources. Obviously, Ok for all k ∈ K satisfying
(4.1) are an O for f satisfying (4.1) with ε̄ =

∑
k∈K ε̄

k = ε̄K <∞.

The issue with (4.1) is that Lemma 3.2 ceases working: even with S ′′ = K, it is not guaranteed that one
among (3.6) and (3.7) holds. This is why an “escape clause” is needed if the worst comes to the worst,
which is a Noise Reduction (NR) step:

Step 3.0 (Noise Reduction) if −S ′′ = ∅ then, if ||z∗,`||2 ≤ δ1 then stop, else change t`
according to Assumption 4 and go to Step 1.

The assumption on how t` is changed is basically that it grows. More specifically, this only applies to
infinite sequences of NR steps, and only if no SS happens between them. That is, with LNR indicating

15

the set of NR iterations:

Assumption 4 If |LNR| =∞ and |LSS| <∞, then lim inf`3LNR→∞ t` =∞.

The statement of Assumption 4 is again abstract. In practice, some mechanism is required that increases
t` (albeit not necessarily monotonically) when NR are performed, but it is reset as soon as a SS is
performed [10, (6.14)]. This avoids conflicts between Assumption 4 and Assumption 2(ii), since t` needs
to be bounded above for ` ∈ LSS. A “large” t` means that (cf. (2.15)) either v∗,` also grows large
(negative), or ||z∗,`||2 goes to 0, which allows to detect approximate optimality.

Lemma 8 If all oracles Ok are boundedly uncooperative, Assumption 4 holds, |LSS| <∞ and |LNR| =∞,
then lim sup`3LNR→∞ ||z∗,`||

2 = 0.

Proof. Since ` ∈ LNR both (3.6) and (3.7)—with Z = K—fail: subtracting their opposites and using
(4.1), ∆∗,` ≤ −v∗,` and v∗,` ≤ −t`||z∗,`||2 (cf. (2.15)), yields

∞ > ε̄ ≥ f̄`+1 − f `+1
≥ (m2 −m1)(−v∗,`) ≥ (m2 −m1)t`||z∗,`||2 . (47)

Then, ||z∗,`||2 ≥ δ > 0 for all ` ∈ LNR would contradict Assumption 4.

The Lemma illustrates the moniker “noise reduction”. The oracle frames the “signal” f(x`+1) between

the two measures f̄`+1 and f
`+1

, affected by “noise” up to ε̄. If tark` and tar
k
` are closer than ε̄, then

the noise is too large to distinguish which of the two is satisfied. Increasing t` either increases −v∗,`,
and therefore pulls further apart the targets, or decreases ||z∗,`||2: hence, either the signal becomes
significant w.r.t. the noise, or one detects that x̄` is already “as optimal as it gets”. Indeed, with δ1 > 0,
|LNR| < ∞: by Lemma 4.1, either ultimately one among (3.6) and (3.7) holds, or the algorithm stops
with ||z∗,`||2 ≤ δ1, proving that x̄` is approximately α∗,`-optimal (cf. (2.17)). As in (4.3), ` ∈ LNR implies
ε̄ ≥ f̄`+1 − f `+1

≥ (m2 −m1)(−v∗,`), i.e.,

α∗,` ≤ −v∗,` ≤ ε̄/(m2 −m1) =: ε′ . (48)

Hence, x̄ is (approximately) optimal with (about) the best error that can be obtained given the oracle [7,
Observation 2.7]: when m2 ≈ 1 and m1 ≈ 0, ε′ ≈ ε̄. When δ1 = 0, |LNR| = ∞ can happen. This is
not an issue if |LSS| = ∞ as well: Assumption 2(ii) and Assumption 4 have been carefully crafted to be
compatible, hence Theorem 3.3 still applies (in fact, it does not depend in any way from what happens
between two consecutive SS). Note that this means that {x̄`}`∈LNR

is an exact optimizing sequence, with
no error ; this is unlikely to happen in general, and therefore one should expect that, at length, only NS
and NR are done, in any order. Here an issue arises because Assumptions 3(ii) and 4 conflict. The simple
solution, however, is to give priority to the latter: over sequences of NR, t` ultimately has to grow even
if NS are made. This in principle only applies if |LNR| = ∞, but since one never knows whether or not
this is happening, some mechanism has to ensure that if NR are done and SS aren’t, t` eventually grows.
Note that, however, there is no need to completely inhibit decrease of t` at NS as in [10, (6.14)], provided
that it ultimately grows. With this expedient:

Theorem 9 Under the assumptions of Lemma 4.1, lim inf`→∞ α∗,` = α∗,∞ ≤ ε′ and the stability center
x̄ is α∗,∞-optimal.

Proof. Due to Lemma 4.1, ||z∗,`||2 → 0; hence, 0 ∈ ∂α∗,∞f(x̄) by (2.17). For the bound on α∗,∞ just
note that α∗,` ≥ α∗,∞ for ` is large enough and use (4.3).

The last case is that |LSS| <∞ and |LNR| <∞, after which only consecutive NS are done: here Theorem
3.5 directly applies, which means that x̄ is optimal—again, with no error. All in all, the algorithm
always asymptotically attains ε′-optimality. With δ1 > 0, approximate ε′-optimality is finitely attained.
Interestingly, with a specific twist in the management of B akin to the “safe β-strategy” of [15, §4.3],
infinite sequences of NR actually finitely attain ε′-optimality.

Assumption 5 If |LNR| =∞, then at length insertions/removals of pairs in/from all the Bk are inhibited.

Assumption 5 contrasts with Assumption 3(ii), but the solution is the same as for Assumption 4: give
priority to NR, i.e., ensure that during a sequence of NS and NR, eventually the Bk are kept fixed.

16

Because NS are based on insertion of new information, this basically means entirely inhibiting NS at
length: each time (3.7) is satisfied (and (3.6) is not), a NR is performed instead of the NS. Again, the
mechanism can be reset each time a SS is performed.

Corollary 10 Under Assumptions 4 and 5, if |LNR| = ∞, then at lenght x`+1 is a global minimizer of
f̌kB: hence, x̄ is ε′-optimal and x`+1 is (m2ε

′)-optimal.

Proof. Due to Assumption 5, at length all the Bk are fixed and we can refer to the lower model as
f̌B, independently of `. It is well-known that z∗,` ∈ ∂f̌B(x`+1): [15, (2.3)] or [10, Lemma 4.1]. Since
f̌B is a polyhedral function, SB = { ∂f̌B(x) : x ∈ X } is a finite set [21, Corollary VI.4.3.2]. Clearly,
SB = (S0 = {Z ∈ SB : 0 ∈ Z }) ∪ (S+ = {Z ∈ SB : 0 /∈ Z }). Defining sZ = min{ ‖z‖ : z ∈ Z }, one
has sZ > 0 ⇐⇒ Z ∈ S+ since subdifferentials of finite-valued functions are closed compact convex sets.
Since SB itself is finite, s = min{ sZ : Z ∈ S+ } > 0. From Lemma 4.1, ||z∗,`|| < s for all large enough `:
hence, ∂f̌B(x`+1) ∈ S0, i.e., 0 ∈ ∂f̌B(x`+1) as desired.

Since f̌B(x`+1) = f̄ + v∗,`, the linearization error of the null subgradient 0 ∈ ∂f̌B(x`+1) at x̄ is −v∗,`:
hence, x̄ is ε′-optimal (cf. (2.9) and (4.3)). Similarly, the linearization error of 0 at x`+1 is f̄+− f̌B(x+) =
f̄+ − f̄ − v∗,` (cf. (2.10)), for which

f̄+ − f̌B(x`+1) ≤ ε̄+ f
+
− f̌B(x`+1) < ε̄+ f̌B(x`+1) +m1∆∗,` − f̌B(x`+1)

= ε̄+m1∆∗,` ≤ ε̄+m1(−v∗,`) ≤ ε̄+m1ε̄/(m2 −m1) = m2ε̄/(m2 −m1) ,

where in the first step we have used (4.1), in the second that (3.7) does not hold, in the third ∆∗,` ≤ −v∗,`,
and in the fourth (4.3).

Corollary 4.3 suggests the following modification of Step 3.0 which, to the best of our knowledge, has
never been discussed before:

Step 3.0′ (Noise Reduction) if −S ′′ = ∅ then, if 0 ∈ ∂f̌B(x`+1) then stop, else change t`
according to Assumption 4 and go to Step 1.

Checking if 0 ∈ ∂f̌B(x`+1) can be done e.g., with sensitivity analysis [14, §7], and at worst requires solving
a linear feasibility problem surely not more expensive than the master problems. If the algorithm stops,
then both x`+1 and x̄` are guaranteed to be (at least) ε′-optimal (under Assumption 5). Actually, from
the proof of Corollary 4.3 we have that x̄` is (−v∗,`)-optimal and x`+1 is (f̄+,` − f̄` − v∗,`)-optimal: the
a-posteriori bounds may be (much) tighter than the a-priori ones. This could, for instance, be used to
choose which among x`+1 and x̄` is a more accurate solution. As already remarked, the availability of
explicit a-posteriori error bounds is a characteristic of our development, and it directly descends on the
choice of having explicit upper bounds (and using them to define the linearization errors).

4.2 Cheating uncooperative oracles

We now discuss cheating oracles, which do satisfy (2.2), but possibly by reporting incorrect data. We
keep assuming that fk and zk satisfy (2.1), i.e., the oracle is lower in the parlance of [10]. Using non-lower
oracles is also possible, as thoroughly analyzed in [10], but we will limit ourselves to the case where only
the upper estimates may be incorrect, i.e., f̄k < fk(x) may happen. This, for (1.3kx), may be the case of
heuristics without any known bound on the accuracy, or of oracles subject to such strict resource limits
that do not allow them to produce any upper bound. In our context, this has the difficulty that the
only available correct upper estimate, ∞, does not satisfy (2.2) whenever εk < ∞; in other words, no
significant upper model fkP can be defined if f̄k =∞. Hence, the oracle has to “cheat” and report finite
upper estimates that it does not really have available. An obvious way of doing that is systematically
reporting f̄k = fk; as we shall see this is actually, in some sense, the best possible approach, and we
define uniformly cheating an oracle doing just that. We of course also require (4.1) to hold. We remark
that guaranteeing this for (1.3kx) is not entirely trivial; a sufficient condition is, besides compactness of
all Uk, also compactness of X, which is not common in applications (although, technically, compactness
of {x`} would suffice). Anyway, once ensured it implies fk ≤ f̌kP + ε̄k: via (2.8), this gives

fk(x̄)− [fk
i

+ zki (x̄− xi)] ≤ f̄k + ε̄k − [fk
i

+ zki (x̄− xi)] = αki + ε̄k (49)

zki ∈ ∂(αk
i +ε̄k)f

k(x̄) , αki ≥ −ε̄k , z∗,` ∈ ∂(α∗,`+ε̄)f(x̄) , α∗,` ≥ −ε̄ (50)

17

(with ε̄ = ε̄K). Since the ε̄k are not known, the quality of the zki cannot be directly assessed, but at
least the error is bounded. Furthermore, the advantage of uniformly cheating oracles f̄k = fk is that
they obviously never trigger a NR Step 3.0 : whatever the returned value, one of the two targets is surely
met, and f̄k − fk = 0 ≤ εk. Of course, inexactness has to crop up some other way; in particular, it may

happen that f̌kP(x̄`) < f̂kP(x̄`), i.e., α∗,` < 0. This may ultimately lead to v∗,` = −t`||z∗,`||2 − α∗,` > 0,
basically destroying all convergence arguments.

The first, natural reaction would be to “correct” the upper model: if f̄kP(x̄`) < fkB(x̄`), then set f̄kP(x̄`) :=

fkB(x̄`), and therefore αki := αki + fkB(x̄`)− f̄kP(x̄`) (> 0) for all i ∈ Bk. This, however, creates problems

in the convergence proof, which relies on the fact that f̄` is nonincreasing. Furthermore, the corrected
f̄` is still not, in general, a valid upper bound, so little would have been gained. Indeed, because ε̄ is
unknown, one is still left with the worst-case bound (4.5), whereas, having increased αki , one could (in
theory) reduce the other term (if it were known). Said otherwise, artificially imposing αki ≥ 0 cancels all
traces of the oracles’ wrongdoing, preventing the algorithm from taking the appropriate countermeasures.
As in §4.1, these amount to ensuring that the descent v∗,` is “significant” w.r.t. the (unknown) error ε̄ of
the problem, to avoid taking decisions about function values that are, basically, undistinguishable given
the oracle inaccuracy. To ensure that v∗,` = −t`||z∗,`||2 − α∗,` < 0, since −t`||z∗,`||2 < 0 it is enough to
guarantee that α∗,` is “not too negative”:

α∗,` ≥ −m3t`||z∗,`||2 (51)

with m3 ∈ (0, 1), which immediately implies

v∗,` ≤ (1−m3)
(
− t`||z∗,`||2

)
(< 0) . (52)

Remarkably, this is similar but different from the condition used in the literature [10, (5.1)] [33], which
is stricter because it requires m3 ≤ 1/2, whereas we will argue that m3 ≈ 1 is preferable. It has been
observed in [33] that m3 influences the definition of predicted decrease; however, our analysis makes it
apparent—due to the fact that, in our setting, (3.6) and (3.7) are not mutually exclusive—that the effect
is actually on the NS condition. Thus, we add

Step 1.1 (Noise reduction) if (4.6) fails then, if ||z∗,`||2 ≤ δ1 then stop, else change t`
according to Assumption 4 and go to Step 1.

at the end of Step 1. Clearly, the two forms of NR are quite different. Step 3.0 reacts to the fact that the
oracles, in the current iterate `, have (already) produced correct but not accurate enough information.
Step 1.1 rather reacts to the fact that the oracles, in some iterate prior to `, have produced incorrect
information which makes x`+1 not a significant point to even call the oracle upon. With uniformly
cheating oracles, Step 3.0 will never be executed. Yet, Step 1.1 allows to prove convergence similarly to
§3.4 and §4.1 for the three cases: an infinite sequence of SS, an infinite sequence of NR, an infinite tail
of consecutive NS.

Proposition 11 Under the assumptions of Theorem 3.3, f̄∞ = limLSS3`→∞ f̄` = lim supLSS3`→∞ f̌B(x̄`) ≤
ν(1.1) + ε̄.

Proof. Reasoning as in Theorem 3.3 and using (3.13) yields v∗,` → 0. Since ` ∈ LSS one has that (4.7)
holds, which gives (barring the case f̄∞ = −∞) that ||z∗,`|| → 0; then, (4.6) gives α∗,` → 0, even if
α∗,` < 0. This proves the statement about the limits being equal. Hence, if the sequence { x̄` }`∈LSS

has
a cluster point x̄∞, (4.5) gives 0 ∈ ∂ε̄f(x̄∞), i.e., x̄∞ is ε̄-optimal. The proof can be generalized without
requiring { x̄` } → x̄∞ by using e.g. [10, Proposition 6.1], albeit at the cost of requiring t` to be bounded
away from zero (cf. the discussion of [10, Theorem 6.2]).

For |LNR| =∞, the fact that (4.6) does not hold for ` ∈ LNR gives

v∗,` = −t` ‖z∗,`‖2 − α∗,` > (1−m3)
m3

α∗,` ≥ (1−m3)
m3

(−ε̄) . (53)

If the algorithm stops in Step 1.1, then x̄ is approximately (α∗,` + ε̄)-optimal (note that α∗,` + ε̄ ≥ 0 due
to (4.5)): because α∗,` < 0 for all ` ∈ LNR, it is therefore a fortiori ε̄-optimal. The equivalent of Lemma
4.1/Theorem 4.2 also hold:

Proposition 12 If all oracles Ok are uniformly cheating, Assumption 4 holds, |LSS| <∞ and |LNR| =∞,
then lim sup`3LNR→∞ ||z∗,`||

2 = 0.

18

Proof. Use (4.5) and (2.15) to obtain v∗,` ≤ −t` ‖z∗,`‖2 + ε̄, then use the opposite of (4.7) to derive
ε̄ > m3t`||z∗,`||2: ||z∗,`||2 ≥ δ > 0 contradicts t` →∞.

Proposition 13 Under the assumptions of Proposition 4.5, x̄ is ε̄-optimal.

Proof. Proposition 4.5 gives ||z∗,`|| → 0: hence 0 ∈ ∂(α∗,∞+ε̄)f(x̄). Therefore x̄ is (α∗,∞ + ε̄)-optimal,
and since α∗,` < 0 for all ` ∈ LNR, α∗,∞ ≤ 0.

Remark 14 The above proof relies on O to be uniformly cheating: α∗,` < 0 is true because only Step
1.1 triggers a NR. If O is not uniformly cheating, Step 3.0 may happen, so α∗,` < 0 might not be true.
Using (4.3), which holds when t` → ∞, would give 0 ∈ ∂2ε̄f(x̄), i.e., the error would be twice of that
of the oracle. This can actually happen, as illustrated by the following example. Let f(x) = |x| and
x̄1 = x1 = −2. A (uniformly) cheating oracle with ε̄ = 1 may return f

1
= f̄1 = 1 < f(x1) = 2 and

z1 = −1. If t = 1, x2 = −1, v∗,1 = −1, and f̌B1
(x̄2) = 0. A non-uniform oracle may now work “in

reverse” on x2, returning f
2

= 0, z2 = 0, and f̄2 = 1 = f(x2). Neither a SS (f̄1 = f̄2) nor a NS

(f
2

= f̌B1
(x̄2)) can be performed, so a NR Step 3.0 is triggered. However, with any t` > 1, x2 = −1 is

a minimum of f̌B2 , hence x` = x2 for all ` may happen: the algorithm might never be able to improve
x̄1, which has error f(x̄1) − ν(1.1) = 2 − 0 = 2 = 2ε̄. Note that if the minimum of f had been < 0, the
oracle could have not reported z2 = 0 together with f

2
= 0 = f̌B(x̄2): z2 < 0 would have been required,

and therefore increasing t` would have ultimately triggered a SS.

Corollary 4.3 can be similarly extended: this requires Assumption 5.

Proposition 15 Under the assumptions of Proposition 4.5 and additionally Assumption 5, x̄ is (ε̄/m3)-
optimal and x`+1 is ((1−m1 +m1/m3)ε̄)-optimal.

Proof. The first part of Corollary 4.3, unchanged, yields that, eventually, 0 ∈ ∂f̌B(x`+1), with f̌B(x`+1) =
f̄` + v∗,` ≤ ν(1.1). Hence, 0 ∈ ∂f̌ε̄−v∗,`(x̄`) which, using (4.8), gives that x̄` is (ε̄/m3)-optimal. For x`+1,

f(x`+1)− f̌B(x`+1) ≤ ε̄+ f
+
− f̌B(x`+1) < ε̄+ f̌B(x`+1) +m1∆∗,` − f̌B(x`+1)

= ε̄+m1∆∗,` ≤ ε̄+m1(−v∗,`) ≤ ε̄+m1(1−m3)/m3ε̄ = (1−m1 +m1/m3)ε̄ ,

where the second inequality is that (3.7) does not hold, and the last one (4.8). Note that (1−m1)m3+m1 <
1, hence x`+1 has a better a-priori error bound than x̄.

Therefore, once again |LNR| =∞ asymptotically proves ε̄-optimality of x̄: Step 1.1 finitely prove approx-
imate optimality with δ2 > 0, and with δ2 = 0 one can use

Step 1.1′ (Noise reduction) if (4.6) fails then, if 0 ∈ ∂f̌B(x`+1) then stop, else change t`
according to Assumption 4 and go to Step 1.

to finitely attain (ε̄/m3)-optimality. The case of the infinite tail of consecutive NS is slightly more
complex, because a modification to the algorithm is needed: one has to replace ∆∗,` with −v∗,` in the
definition of ε`, tar

k
` and in (3.7), i.e.,

ε` := (m2 −m1)(−v∗,`) (54)

tark` := min
{

(f̄k` + vk∗,`)−m1β
k
` v∗,` , (f̄Z` + vZ∗,`)−m1v∗,` − fZ\{k}+,`

}
(55)

∆fZ :=
∑
k∈Z ∆fk ≥ −m1v∗,` ≡ fZ

+,`
≥ (f̄Z` + vZ∗,`)−m1v∗,` . (56)

The reason is that while (4.6) ensures that −v∗,` > 0 (cf. (4.7)), ∆∗,` < 0 still can happen. This would
lead to tark` < f̌B(x`+1), and to (3.7) be always satisfied, which would break all the development. Since
−v∗,` ≥ ∆∗,`, (4.11) is harder to satisfy than (3.7), which is why—in the tradition of the standard analysis
of bundle methods—we prefer to keep the weaker condition if possible. However, cheating oracles require
(4.11), at least with “large” m3; restricting to m3 < 1/2 as in [10, (5.1)] would allow using (3.7) instead.
When (4.10)–(4.11) are used, it is necessary to define ε` by (4.9), for otherwise Lemma 3.1 and 3.2 would
break, rendering all the rest useless. Then:

Proposition 16 Using (4.10)–(4.11), and under the Assumptions of Theorem 3.5 plus |LNR| < ∞,
‖z∗,`‖ → 0 and α∗,` → 0: therefore, x̄ is ε̄-optimal.

19

Proof. The crucial point is showing that lim sup`→∞ v∗,` = 0, so assume that v∗,` ≥ ε > 0: then (4.11)
would imply that ∆fZ` ≥ m1v∗,` ≥ m1ε > 0, and hence ν(2.14`) → −∞ as ` → ∞, contradicting
ν(2.14) ≥ −ε̄ > −∞ (the latter a consequence of (4.5)). As in the SS case, v∗,` → 0 gives ||z∗,`|| → 0 via
(4.7), and then (4.6) implies α∗,` → 0: hence, 0 ∈ ∂ε̄f(x̄), i.e., x̄ is ε̄-optimal.

While the above derivation closely mirrors that of §3.4 and §4.1, all the results only involve the a-priori
(unknown) error ε̄: no a-posteriori bounds are available. It could not be otherwise, since no valid explicit
upper estimates for the f -values are available.

4.3 Arbitrary mixture of oracles

The previous section may have conveyed the idea that faithful and cheating oracles cannot be used
together: fortunately, this is not true. Indeed, let K = F ∪C (F ∩C = ∅), with F the components having
faithful oracles (cooperative oracles are faithful with ε̄k = 0), and C these having (uniformly) cheating
ones. From (4.4) we have z∗,` ∈ ∂(α∗,`+ε̄C)f(x̄) and ν(2.14) ≥ α∗,` ≥ −ε̄C , whereas from the fact that

all the cheating oracles are uniformly so we have f̄`+1 − f `+1
≤ ε̄F . Because we now have both possible

types of NR steps, LNR = LFNR ∪ LCNR, indicating respectively the NR of Step 3.0 (“for faithful oracles”)
and of Step 1.1 (“for cheating ones”); also, “NR” in Assumption 4 is now intended to mean “either kind
of NR”. Hence we can copy Lemma 4.1/Proposition 4.5:

Proposition 17 Under Assumption 4, if |LSS| <∞ and |LNR| =∞, then lim sup`3LNR→∞ ||z∗,`||
2 = 0.

Proof. If ` ∈ LFNR one can use ε̄F ≥ f̄`+1−f `+1
to get ε̄C > (m2−m1)t`||z∗,`||2 as in Lemma 4.1, while if

` ∈ LCNR one can use α∗,` ≥ −ε̄C to get ε̄C > m3t`||z∗,`||2 as in Proposition (4.1), if. Hence, in both cases,
||z∗,`||2 ≥ δ > 0 contradicts t` →∞.

Taking for simplicity m3 = m2 −m1 and δ2 = ε̄(1−m3)/m3, we can now prove:

Theorem 18 (Convergence for arbitrary mixture of oracles) Under Assumptions 1–5 and given
any F and C, the algorithm with Step 1.1 and using (4.9)–(4.11) (asymptotically) finds a(n approximated)
(ε̄/m3)-optimal solution.

Proof. If the algorithm finitely stops, this happens either in Step 1.1, or in Step 2, or in Step 3.0. In
all cases, x̄ is approximately (α∗,` + ε̄C)-optimal, in the sense that ||z∗,`|| ≤ δ1. In the first case α∗,` < 0
because ` ∈ LCNR; in the second, α∗,` ≤ δ2; in the third, α∗,` ≤ ε̄F because ` ∈ LFNR (cf. (4.3)). Hence, x̄`
is always (approximately) (ε̄/m3)-optimal. Using Step 1.1′ and Step 3.0′, with Assumption 5 in force,
Proposition 4.10 ensures ||z∗,`|| → 0: reasoning as in Corollary 4.3 gives that at length 0 ∈ ∂(ε̄C−v∗,`)f(x̄`),

which yields the same bound (and a slightly better one for x`+1) by using (4.3)—with ε̄F—if ` ∈ LFNR,
and (4.8)—with ε̄C—if ` ∈ LCNR (cf. Proposition 4.8).

If |LSS| = ∞, reasoning as in Proposition 4.4 proves that f̄∞ ≤ ν(1.1) + ε̄C . Hence, we can assume the
last SS to happen, after which only NR (of either type) or NS are performed: as in Proposition 4.10 x̄ is
(α∗,∞ + ε̄C)-optimal. Now, if

∣∣LCNR∣∣ =∞ then α∗,∞ ≤ 0, otherwise α∗,∞ ≤ ε̄F/m3 as in Theorem 4.2; all
in all, α∗,∞ + ε̄C ≤ ε̄/m3. Finally, for the infinite tail of consecutive NS we can reason as in Proposition
4.9 to obtain that x̄ is ε̄C-optimal.

If the cheating oracles are not uniformly so, we can no longer use the fact that f̄`+1 − f `+1
≤ ε̄F ; the

bound is f̄`+1−f `+1
≤ ε̄. This bumps the worst-case error to ε̄+ ε̄F = ε̄F + 2ε̄C : non-uniformly cheating

oracles do “double damage”. This is not entirely surprising, as they actually have “double the range”
of both faithful and uniformly cheating ones: they can report f̄k = fk(x) + ε̄k (and, then, fk = fk(x))

as well as fk = fk(x) − ε̄k (and, then, f̄k = fk(x)), hence the range between the worst-case upper and

lower estimate is indeed 2ε̄k. An “adversarial” oracle can use it, as in Remark 4.7, to enforce an error of
that magnitude. This allows us to conclude with a “morale”: “better always cheating than being faithful
only at times, at least the partner (algorithm) knows what to expect and can react accordingly”.

20

5 Conclusions

In this paper we have analyzed a novel class of bundle methods for minimizing sum-structured convex
nondifferentiable objective. Our starting point is to change the oracle definition so as to make apparent a
feature that oracles often have in applications, but that has so far not been exploited: the fact that, besides
lower estimates on the function value (and valid lower linearizations of the function epigraph), the oracles
also provide upper estimates. Fully exploiting the latter requires a Lipschitz continuity assumption—even
more, that the Lipschitz constant is actually known—which, however, is often satisfied in many important
applications. The availability of this extra information has several notable impacts on the method:

– it allows to define upper models of the functions, which in turn can be used to derive upper estimates
of function values even at points where some (or even all) of the oracles have not been called;

– it allows to provide both upper and lower targets to the oracles which, together with the required
accuracy, can allow them to stop their computation just as soon as information that is “accurate
enough” to allow the computation to proceed is obtained, possibly diminishing their cost;

– it it allows to skip oracle calls entirely for some of the component functions, not only at NS as in
previous proposals in the literature, but also at SS;

– it provides explicit and reliable a-posteriori estimates of the quality of the obtained solutions, pro-
vided that the upper estimates are themselves reliable.

The method works with oracles that cannot attain arbitrary precision, as well as with those that do not
provide reliable upper estimates, clearly losing some of the properties in the process. For oracle with
nonzero (but bounded) maximum accuracy, one gets a solution with (about) the same error, which is the
best that can be expected [7, Observation 2.7] and consistent with other methods in the literature. For
oracles that do not provide reliable upper estimates, one loses the a-posteriori estimates of the quality of
the obtained solutions. It is worth remarking that, in fact, reliable upper estimates provide something
more: the fact that f̄` is always a reliable upper estimate on ν(1.1), and therefore on ν(1.3). Computing
tight upper estimates on ν(1.3) is very often the reason for solving (1.1) in the first place. For instance,
in practical, large-scale industrial applications rarely problems are solved to optimality, and the decision
maker can benefit from knowing whether or not it may be worthwhile to invest more to get better
solutions. In general, if (1.1) is solved as a step of a more complex (e.g., implicitly enumerative) approach
to (1.3), valid upper estimates are often crucial. All this provide a compelling argument against “erasing”
the provided upper estimate and setting f̄k = fk, as (implicitly) advocated in the literature so far, thus
making oracles systematically (but, at least, uniformly) cheat, although this ultimately yields the same
bound. Whether or not exploiting upper estimates works better computationally can only be determined
by an in-depth computational study, which is therefore the logical next step for this line of research.

Acknowledgements

The authors would like to acknowledge networking support by the COST Action TD1207, and financial
support from the Gaspard-Monge program for Optimization and Operations Research (PGMO) project
“Consistent Dual Signals and Optimal Primal Solutions”.

References

[1] A. Astorino, A. Frangioni, A. Fuduli, and E. Gorgone. A nonmonotone proximal bundle method
with (potentially) continuous step decisions. SIAM Journal on Optimization, 23(3):1784–1809, 2013.

[2] A. Astorino, A. Frangioni, M. Gaudioso, and E. Gorgone. Piecewise Quadratic Approximations in
Convex Numerical Optimization. SIAM Journal on Optimization, 21(4):1418–1438, 2011.

[3] L. Bacaud, C. Lemaréchal, A. Renaud, and C. Sagastizábal. Bundle methods in stochastic optimal
power management: a disaggregate approach using preconditionners. Computation Optimization
and Applications, 20(3):227–244, 2001.

[4] O. Briant, C. Lemaréchal, Ph. Meurdesoif, S. Michel, N. Perrot, and F. Vanderbeck. Comparison of
bundle and classical column generation. Mathematical Programming, 113(2):299–344, 2008.

21

[5] N. Chatzipanagiotis, D. Dentcheva, and M. M. Zavlanos. An augmented lagrangian method for
distributed optimization. Mathematical Programming, 152(1):405–434, 2015.

[6] R. Correa and C. Lemaréchal. Convergence of some algorithms for convex minimization. Mathemat-
ical Programming, 62(2):261–275, 1993.

[7] G. d’Antonio and A. Frangioni. Convergence Analysis of Deflected Conditional Approximate Sub-
gradient Methods. SIAM Journal on Optimization, 20(1):357–386, 2009.

[8] W. de Oliveira and J. Eckstein. A bundle method for exploiting additive structure in difficult
optimization problems. Optimization Online, 2015.

[9] W. de Oliveira and C. Sagastizábal. Level bundle methods for oracles with on demand accuracy.
Optimization Methods and Software, 29(6):1180–1209, 2014.

[10] W. de Oliveira, C. Sagastizábal, and C. Lemaréchal. Convex proximal bundle methods in depth: a
unified analysis for inexact oracles. Math. Prog. Series B, 148:241–277, 2014.

[11] W. de Oliveira, C.A. Sagastizábal, and S. Scheimberg. Inexact bundle methods for two-stage stochas-
tic programming. SIAM Journal on Optimization, 21(2):517–544, 2011.

[12] L. Dubost, R. Gonzalez, and C. Lemaréchal. A primal-proximal heuristic applied to french unitcom-
mitment problem. Mathematical Programming, 104(1):129–151, 2005.

[13] G. Emiel and C. Sagastizábal. Incremental like bundle methods with applications to energy planning.
Computational Optimization and Applications, 46(2):305–332, 2009.

[14] A. Frangioni. Solving Semidefinite Quadratic Problems Within Nonsmooth Optimization Algo-
rithms. Computers & Operations Research, 21:1099–1118, 1996.

[15] A. Frangioni. Generalized bundle methods. SIAM Journal on Optimization, 13(1):117–156, 2002.

[16] A. Frangioni. About Lagrangian Methods in Integer Optimization. Annals of Operations Research,
139(1):163–193, 2005.

[17] A. Frangioni, C. Gentile, and F. Lacalandra. Solving Unit Commitment Problems with General
Ramp Contraints. International Journal of Electrical Power and Energy Systems, 30:316–326, 2008.

[18] A. Frangioni and E. Gorgone. Generalized bundle methods for sum-functions with “easy” compo-
nents: Applications to multicommodity network design. Technical Report 12-12, Dipartimento di
Informatica, Università di Pisa, 2012.

[19] A. Frangioni and E. Gorgone. Generalized bundle methods for sum-functions with ”easy” compo-
nents: Applications to multicommodity network design. Mathematical Programming, 145(1):133–161,
2014.

[20] M. Gaudioso, G. Giallombardo, and G. Miglionico. An incremental method for solving convex finite
min-max problems. Math. of Oper. Res., 31, 2006.

[21] J.B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization Algorithms I. Number
305 in Grundlehren der mathematischen Wissenschaften. Springer-Verlag Berlin Heidelberg, 2nd
edition, 1996.

[22] J.B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization Algorithms II. Number
306 in Grundlehren der mathematischen Wissenschaften. Springer-Verlag Berlin Heidelberg, 2nd
edition, 1996.

[23] K.L. Jones, I.J. Lustig, J.M. Farwolden, and W.B. Powell. Multicommodity Network Flows: The
Impact of Formulation on Decomposition. Mathematical Programming, 62:95–117, 1993.

[24] C. Lemaréchal. Lagrangian relaxation. In M. Jünger and D. Naddef, editors, Computational Com-
binatorial Optimization: Optimal or Provably Near-Optimal Solutions, volume 9 of Lecture Notes in
Computer Science, pages 112–156. Springer-Verlag, 2001.

22

[25] C. Lemaréchal and A. Renaud. A geometric study of duality gaps, with applications. Math. Pro-
gramming, 90:399–427, 2001.

[26] Y. Song and J. Luedtke. An adaptive partition-based approach for solving two-stage stochastic
programs with fixed recourse. SIAM Journal on Optimization, 25(3):1344–1367, 2015.

[27] M. Tahanan, W. van Ackooij, A. Frangioni, and F. Lacalandra. Large-scale unit commitment under
uncertainty: a literature survey. 4OR, 13(2):115–171, 2015.

[28] W. van Ackooij, V. Berge, W. de Oliveira, and C. Sagastizábal. Probabilistic optimization via
approximate p-efficient points and bundle methods. Optimization Online, 2015.

[29] W. van Ackooij and W. de Oliveira. Level bundle methods for constrained convex optimization with
various oracles. Computation Optimization and Applications, 57(3):555–597, 2014.

[30] W. van Ackooij, W. de Oliveira, and Y. Song. An adaptive partition-based level decomposition for
solving two-stage stochastic programs with fixed recourse. Optimization Online, 2016.

[31] W. van Ackooij, A. Frangioni, and W. de Oliveira. Inexact stabilized benders’ decomposition ap-
proaches: with application to chance-constrained problems with finite support. Computational Op-
timization And Applications, To appear:1–24, 2016.

[32] W. van Ackooij and J. Malick. Decomposition algorithm for large-scale two-stage unit-commitment.
Annals of Operations Research, 238(1):587–613, 2016.

[33] W. van Ackooij and C. Sagastizábal. Constrained bundle methods for upper inexact oracles with
application to joint chance constrained energy problems. SIAM Journal on Optimization, 24(2):733–
765, 2014.

[34] C. Wolf, C. I. Fábián, A. Koberstein, and L. Stuhl. Applying oracles of on-demand accuracy in two-
stage stochastic programming a computational study. European Journal of Operational Research,
239(2):437–448, 2014.

23

