

 Universidade de São Paulo

2015-02

Approximate XML structure validation based

on document-grammar tree similarity

Information Sciences, New York, v. 295, p. 258-302, Feb. 2015
http://www.producao.usp.br/handle/BDPI/50309

Downloaded from: Biblioteca Digital da Produção Intelectual - BDPI, Universidade de São Paulo

Biblioteca Digital da Produção Intelectual - BDPI

Departamento de Ciências de Computação - ICMC/SCC Artigos e Materiais de Revistas Científicas - ICMC/SCC

http://www.producao.usp.br
http://www.producao.usp.br/handle/BDPI/50309

Approximate XML structure validation based
on document–grammar tree similarity

Joe Tekli a, Richard Chbeir b,⇑, Agma J.M. Traina c, Caetano Traina Jr. c, Renato Fileto d

a Dept. of Elec. and Compt. Eng., SOE, Lebanese American University (LAU), 36 Byblos, Lebanon
b LIUPPA Laboratory, University of Pau and Adour Countries (UPPA), 64200 Anglet, France
c ICMC, University of Sao Paulo (USP), 13566-590 São Carlos, SP, Brazil
d Federal University of Santa Catarina (UFSC), 88040-900 Florianopolis, SC, Brazil

a r t i c l e i n f o

Article history:
Received 21 April 2014
Received in revised form 15 September 2014
Accepted 25 September 2014
Available online 12 October 2014

Keywords:
XML
Semi-structured data
XML grammar
Structural similarity
Tree edit distance
Document classification

a b s t r a c t

Comparing XML documents with XML grammars, also known as XML document and gram-
mar validation, is useful in various applications such as: XML document classification, doc-
ument transformation, grammar evolution, XML retrieval, and the selective dissemination
of information. While exact (Boolean) XML validation has been extensively investigated in
the literature, the more general problem of approximate (similarity-based) XML validation,
i.e., document–grammar similarity evaluation, has not yet received strong attention. In this
paper, we propose an original method for measuring the structural similarity between an
XML document and an XML grammar (DTD or XSD), considering their most common oper-
ators that designate constraints on the existence, repeatability and alternativeness of XML
elements/attributes (e.g., ?, ⁄, MinOccurs, MaxOccurs, etc.). Our approach exploits the
concept of tree edit distance, introducing a novel edit distance recurrence and dedicated
algorithms to effectively compare XML documents and grammar structures, modeled as
ordered labeled trees. Our method also inherently performs exact validation by imposing
a maximum similarity threshold (minimum edit distance) on the returned results. We
implemented a prototype and conducted several experiments on large sets of real and syn-
thetic XML documents and grammars. Results underline our approach’s effectiveness in
classifying similar documents with respect to predefined grammars, accurately detecting
document and/or grammar modifications, and performing document and grammar
relevance ranking. Time and space analysis were also conducted.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

The structural and self-describing nature of XML promotes a number of emerging techniques ranging from XML version
control, intelligent Web search, and data integration, to message translation and clustering/classification, requiring, in one
way or another, some notion of XML structural similarity. In XML similarity-related research, most work has focused on esti-
mating similarity at the XML data layer (comparing XML documents, e.g., [26,33,48]), while quite a few studies have targeted
the XML type layer (comparing XML grammars, e.g., [5,28,61]). Nonetheless, few efforts have been dedicated to similarity
evaluation in-between the XML data and type (document/grammar) layers.

http://dx.doi.org/10.1016/j.ins.2014.09.044
0020-0255/� 2014 Elsevier Inc. All rights reserved.

⇑ Corresponding author. Tel.: +33 559574337; fax: +33 559574308.
E-mail address: richard.chbeir@univ-pau.fr (R. Chbeir).

Information Sciences 295 (2015) 258–302

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier .com/locate / ins

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2014.09.044&domain=pdf
http://dx.doi.org/10.1016/j.ins.2014.09.044
mailto:richard.chbeir@univ-pau.fr
http://dx.doi.org/10.1016/j.ins.2014.09.044
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins

Traditionally, most studies related to XML document/grammar comparison have targeted XML validation [7,8,49], i.e., a
specific case of Boolean XML comparison, designed to verify whether an XML document is valid (or not) with respect to
(w.r.t.) a given XML grammar (DTD [16] or XSD [31]). Yet with the proliferation of heterogeneous XML data on the Web
(i.e., documents originating from different data-sources and not conforming to the same grammar, or documents lacking pre-
defined grammars), there is an increasing need to perform ranked XML document/grammar comparison, which we refer to
as ‘approximate XML validation’: identifying those documents which are not necessarily valid w.r.t. the user grammar, but
which share a certain amount of similarity with the grammar, ranked following their similarity scores.

Evaluating the similarity between heterogeneous documents and grammars can be exploited in various application sce-
narios requiring accurate and ranked detection of XML structural similarities [10,62], ranging over: XML document classifi-
cation against a set of grammars declared in an XML database [10,80], (just as DB schemas are necessary in traditional DBMS
for the provision of efficient storage, retrieval and indexing facilities, the same is true for DTDs and/or XSDs in XML repos-
itories), XML ranked document retrieval via structural queries [32,55] (a structural query being represented as a DTD/XSD in
which additional constraints on content can be defined), the selective dissemination of XML documents [10] (user profiles
being expressed as DTDs/XSDs against which the incoming XML data stream is matched), as well as Web service matching
and SOAP processing (searching and ranking services which best match WSDL1 service requests, and comparing outgoing
SOAP messages to sender-side WSDLs, processing only those parts of the messages which differ from the WSDL descriptions
in order to avoid unnecessary overhead, and thus reduce processing cost in SOAP parsing [74], serialization [2], and communi-
cations [72,78]).

In this study, we focus on the problem of evaluating the structural similarity between an XML document and an XML
grammar, i.e., comparing the structural arrangement and ordering of XML elements/attributes in the XML document and
the XML grammar. Different from previous approaches which are either generic (disregarding XML grammar constraints,
e.g., the Or operator, ?, ⁄, +, etc.) [32,50,75], developed for the DTD language and do not consider more complex and expres-
sive XSD-based constraints (e.g., MinOccurs and MaxOccurs) [9,10], or restricted to Boolean results (i.e., traditional XML val-
idation methods [7,8,49]), we aim at providing a method which is:

– Fine-grained in detecting and identifying the structural similarities and disparities between XML documents and gram-
mars, in comparison with current generic [32,75] and alternative [9,10] approaches.

– Considering the more expressive XSD grammar constraints (namely MinOccurs and MaxOccurs), in comparison with less
expressive DTD-based constraints (e.g., ?, ⁄, +) handled in existing methods [9,10].

– Producing a ranked similarity result, in comparison with existing Boolean (validation) methods, e.g., [7,8,49].

To achieve these goals, we provide a new approach that extends well-known dynamic programming techniques for find-
ing the edit distance between tree structures, XML documents and grammars being modeled as Rooted Ordered Labeled
Trees. Our approach consists of two main phases: (i) XML document/grammar tree representation and (ii) XML docu-
ment/grammar tree comparison (cf. overall architecture in Fig. 1). While XML documents can be naturally represented as
labeled trees, XML grammars are usually more intricate, due to the various types of constraints on the existence, repeatabil-
ity and alternativeness of XML nodes (e.g., ?, ⁄, + operators in DTDs, MinOccurs, MaxOccurs cardinality operators in XSD, as
well as the And sequence operator and Or alternativeness operator). These would have to be considered to obtain an accurate
similarity measure. Hence, we address the problem of comparing an XML document with an XML grammar as that of: pro-
ducing a tree representation for the XML grammar (comparable to the XML document tree representation) with additional
components to describe cardinality constraints (namely the MinOccurs and MaxOccurs operators), and then applying a tree-
to-tree edit distance function to compute document-to-grammar structural similarly, taking into account XML grammar
constraints. We introduce dedicated grammar transformation rules to simplify grammar expressions (while preserving their

XML gram G
TED

Ci ∈ {C}G

Tree (Edit Distance) Comparison

Sim(D, G)

Tree Representation
Set of

conjunctive
grammar trees

{C}G

XML Document tree representation

Disjunctive
normal form

Max{Sim(D, Ci)}

Ci ∈ {C}G

TOC

Edit operations
costs

Transformation rules

Multi-thread processing
for each Ci ∈ {C}G

XML doc D

One-to-one representation

XML Grammar tree representation

Fig. 1. Simplified activity diagram describing our XML document/grammar comparison framework.

1 Web Service Description Language (WSDL) is a special XML grammar structure that supports the machine-readable description of a Web service’s interface
and the operation it supports, including corresponding SOAP message formats.

J. Tekli et al. / Information Sciences 295 (2015) 258–302 259

expressiveness) representing each grammar as a single tree or a set of trees following its Disjunctive Normal Form (i.e., a set of
grammars free of the Or operator, e.g., declaration ða=ðb; cÞÞ is split into two declarations: a and ðb; cÞ), each being represented
as a separate tree). Then, we introduce a Tree (Edit Distance) Comparison approach to compute (concurrently, using multi-
thread processing), the cost of transforming the XML document tree so that it becomes valid w.r.t. the (set of) XML grammar
tree(s). Minimum Tree edit Operations Costs computed via TOC module, are fed to a Tree Edit Distance (TED) algorithm, which
identifies the minimum distance (maximum similarity) value. We build on TED as an effective and efficient means to com-
pare semi-structured data, e.g., XML documents [18,26,48], which has been proven optimal in structural similarity evalua-
tion, w.r.t. less accurate methods [17]. Also, note that our XML grammar tree model considers complex declarations,
including: (i) repeatable sequence expressions, (ii) repeatable alternative expressions, and (iii) recursive expressions, which
have been disregarded in most existing studies, e.g., [9,32,57]. In addition, our grammar tree model is not limited to context-
free (DTD-like) grammar declarations: where the definition of an element is unique and independent of its position in the
grammar; but can be used with context-sensitive (XSD-based) declarations: where identically labeled elements can have
multiple definitions in different contexts in the grammar.

A prototype system called XS3 (XML Structure and Semantic Similarity) has been developed to evaluate and validate our
approach, conducting a large battery of experiments on large XML datasets, covering: One to One (comparing one document
to one grammar), One to Many (comparing one XML document to a set of grammars and vice versa) and Set comparison
(enabling XML document/grammar classification and ranked retrieval). Results highlight fine-grained (accurate) similarity
scores, produced in typical case polynomial time.

The remainder of the paper is organized as follows. Section 2 presents preliminary notions. Section 3 describes our XML
grammar tree representation model. Our XML document–grammar structure comparison algorithms are developed in Sec-
tion 4. Section 5 presents the experimental tests. Section 6 briefly reviews the state of the art in XML document/grammar
similarity approaches and related problems. Section 7 concludes the paper.

2. Preliminaries

2.1. XML document representation model

Following the Document Object Model (DOM) [77], XML documents represent hierarchically structured information and
can be represented as rooted ordered labeled trees.

Definition 1 (Rooted Ordered Labeled Tree). It is a rooted tree in which the nodes are labeled and ordered. We denote by T½i�
the ith node of T in preorder traversal, T½i�:‘ its label, T½i�:d its depth, and T[i].Deg its out-degree (i.e., the node’s fan-out).
RðTÞ ¼ T[0] designates the root node of tree T. In the remainder of this paper, terms tree and rooted ordered labeled tree are
used interchangeably.

Definition 2 (XML Document Tree). It is a rooted ordered labeled tree in which the nodes represent XML elements/attributes,
labeled following element/attribute tag names. Element nodes are ordered following their order of appearance in the XML
document. Attribute nodes appear as children of their encompassing element nodes, sorted left-to-right by attribute name,
and appearing before sub-element siblings [48,83].

Note that the order of attributes (unlike elements) is irrelevant in native XML [1], yet in the context of XML structure
comparison and processing, attribute nodes are usually ordered (as described above) so as to reduce the complexity of
the similarity evaluation process [48,83]. Element/attribute values can be disregarded (structure-only) or considered (struc-
ture-and-content) in the comparison process following the application scenario (e.g., structure-only comparison is usually
performed when processing heterogeneous documents for clustering/classifying [26,48], whereas data values are generally
considered in XML change management and data integration [25,42]). In this paper, we address heterogeneous XML docu-
ment–grammar comparison, and thus target element/attribute tag names (structure-only comparison) rather than data val-
ues. A sample XML document structure is depicted in Fig. 2a.

Note that hyper-links in XML documents (e.g., XLinks and IDREFs) and other types of nodes such as entities, comments and
notations are usually disregarded in most existing structure comparison methods, e.g., [18,26,30,33,48], since they are not
considered part of the core structure of XML documents.

2.2. XML grammar representation model

An XML grammar (e.g., DTD [16] or XSD [31]) is an entity consisting of a set of expressions describing XML element/attri-
bute structural positions and data-types, and defining the rules elements/attributes adhere to in corresponding document
instances (cf. Fig. 2b). The structural properties of XML grammars are basically captured by regular tree languages [46],
XML grammars being viewed as special regular tree grammars [21,46,47]. In formal language theory [34], a regular tree gram-
mar consists of a set of production rules to transform trees. Formally:

260 J. Tekli et al. / Information Sciences 295 (2015) 258–302

Definition 3 (Regular Tree Grammar). It is represented as a tuple G = (N, T, R, p) where N is a set of non-terminal symbols,2 T
is a set of terminal symbols, R is a set of regular expressions over N [T , and p is a function p : N ! R that associates a non-
terminal symbol n 2 N with a regular expression rn 2 R, producing a set of production rules of the form n! rn. The language
LðGÞ, defined based on grammar G, consists of all the possible trees that can be generated following the set of symbols and
production rules defined in G [46].

Definition 4 (XML Grammar). It can be viewed as a special regular tree grammar [21,46,47], where each symbol underlines
an element e, such that non-terminal symbols underline composite XML element labels, terminal symbols underline simple
(leaf node) element labels or attribute labels, and where the right hand side of their production rules e! re are made of spe-
cial regular expressions re which we identify as structural models (or structural expressions), defined using combinations of
XML grammar constraint operators (instead of traditional regular expression operators). XML grammar constraint operators
specify rules on the existence and repeatability of elements/attributes, namely: cardinality constraints, i.e., ?, ⁄, + in DTDs,
MinOccurs and MaxOccurs in XSDs, and alternativeness constraints: And (sequence) and Or (choice) operators. In addition, spe-
cial production rules are introduced in XML grammar languages (which do not exist in traditional tree languages [34]) to
encode XML element data-type content models (e.g., #PCDATA, String, Decimal, gYear, cf. Fig. 2b).

Note that the DTD language [16] allows context-free-grammars (local tree grammars) [46], which means that the structural
model associated to an given element is independent of its position (i.e., context) in the document, the element being iden-
tified by its label (i.e., for an element e in grammar G, there exists only one possible production rule e! re , i.e., only one
possible structural model re). In contrast, XSD [31] allows context-sensitive grammars (single type tree grammars) [34] where

Fig. 2. Sample XML document and XML grammars.

2 In language theory, terminal symbols are those not assigned to production rules, and thus cannot be broken down to smaller units.

J. Tekli et al. / Information Sciences 295 (2015) 258–302 261

the structural model associated to an element depends on its position in the document (e.g., one might have more than one
production rule sharing the same element e in the grammar, e.g., e! re and e! r0e, following the element’s structural posi-
tion). For further details, a study highlighting the correlation between XML grammar languages (namely DTD and XSD) and
regular tree languages can be found in [46].

2.3. XML document/grammar structural similarity

We identify two kinds of XML document/grammar structure similarity: (i) Boolean comparison, referring to traditional
XML structure validation and (ii) ranked comparison, which we refer to as approximate XML structure validation.

Definition 5 (XML Structure Validation (Boolean Comparison)). Denoted G � D, an XML document (tree) D is deemed valid
w.r.t. an XML (regular tree) grammar G (i.e., D conforms to GÞ, if all element (attribute) tags in D match the element
(attribute) structural models defined in G, considering structural model constraint operators. In other words, the result of the
validation operation would be a Boolean value (true or false) indicating whether the document is valid (or not) w.r.t. the
grammar, which comes down to checking whether the document tree is included in the language defined by the grammar,
i.e., if D 2 LðGÞ.

Definition 6 (Approximate XML Structure Validation (Ranked Comparison)). Denoted Gj�r2½0;1�D, approximate XML structure
validation between an XML document (tree) D and an XML (regular tree) grammar G, with a similarity (relevance) score
r 2 ½0;1� (i.e., D approximately conforms to G with a similarity score r), is defined as the structural comparison (matching)
between the element/attribute tag names in D and the structure models in G, in order to determine the best matches pos-
sible. Corresponding (best) matching scores are compiled into an overall similarity (relevance) score r, highlighting the
structural relatedness between D and G. In other words, similarity score r underlines the degree of membership of D
w.r.t. the grammar (regular tree) language LðGÞ.

Note that in the remainder of the paper, we sometimes use the simple notation: Gj � D to designate that document D
approximately validates grammar G (omitting similarity score r for ease of presentation). Also note that we adopt the con-
cept of similarity as the inverse of a distance function, i.e., a smaller distance value underlining a higher similarity between the
XML document and grammar being compared, and vice versa.

3. XML grammar tree representation

The main idea is to compute a tree representation of the XML grammar in order to apply a tree-to-tree edit distance for
computing the document/grammar similarity. To do so, we aim to unfold the XML (regular tree) grammar G structural
expressions into a set of conjunctive grammar trees {C} of equivalent expressiveness, such that comparing a document tree
D with grammar G would come down to comparing D with {C}. Here, the main difficulties in XML document/grammar tree-
to-tree comparison lie within the disparities in the representation and processing of: (i) repeatable expressions defined via
the And operator (cf. Fig. 3a), (ii) alternative declarations defined via the Or operator (cf. Fig. 3b), and (iii) recursive declara-
tions (which could induce infinite loops of elements, cf. Fig. 3c).

Intuitively, the higher the disparities in document and grammar tree representations, the more complicated it becomes to
perform the tree comparison (matching) task. Hence, we need to have expressive, yet simplified (flattened) XML grammar
trees, which are (more easily) comparable to XML document trees. To do so, we proceed in three phases:

Fig. 3. Disparities in tree representations between XML document and grammar structures, following the grammar (DTD) tree representation model in [10]
(one of the central methods in the literature).

262 J. Tekli et al. / Information Sciences 295 (2015) 258–302

– XML Grammar Transformation Rules: First, we introduce a number of transformation rules to flatten XML grammar dec-
larations, considering the most common XML grammar constraints.

– One-to-One Document/Grammar Representation: Second, we extend transformation rules to further simplify repeatable
and recursive declarations in the grammar w.r.t. each document tree being compared (one-to-one).

– XML Grammar Tree Model based on the Disjunctive Normal Form: Where the resulting simplified (flattened) grammar is
represented as a set of conjunctive grammars made solely of sequence declarations (i.e., elements connected via an And
operator), eliminating alternative declarations (i.e., elements connected via the Or operator), producing grammar tree
structures which are (more easily) comparable to document trees.

The remainder of this section develops each of the phases mentioned above, and provides examples.

3.1. XML grammar transformation rules and properties

An XML grammar transformation rule can be viewed as a binary function that transforms an XML structural expression
into another, thus transforming one grammar into another. Formally:

Definition 7 (XML Grammar Transformation). Let X denote the domain of XML grammar structural expressions (set of all
grammar structural expressions allowed in our study, cf. Definition 4), a transformation rule R is defined as a function
R : X! X, associating an input structural expression re 2 X with an output structural expression r0e 2 X, such that r0e results
from the application of transformation rule R on re, denoted re !R r0e. When applied to all the structural expressions in an
XML grammar G, i.e., 8 re 2 G; re !R r0e, we say that R is applied to G, and transforms it into an output grammar G0 made of the
transformed expressions 8 r0e 2 G0, denoted G!R G0.

Definition 8 (Information Structure Preserving (ISP) property). Given an XML grammar (structural expression in) G and a
grammar transformation rule R applied to G, resulting in G0, i.e., G!R G0, rule R is deemed information structure preserving
if any XML document tree D that conforms to G also conforms to G0 and vice versa, i.e., 8 D;G � D() G0 � D. In other words,
the original and the transformed grammar (structural expressions in) G0 have the same structural expressiveness, denoted
G , G0.

The transformation rules we provide in our study (cf. Table 1) verify the ISP property in most practical cases (with one
exception discussed subsequently), i.e., they maintain the expressiveness of the input grammar’s structural models. They
can be grouped in three main categories: simple expression flattening (Rule 1), repeatable sequence expression flattening (Rule
2) and repeatable alternative expression flattening (Rule 3).

Hereunder, we utilize a DTD-like syntax (even when presenting XSD operators) to ease the presentation. We introduce a
simplified notation for MinOccurs and MaxOccurs, such that an element (expression) e that is associated cardinality
constraints: MinOccurs ¼ x ^MaxOccurs ¼ y, is noted ey

x . Note that an element (expression) e with no associated cardinality
constraints is identified as having a null constraint, which is equivalent to e1

1, i.e., it appears exactly once in the XML docu-
ment. We also highlight the notion of empty structural model (utilized in defining our transformation rules): given an XML
grammar G, an element e 2 G has an empty structural model, noted e!?, (i.e., re �?) when e does not encompass any sub-
elements, and corresponds to a leaf node in the XML document tree instance.

Recall that we only target XML structure in our current study, and hence do not discuss element content data-types and
values. Thus, elements with basic content models (e.g., PCDATA, String, Integer, etc.) will be processed as empty structural
models (e.g., <!ELEMENT dummy (#PCDATA)>, will be processed as production rule: dummy!?).

The transformation rules in Table 1 verify the ISP property (cf. proofs in [73]), to the exception of Rule 1, which verifies the
ISP property in some practical cases, but not in the general case:

Lemma 1.

– Given an XML grammar expression of the form ðAy
xÞ

v
u , transformation Rule 1 complies with the ISP property when any of the

following conditions holds:
– Condition 1: ðx ¼ y ¼ 1) or (u = v = 1) (i.e., ðA1

1Þ
v
u � Av

u ; ðAy
xÞ

1
1 � Ay

xÞ.
– Condition 2: ðx ¼ u ¼ 0) and ðy ¼ 1 or v ¼ 1) (i.e., ðA1

0Þ
v
0 � Av

0 ; ðAy
0Þ

1
0 � Ay

0Þ.
– Condition 3: (x = y) and (u = v) (i.e., ðAx

xÞ
u
u � Ax�u

x�u � ðA
y
yÞ

v
v � Ax�u

x�u � Ay�v
y�v).

Rule 1 may not comply with the ISP property otherwise.
For instance, ISP holds when transforming DTD expressions such as:

ðA�Þ?, which is equivalent to ðA10 Þ
1
0 !R3 A10 ;

ðAþÞ? which is equivalent to ðA11 Þ
1
0 !R3 A10 ;

ðAþÞ� which is equivalent to ðA11 Þ
1
0 !R3 A10 , since Condition 2 of Lemma 1 holds.

J. Tekli et al. / Information Sciences 295 (2015) 258–302 263

Likewise, transforming expression ðA2
2Þ

3

3 !R3 A6
6, ISP holds since Condition 3 of Lemma 1 holds.

However, consider an expression of the form ðA2
2Þ

2

1 !R3 A4
2. Here, the ISP property does not hold since the resulting expres-

sion does not preserve the structural expressiveness of its original counterpart since (neither of Lemma 1’s conditions holds):
the transformed expression underlines that expression A can occur a minimum of 2 times and a maximum of 4 times (i.e., it
accepts 2-to-4 occurrences of element dummy), whereas the original expression underlines that expression A can occur
either 2 times, or 4 times only.

In addition, we extend the repeatable (sequence/alternative) expression flattening rules in Table 1 to handle the special
cases of MinOccurs = ‘Unbounded’ (infinite repetitions) and recursive declarations, as shown in the following.

3.2. One-to-one document/grammar representation

3.2.1. Handling repeatable expressions
As described in Table 1, the simplification of repeatable sequence and alternative expressions, of the form ðA;BÞ1x and

ðAjBÞ1x , following Rule 2 and Rule 3, requires the infinite repetition of flattened expressions (ðA;BÞj ?) and ðA1
0jB

1
0Þ respectively,

in order to verify the ISP property. Yet since our method is one-to-one in comparing one single XML document to one single
XML grammar, repeatable sequence/alternative expressions can be further simplified without loss of expressiveness in the

Table 1
Outline of our XML grammar transformation rules.

N# Rule Type ISP
property

1 ðAy
xÞ

v
u !R1 Ay�v

x�u (general rule, handling both MinOccurs and MaxOccursa) Simple expression flattening Special
case

2.1 Simplified version of Rule 2 handling the MinOccurs constraint: ðA;BÞx !R2:1 ðA;BÞ; . . . ; ðA;BÞwhere
ðA;BÞ is repeated x times

Repeatable sequence
expression flattening (And)

p

2.2 Simplified version of Rule 2 handling the MaxOccurs constraint:
ðA;BÞy !R2:2 ððA;BÞj ?Þ; . . . ; ððA;BÞj ?Þ where (ðA;BÞj ?Þ is repeated y times

2 ðA;BÞyx !R2 ðA;BÞ; . . . ; ðA;BÞ; ððA;BÞj ?Þ; . . . ; ððA;BÞj ?Þ where ðA;BÞ is repeated x times, and
(ðA;BÞj ?Þ is repeated z = y - x times

3.1 Simplified version of Rule 3 handling the MinOccurs constraint: ðAjBÞx !R3:1 ðAjBÞ; . . . ; ðAjBÞ where
ðAjBÞ is repeated x times

Repeatable alternative
expression flattening (Or)

p

3.2 Simplified version of Rule 3 handling the MaxOccurs constraint: ðAjBÞy !R3:2 ðA1
0 jB

1
0Þ; . . . ; ðA1

0 jB
1
0Þ

where ðA1
0 jB

1
0Þ is repeated y times. Note that ðA1

0 jB
1
0Þ underlines that either A or B can occur, or

nothing at all, which is different from (ðA;BÞje) used in Rule 4. b underlining that A and B must
occur together, or nothing at all

3 ðAjBÞyx !R3 ðAjBÞ; . . . ; ðAjBÞ; ðA1
0 jB

1
0Þ; . . . ; ðA1

0 jB
1
0Þ where ðAjBÞ is repeated x number of times, and

ðA1
0 jB

1
0Þ is repeated z=y- x times

Note that A and B designate XML grammar structural expressions.
a Note that the special case of MaxOccurs = ‘‘unbounded’’ is covered in the following section.

Table 2
Outline of one-to-one document/grammar transformation rules.

N# Rule (given an XML document tree DÞ Type ISP
property

2:2þ Simplified version of Rule 2+ handling the MaxOccurs constraint (MinOccurs is handled the same as

in Rule 2.1): ðA;BÞ1!R2:2þððA;BÞj ?Þ; . . . ; ððA;BÞj ?Þ where (ðA;BÞj ?Þ is repeated ceil MaxDegðDÞ
jEj

� �
times,a such as E ¼ ðA;BÞ1 and jEj denotes the expression’s cardinality w.r.t. the main And sequence
operator (e.g., jEj ¼ 2 for E ¼ ðA;BÞ�; jEj ¼ 3 for E ¼ ðA;B;CÞ�Þ

Repeatable sequence
expression flattening

p

2+ ðA;BÞ1x !R2þðA;BÞ; . . . ; ðA;BÞ; ððA;BÞj ?Þ; . . . ; ððA;BÞj ?Þ where ðA;BÞ is repeated x times, whereas

(ðA;BÞj ?Þ is repeated z ¼ ceil MaxDegðDÞ
jEj

� �
� x timesa

3:2þ Simplified version of Rule 3 + handling the MaxOccurs constraint (MinOccurs is handled the same as

in Rule 3.1): ðAjBÞ1!R3:2þðA1
0jB

1
0Þ; . . . ; ðA1

0 jB
1
0Þ where ðA1

0jB
1
0Þ is repeated MaxDegðDÞ times

Repeatable alternative
expression flattening

p

3+ ðA;BÞ1x !R3þðAjBÞ; . . . ; ðAjBÞ; ðA1
0 jB

1
0Þ; . . . ; ðA1

0 jB
1
0Þ where ðAjBÞ is repeated x times, and ðA1

0 jB
1
0Þ is

repeated z ¼ MaxDegðDÞ � x times.
4 A strong-linear recursive expression defined on element e, denoted

eref erec !R4 e1 e2 . . . en�1 en where ei denotes ith nested occurrence of element e,

repeated n ¼ ceil DepthðDÞþ1
NestDepthðeref ;erec ÞG

� �
timesa

Recursive expression
flattening

p

Note that A and B designate XML grammar structural expressions.
a The function ceilðxÞ returns the smallest integer value that is not less than x. The formulas’ proofs are provided in [73].

264 J. Tekli et al. / Information Sciences 295 (2015) 258–302

context of the XML document at hand. This can be done by repeating the flattened expressions: i.e., (ðA;BÞj ?) w.r.t. Rule 2,
and A1

0jB
1
0

� �
w.r.t. Rule 3, only a finite number of times in the transformed grammar, necessary to cover all possible structural

configurations of the concerned XML elements/expressions following the original grammar expression. Hence, we propose
extensions of transformation Rule 2 (namely Rule 2.2) and Rule 3 (namely Rule 3.2) in Table 2.

We note by ðG , G0ÞD a grammar G and a transformed grammar G0 having the same structural expressiveness w.r.t. a par-
ticular document tree D. We say that the rule transforming G into G0 verifies the ISP property w.r.t. document tree D.

Given an XML grammar (structural expression in) G, and an XML document tree D to be compared with G, the application
of Rule 2+ and/or Rule 3+ to grammar (structural expressions in) G, considering document tree D, verifies the ISP property
w.r.t. D (cf. proofs in [73]). More importantly, Rule 2+ and Rule 3+ have allowed to simplify (possibly) infinite size expressions
(originally required to preserve grammar expressiveness in the general case) into expressions which sizes vary linearly w.r.t.
the out-degree of the document tree, MaxDegðDÞ (cf. example in Fig. 4a).

3.2.2. Handling recursive declarations
The problem of handling recursive declarations is comparable to that of handling repeatable expressions such that the

recursive expression would have to be repeated (in certain cases) an infinite number of times in the flattened XML grammar
to preserve structural expressiveness. Yet, since our method is one-to-one in comparing one XML document to one XML
grammar, recursive grammar expressions can be simplified without loss of expressiveness in the context of the XML
document at hand. To do so, we propose to repeat the recursive nesting only a finite number of times, necessary to cover
all possible structural configurations of the concerned XML elements (following the original recursive declaration) in the
XML document tree being compared.

Note that in our current study, we only consider strong-linear recursive declarations, which are the most common in prac-
tice [11,23], and which are inherently easier to process than non-linear recursive expressions. Formally:

Fig. 4. Flattening repeatable and recursive XML declarations.

J. Tekli et al. / Information Sciences 295 (2015) 258–302 265

Definition 9 (Recursive XML Grammar). An XML grammar G is recursive if it contains an element e reachable from itself,
denoted by eref erec , where eref underlines the original element declaration and erec its recursive reference in the grammar
(e.g., in DTD expression <!ELEMENT dummy ða; b, dummy)>, the first dummy element is denoted dummyref whereas the
second is denoted dummyrec).

Definition 10 (Strong-Linear Recursive XML Grammar). An XML grammar G is strong-linear recursive if it is recursive, and if for
each recursive element eref erec in G; erec occurs at most once in the structural expression of its containing element, such as
erec is not repeatable, and where every other element reachable from eref ð8e0 2 G such that eref e0) is non-recursive [11,23]
(cf. Fig. 4b).

Following Rule 4, a strong-linear recursive declaration eref erec is transformed into a chain of non-recursive nestings con-
sisting of the elements comprised within eRef and eRec , repeated a finite number of times linear in the XML document tree
depth (DepthðDÞ) and the nesting depth of the recursive declaration (NestDepthðeRef ; eRecÞ ¼ eRef :d� eRec:d), in order to pre-
serve structural expressiveness w.r.t. the XML document tree. Hence, given an grammar G and an document tree D to be
compared with G, the flattening of strong-linear recursive declarations in G, following Rule 4, produces a transformed gram-
mar G0 which verifies the ISP property w.r.t. D; ðG , G0ÞD (cf. proof in [73]).

A simple example is presented in Fig. 4c. Here, the recursive declaration defined on node Root in grammar G is trans-
formed into a chain of non-recursive nestings consisting of the elements comprised within RootRef and RootRec , repeated

5þ1
2 ¼

� �
3 times w.r.t. XML document tree depth (=5) and the nesting depth of the recursive declaration (=2).

3.3. Applying transformation rules

As discussed above, most of our transformation rules verify the ISP property to the exception of Rule 1 which only con-
ditionally complies with ISP. As a result, the transformation rules (to the exception of Rule 1) verify the Church–Rosser prop-
erty [35,76] and can be applied to an input XML grammar, in any sequence order, producing an output grammar having the
same structural expressiveness (as the input grammar):

Definition 13 (Extended Church–Rosser (ECR) property). Let X be the domain of (structural expressions in) XML grammars,
and q ¼ fRi;Rj;Rk; . . .g be the set of XML grammar (expression) transformation rules defined on X;q has the extended
Church–Rosser property w.r.t. X if 8 G1;G2;G3 2 X, and 8 Ri;Rj 2 q; ½ðG1 !Ri G2Þ ^ ðG1 !Rj G3Þ�) 9G4;G

0
4 2 X, 9Rk;Rl 2 q such

that [ðG2 !Rk G4Þ ^ ðG3 !Rl G04Þ where ðG4 , G04Þ] (the resulting (structural expressions in) grammars G4 and G04 have the
same structural expressiveness (cf. ECR diagram in Fig. 5a).

(a)

(b)

(a) (b)

Fig. 5. Visual description and sample application of sample XML grammar transformations preserving the ECR property.

266 J. Tekli et al. / Information Sciences 295 (2015) 258–302

In other words, given an input XML grammar G, the transformation rules in Table 1 (except the conditional case of Rule 1),
can be applied to G in any sequence order, always resulting in a transformed grammar G0 having the same structural expres-
siveness as its original counterpart ðG , G0Þ. The same carries for our one-to-one document/grammar transformation rules in
Table 2 (cf. proof in [73]).

Consider the example in Fig. 5b. Input grammar declaration root ða; ðbjðc; d; eÞ þ jf Þ?Þ, is transformed, without any loss of
expressiveness, to root ða; ðb1

0jðððc; d; eÞjeÞ; ððc; d; eÞjeÞ; . . .Þjf 1
0Þ, via the application of two different sequences of transformation

rules. In the resulting grammar declaration, all repeatable expressions have been flattened, cardinality constraints being
uniquely associated to single elements (i.e., b1

0 and f 1
0) without loss of expressiveness.

Note that the ISP and ECR properties reflect the correctness and completeness or the transformation rules. Minimality also
seems intuitive since the transformation rules have been specifically defined to deal with exactly each of the common gram-
mar constraints considered in our study, and cannot be further reduced. Nonetheless, the nature of the transformation rules
applied, during a grammar simplification task, might differ depending on the nature of the grammar expressions (as shown
in the example of Fig. 5b). Hence, despite yielding the same end result (the same transformed grammar), the minimality of
the number of transformations applied might not always be guaranteed.

3.4. XML grammar tree model based on the Disjunctive Normal Form

To produce simple grammar tree structures comparable to document trees, we propose to unfold an XML grammar into a
single tree or a set of trees, depending on the occurrences of the And (sequence) and Or (choice) operators. To do so, we intro-
duce the Disjunctive Normal Form of an XML grammar as a set of conjunctive grammars:

Definition 14 (Conjunctive XML Grammar). A grammar G is conjunctive if all structural expressions in G are sequence
expressions, i.e., 8 e! re in G; re is made of elements/expressions connected via the And operator.

Definition 15 (XML Grammar Disjunctive Normal Form (DNF)). The Disjunctive Normal Form (DNF) of an XML grammar G is
the set of conjunctive grammars, DNFðGÞ ¼ fCgG which are equivalent in their expressiveness to G taking into account the
alternative structural expressions in G, i.e., 8 re 2 G such that e! re, where re is made of elements/expressions connected
via the Or operator (cf. Fig. 6).

The disjunctive normal form of an XML grammar verifies by definition the ISP property, such that the grammar’s expres-
siveness (language) is distributed among its constituent conjunctive grammars, LðGÞ ¼ [Ci2fCgG

LðCiÞ, denoted as G , DNFðGÞ.
In other words, given an XML grammar G, and its representation in disjunctive normal form DNFðGÞ ¼ fCgG, any XML doc-
ument tree D that conforms to G, will conform to at least one of its conjunctive grammars, i.e., 8 G � D; 9C 2 DNFðGÞ such
that C � D (the proof carries directly from the definition of DNF).

Note that the number of conjunctive grammars, resulting from the DNF of an input XML grammar, depends on the num-
ber and configurations of Or operators in the input grammar expressions. This may generate a proliferation of conjunctive
grammars depending on the expressiveness of the grammar declarations. In this context, we have conducted a mathematical
analysis covering some of the most common configurations of alternative (Or) expressions, based on surveys of real DTDs and
XSDs in [11,23,38] (some statistics are provided in Section 5.6). Results show that the most common alternative expressions
generate a number of conjunctive grammars linear in the number of Or operators involved (e.g., in Fig. 6, jDNFðGÞj = 1 + num-
ber of Or operators in G = 3), while only certain specific cases (of usually mixed: And–Or expressions) yield polynomial and/or
exponential sized DNF representations (mathematical details are provided in Appendix A).

As a result, we model each resulting conjunctive grammar C 2 DNFðGÞ as a special rooted ordered labeled tree:

Definition 16 (Conjunctive XML Grammar Tree). It is a rooted ordered labeled tree in which nodes represent XML element/
attributes, labeled following element/attribute tag names, and such that each node is assigned the corresponding element/
attribute (MinOccurs/MaxOccurs) cardinality operator. Element nodes are ordered following their order of appearance in the
XML grammar declarations. Attribute nodes appear as children of their encompassing element nodes, sorted left-to-right by
attribute name, and appearing before all sub-element siblings (similarly to XML document trees, cf. Definition 2). Formally,
We model a conjunctive XML grammar tree as C ¼ ðNC ; EC ; LC ;CCC ; gCÞ:

– NC is the set of nodes (i.e., vertices) in C.
– EC # NC � NC is the set of edges underlining the XML element/attribute containment relation.
– LC is the set of labels corresponding to the nodes of C.

Fig. 6. Representing an XML grammar in its disjunctive normal form.

J. Tekli et al. / Information Sciences 295 (2015) 258–302 267

– CCC is the set of cardinality constraints associated to the nodes of C.
– gC is a function gC : NC ! LC � CCC that associates a label l 2 LC and a cardinality constraint cc 2 CCC to each node n 2 NC ,

following element/attribute ordering as described above.

We denote by C½i� the ith node of C in preorder traversal, represented as a doublet (l, cc) where l 2 LC , and cc: 2 CCC are
respectively its label and cardinality constraint, referred to as C½i�:l and C[i] cc (since cardinality constraints amount to
‘MinOccurs’ and ‘MaxOccurs’, we refer to the latter as C[i].MinOccurs and C[i].MaxOccurs, cf. Fig. 7a) C½i�:d represents the node’s
depth in the tree, and C[i].Deg its out-degree. RðCÞ ¼ C½0� designates the root of tree C.

Recall that while the order of attribute children is irrelevant in XML [1], yet we represent the latter as ordered tree nodes
in both our document and grammar tree models (as described above) in order to reduce the complexity of the similarity
computation process,3 while seamlessly affecting the accuracy of the similarity results (since attribute nodes, in both XML doc-
ument and grammar trees, are ordered in the same way).

The algorithm for transforming an XML grammar into its tree representation in provided in Appendix B.

3.5. Running example: sample XML grammar and corresponding tree representation

Consider XSD grammar Paper.xsd in Fig. 7b, to be compared with XML document tree D in Fig. 2a.
The DNF form of Paper.xsd, unfolded in a set of conjunctive trees, is shown in Fig. 7c. Grammar Paper.xsd is first run

through our transformation rules (cf. Fig. 8). Then, the resulting flattened grammar, encompassing Or operators, is repre-
sented as three conjunctive grammar trees (Fig. 7b and c) underlining the three structural configurations that can be
obtained following the different combinations of the Or operators.

Fig. 7. Sample conjunctive grammar tree representations.

3 E.g., most unordered tree distance algorithms are of exponential time, compared to average polynomial ordered tree methods [12].

268 J. Tekli et al. / Information Sciences 295 (2015) 258–302

Note that in addition to handling more expressive XSD constraints (MinOccurs and MaxOccurs), as well as alternative
expressions and recursive declarations, our XML grammar tree model also straightforwardly handles context-sensitive XSD
declarations, where identically labeled elements can have multiple definitions in different contexts in the grammar (as
opposed to context-free DTD declarations). For instance, grammar Paper.xsd contains two elements shaving the same label
Paper: (i) the grammar root node element and (ii) the first child of element url.

Hence with XML documents and grammars represented as rooted ordered labeled trees, the problem of XML document/
grammar structural comparison now comes down to comparing corresponding trees.

4. XML document and grammar tree comparison

As mentioned previously, our approach consists of two main phases: (i) Tree Representation of documents and grammars
as rooted ordered labeled trees (described in the previous section), (ii) and Tree Edit Distance Comparison for computing the
similarity between document and grammar tree structures. The overall algorithm is presented in Fig. 9.

After transforming the XML document and XML grammar into their tree representations (Fig. 9, lines 1–2), the edit dis-
tance between the document tree and each conjunctive grammar tree is computed (lines 3–10).

Definition 17 (Tree Edit Distance (TED)). The edit distance between two trees A and B is defined as the minimum cost of all
edit scripts that transforms A to B, TEDðA;B;CostOpÞ ¼ Min fCostESg, noted as TEDðA;BÞ [12,82].

Hence, the problem of comparing two trees A and B, i.e., evaluating the structural similarity between A and B, is viewed as
the problem of computing corresponding tree edit distance, i.e., minimum cost edit script [82]. In this context, the notion of
edit distance can be adapted to our study as follows:

Definition 18 (TEDXDoc XGram). Given an XML document tree D, a conjunctive grammar tree C, as well as corresponding tree
edit operations costs, denoted CostInsTree=DelTree, and based on the traditional definition of tree edit distance, we define
TEDXDoc XGramðD;C;CostInsTree=DelTreeÞ, noted simply as TEDXDoc XGramðD;CÞ, as the minimum cost of all edit scripts transforming
D into a document tree D0 which is valid w.r.t. C, i.e., C � D0.

The comparison is undertaken using concurrent computing, i.e., multi-threading, evaluating the similarity between the
document tree and each of the conjunctive grammar trees simultaneously (lines 5–9) since they constitute a forest of sep-
arate tree structures (corresponding to the input grammar) following our grammar tree model, without neither interfering
nor relying on each other’s results. Tree edit operations costs are computed (via algorithms TOCXDoc and TOCXGram, line 7, men-
tioned in the following section), and are consequently provided as input to the main tree edit distance algorithm
(TEDXDoc XGram, line 8).4 An atomic edit operation on a tree is either the insertion (addition) of an inner node, the insertion of
a leaf node, the deletion (removal) of an inner node, the deletion of a leaf node, or the replacement (i.e., update) of a node

Fig. 8. Flattening sequence and recursive declarations in grammar Paper.xsd of Fig. 7b.

4 Algorithms TOCXGram and TEDXDoc XGram are developed in the following sections. Algorithm TOCXDoc is provided in [73].

J. Tekli et al. / Information Sciences 295 (2015) 258–302 269

by another one. A complex tree edit operation is a sequence of atomic tree edit operations, treated as one single operation, such
as the insertion/deletion of a whole sub-tree, or the relocation (moving) of a sub-tree from one position into another in its con-
taining tree.5 A sequence of edit operations, called an edit script, ES ¼	 op1; . . . ; opk
 can be applied on a tree T, producing a
resulting tree T 0 by applying the edit operations op1; . . . ; opk in ES to T, following their order of appearance in the script. By asso-
ciating costs, CostOp, with edit operations, the cost of an edit script is defined as the sum of the costs of its component operations
[12,18]: CostES ¼

PjESj
i¼1CostOpi

[19].
Then, the maximum similarity (minimum distance) between the document tree and each conjunctive grammar tree is

evaluated as the overall document/grammar structural similarity value (line 10). One can realize, based on the definition
of TEDXDoc XGram, that our approach allows both:

– Exact document/grammar structure validation (Definition 5), where TEDXDoc XGramðD;CÞ ¼ 0) C � D,
– Approximate document/grammar validation (cf. Definition 6), where TEDXDoc XGramðD;CÞ– 0) Cj�rD, such that r desig-

nates a similarity value which is inversely proportional to TEDXDoc XGramðD;CÞ: the lesser the similarity r, the larger the
distance TEDXDoc XGramðD;CÞ, i.e., the larger the edit script cost needed to transform D into a document tree D0 such that
C � D0.

As for the method to compute TEDXDoc XGramðD;CÞ, we build on a dynamic programming formulation similar to a central
tree edit distance algorithm by Nierman and Jagadish in [48], mainly in terms of the edit operations utilized. However,
we introduce novel recurrences specifically designed to handle XML grammar cardinality constraints (namely MinOccurs
and MaxOccurs).

In the reminder, we first discuss tree edit operations costs in Section 4.1, and subsequently develop the main algorithm
and similarity measure in Sections 4.2 and 4.3. Section 4.4 presents computation examples. Time and space complexity anal-
yses are provided in Section 4.5.

4.1. Tree edit operations costs: TOCXDoc & TOCXGram

Our tree edit distance algorithm employs five edit operations: (i) leaf node insertion, (ii) leaf node deletion, (iii) node update,
(iv) tree insertion and (v) tree deletion adopted from [18,48] (formal definitions are provided in Appendix C). However, a

Fig. 9. Pseudo-code of overall XML document/grammar comparison algorithm.

5 Other complex operations such as sub-tree copying and gluing have been considered [19]. These are similar to tree insertions/deletions respectively, but are
defined in the context of unordered tree comparison. Thus, they will not be further investigated hereunder.

270 J. Tekli et al. / Information Sciences 295 (2015) 258–302

central issue in most edit distance approaches is how to determine edit operations cost values, in order to consequently
determine the edit distance value (i.e., the minimum cost of all possible edit scripts). An intuitive way would be to assign
identical unit costs to single node operations:

CostInsðxÞ ¼ CostDelðxÞ ¼ 1
CostUpdðx; yÞ ¼ CostUpdðx‘; y‘Þ ¼ 1 when x‘–y‘; otherwise; CostUpd ¼ 0;

ð1Þ

underlining that no changes are to be made to the label of node x.
As for tree deletion (insertion) operations, they can be naturally evaluated as the sum of the costs of deleting (inserting)

all individual nodes in the considered sub-tree [26], such as:

CostDel Tree=InsTreeðTÞ ¼
X

CostDel=Ins ðxiÞ
All nodes xi2T

ð2Þ

Following our approach, computing TEDXDoc XGramðD;CÞ comes down to transforming document tree D into D0 to obtain
C � D0. To do so, node/tree deletion operations will be applied on the document tree D to remove those nodes which do
not conform to the grammar, whereas node/tree insertion operations will add grammar nodes to the document tree D in
order to obtain C � D0. Yet, recall that nodes in grammar trees are associated cardinality constraints: MinOccurs and MaxOc-
curs, specifying the allowed number of occurrences corresponding to a (sub-tree rooted at a) given node. Hence, grammar
tree insertion operations costs are updated accordingly in order to evaluate TEDXDoc XGram:

– Case 1 – Optional Grammar Nodes: An optional grammar tree node xi 2 C such as xi MinOccurs ¼ 0;8 xi MaxOccÞ, along
with its sub-tree Ci (i.e., the sub-tree rooted at xi ¼ RðCiÞÞ, do not affect the costs of tree insertion operations applied
on C. In other words, node/sub-tree xi=Ci do not have to be inserted in the document tree D to obtain C � D0, and hence
should not affect edit distance cost.

– Case 2 – Mandatory Grammar Nodes: A mandatory and/or repeatable grammar tree node xi 2 C such as
xi MinOccurs – 08 xiMaxOccursÞ, along with its sub-tree Ci (where RðCiÞ ¼ xiÞ, affect the costs of tree insertion operations
applied on C, considering the minimum number of occurrences required for xiðCiÞ, i.e.,
minfxi MinOccurs; xi MaxOccursg � xi MinOccurs. In other words, when xi=Ci is mandatory/repeatable, then it should
occur (or should be inserted) in the document tree D, a minimum number of times ðxi.MinOccurs) necessary to obtain
C � D0, thus affecting tree insertion operations costs accordingly.

Formally, given a conjunctive XML grammar tree C (with root node RðCÞ of degree kÞ, and its first level sub-trees C1; . . . ;Ck

(i.e., the sub-trees rooted at the children nodes of RðCÞÞ, we compute corresponding tree operations costs as:

CostInsTreeðCÞ ¼ CostInsðRðCÞÞ þ
X

CostInsTreeðCiÞ � RðCiÞ:MinOcc
All first-level sub-trees Ci of C

ð3Þ

where RðCiÞ:MinOccurs underlines the MinOccurs constraints associated to the root of Ci.
The algorithm for computing insert tree operations costs is provided in Fig. 10. Here, we only develop XML grammar tree

processing, TOCXGram, and omit the pseudo-code for XML document tree processing, TOCXDoc (computing tree deletion oper-
ations costs) since the latter is straightforward following formula 2. Algorithm TOCXGram goes through all sub-trees of the con-
junctive XML grammar tree, computing grammar sub-tree insertion operations costs following Formula 3 (Fig. 10, lines 9–
12), taking into account corresponding sub-tree node MinOccurs.

Consider sample grammar tree C in Fig. 11. Tree insertion operations costs following TOCXGram are computed as:

– CostInsTreeðC1Þ ¼ CostInsðRðC1ÞÞ þ ½CostInsðx2Þ þ CostInsðx3Þ � 0þ CostInsðx4Þ� ¼ 3.
– CostInsTreeðC2Þ ¼ CostInsðRðC2ÞÞ þ ½CostInsðx6Þ þ CostInsðx7Þ� ¼ 3.
– CostInsTreeðCÞ ¼ CostInsðRðCÞÞ þ ½CostInsTreeðC1Þ � 2þ CostInsTreeðC2Þ � 0� ¼ 7.

Here, the cost of inserting sub-tree C1 rooted at the node of label Authorðx1Þ is equal to 3. This is because node
x3:MinOcc ¼ 0, which means that the occurrence of node MiddleName is not required (in the transformed document tree
for it to conform to the grammar). In turn, the cost of inserting tree C (as a whole) is equal to 7, since its first-level sub-tree
C1 is required to appear a minimum number of 2 times in the transformed document tree ðRðC1Þ:MinOccurs ¼
x1MinOccurs ¼ 2, yielding CostDelTreeðC1Þ � 2), whereas sub-tree C2 is optional (yielding CostDelTreeðC2Þ � 0).

Note that both MinOccurs and MaxOccurs constraints are used in our main tree edit distance algorithm, to verify whether
the minimum/maximum allowed number of occurrences for a given grammar node (sub-tree) are violated in the document
tree being compared, so as to allocate tree edit operations accordingly (described in the following section).

In this study, we restrict our presentation to the basic cost schemes above, since we focus on the structural properties of
XML documents and grammars (i.e., considering parent/child relationships and ordering among XML elements, identified by
their labels). The investigation of alternative tree operations cost models (considering for instance the semantic relatedness
between document and grammar node labels given a semantic reference such as WordNet [45], Wikipedia [84], or Google
[37]) will be addressed in a dedicated upcoming study.

J. Tekli et al. / Information Sciences 295 (2015) 258–302 271

4.2. Tree Edit Distance (TED) algorithm: TEDXDoc XGram

As briefly mentioned previously, we propose a novel tree edit distance method to consider the structural properties of
XML document trees and conjunctive grammar trees (inspired by existing tree edit distance proposals, namely [26,48]).
Hereunder, we first describe the overall process of our main algorithm. Then, we present the Traditional TED Recurrence for-
mulation as the basic foundation of our algorithm, and introduce our Extended TED Recurrence formulation taking into
account the Minoccurs and MaxOccurs constraints. We then develop computation examples.

4.2.1. Main algorithm
The overall algorithm TEDXDoc XGram for computing the edit distance between an XML document tree D and a conjunctive

grammar tree C is shown in Fig. 12. It builds on an Extended TED Recurrence to identify the minimum cost edit script (i.e., the
minimum distance, thus maximum similarity) transforming D into D0 to obtain C � D0.

In short, algorithm TEDXDoc XGram recursively goes through the sub-trees of both XML document and XML grammar tree
structures, combining node update, tree insertion and tree deletion operations so as to identify the sequence of operations
(edit script) of minimal cost. The insertion/deletion of single nodes is undertaken via tree insertion and tree deletion opera-
tions applied on leaf node sub-trees. In other words, leaf node insertion/deletion operations do not contribute directly to the
edit distance algorithm, but are utilized in computing tree insertion and tree deletion operations costs (cf. TOCXGram in
Fig. 10).

First, the update operation is applied to the roots of the sub-trees being compared (relabeling sub-tree root nodes, Fig. 12,
line 6). Then, tree deletion operations are applied to corresponding document first-level sub-trees (line 7), and tree insertion
operations are applied on grammar first-level sub-trees taking into account the MinOccurs constraint (line 8), in order to con-
sider the minimum number of occurrences required in the document tree so as to conform to the grammar tree (as discussed
with sub-tree operations costs in Section 4.1). Consequently, the edit distance process TEDXDoc XGram is recursively called once
for each pair of sub-trees Di and Cj occurring at the same structural level (depth) in the document and grammar trees being
compared. This is undertaken following our Extended TED Recurrence formula (lines 11–24) described in detail the following

Fig. 10. Algorithm TOCXGram for computing XML grammar sub-tree operations costs.

Fig. 11. Sample conjunctive grammar tree C (extracted from first grammar tree in Fig. 7c).

272 J. Tekli et al. / Information Sciences 295 (2015) 258–302

section. The minimum distance between all sub-trees (first-level, second-level, and so on) of the document tree D and gram-
mar tree C is finally returned (line 28). When the grammar tree is free of constraint operators (i.e., when all elements in C are
associated default constraints MinOccurs = MaxOccurs = 1), our algorithm simplifies to a classical TED process (namely the
algorithm in [48]).

4.2.2. TED recurrences
TEDXDoc XGramðD;CÞ computes, as sub-routines, the edit distance between pairs of first-level sub-trees Di 2 D and Ci 2 C (i.e.,

the sub-trees rooted at the children nodes of RðDÞ and RðCÞ respectively), noted TEDXDoc XGramðDi;CjÞ. We use left-to-right
numbering to identify first-level sub-tree order. We denote by Dist[i, j] the edit distance matrix keeping track of the edit dis-
tance between document tree D with only its i first-level sub-trees, identified as partial document tree Dhii, and grammar tree
C with only its j first-level sub-trees, identified as partial grammar tree Chji.

Hence, a traditional tree edit recurrence adopted from existing approaches [26,48] can be represented as:
Traditional TED Recurrence. Consider the pair of first-level sub-trees Di 2 D and Ci 2 C. Then:

Dist½i; j� ¼min
a ¼ Dist½i� 1; j� þ CostDelTreeðDiÞ
b ¼ Dist½i; j� 1� þ CostInsTreeðCjÞ
c ¼ Dist½i� 1; j� 1� þ TEDXDoc XGramðDi;CjÞ

8><
>:

Fig. 12. Algorithm TEDXDoc_XGram for comparing an XML document tree and a conjunctive grammar tree.

J. Tekli et al. / Information Sciences 295 (2015) 258–302 273

Proof. Our goal is to find the minimum cost script transforming Dhii into a partial document tree Dhii0 such that Chji � Dhii0.
This can be computed in three ways:

– Having Dist[i� 1; j], we spend a = Dist[i� 1; j� þ CostDelTreeðDiÞ, deleting Di from Dhii.
– Having Dist[i; j� 1�, we spend b ¼ Dist½i; j� 1� þ CostInsTreeðCjÞ, inserting one occurrence of Cj into Dhii.
– Having Dist[i� 1; j� 1�, we spend c ¼ Dist½i� 1; j� 1� þ TEDXDoc XGramðDi;CjÞ, transforming Di into D0i such that C0j � D0i.

Since these three cases express all possible tree edit paths yielding Dist[i; j], we keep the minimum from these costs. h

Proof description. Traditional TED Recurrence carries from Nierman and Jagadish’s approach [48]. The minimum cost
script transforming partial tree Dhii into Dhii0 in order to have Chji � Dhii0 can be computed in three ways:

– Having Dist[i � 1, j] and the cost of deleting sub-tree Di, we need to spend at least Dist½i� 1; j� þ CostDelTreeðDiÞ to transform
partial document tree Dhii into Dhii0 in order to obtain Chji � Dhii0.

– Having Dist½i; j� 1� and the cost of inserting sub-tree Cj, we need to spend at least Dist½i; j� 1� þ CostInsTreeðCjÞ to transform
Dhii into Dhii0 to obtain Chji � Dhii0.

– Having Dist½i� 1; j� 1�, we need to spend at least Dist½i� 1; j� 1� þ TEDXDoc XGramðDi;CjÞ to transform Dhii into Dhii0 to
obtain Chji � Dhii0.

Since the three cases above express all possible tree edit paths following the set of edit operations considered in our
approach, hence we keep in Dist[i; j] the minimum from the three costs a; b, and c, i.e., the minimum attainable distance
between Dhii and Chji allowing to transform Dhii into Dhii0 such that Chji � Dhii0.

TEDXDoc XGram is recursively applied on all sub-trees in D and C (first-level, second-level, so on, cf. c computation, following
[48]), hence identifying the minimum cost scrip transforming D into a document tree D0 such that C � D0. In short, the Tra-
ditional TED Recurrence underlines the most basic case where the conjunctive grammar tree C is virtually free of cardinality
constraint operators (i.e., when all elements in C are associated default constraints MinOccurs = MaxOccurs = 1), such that all
elements (sub-trees) are mandatory and should appear exactly once.

Hence, we propose an Extended TED Recurrence to specifically consider the MinOccurs and MaxOccurs cardinality con-
straints when comparing document and grammar trees. To do so, we keep track of the number of occurrences NbOcc of
the document sub-trees corresponding to each grammar sub-tree in the conjunctive grammar at hand (which will allow
us to verify whether the corresponding grammar sub-tree MinOccurs/MaxOccurs constraint has been met, or violated, and
if so to what extent). Sub-tree occurrences in the document tree can be exact (conforming, �Þ or approximate (similar
enough, j �Þ to the grammar sub-tree.

Consider the example in Fig. 13, comprising of conjunctive grammar tree C and document trees D; E, and F. Here, one can
realize that grammar sub-tree C2 occurs three times in document tree D, where C2 � fD1;D2;D3g. Also, grammar sub-tree C2

occurs once in document tree E, where C2 � E2. Yet, sub-tree C2 occurs 4 times in document tree F, where C2 � fF2; F3} whereas
C2j � fF4; F5g. Note that we can computationally decide whether a document sub-tree Di consists of an exact ð�Þ or approxi-
mate ðj �Þ occurrence of a grammar sub-tree Cj based on the corresponding edit distance score TEDXDoc XGramðDi;CjÞ (e.g.,
TEDXDoc XGramðDi;CjÞ ¼ 0 is obtained when Cj � Di, whereas TEDXDoc XGramðDi;CjÞ – 0 is obtained when Cjj � DiÞ.

Hence, based on the Traditional TED Recurrence, and the notion of number of occurrences: NbOcc, we can effectively con-
sider the MinOccurs and MaxOccurs constraints in our tree edit distance computations as follows:

Extended TED Recurrence (TED+). Consider the pair of first-level sub-trees Di 2 D and Ci 2 C. Let NbOcc[j] be a special
counter keeping track of the number of occurrences (exact/approximate matches) of grammar sub-tree Cj in the document
tree D. Then, considering RðCiÞ.MinOccurs and RðCiÞ.MaxOccurs:

Dist½i; j� ¼min

a ¼ Dist½i� 1; j� þ CostDelTreeðDiÞ
b ¼ Dist½i; j� 1� þ CostInsTreeðCjÞ � RðCjÞ:MinOccurs

c ¼
c1 ifðNbOcc½j� < RðCjÞ:MinOccursÞ ==Condition1 : ConsideringMinOccursconstraint
c2 else ifðNbOcc½j� < RðCjÞ:MaxOccursÞ ==Condition2 : ConsideringMaxOccursconstraint
c3 else ==TraditionalTEDcomputation

8<
:

8>>>>><
>>>>>:

where

c1 ¼ Dist½i� NbOcc½j�; j� 1� þ
XNbOcc½j��1

n¼0

TEDXDoc XGramðDi�n;CjÞ þ CostInsTreeðCjÞ � ðRðCjÞ:MinOccurs� NbOcc½j�Þ

c2 ¼ Dist½i� NbOcc½j�; j� 1� þ
XNbOcc½j��1

n¼0

TEDXDoc XGramðDi�n;CjÞ

c3 ¼ Dist½i� 1; j� 1� þ TEDXDoc XGramðDi;CjÞ

274 J. Tekli et al. / Information Sciences 295 (2015) 258–302

Proof. Our goal is to find the minimum cost edit script transforming Dhii into Dhii0 to obtain Chji � Dhii0, given that a
grammar sub-tree Ci 2 Chji is required to appear a minimum number of times ðRðCjÞ:MinOccursÞ and a maximum number of
times ðRðCjÞ:MaxOccursÞ in Dhii0. This can be computed in three ways:

– Having Dist[i� 1; j], we spend a ¼ Dist½i� 1; j� þ CostDelTreeðDiÞ, deleting Di from Dhii.
– Having Dist[i; j� 1], we spend b ¼ Dist½i; j� 1� þ CostInsTreeðCjÞ � RðCjÞ:MinOccurs, inserting sub-tree Cj into Dhii as many

times as required by the corresponding RðCjÞ.MinOccurs constraint.
– Having Dist[i � 1, j � 1], we need to account for three alternative cost factors:
� Having NbOcc[j] occurrences of Cj in Dhii, such that NbOcc½j� 2 ½RðCjÞ:MinOccurs;RðCjÞ:MaxOccursÞ� (Condition 2) we

compute the edit distance between all sub-trees in Dhii which match Cj, starting from Di�NbOcc½j� (first match) to Di (last
match):

c2 ¼ Dist½i� NbOcc½j�; j� 1� þ
XNbOcc½j��1

n¼0

TEDXDoc XGramðDi�n;CjÞ

� Having NbOcc½j� < RðCjÞ:MinOccurs (Condition 1) we add to the costs of the NbOcc[j] existing occurrences of Cj (i.e., c2Þ
the cost of additional sub-tree occurrences required to occur in Dhii in order to fulfill Cj’s MinOccurs constraint:
c1 ¼ c2 þ CostInsTreeðCjÞ� (RðCjÞ:MinOccurs – NbOcc[j]).

� Otherwise, when NbOcc½j� > RðCjÞ:MaxOccurs, then we apply the Traditional TED Recurrence factor c3, such that every
additional Cj occurrence is treated as any regular sub-tree occurrence.

Since these three cases express all possible tree edit paths yielding Dist½i; j�, we keep the minimum from these costs. h

Proof description. Our goal is to find the minimum cost edit script transforming partial document tree Dhii into Dhii0 to
obtain Chji � Dhii0, considering that a grammar (element) sub-tree Ci 2 Chji is required to appear a minimum number of
times ðRðCjÞ:MinOccursÞ and a maximum number of times ðRðCjÞ:MaxOccursÞ in the transformed partial document tree
Dhii0 for it to conform to Chji. This can be computed in three ways:

– Having the value Dist[i � 1, j] and the cost of (deleting) sub-tree Di, we need to spend at least Dist½i� 1; j� þ CostDelTreeðDiÞ to
transform the partial document tree Dhii into Dhii0 to obtain Chji � Dhii0. This carries from the Traditional TED Recurrence.

– Having the value Dist½i; j� 1� and the cost of (inserting) sub-tree Cj, we need to spend at least
Dist½i; j� 1� þ CostInsTreeðCjÞ � RðCjÞ:MinOccurs to transform Dhii into Dhii0 to obtain Chji � Dhii0. This requires inserting
sub-tree Cj into Dhii, as many times as required by the corresponding RðCjÞ:MinOccurs constraint.

– Having the value Dist[i � 1, j � 1], we need to account for two cost factors: the costs of (i) existing sub-tree occurrences of Cj

(sub-trees matching Cj which already appear in the partial document tree) and (ii) remaining sub-tree occurrences of Cj

(sub-trees which are still required to appear – which need to be inserted – in the partial document tree) to fulfill Cj’s Min-
Occurs and MaxOccurs’ constraints:

� Existing sub-tree occurrences cost: It is only applied when NbOcc½j� < RðCjÞ:MinOccurs, i.e., when the number of sub-trees
matching Cj in the partial document tree, does not yet fulfill RðCjÞ:MinOccurs (cf. c2Þ. Having NbOcc[j] existing occurrences
(exact/approximate match candidates) of sub-tree Cj in partial document tree Dhii, the similarity score between each of
the (exact/approximate) match candidates on one hand, and Cj on the other hand, need to be computed, in order to iden-
tify the overall cost of these existing sub-tree occurrences. To do so, we need to start from Dist[i � NbOcc[j], j � 1], the dis-
tance value at the last position (in the edit distance table) preceding the occurrence of the first document sub-tree match
candidate with Cj, i.e., Di�NbOcc½j�, and then spend at least

PNbOcc½j��1
n¼0 TEDXDoc XGramðDi�n;CjÞ, covering the sum of the tree edit

distance costs for comparing grammar sub-tree Cj with all consecutive first-level document sub-trees in Dhii ranging from
sub-tree Di�NbOcc½j� (the first exact/approximate match candidate of grammar sub-tree Cj in the document tree) to Di (the
last exact/approximate match candidate of Cj in the document tree).

Fig. 13. Sample document and grammar trees.

J. Tekli et al. / Information Sciences 295 (2015) 258–302 275

Example: Consider computing the edit distance between document tree F and grammar tree C from Fig. 13. Evaluating the
c factor at Dist[4, 2], considering grammar sub-tree C2, and having NbOcc[2] = 3 (given that 3 possible candidate sub-trees
matching C2 have been identified: F2; F3, and F4Þ yields: Dist½0;1� þ TEDXDoc XGramðF2;C2Þ þ TEDXDoc XGramðF3;C2Þþ
TEDXDoc XGramðF4;C2Þ ¼ 0þ 0þ 0þ 1. This means that C2 � fF2; F3g such that their occurrences in partial tree Dh3i do
not entail any additional cost, whereas C2j � F4 requiring a transformation of cost = 1 (i.e., the insertion of node e in
F4Þ for partial document tree Fh4i to become valid w.r.t. grammar tree Ch2i, i.e., Ch2i � Fh4i0 (cf. graphical presentation
in Fig. 14c, and more detailed computation examples in the following section).
� Remaining sub-tree occurrences cost: It is only applied when NbOcc½j� 2 ½RðCjÞ:MinOccurs;RðCjÞ:MaxOccursÞ�, i.e., when

the number of sub-trees matching Cj in the partial document tree, remains within Cj’s constraints margin (cf. c1Þ. Here,
in addition to the edit distance costs of the NbOcc[j] existing occurrences (exact/approximate matches) of sub-tree Cj in
the partial document tree Dhii, we need to account for the cost of sub-tree occurrences (corresponding to CjÞ which have
not yet been inserted in Dhii but which are required to occur in Dhii, to fulfill the MinOccurs constraint associated to Cj, in
order to obtain Chji � Dhii0. This is mathematically concretized in the edit distance formula by adding:
CostInsTreeðCjÞ � ðRðCjÞ:MinOccurs� NbOcc½j�Þ, covering the cost of inserting sub-tree Cj multiplied by the minimum number
of occurrences needed RðCjÞ:MinOccurs, minus the number of already existing occurrences NbOcc[j] of exact/approximate
matches of Cj in the partial document tree Dhii. The remaining sub-tree occurrences factor is (naturally) disregarded when
RðCjÞ:MinOccurs ¼ 0, such that no additional occurrences whatsoever are required in Dhii since Chji � Dhii.
� Otherwise, when the number of sub-trees matching Cj in the partial document sub-tree surpasses Cj’s (maximum) car-

dinality constraints, i.e., NbOcc½j� > RðCjÞ:MaxOccurs, then we simply apply the Traditional TED Recurrence factor (c3Þ, such
that every additional Cj occurrence is treated as any regular sub-tree occurrence in the partial document sub-tree.

Since the three cases above express all possible tree edit paths following the set of edit operations considered in our
approach, consequently we keep in Dist[i; j] the minimum from the three costs a; b, and c, i.e., the minimum attainable dis-
tance between Dhii and Chji allowing to transform Dhii into Dhii0 such that Chji � Dhii0.

Fig. 14. Sample Extended TED Recurrence (TED+) computations (to simplify, we note TEDXDoc_XGram(A, B) as TED(A, B)).

276 J. Tekli et al. / Information Sciences 295 (2015) 258–302

4.2.3. Integrating TED+ in the main algorithm
When utilized in our main TEDXDoc�XGram algorithm (Fig. 12), the Extended TED Recurrence (TED+) is recursively called for

every pair of sub-trees Di and Cj in the document and grammar trees being compared (Fig. 12, lines 11–24). Here, the number
of occurrences of document sub-trees evaluated as potential exact/approximate match candidates of grammar sub-tree
Cj 2 C, noted NbOcc[j], is compared with corresponding RðCjÞ:MinOccurs and RðCjÞ:MaxOccurs constraints (lines 15 and 17)
in order to decide on the tree edit distance recurrence to execute (c1; c2, or c3Þ. Then, the minimum edit distance between
partial document tree Dhii and partial grammar tree Chji, highlighting the minimum cost scrip necessary to transform Dhii
into Dhii0 to obtain Chji � Dhii0, is kept in the distance matrix Dist[i; j].

Counter NbOcc[j], keeping track of the number of occurrences of document sub-trees Di matching each grammar sub-tree
Cj, is incremented when processing every Di initially considered as a potential new (exact/approximate) match candidate for
Cj (line 12). Then, NbOcc[j]’s new value is preserved whenever the edit distance cost Dist[Di;Cj] = Min(a; b; cÞ ¼ c, i.e., when-
ever the cost of the edit script leading to TEDXDoc XGramðDi;CjÞ (applying the c factor), is lesser than those of: (i) deleting Di

(applying the a factor) and (ii) inserting Cj (applying the b factor). This means that the cheapest cost for transforming partial
tree Dhii in order to obtain Chji � Dhii0, is through computing TEDXDoc XGramðDi;CjÞ (i.e., through the c factor), rather than delet-
ing Di or inserting Cj (applying the a or b factors), which in turn means (following the logic of edit distance) that Di and Cj

match; in other words that the potential match candidate Di is actually a confirmed match for Cj (either an exact match
Cj � Di, when c = 0, or an approximate match Cjj � Di, when c–0). Otherwise, when the minimum distance
Dist[Di;Cj] = Min(a; b; cÞ–c, then the NbOcc[j] is reinitialized (line 25), hence ignoring Di as a potential match for Cj.

At the end, the algorithm returns the minimum distance between all sub-trees (first-level, second-level, and so on) of the
document tree D and grammar tree C (line 28), reflecting the minimum cost scrip necessary to transform D into D0 to obtain
C � D0. The minimum distant value is then used to compute XML document/grammar similarity.

4.3. Similarity measure

As indicated previously, we adopt the concept of similarity as the inverse of a distance function (a smaller distance value
underlining a higher similarity degree). This minimal distance is computed using our TEDXDoc XGram algorithm, such that our
document/grammar similarity measure is defined as follows:

SimXDoc XGramðD;CÞ ¼
1

1þ TEDXDoc XGramðD;CÞ
2 ½0;1� ð4Þ

When the XML grammar is represented as a set of conjunctive grammar trees G ¼ fCgG, the maximum similarity (i.e.,
minimum edit distance) between the XML document tree and the set of conjunctive grammar trees is retained:

SimXDoc XGramðD;GÞ ¼ Max
Ci2fCgG

1
1þ TEDXDoc XGramðD; CiÞ

� �
2 ½0;1� ð5Þ

Our similarity measure in formula (5) is consistent with the formal definition of similarity, as a (semi-) metric function
satisfying (in part) the metric properties of Reflexivity, Minimality, Symmetricity and Triangular Inequality (cf. details in
Appendix D). Our measure is a semi-metric (and not a full metric) since: (i) it does not allow comparing two grammars
(i.e., SimðG1;G2ÞÞ, nor (ii) using a grammar as the first parameter of the similarity measure (SimðG;DÞ is not allowed, i.e.,
we cannot transform grammar G in order to obtain G0 � D. We do it the other way around: transforming D to obtain
G � D0Þ. Comparing/transforming grammars is out of the scope of this study.

4.4. Computation examples

4.4.1. TED+ computations
Consider the edit distance computations in Fig. 14. Fig. 14a depicts the computation of Dist[1, 1] between partial docu-

ment tree Eh1i and partial grammar tree Ch1i. Computing the a factor consists of computing the cost of deleting sub-tree E1

(consisting of leaf node a), i.e., cost = 1. Computing the b factor consists in inserting sub-tree C1 (made of grammar node aÞ
with RðC1Þ:MinOccurs ¼ 0, hence its cost = 0, indicating that C1 is optional and is not required to appear in the partial docu-
ment tree Dh1i since Ch1i � Dh1i. Computing the c factor consists in evaluating the edit distance between document sub-tree
E1, the (only existing) match candidate with grammar sub-tree C2. Since NbOcc½2� ¼ 1 2 ½RðC1Þ:MinOccurs ¼ 0;RðC1Þ:
MaxOccurs ¼ 1�, thus c2 is applied. This yields cost = 0, indicating that E1 is an exact match of C1;C1 � E1. Hence,
Dist½1;1� ¼ Minða; b; cÞ ¼ c ¼ 0, indicating that no changes need to be made to Eh1i since Ch1i � Eh1i.

Similar examples in Fig. 14b and c are discussed in detail in Appendix E. To summarize, the example in Fig. 14b depicts
the computation of Dist½1;2� between partial document tree Eh1i and Ch2i, where Dist½1;2� ¼ Minða; b; cÞ ¼ c ¼ 3, indicating
that the minimum (cost) amount of change required to transform Eh1i is to insert an additional occurrence of C2 in Eh1i, in
order to obtain Ch2i � Eh1i0. The example in Fig. 14c depicts the computation of Dist½4;2� between partial document tree Fh4i
and partial grammar tree Ch2i, where Dist½42� ¼ Minða; b; cÞ ¼ c ¼ 1, indicating that the minimum (cost) amount of change
required to transform Fh4i is to insert node e under sub-tree F4, in order to obtain Ch2i � Fh4i0.

J. Tekli et al. / Information Sciences 295 (2015) 258–302 277

4.4.2. Complete TEDXDoc XGram matrix computations
Fig. 15 shows the complete edit distance matrixes (with all recurrences) when running our TEDXDoc XGram algorithm to

compare document trees D; E; F with grammar C of Fig. 13.
For instance, the first line of the distance matrix in Fig. 15a (likewise in Fig. 15b and c), i.e., Dist[0][], corresponds to the

sum of the costs of inserting every node of the grammar tree C1. Likewise, the first column, Dist[][0], underlines the sum of
the costs of deleting every node of XML tree D. Consequently, the algorithm identifies the combination of tree insertion/dele-
tion operations of minimum cost, following our Extended TED Recurrence, in populating the remainder of the matrix, such as
TEDXDoc_XGramðD; CÞ ¼ Dist½jSj�½jCj� underlines the final distance value.

The matrix in Fig. 15a shows the edit distance result when comparing document tree D to grammar tree C, yielding
TEDXDoc XGramðD;CÞ ¼ 0) SimXDoc XGramðD; CÞ ¼ 1=ð1þ TEDXDoc XGramðD;CÞÞ ¼ 1) C � D. The minimum cost edit script is high-
lighted in Fig. 15a. Dist½0;0� ¼ CostUpdðRðDÞ;RðCÞÞ ¼ 0, since the document/grammar tree roots match:
RðDÞ ¼ RðCÞ:Dist½0;1� ¼ Dist½0; 0� þ CostInsTreeðC1Þ � RðC1Þ:MinOccurs ¼ 0, underlining that C1 is optional and is not required
to appear in the document tree. Dist½3;2� ¼Dist½0;1�þTEDXDoc XGramðD1;C2ÞþTEDXDoc XGramðD2;C2ÞþTEDXDoc XGramðD3;C2Þ¼0
since C2 � fD1;D2;D3g, such that NbOcc½2� ¼ RðC3Þ:MaxOccurs ¼ 3 (3 occurrences of C2 are allowed to appear, and have actu-
ally appeared in the document tree). Dist½4;3� ¼ Dist½3;2� þ TEDXDoc XGramðD4;C3Þ � CostUpdðRðD4Þ‘;RðC3Þ‘Þ ¼ 0 since C3 � D4,
having RðC3Þ:MinOccurs ¼ RðC3Þ:MaxOccurs ¼ 1 (i.e., one and only one occurrence of C3 is required to appear in the document
tree). Hence, no changes need to be made to D since C � D.

Fig. 15. Computing edit distance between XML documents D, E and F and grammar tree C in Fig. 13.

278 J. Tekli et al. / Information Sciences 295 (2015) 258–302

Similar examples in Fig. 15b and c shows the edit distance result when comparing document trees E and F (respectively)
with grammar tree C, and are discussed in detail in Appendix E. To summarize Fig. 15b shows TEDXDoc XGramðE;CÞ
¼ 3) SimXDoc XGramðE;CÞ ¼ 1=ð1þ TEDXDoc XGramðE;CÞ ¼ 0:25) Cj�0:25E highlighting the cost of inserting one additional
occurrence of sub-tree C2 into document tree E, to obtain C � E0. Similarly, Fig. 15a shows
TEDXDoc XGramðF;CÞ ¼ 4) SimXDoc XGramðF;CÞ ¼ 1=ð1þ TEDXDoc XGramðF;CÞ ¼ 0:2) Cj�0:2F, which underlines the costs of (i)
inserting node e in sub-tree F4 and (ii) deleting sub-tree F5 from document tree F, in order to obtain C � F 0. This means that
F requires more costly transformations to become valid w.r.t. grammar tree C, and thus is less similar to grammar tree C in
comparison with document tree E.

4.4.3. Running example
To sum up, we present the result of comparing sample XML document Paper.xml with XML grammar Paper.xsd in Fig. 16

(reported from Figs. 2a and 7c respectively, for ease of presentation). Paper.xml is represented as XML document tree D fol-
lowing our XML data tree model (Fig. 16a), and Paper.xsd, designated as G, is represented as a set of conjunctive grammar
trees {CI;CII;CIII}. TEDXDoc XGram computations between D and {CI;CII;CIII} yield:

– TEDXDoc XGramðD;CIÞ ¼ TEDXDoc XGramðD2;CI3 Þ þ CostInsTreeðCI3 Þ � ðRðCI3 Þ:MinOccurs� NbOcc½3�Þ ¼ 1þ 3 ¼ 4, which comes
down to: (i) the cost of transforming D2, as an approximate match candidate of sub-tree CI3, in order to obtain
CI3 � D02 � CostUpdðRðD2Þk;RðCI3 ÞkÞ ¼ 1, updating node label Publisher into Author) and (ii) the cost of inserting one addi-
tional occurrence of CI3 (made of nodes Author, FirstName and LastName, i.e., CostInsTreeðCI3 Þ ¼ 3), since D2 is the only match
of CI3 in D(NbOcc[2] = 1) whereas the minimum number of occurrences of CI3 required to appear in document tree D is
RðCI3 Þ:MinOccurs ¼ 2, transforming D into D0 in order to obtain CI � D0.

– TEDXDoc XGramðD;CIIÞ ¼ CostDelTreeðD21Þ þ CostDelTreeðD22Þ ¼ 2, which corresponds to the sum of the costs of deleting (sub-
tree) nodes of labels FirstName and LastName from document tree D, to obtain CII � D0.

– TEDXDoc XGramðD;CIIIÞ ¼ 0, underlining that changes need to be made to document D, since we already have CIII � D (edit
distance matrixes when comparing D with CI;CII , and CIII can be found in Appendix E).

Hence, the structural similarity between XML document Paper.xml and XML grammar Paper.xsd is computed as:

SimXDoc XGramðD;GÞ ¼ MaxCi2fCII ;CII ;CIIIg
1

1þ TEDXDoc XGramðD;CiÞ

� �
¼ 1

1þ TEDXDoc XGramðD;CIIIÞ
¼ 1) Gj ¼ D

In other words, a maximum similarity value (1% or 100%), indicates that XML document Paper.xml is structurally valid
w.r.t. grammar Paper.xsd, and that no transformations need to be applied to the corresponding document tree since it already
conforms to the grammar tree representation.

4.5. Complexity analysis

Let jDj be the cardinality of the XML document tree D considered, and jGj the number of nodes (elements/attributes) in
the XML grammar, NG ¼ jfCgGj the number of conjunctive grammars making up the disjunctive normal form of G, and jCGj the
cardinality of the largest conjunctive grammar tree corresponding to G. Our XML document and grammar structure compar-
ison approach is of O(jDj + jij + ðNG � jDj � jCGj)) time. It simplifies to O(jDj � jGj) in the typical (practical) case, and
OðNG � jDj � jGj) in the worst case.

4.5.1. Time complexity
Tree Construction: The XML document tree and XML grammar tree construction processes (including algorithm XGram_-

to_Tree) are of typical linear complexity and simplify to O(jDj + jGj). Algorithm XGram_to_Tree processes XML grammar sim-
plification rules using a dedicated index tables to monitor each simplification rule (i.e., detecting whether the grammar
expression is of the form targeted by a given transformation rule). This proved computationally efficient in practice, requir-
ing typical O(jGj), since the number of simplification rules – and thus the size of the index tables – is constant). On the other
hand, document tree construction requires one single traversal over the document, hence O(jDj) time.

Tree Edit Operations Costs: Computing document tree and conjunctive grammar tree edit operations’ costs requires
O(jDj + jCGj) time: (i) algorithm TOCXGram for computing XML grammar tree edit operations costs is of Oðj CG jÞ time and (ii)
Likewise, algorithm TOCXDoc (developed in the Technical Report [73]) for computing document tree operations costs, requires
O(jDj) time.

Core Tree Edit Distance Algorithm: The TEDXDoc XGram algorithm (Fig. 12) for computing the edit distance between the XML
document tree and conjunctive grammar tree is of worst O(jDj � jCGj) complexity. The algorithm recursively goes through
the sub-trees of both XML document and conjunctive grammar trees, combining edit operations so as to identify those of
minimal cost. Its main recursive procedure is called once for each pair of sub-trees occurring and the same structural level
(depth) in the document and conjunctive grammar trees being compared, thus reflecting a linear dependency on the size of
each tree, and thus a quadratic dependency on the sizes of both trees.

J. Tekli et al. / Information Sciences 295 (2015) 258–302 279

XML Document/Grammar Comparison: Algorithms TOCXGram and TEDXDoc XGram are executed for all conjunctive grammars
Ci 2 fCgG in order to compute overall document/grammar edit distance similarity, thus requiring OðNG � jDj � jCGjÞ time.
Here, recall that the number of conjunctive grammars NG resulting from the disjunctive normal form expansion of an input
XML grammar G, depends on the number and configurations of Or (choice) operators in the input grammar expressions. This
may generate a proliferation of conjunctive grammars depending on the expressiveness of the grammar declarations. How-
ever, in our approach, the XML document tree and each of the conjunctive grammar trees are compared concurrently (i.e., in
parallel) using multi-thread processing (cf. algorithm in Fig. 9). Hence, regardless of the (possibly limited) processing capa-
bilities of the computer system being used, the complexity of the edit distance phase is not (theoretically) affected by the
number of conjunctive grammars NG, and comes down to OðjDj � jCGjÞ. In addition, most common alternative expressions
found in real XML grammars [11,23,38] generate a number of conjunctive grammars linear in the number of Or operators
involved (cf. mathematical analysis is Appendix A). Hence, based on (i) the algorithmic design of our approach (Fig. 9)
and (ii) the relatively simple nature of real XML grammar expressions, the overall complexity of our approach,
OðNG � jSj � jCGjÞ, typically simplifies to OðDj � jCGjÞ, which in turn simplifies to OðjDj � jGjÞ, since jCGj is linear in the size
of jGj (cf. Section 3.2).

In the worst case, when the number of conjunctive grammars NG is explosive (and cannot be even handled using multi-
threading), then the term NG cannot be simplified form the equation, and complexity becomes OðNG � jDj � jGjÞ.

4.5.2. Space complexity
As for memory consumption, our approach requires OðjDj þ NG � jCGjÞ to store the XML document tree and conjunctive

XML grammar trees being compared, in addition to OðNG � jDj � jCGjÞ space to store corresponding distance matrixes. Yet
practically, space complexity simplifies to OðjDj þ jGjÞ þ OðjDj � jGjÞ ¼ OðjDj � jGjÞ since conjunctive grammar trees consist
of references (pointers) to the elements/attributes in the source grammar, and thus require limited space in comparison with
the actual document and grammar sizes (even when the child structures of elements in different conjunctive grammar trees
are different, represented by their respective pointers). Experimental time and space analyses are provided in Section 5.7.

5. Experimental evaluation

We first start by describing our prototype and experimental scenarios, and then we present and assess empirical results.

5.1. Prototype

We have implemented our XML document/grammar comparison approach in the existing XS3 prototype6 (XML Structural
and Semantic Similarity). Implemented using C#.Net, the XS3 prototype system includes: (i) a parser component verifying the
integrity of XML documents and grammars, (ii) a tree representation component, for transforming XML documents and grammars
into their tree representations, and (iii) a tree edit distance component for computing document/grammar similarity. An adap-
tation of the IBM XML documents generator7 was implemented to produce sets of XML documents and grammars based on spe-
cific user input requirements (e.g., a MaxRepeats8 variability parameter for document generation, the number of ‘And/Or’
operators and operator positions in synthetic grammars, etc.). In addition, we have implemented an XML document/grammar
modification generator. It accepts as input an XML document or an XML grammar, a ModifType value designating the kind of
modification to be induced to the document/grammar at hand (i.e., element/attribute insertions, deletions or label updates, cf.
Section 5.4), as well as a Modif% value indicating the amount of modifications to be produced w.r.t. document/grammar size
(i.e., cardinality).

Built upon the main XS3 components are different modules for similarity evaluation: One to One, One to Many (comparing
one XML document to a set of grammars and vice versa, allowing similarity ranking), and Set comparison, (enabling XML doc-
ument/grammar classification). A detailed description of the prototype system is available online.

5.2. Experimental scenarios

How to experimentally evaluate the quality of an XML similarity method remains a debatable issue, especially in infor-
mation retrieval. To our knowledge, the definition of standardized XML similarity evaluation metrics remains a hot topic in
the INEX evaluation campaigns.9 While a few similarity evaluation techniques have been proposed in the context of XML doc-
ument comparison (e.g., inter- and intra-cluster similarity coefficients [30], mis-clustering coefficient [48], and cluster-precision
and -recall metrics [26]), and grammar comparison (e.g., overall measure to quantify user effort in grammar matching [27,44])
yet, to our knowledge, none have been proposed for XML document/grammar similarity evaluation; which is probably due to
the novelty of the issue.

6 Available online at http://sigappfr.acm.org/Projects/XS3/.
7 http://www.alphaworks.ibm.com.
8 A greater MaxRepeats underlines greater size and variability in generating XML documents, when repeatable elements (associated ⁄, + in DTDs, or

MaxOccurs in XSDs) are encountered.
9 http://inex.is.informatik.uni-duisburg.de/.

280 J. Tekli et al. / Information Sciences 295 (2015) 258–302

http://sigappfr.acm.org/Projects/XS3/
http://www.alphaworks.ibm.com
http://inex.is.informatik.uni-duisburg.de/

Hence, in the following, we introduce experimental evaluation methods based on the most common applications of XML
document/grammar comparison, i.e., document classification and ranked retrieval. We demonstrate our method’s effective-
ness in classifying similar documents w.r.t. predefined grammars in Section 5.3, and ranking relevant XML documents
(grammars) w.r.t. their resemblances to the grammars (documents), in Section 5.4. In Section 5.5, we perform a hybrid
experimental analysis, combining both document classification and grammar transformation, to assess our method’s ‘intel-
ligent’ (noise resistant) behavior in comparing non-conforming yet related documents/grammars, i.e., given a set of gram-
mars, recognizing documents which are similar but are not written exactly in those grammars. A qualitative comparative
study is presented in Section 5.6. Complexity analysis is presented in Section 5.7.

5.3. XML document classification experiments

The scenario adopted in our document classification experiments comprises of a number of heterogeneous XML dat-
abases that exchange documents among each other, each database storing and indexing the local documents according to
a set of local grammars. Consequently, XML documents introduced in a given database are matched, via an XML structural
similarity method, against the local grammars. In such an application, a similarity threshold is identified underlining the
minimal degree of similarity required to bind an XML document to a grammar. The XML grammar for which the similarity
degree is highest, and above the specified threshold, is selected. Thus, the XML document is accepted as approximately valid
for that grammar (the documents are exactly valid when similarity is maximal, i.e., SimXDoc XGram ¼ 1).

Note that when the similarity score is below the threshold, for all grammars in the XML database, the XML document is
considered unclassified and is stored separately.

5.3.1. Evaluation metrics
Owing to the proficient use of their traditional predecessors in classic information retrieval evaluation [43], and their

recent exploitation in XML document clustering (e.g., [26]), we adapt the precisionmetric (PR, highlighting the fraction of rel-
evant selected entities) and the recallmetric ðR, highlighting the fraction of relevant non-selected entities) in information
retrieval to our XML classification scenario, and propose a new method for their usage in order to obtain consistent exper-
imental results. For an extracted class Ki corresponding to a given grammar Gi:

– ai is the number of XML documents in Ki that indeed correspond to Gi (correctly classified documents, i.e., those that con-
form to grammar GiÞ,

– bi is the number of documents in Ki that do not correspond to Gi (misclassified), and
– ci is the number of XML documents not in Ki, although they correspond to Gi (documents that conform to Gi and that

should have been classified in KiÞ.

Hence, setting n as the total number of classes, which corresponds to the total number of grammars considered for the
classification task, we have:

Fig. 16. XML document tree (reported from Fig. 2a) and conjunctive grammar trees (reported from Fig. 7c).

J. Tekli et al. / Information Sciences 295 (2015) 258–302 281

PR ¼
Pn

i¼1aiPn
i¼1ai þ

Pn
i¼1bi

; R ¼
Pn

i¼1aiPn
i¼1ai þ

Pn
i¼1ci

; F-value ¼ 2� PR� R
PRþ R

: ð6Þ

High precision denotes that the classification task achieved high accuracy grouping together documents that actually cor-
respond to the grammars considered. On the other hand, high recall means that very few XML documents are not in the
appropriate class where they should have been. In addition to comparing one approach’s precision improvement to another’s
recall, it is also a common practice to consider their harmonic mean: the F-value measure. Hence, as with classic information
retrieval, high precision and recall, and thus high F-value, (indicating in our case high classification quality) characterize a
good (XML document/grammar) similarity method.

5.3.2. Multi-level classification
In our experiments, we undertook a series of multilevel classification tasks, varying the classification threshold in the

½0;1� interval. In other words, we construct a dendrogram-like structure Fig. 17a) such that:

– For the starting threshold s1 ¼ 0, all XML documents appear in all classes.
– For the final classification threshold sn ¼ 1 (with n the number of classification levels, i.e., classification sets in the den-

drogram), each class will only contain the XML documents which actually conform (i.e., which are exactly valid with
respect) to the grammar identifying the class.

– Intermediate classification sets will be identified for thresholds si=s1 < si < sn.

Then, we compute precision, recall and F-value for each classification set identified in the dendrogram, thus constructing
PR, R and F-value graphs that describe the system’s evolution throughout the classification process.

5.3.3. Experimental results
We conducted experiments on both real and synthetic XML documents to test our XML document/grammar structural

comparison method. For real XML data, we utilized the online XML version of the ACM SIGMOD Record,10 and the University
of Wisconsin’s Niagara XML document collection,11 including a large XML data set extracted from the Internet Movie Database
IMDB.12 We performed two main classification experiments to test the effectiveness of our method in comparing: (i) related
XML documents (i.e., documents sharing identical tag names and related structures) and (ii) heterogeneous XML documents
(describing different kinds of information, using different structures). The first experiment considers the SIGMOD Record doc-
uments, which correspond to three main grammars: OrdinaryIssuePage.dtd, ProceedingsPage.dtd and SigmodRecord.dtd,13 describ-
ing scientific publications. The second experiment considers all three SIGMOD Record, Niagara and IMDB data sets, combining
heterogeneous XML data describing different kinds of information, ranging over scientific publications, company profiles, per-
sonnel descriptions, movie credentials, and actor descriptions. The characteristics of each document collection and correspond-
ing grammar definitions are shown in Table 3. Grammar statistics are shown in Table 5.

We also generated two sets of 1000 XML documents from 20 real-case14 and synthetic grammars (using the synthetic XML
document and XML grammar generators implemented in the XS3prototype). The first set of documents was created with
MaxRepeats = 5, the second with MaxRepeats = 10, the latter set underlining XML documents with greater size and variability
(i.e., greater heterogeneity) w.r.t. the former, when optional and repeatable elements are encountered. The characteristics of
synthetic XML datasets are summarized in Tables 4 and 5.

Note that grammar statistics in Table 5 fairly concur with the empirical analyses in [11,23,38] highlighting the fact that
real-world XML grammars are usually made of simple structural models (e.g., sequence expressions, single element decla-
rations, or basic content models, e.g., PCDATA, String, etc.). In other words, few grammar expressions contain alternative dec-
larations, i.e., Or operators (e.g., less than 7% of all grammar expressions surveyed in [11], and less than 16% of those surveyed
in [23], contain Or operators – cf. 0 for preliminary statistics).

In addition, note that all real and synthetic grammars considered in our experiments are fairly different and do not pro-
duce identical documents. In other words, we made certain that a given document cannot conform to two grammars simul-
taneously, so as to prevent any confusion in computing the precision and recall metrics. Precision and recall graphs are
presented in Fig. 17. One can clearly realize that recall ðRÞ is always equal to 1. This reflects the fact that our XML docu-
ment/grammar comparison approach constantly identifies, in the grammar classes, the XML documents that actually con-
form to the grammars considered (i.e., documents having SimXDoc XGram ¼ 1), regardless of the classification threshold as
well as the nature of the document collection (related and/or heterogeneous). On the other hand, precision (PR), and conse-
quently F-value (note that F-value follows PR in this experiment, since R is always equal to 1) gradually increases toward 1,
while varying the classification threshold from 0 to 1:

10 Available at http://www.acm.org/sigmod/xml.
11 Available at http://www.cs.wisc.edu/niagara/.
12 XML data extracted from http://www.imdb.com/ using a dedicated wrapper generator2.
13 We were able to find only one XML file conforming to SigmodRecord.dtd: SigmodRecord.xml. However, due to its relatively large size (479 KB) w.r.t. the XML

documents corresponding to the other grammars (12 KB of average size per document), we carefully decomposed SigmodRecord.xml to several documents,
creating a set of documents conforming to SigmodRecord.dtd.

14 From http://www.xmlfiles.com and http://www.w3schools.com.

282 J. Tekli et al. / Information Sciences 295 (2015) 258–302

http://www.acm.org/sigmod/xml
http://www.cs.wisc.edu/niagara/
http://www.imdb.com/
http://www.xmlfiles.com
http://www.w3schools.com

(a) Dendrogram obtained when classifying 15 XML
documents sampled from the ACM SIGMOD Record.

(b) Classifying all 104 XML documents
of the SIGMOD Record.

(c) Classifying real XML documents sets:
of SIGMOD, Niagara and IMDB.

(d) Classifying documents of synthetic set 1.

(e) Classifying documents ofsynthetic set 2.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1.1

0 0.005 0.01 0.015 0.02

PR

R

F-Value

Classifica�on Threshold

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1.1

0 0.025 0.05 0.075 0.1

PR

R

Value

Classifica�on Threshold

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1.1

0 0.1 0.2 0.3 0.4 0.5

PR

R

value

Classifica�on Threshold

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1.1

0 0.1 0.2 0.3 0.4 0.5

PR

R

F-Value

Classifica�on Threshold

Fig. 17. XML document classification: dendrogram, and PR, R, F-value graphs. To produce changes to XML documents/grammars (cf. Fig. 18a), we utilize our
prototype’s modification generator.

J. Tekli et al. / Information Sciences 295 (2015) 258–302 283

– When the classification threshold is equal to 0, all documents in the XML repository are considered in each and every
class corresponding to the grammars at hand Fig. 17a, initial level). That is underlined by minimum PR.

– Then, as the classification threshold increases, inconsistent documents are gradually filtered from the XML grammar clas-
ses, ultimately yielding classes that only encompass documents conforming to the considered grammars (cf. Fig. 17a, final
level).

In summary, Precision and F-value results in Fig. 17 show that our method yields high classification quality with both
related and heterogeneous document collections, obtaining optimal classes at a very early stage of the multilevel classifica-
tion process (with thresholds <0.5).

5.4. Similarity ranking experiments

In addition to XML document classification, we ran a series of experiments to evaluate the ranking capabilities of our doc-
ument/grammar comparison method.

5.4.1. Experimental scenario
The approach consists in gradually transforming real XML documents/grammars, and consequently evaluating how clo-

sely the obtained similarity results correspond to the induced changes. Here, we exploit two complementary criteria for
ranking evaluation: (i) an internal criterion, consisting of the amount of modification (transformation) in documents/gram-
mars and (ii) an external criterion, consisting of user predefined rankings. On one hand, we consider as an internal evaluation
criterion: the correspondence between the amount of changes and document/grammar similarity values (i.e., similarity
decreasing proportionally with the increase in changes, and vice versa), such that a straight correspondence would underline
high ranking quality. On the other hand, we also exploit user-predefined rankings, necessary to highlight the user’s percep-
tion of document/grammar similarity w.r.t. document/grammar modifications.

To produce changes to XML documents/grammars (cf. Fig. 18a), we utilize our prototype’s modification generator:

Table 3
Characteristics of SIGMOD Record, Niagara, and IMBD document sets.

Grammarsa(SIGMOD) N# of Docs Avg node depth (per doc) N# of nodes (per gram) Avg N# of nodes (per doc)

OrdinaryIssuePage 30 5.49 23 262.81
ProceedingsPage 47 3.67 31 382.72
SigmodRecord 27 5.77 14 542.92

Grammars (Niagara) N# of Docs Avg node depth (per doc) N# of nodes (per gram) Avg N# of nodes (per doc)

Profile 141 2.57 12 381.25
Personnel 20 2.63 14 38.35
Club 11 2.19 13 259.09
Bib 15 3.04 14 130.66

Grammars (IMDB) N# of Docs Avg node depth (per doc) N# of nodes (per gram) Avg N# of nodes (per doc)

Movies 300 3.31 12 53.71
Actors 300 3.40 9 120.25

a Note that all DTD grammars were transformed into XSD definitions, replacing DTD cardinality constraints (namely: ?; �, +) with their more expressive
XSD counterparts (i.e., MinOccurs and MaxOccurs).

Table 4
Characteristics of synthetic document sets.

Document set N# of grammars Number of documents N# of documents
(per gram)

Average node depth
(per doc)

Average number of nodes
(per doc)

MaxRepeats = 5 20 1000 50 3.1 15.4768
MaxRepeats = 10 20 1000 50 3.68 36.9133

Table 5
The percentage and number of structure model expressions in both sets of real and synthetic grammars.

Grammar set Sequence exp. (And) Alternative exp. (Or) Mixed exp.
(And & Or)

Single element
expressions

Empty structural
model (e) exp.

Real grammars 19.10% (51) 1.12% (3) 1.87% (5) 14.98% (40) 62.92% (168)
Synthetic grammars 5.59% (8) 6.99% (10) 9.79% (14) 10.48% (15) 67.13% (96)

284 J. Tekli et al. / Information Sciences 295 (2015) 258–302

– For the starting phase of the transformation process, the modification threshold Modif% is set to 0, underlining the original
document/grammar structure.

– For the final phase, Modif% = 100. The amount of changes in the resulting modified document/grammar at hand amounts
to 100% of its original size.

– Intermediate transformation phases correspond to 0 < Modif % < 100.

In addition, for each similarity ranking experiment, the modified documents/grammars were manually evaluated, iden-
tifying corresponding user-relevant rankings. Thirty graduate students were involved in the experiments. Each subject was
given a set of initially conforming documents/grammars and their transformed (modified) versions, and was asked to rank
the transformed documents/grammars w.r.t. the original versions (assigning scores ranging from A to F, such as A = Conform-
ing, B = Very Similar, . . ., F = Least similar). Manual answers were consequently correlated against the system generated ones
in order to identify the statistical dependence between system generated similarity scores and the user’s perception of
similarity.

5.4.2. Experimental results
Our experiments can be grouped in two categories: (i) detecting changes induced in an XML document, w.r.t. a reference

grammar and (ii) detecting changes produced in an XML grammar, w.r.t. a valid reference document. Due to space limita-
tions, we selected meaningful changes, which are described as follows.

5.4.2.1. Detecting changes in XML documents. Similarly to our classification experiments, we utilized XML data from the online
XML version of the ACM SIGMOD Record. Among the various experiments conducted, we present the results obtained when
modifying documents Ord_234.xml, Pro_172_2.xml and Sigmod_11.xml,15 evaluating their similarities w.r.t. each of their corre-

<?xml?>
<Paper title=”…”>

<Publisher>
<FirstName>…</FirstName>

<LastName>…</LastName>
</Publisher>

<Version> … </Version>
<Length>…</Length>
<url>

<Homepage>…</Homepage>
<Download>…</Download>
</url>
<dummy></dummy>
<dummy>
<dummy></dummy>
<dummy></dummy>
</dummy>
<dummy></dummy>
</Paper>

<?xml?>
<Paper>

<Publisher></Publisher>
<Version></Version>
<Length></Length>
<url></url>
</Paper>

The deletion operator
(buttom-up traversal)

<?xml?>
<Dummy>

<Dummy></Dummy>
<Dummy>
<Dummy>…</Dummy>

<Dummy>…</Dummy>
</Dummy>
<Version> … </Version>
<Length>…</Length>
<url>
<Homepage>…</Homepage>
<Download>…</Download>
</url>
</Dummy>

<?xml?><schema>
<Element name = ‘Paper’>
<Sequence>
<Element name = ‘Publisher’>
<Sequence>
<Element name = ‘FirstName’/>
<Element name= ‘Middle’ MinOcc = ‘0’>
<Element name = ‘Dummy’/>
</Sequence>
</Element>
<Element name = ‘Dummy’>
<Sequence>
<element name = ‘Dummy’>
<element name = ‘Dummy’ MinOcc=‘0’>
</Sequence>
</Element>
</Sequence>
</Element>
</schema>

<?xml?>
<Paper title=”…”>

<Publisher>
<FirstName>…</FirstName>

<LastName>…</LastName>
</Publisher>
</Paper>

The insertion operator
(structure mirroring)

The deletion operator
(post-order traversal)

The update operator
(pre-order traversal)

The update operator
(post-order traversal)

(a) Samples of utilizing the modification operators, at Modif% = 50 (i.e., modifying50%of original document)

Ord_234.xml&OrdinaryIssuePage.dtd Pro_172_2.xml&ProceedingsPage.dtd Sigmod_11.xml&SigmodRecord.dtd

(b) Similarity graphs reflecting the gradual modification of XML documents Ord_234.xml, Pro_171_2.xml and Sigmod_11.xml,
w.r.t. XML grammars OrdinaryIssuePage.dtd, ProceedingsPage.dtd and SigmodRecord.dtd.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 10 20 30 40 50 60 70 80 90 100

Sim

Modif %

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Sim

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 10 20 30 40 50 60 70 80 90 100

Sim

Insertion DeletionUpdate

0 10 20 30 40 50 60 70 80 90 100

Modif % Modif %

Fig. 18. Detecting and measuring changes (modifications) in XML documents.

15 Recall that Sigmod_11.xml results from the decomposition of document SigmodRecord.xml.

J. Tekli et al. / Information Sciences 295 (2015) 258–302 285

sponding grammars respectively. Graphs in Fig. 18b shows the average similarity values obtained when testing each type of
modification operation, considering the different modifications described in the previous section. Results show that:

i. Similarity varies linearly w.r.t. the modifications induced via the update operation, going from 1 (0% updates) to 0
(100% updates, i.e., when all document nodes have been relabeled),

ii. Similarity varies linearly w.r.t. the modifications induced via the insertion operation, going from 1(0% insertions) to
�0.5 (100% insertions, indicating that a structure, which size is equal to that of the original document, has been
inserted under the document root node).

iii. The case of the deletion modification operation is special, in that similarity values are not perfectly linear w.r.t. the
amount of modifications, and sometimes even increase with the increase of the amount of deletions (which might
seem counter-intuitive). That is due to the presence of optional and repeatable elements in the reference grammar,
which are sometimes better satisfied (i.e., higher similarities are obtained) after deleting certain elements in the doc-
uments. This explains the increase in similarity values in the final stages of the modification process, i.e., at thresholds
P80% (grammar roots encompassing optional siblings such that the deletion of their document counterparts, along
with their sub-trees, positively affects the similarity evaluation process).

In addition to document modification, we also conducted a set of experiments to detect the changes induced in XML
grammars. We particularly modified grammars OrdinaryIssuePage.dtd, ProceedingsPage.dtd and SigmodRecord.dtd (of the
online version of the ACM SIGMOD Record), comparing them to documents Ord_234.xml, Pro_172_2.xml and Sigmod_11.xml
respectively. Similarity graphs are similar to those in Fig. 18b, highlighting a straight correspondence between similarity and
modification levels. Graphs are omitted here (and can be found in [73]).

5.4.2.2. User rankings. In addition to system generated results, we conducted manual (user) rankings to identify the corre-
spondence between: (i) the user’s perception of similarity and (ii) system-generated similarity scores, in detecting changes
in documents/grammars. Similarity graphs corresponding to each of the charts in Fig. 18b, are shown in Fig. 19.

Here, user rankings (i.e., A;B;C; . . . ; F) were transformed into numerical values so as to be comparable to system generated
scores, such as: A = 100% (the document conforms to the grammar), B = 80% (high similarity), C = 60%, D = 40%, E = 20%, and
F = 0% similarity (the document and grammar seem completely different to the user). Average correlation scores for each
kind of document modification (document node update, insertion, and deletion) in Fig. 19 are show in Table 6a. Results con-
firm the relevance of system generated scores w.r.t. the users’ perception of similarity: correlation is >75%, on average, for all
kinds of document modifications.

Similarly to the document modification experiments, manual user rakings conducted w.r.t. grammar modification exper-
iments reveal a straight correlation with system generated similarity scores. Similarity graphs are akin to those presented in
Fig. 19 and thus are omitted here (they can be found in [73]). Average correlation scores for each kind of grammar modifi-
cation (grammar node update, insertion, and deletion) are show in Table 6b. Results confirm the relevance of system gen-
erated scores w.r.t. the users’ perception of similarity: correlation is >85%, on average, for all kinds of grammar modifications.

To sum up, experimental results underline our method’s effectiveness in accurately discerning modified documents and/
or grammars w.r.t. their original versions. Results show a close correspondence between (i) the amount of modifications in
documents/grammars, (ii) system-generated similarity levels, and (iii) user-generated similarity rankings, and thus reflect
our approach’s efficiency in accurately comparing and ranking documents/grammars based on their resemblances/differ-
ences, in accordance with the user’s perception of similarity.

5.5. Evaluating intelligent behavior: comparing non-conforming documents and grammars

In addition, we evaluate our method’s quality in intelligent behavior (noise resistance), i.e., its ability to identify (disre-
gard) documents which are similar (different) to the reference grammars, such that none of the documents actually con-
forms to any of the grammars. This corresponds to the most practical case on the Web, where the system user/
administrator does not have prior knowledge about the XML documents scattered online, and would like to identify those
which approximately validate (most likely correspond to) her predefined grammars.

5.5.1. Experimental scenario
To simulate the process of comparing non-conforming documents and grammars, we combine both grammar transfor-

mation (modification) and document classification methods. Considering an XML document collection with a set of docu-
ments (e.g., D1 and D1) conforming to predefined reference grammars (e.g., G1 and G2), we first deliberately introduce
certain amounts of modifications in the grammars (inserting, deleting and/or relabeling certain amounts of grammar nodes,
as described in the experimental scenario of Section 5.4). Subsequently, we compare the XML documents with the modified
grammars (G01 and G01), performing XML classification (as described in the experimental scenario of Section 5.3). In other
words, given a set of modified grammars, we attempt to identify those documents which are similar to the grammars, given
that the documents are not written exactly in those grammars (e.g., our objective is to effectively classify D1 under G01, and D1

under G01, since they are probably similar, despite the fact that neither documents were written for those grammars, but
rather conform to their original versions: G1 and G2).

286 J. Tekli et al. / Information Sciences 295 (2015) 258–302

(a) Comparing user and system similarity scores when gradually modifying Ord_234.xml.

(b) Comparing user and system similarity scores when gradually modifying Ord_172.xml.

Update modification type Insertion modification type Deletion modification type

Update modification type Insertion modification type Deletion modification type

Update modification type Insertion modification type Deletion modification type

(c) Comparing user and system similarity scores when gradually modifying Ord_172.xml.

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80

Sim

Modif %

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

Sim

Modif %

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

Sim

Modif %

0 20 40 60 80

Modif %
0 20 40 60 80 100

Modif %
0 20 40 60 80 100

Modif %

0 20 40 60 80

Modif %
0 20 40 60 80 100

Modif %
0 20 40 60 80 100

Modif %

0

0.2

0.4

0.6

0.8

1
Sim

0

0.2

0.4

0.6

0.8

1

1.2
Sim

0

0.2

0.4

0.6

0.8

1
Sim

0

0.2

0.4

0.6

0.8

1
Sim

0

0.2

0.4

0.6

0.8

1
Sim

0

0.2

0.4

0.6

0.8

1

1.2
Sim

System User

Fig. 19. Similarity graphs contrasting system and user-generated similarity scores when comparing XML documents Ord_234.xml, Pro_171_2.xml and
Sigmod_11.xml, w.r.t. XML grammars OrdinaryIssuePage.dtd, ProceedingsPage.dtd and SigmodRecord.dtd.

Table 6
Statistical dependency: Pearson Correlation Coeff. (PCC) between system and user-generated similarity
rankings.

Update Insertion Deletion

a. PCC with document modification experiments

Ord_234.xml 0.9529 0.6962 0.7678
Pro_172_2.xml 0.9891 0.8832 0.4689
Sigmod_11.xml 0.9891 0.8233 0.5869

b. PCC with grammar modification experiments
OrdinaryIssuePage 0.9435 0.9217 0.8575
ProceedingsPage 0.9058 0.8706 0.8992
SigmodRecord 0.8659 0.7679 0.7991

J. Tekli et al. / Information Sciences 295 (2015) 258–302 287

Classification metrics are adapted from Section 5.3.1 as follows. Given an original grammar Gi, its modified version G0i, and
an extracted class Ki corresponding to the modified grammar G0i:

– ai is the number of XML documents in Ki that indeed conform to the original grammar Gi. These are the documents which
are most probably similar to the current modified version G0i,

– bi is the number of documents in Ki that did not originally conform/correspond to Gi. In other words, these documents are
less likely to be similar to G0i, and

– ci is the number of XML documents not in Ki, although they conform to the original grammar Gi. In other words, these
documents are probably similar to the modified grammar G0i and should have been classified in Ki.

Consequently, precision, recall and f-value are computed following ai; bi, and ci, using formula (6) in Section 5.3.1.

5.5.2. Experimental results
We consider the real XML data sets described in Table 3 (i.e., SIGMOD, Niagara, and IMBD). Each of the corresponding

grammars is modified with increasing transformation thresholds, ranging from 0% (original grammars), to 20%, 40%, 60%
and 80% w.r.t. the original grammars. We combine all three transformation operations: insertion, deletion, and relabeling
(cf. Section 5.4) in inducing modifications. Our experiments are based on multilevel classification, similarly to the experi-
ments in Section 5.3.

The central difference here is that since none of the documents actually conforms to the class reference grammars, all
XML documents will be eventually filtered out of the predefined classes (whereas in the experiments of Section 5.3, the clas-
ses always contain the XML documents conforming to their reference grammars). A sample dendrogram structure depicting
the classification of non-conforming XML documents and grammars is depicted in Fig. 20a. Average precision, recall and f-
value results are depicted in Fig. 20b–d respectively.

On one hand, when multilevel classification is applied on conforming documents/grammars (cf. Section 5.3), recallis con-
stantly equal to 1, indicating that all documents are successfully identified in the ‘correct’ classes (i.e., classes corresponding
to their conforming grammars, having SimXDoc XGram ¼ 1). However, when classifying non-conforming documents/grammars
(Fig. 20), recall varies from 1 (maximum value, where all documents are identified in the correct classes, corresponding to the
initial classification step, Fig. 20a) to 0 (minimum value, where all documents are misclassified, attained in the final classi-
fication step). That is due to the fact that SimXDoc XGram is always –1 in this case, since none of the documents conforms to the
grammars.

On the other hand, results in Fig. 20a–c shows that precision, recall and f-value respectively decrease while increasing the
grammar modification threshold. In other words, classification accuracy steadily decreases when the resemblance/related-
ness levels between the documents and the grammars decrease (simulated, in our experiments, by varying/increasing the
grammar modification threshold). Note that we do not show the results of Modif = 100% in Fig. 20, since it underlines the
case where all grammars are completely different from all documents, which contradicts the idea of using grammars as doc-
ument classification references to compute precision and recall.

To sum up, while exact (Boolean) XML document validation methods (cf. State of the Art in Section 6.2) could be used to
perform document classification in the case of conforming XML documents/grammars (identifying which documents con-
form to which grammars), such methods become obsolete (i.e., completely ineffective) when non-conforming documents/
grammars come to play. In such a context, an ‘intelligent’ approximate similarity evaluation method (such as the one pro-
posed in this study) becomes crucial.

Note that while our current experimental study conveniently exploits XML grammars as references to evaluate result
quality (computing precision and recall accordingly), we are currently building a larger XML benchmark better suited to
the experimental tasks, aimed at making use of blind testing. Here, we were unable to utilize the current INEX16 data set
in our experiments since it targets XML textual similarity (i.e., similarity between element/attribute values made of long text
fields) which is out of the scope of this study (here, as mentioned earlier, we focus on XML structure, i.e., document/grammar
element/attribute tag names and their structural positions, and disregard values).

5.6. Comparative study

An experimental study, comparing the effectiveness of our XML document/grammar comparison method with existing
approaches, would have been interesting, and would have allowed us to further validate our method. Nonetheless, most
related studies in the literature (cf. background in Section 6) do not precisely tackle the issue of ranked document/grammar
comparison, but rather handle (Boolean) document validation, or transformation/correction. Other methods, e.g., [32,75],
perform some sort of ranked similarity evaluation, yet are based on a specific premise: that the possible distortions between
the documents/grammars are known in advance, which makes it difficult to define a common experimental scenario. Thus,
we currently settle for a qualitative comparison, depicting the main characteristics, commonalities and differences between
our approach and related studies. We also compare our method with its most pertinent predecessor: DTDMatch in [9,10],

16 http://inex.is.informatik.uni-duisburg.de/.

288 J. Tekli et al. / Information Sciences 295 (2015) 258–302

http://inex.is.informatik.uni-duisburg.de/

which to our knowledge is the main existing work to actually allow (knowledge-free) ranked document/grammar similarity
evaluation.17

5.6.1. Qualitative analysis
Table 7 summarizes the main differences between our method and related approaches. In short, our approach is: (i) fine-

grained, extending the concept of tree edit distance (as an efficient technique for comparing XML-based structured data [17])
to detect and identify the structural similarities and disparities between XML documents and grammars, taking into account

Fig. 20. Classification results obtained with non-conforming documents/grammars.

17 We do not empirically compare our method with DTDMatch since the authors do not provide the detailed algorithm/code of the method.

J. Tekli et al. / Information Sciences 295 (2015) 258–302 289

the most common XML grammar constraints, namely MaxOccurs and MinOccurs, repeatable expressions and recursive dec-
larations, which are partly disregarded in the main existing methods, e.g., [7,10,32,57], (ii) producing a ranked similarity
result, i.e., a similarity value 2 ½0;1� interval, in comparison with existing Boolean (validation) methods, e.g., [7,8,49], which
only provide a Boolean output, (iii) capable of identifying (in the course of computing the similarity value) an edit script
transforming the XML document into one conforming to the XML grammar, similarly to XML transformation methods
[57] (note that in our current paper, we do not provide the additional algorithms needed for extracting edit scripts. We
report this issue to an upcoming dedicated study).

5.6.2. Comparison with DTDMatch
In the following, we compare our approach with its most pertinent predecessor: DTDMatch [9,10].

1. Both DTDMatch and our approach model XML documents and XML grammars as labeled trees. DTDMatch follows an inten-
tional approach in producing one compact tree representation per grammar G, representing the set of rules constraining
the content of each element in the grammar (i.e., describing the language LðGÞ of the grammar), while we follow a semi-
intentional approach such that each grammar G is represented as the set of conjunctive trees {C}G, where the grammar’s
expressiveness (language) is distributed among its constituent conjunctive grammars, LðGÞ ¼ [Ci2fCgG LðCiÞ (cf. Fig. 21a).

2. While DTDMatch’s grammar tree representation is more compact, nonetheless our grammar tree representation is more
similar (in its structural properties) to XML document tree representation, as it was designed for this specific purpose in
order to simplify the document/grammar tree comparison process.

3. DTDMatch only considers (context-free) DTD grammars whereas our approach processes (context-sensitive) XSD gram-
mars, with more expressive power related to MinOccurs and MaxOccurs constraints.

4. DTDMatchdoes not discuss the case of recursive declarations, whereas strong linear recursive declarations are handled in
our grammar tree representation model.

5. The DTDMatch algorithm consists of mapping functions which allow to identify: (i) elements appearing both in the doc-
ument and in the DTD (common elements), (ii) elements appearing in the document but not in the DTD (plus elements), (iii)
and elements appearing in the DTD but not in the document (minus elements), assigning different weights to each group
of elements to tune the similarity measure following the user’s needs. Our approach assigns no such weights. Nonethe-

Table 7
Comparing our method to related approaches.

Approach Performs
document
validation

Generates
edit script

Computes
similarity
value

Considers
element
constraints

Considers
repeatable
expressions

Considers
recursive
declarations

Dedicated
to XML
grammars

Complexity level

Segoufin and Vianu [49]
p � � p p p p

(DTD) O(Exp(jGj))
Barbosa et al. [8]a p � � p p � p

(DTD/
XSD)

O(jDj�log(jGj))

Balmin et al. [7]b p � � p � � p
(DTD/

XSD)
O(jDj�log(jGj))

Bouchou et al. [15]
p

Partial Partial
p

‘And’ onlyb � p
(DTD/

XSD)
Exp(MaxDeg(jSj))

Suzuki [57] � p � p � � p
(DTD) O(Exp(jGj))

Bouchou et al. [14]
p � � p p � p

(DTD/
XSD)

O(jDj�log(jGj))

Xin [79]b p p p � � p p
(DTD) O(jDj�jGj�log(jGj))

Grahne and Thomo [32]
p � p � � � � (struct

data)
O(jAGj�N�jPj3)

Thomo et al. [50,75]
p � p � Partial � p

(DTD/
XSD)

OðK3 � N2ðKþ1Þ� j P jÞ

Bertino et al. [9,10]a p � p p p � p
(DTD) OðC2 � ðj D j þ j G jÞÞ

Our Approach
p p p p p p p

(DTD/
XSD)

O(jNGj�jDj�jGj)

j D j: cardinality of the XML document.
jGj: cardinality of XML grammar.
jAGj: number of states in the automaton describing the data-grammar.
N: cardinality of semi-structured document.
jPj: number of states in the distortion transducer.
K: number or allowable transformation operations.
C: maximum node fan-out in document tree D

NG: number of conjunctive grammars representing G
(cf. State of the Art Section 6 for details).

a Note that some studies, such as [7,8,79], support arbitrary regular expressions as production rules in the grammars. Nonetheless, [7,79] do not discuss
repeatable expressions, while [7,8] do not mention recursive declarations.

b Considers repeatable sequence expressions only (i.e., expressions connected via the And operator) and disregards repeatable alternative expressions
(connected via the Or operator).

290 J. Tekli et al. / Information Sciences 295 (2015) 258–302

less, by post-processing the edit script describing the transformations applied on a document tree so that it becomes valid
w.r.t. the grammar tree, such (common, plus, and minus) element mapping can be identified (e.g., such an approach is
developed in [70], in the context of XML grammar tree matching).

6. Fig. 21.
7. The DTDMatch algorithm can produce wrong matches when a certain assumption holds: in the declaration of an element,

two sub-elements with the same tag are forbidden (e.g., declaration h!ELEMENT rootðb; b; cÞi is not allowed since b appears
twice). Following our algorithm, wrong matches can also be obtained when grammar transformation Rule 1 is applied (in
simplifying grammar expressions), ðAy

xÞ
v
u!R1Ay�v

x�u since it does not verify the ISP (Information Structure Preserving) prop-
erty, and thus might produce transformed grammar expressions that do not preserve the same expressiveness (language)
of their original counterparts.

8. The DTDMatch algorithm considers tag similarity, i.e., handling the possibility that tags might be syntactically different by
with semantically similar meanings. This issue is not discussed in our current study, and is reported to a future extension
of this work. This can be performed through the investigation of alternative tree operations cost models (varying costs
w.r.t. the semantic relatedness between document and grammar node labels given a semantic reference such as Wordnet
[45], Wikipedia [84], or Google [37]), similarly to the studies in [63,66,70].

In short, our approach builds on DTDMatchin different aspects, attempting to handle more expressive XSD constraints,
and produced an improved method. Note that we are currently conducting a case study on a large set of real DTD and
XSD grammars (mainly acquired from survey in [11,23,38]) in order to estimate empirical usage probabilities concerning
the different kinds of XML grammar declarations (namely MinOccurs and MaxOccurs, repeatable expressions, multiple iden-
tical sub-elements, and recursive declarations) found in real-world grammars. This would help us better evaluate the per-
formance levels of our approach in comparison with its most relevant predecessor(s) in terms of: the percentages of
correct grammar expression matches, wrong matches, exact validation ratio, approximate validation ratio, etc., considering
the usage probabilities of grammar expressions involved (Fig. 21b provides a glimpse on our preliminary usage probability
estimates).

Fig. 21. Comparing our approach with DTDMatch [10].

J. Tekli et al. / Information Sciences 295 (2015) 258–302 291

5.7. Timing and space analysis

Timing experiments were carried out on a Dell Precision system with an Intel 2.53 GHz processor and 4 GB RAM. In
Section 4.5, we have shown that the complexity of our approach is of OðjSj þ jGj þ ðNG � jSj � jCGjÞÞ time, and simplifies to
typical quadratic OðjSj � jGjÞ time, w.r.t. the sizes of the XML document and XML grammar being compared, and worst case
OðNG � jSj � jGjÞ considering the number of conjunctive grammars involved.

We start by verifying our approach’s quadratic dependency on the combined XML document and grammar sizes, i.e.,
OðjSj � jGjÞ, which equally underlines a linear dependency on each of the document and grammar sizes. Fig. 22a (left graph)
shows that the time to identify the structural similarity between XML document trees and conjunctive XML grammar trees
of various sizes grows in an almost linear fashion with tree size.

Second, we varied the number of Or operators in the grammar expressions, in order to deliberately vary the number of
potential conjunctive grammars ðNGÞ and study its effect on overall complexity. We considered different configurations,
using: alternative expressions (of the form ðAjBjCj . . .ÞÞ and mixed expressions (of the form ðAjBÞ; ðCjDÞ; . . .Þ. Fig. 22a (right
graph) shows the worst case time results (mainly obtained when using mixed expressions). The time curve remains mostly
linear w.r.t. tree size even when the ‘Or’ operator comes to play, and only starts to grow faster with XML grammar size when
the number of concatenated Or expressions (e.g., expressions of the form ðAjBÞ; ðCjDÞ . . .Þ surpasses 16 (i.e., yielding more
than 80 conjunctive grammar trees per single XML grammar). However, note that such a huge number of mixed Or expres-
sions is unlikely to appear in real XML grammars [11,23,38] (around 12.65% of grammar expressions combine And and Or
operators, cf. Fig. 21b – node 10).

A mathematical analysis regarding the variation of the number of conjunctive grammars ðNGÞ w.r.t. different configura-
tions of Or operators is provided in Appendix A. Results concur with Fig. 22.a (right graph), showing that the most common
alternative expressions generate a number of conjunctive grammars linear in the number of Or operators, while certain spe-
cific cases (of usually mixed: And–Or expressions) yield polynomial and/or exponential NG.

Fig. 22. Time and space results.

292 J. Tekli et al. / Information Sciences 295 (2015) 258–302

Similarly to time complexity, memory usage results in Fig. 22b show that our approach is polynomial in the combined
size of the XML document and grammar trees being compared. It is almost linear in the size of each of the XML document
and conjunctive grammar trees (Fig. 22b – left graph), and becomes slightly quadratic w.r.t. grammar size when ‘Or’ oper-
ators come to play (ranging from 2 to 20 alternative – ‘Or’ – expressions per grammar, cf. Fig. 22b – right graph). Recall that
conjunctive grammar trees consist of references (pointers) to the elements/attributes in the source grammar, and thus
require limited space in comparison with the actual document and grammar sizes (cf. complexity analysis in Section 4.5.2).
This underlines the limited increase in space (in comparison with a greater increase in time, as shown in Fig. 22a), even with
a large increase of up to 20 alternative expressions per grammar.

6. State of the art

In the following, we briefly review the literature on XML document/grammar comparison (a detailed review has been
published in [62]). We also briefly discuss our own research activities related to the problem, in order to better highlight
the contributions of this paper. The interested reader can also refer to [4,17,69] for reviews and comparative studies concern-
ing XML document comparison, and [29,51] for comprehensive reviews on the state of art in XML grammar matching, which
are also related to the hybrid task of document/grammar comparison.

Comparing XML documents with XML grammars has been explored in several domains. Various methods have been pro-
posed for validating XML documents against XML grammars [7,8,14,22,36,49]. Methods dedicated to XML document-to-
grammar transformation and correction have been investigated in [15,20,57]. Yet, to our knowledge, the main methods
(different from ours) to address the issue of document/grammar similarity evaluation, i.e., producing a similarity score
(allowing ranked similarity results), are provided in [32,75,9,10].

6.1. Approximate pattern matching with VLDC

An intuitive XML document/grammar comparison solution could be explored in terms of approximate matching with the
presence of Variable Length Don’t Cares (VLDC). A VLDC symbol (e.g., ^Þ in a string pattern may substitute for zero or more
symbols in the string [3,39]. Approximate VLDC string matching means that, after the best possible substitutions have been
made, the pattern still does not match the data string and thus a matching distance is computed. For example, ‘‘comp ^ ng’’
matches ‘‘commuting’’ with distance 1 (i.e., the cost of removing the ‘‘p’’ form ‘‘comp ^ ng’’ and having the ‘‘^’’ substitute for
‘‘mmuti’’). The VLDC problem has been generalized for trees [81], introducing VLDC substitutions for paths or sub-trees. Yet,
VLDC symbols are different from operators XML grammars operators: VLDC symbols can replace any string (w.r.t. string
matching) or sub-tree (w.r.t. tree matching) whereas the XML grammar operators specify constraints on the occurrence
of a particular node (and consequently the sub-tree rooted at that node). For instance, the DTD operator ‘‘?’’ associated with
a given element dummy? designates that the node entitled dummy (and not any other) can appear 0 or 1 time. The same
applies for all XML grammar operators.

6.2. XML document/grammar validation

XML document validation w.r.t. XML grammars has recently gained attention, as one of the aspects of XML data manage-
ment [7,8,14,22,36,49]. Here, XML grammars are generally viewed as context-free (DTD-like) regular tree grammars [58].
Thus, verifying if an XML document D conforms to XML grammar G comes down to checking whether the document tree
is included in the language defined by the grammar, i.e., if D 2 LðGÞ. The standard procedure for testing membership in a for-
mal language is to simulate the automaton that accepts the language on the input strings [34]. Hence, XML validation meth-
ods, e.g., [7,8,14,49], have investigated different variations to extend automaton-based techniques to deal with the special
case of XML regular tree grammars and XML document trees. In general, the validation is performed in OðjDj�logðjGjÞÞ time,
where jDj and jGj designate respectively the sizes of the XML document and XML grammar. The authors in [49] show that the
construction of a standard automaton for (streaming) XML validation requires exponential time in the size of the XML
grammar, when the latter encompasses recursive declarations. Note that methods for XML document validation generate
a Boolean result indicating whether the XML document is valid or not w.r.t. the grammar. They do not produce a (ranked)
similarity score.

6.3. XML document transformation and correction

Methods for identifying the edit script transforming a given XML document, to another document conforming to a given
DTD grammar, have been proposed in [57,58,79,80]. The approach in [57] builds a special graph structure G, based on the
XML document tree D, underlining all possible transformation operations applicable to D (i.e., node insertion, deletion
and update). The algorithm goes through graph G, and verifies which paths have sequences of labels that satisfy the DTD
regular expressions. This is achieved via dedicated NFAs (Non-deterministic Finite Automatons). The proposed method
addresses simple DTDs, and does not consider XSD MinOccurs and MaxOccurs operators, nor does it discuss the special cases
of repeatable and recursive expressions. The authors show that their approach is polynomial on document and grammar

J. Tekli et al. / Information Sciences 295 (2015) 258–302 293

expression sizes when the cost of an operation on a node only depends on the node label itself, and that it becomes non-
polynomial (exponential) otherwise, highlighting a strongly NP-Complete decision problem. No experimental evaluation is
provided. Another approach to XML document/grammar transformation is provided in [79,80]. It introduces a tree edit dis-
tance method to identify the set of operations transforming the XML document to one conforming to the grammar. However,
the author simplifies DTD definitions into data-guide like structures (simulated via hedge automatons [46]), omitting all car-
dinality and alternativeness constraint operators. The proposed method is of OðjDj � jGj�logðjGjÞÞ time, where jGj is the size
of the grammar and jDj is the size of the XML document tree.

A problem comparable to that of document-to-grammar transformation is that of document-to-grammar correction
[6,15,58]. The scenario considered here is that of dynamic XML documents which are modified and updated frequently,
underlining the need to continuously test their conformance w.r.t. the corresponding grammars. The authors in [6,15] pro-
pose to correct those sub-trees, in the modified XML document, where validation fails w.r.t. a given DTD grammar. The meth-
ods exploit automatons and tree edit distance to identify the set of possible sub-tree corrections, such that their distances
from the original sub-tree are within a given threshold. The approach is shown exponential in the size of document node fan-
out (maximum node degree), and has been exploited to incrementally validate XML integrity constraints defined as XML
functional dependencies [13]. In [54,58] the authors extend document-to-grammar (DTD) correction to deal with more
expressive XML schemas, represented as simple type tree grammars (where the left-hand side of a production rule may be
surrounded by context information, consisting of terminal symbols), representing repairs as sequences of edit operations
to alter XML trees. The authors in [52,53] investigate user-defined XML document adaptations, i.e., sequences of document
transformation operations intended to adapt documents valid for an original grammar G to a new grammar G0. The objective
is to check whether a user-proposed document adaptation is guaranteed to produce a document valid for the new grammar,
in order to avoid the usually expensive revalidation of documents upon grammar modification. Transformation operations
are expressed as sequences of XQuery update primitives, automatically inferred from the original grammar using a Hedge
automaton and a set of rules describing each operation type (e.g. rename node, insert as first child node, insert as last child
node, etc.). Type inclusion is then used as a conformance test w.r.t. the types of updates extracted from the updated schema
G0.

While the methods in [6,15,57,58,79] produce transformation and correction scripts, they do not however address the
issue of XML document/grammar similarity.

6.4. XML document/grammar similarity

Very few approaches have been developed to measure the structural similarity between XML documents and grammars.
The main methods are provided by Thomo et al. [32,50,75] and Bertino et al. [9,10].

In [32], the authors address the problem of determining whether semi-structured data conform to a given data-guide, in
the context of approximate querying. The authors define a distortion transducer through which the data-guide can be dis-
torted via elementary transformations (e.g., node insertions, deletions and updates) and then test if the database conforms to
the resulting data-guide. The same technique is exploited to compare semi-structured data with a given query. The approach
in [32] is developed for generic semi-structured data and data-guides, rather than for XML documents, and does not consider
any of the XML grammar repeatability and alternativeness constraints. In a more recent study [50,75], the authors propose a
similar approach toward approximate XML validation. Dedicated pushdown transducers are designed to modify XML gram-
mars by a predefined tolerable number of transformation operations (e.g., node insertions, deletions and updates) and then
test if the XML documents conform to the resulting grammar. Both methods require typical polynomial time with simple
(data-guide like) grammar structures, e.g., OðK � N2 � jPjÞ where K is the number of allowable transformation operations,
N is the size of the alphabet (XML document), and jPj the number of states in the distortion transducer P [50,75]. However,
the authors show that complexity becomes exponential when considering intrinsic XML grammar properties, namely repeat-
able elements. They do not discuss optional, alternative or recursive declarations.

Note that methods in [32,50,75] are based on the assumption that the possible derivations from the original grammar
specification are pre-designed by the user through the transducer (pre-processing phase). While this might be feasible in
specific applications such as the fast validation of streaming (homogeneous) XML, yet, it is a limitation to the general prob-
lem of XML document/grammar comparison (namely approximate validation of heterogeneous XML data) where no prior
knowledge of the possible deviations is known in advance.

To our knowledge, the main approach that specifically addresses the general problem of XML document/grammar sim-
ilarity, particularly DTDs, was proposed by Bertino et al. in [9,10]. Here, XML documents and DTDs are modeled as labeled
trees, with additional nodes for representing cardinality and alternativeness operators (i.e., ?, ⁄, +, And, Or). The proposed
algorithm (originally proposed in [10], and formalized in [9]) exploits dedicated measures to consider the level (i.e. depth)
in which the elements occur in the hierarchical structure of the XML and DTD tree representations, as well as element com-
plexity (i.e. the cardinality of the sub-tree rooted at the element) when computing similarity values. The algorithm relies on
the identification and evaluation of: (i) elements appearing both in the document and in the DTD (common elements), (ii)
elements appearing in the document but not in the DTD (plus elements), (iii) and elements appearing in the DTD but not in
the document (minus elements). Different weights can be assigned to each group of elements to tune the similarity measure
following the user’s needs. The proposed algorithm is of typical polynomial time complexity ðOðC2 � ðjDj þ jGjÞÞ where jDj
and jGj underline XML document tree and DTD tree cardinalities respectively, and C the maximum node fan-out in the

294 J. Tekli et al. / Information Sciences 295 (2015) 258–302

XML document tree), especially when a certain assumption holds: in the declaration of an element, two sub-elements with the
same tag are forbidden (e.g., declaration h!ELEMENT root ðb; b; cÞi is not allowed since b appears twice). The authors discuss
that when the above assumption does not hold, the algorithm can become of worst case exponential complexity, and can
produce wrong matches between document and DTD elements (i.e., the minimality of the similarity is no longer guaranteed).

6.5. Our own research activities related to XML similarity

Part of our research activities have been focused around the study of XML similarity, developing measures for comparing
(i) XML documents, (ii) XML grammars, and (iii) XML documents and grammars, and their application in specific real-world
scenarios. We have largely focused on XML structure, and have recently tackled XML content (specifically in the context of
RSS merging and SOAP multicasting). Various results have been accomplished, mainly:

– Extending the tree edit distance algorithm in [48] so as to detect structural similarities and repetitions amongst XML sub-
trees [65], and XML leaf nodes [67], previously unaddressed in existing approaches.

– Integrating semantics (i.e., considering the meanings of XML labels, via semantic networks such as WordNet [45]) in the
structural comparison of XML documents [64]. An improved method, considering XML sub-tree structural and semantic
similarities, has been recently published in [66].

– Developing a fine-grained method for XML grammar comparison [63], considering element semantic and syntactic sim-
ilarities, cardinality and alternativeness constraints, as well as data-types and ordering. An extended study with detailed
theoretical and experimental analyses has been recently proposed in [70].

– Quantifying the similarity and identifying the relations (i.e., inclusion, intersection, disjointness, and equality) among
XML element content values, particularly among RSS items [60], developed toward RSS merging [59].

– Developing a filter-differencing framework for SOAP multicasting, identifying the common pattern and differences
between SOAP messages, modeled as XML trees, to multicast similar messages together [71,72].

Our only proposal aimed at dealing with XML document/grammar comparison was presented in [68], in addition to a
review paper published in [62]. Similarly to our current study, the approach in [68] is based on the concept of tree edit dis-
tance as a more effective solution to comparing XML trees. The approach targets DTD grammars, and considers basic DTD
cardinality and alternativeness constraints (i.e., ?, +, ⁄, And, Or). Hence, it must be viewed as the groundwork for the general
approach in this paper. Here, we aim to consider more expressive XSD operators (e.g., MinOccurs and MaxOccurs), including
repeatable expressions and recursive declarations (omitted in [68]).

6.6. Discussion

To sum up, various methods have been proposed for XML document/grammar validation, e.g., [7,8,36] and transforma-
tion/correction, e.g., [6,15,58]. Yet, most approaches do not address the issue of document/grammar similarity evaluation
and do not produce a similarity score. Those few methods developed for XML document/grammar similarity are either gen-
eric (disregarding most grammar constraints) and intended to consider pre-designed derivations [32,75], or developed for
the DTD (context-free) grammar language and do not consider XSD (context-sensitive) structure and constraints which
are more complex and expressive (e.g., MinOccurs and MaxOccurs) [9,10].

Some methods in the context of XML grammar matching [40,56] have proposed to reduce (sacrifice) XML grammar
expressiveness to simplify the comparison task, using simplification rules to eliminate repeatable and alternative expres-
sions (e.g., transforming the Oroperator into an And operator: ðAjBÞ ! ðA;BÞ, brute-force flattening of repeatable expressions
such as: ðA;BÞþ ! ðAþ; BþÞ; ðA;BÞ� ! ðA�;B�Þ, etc.). While such rules seem practical in simplifying XML grammars, yet, they
reduce grammar expressiveness, which in turn yields erroneous similarity results, and thus not in line with our goal of pro-
viding a fine-grained method to XML document/grammar comparison.

7. Conclusion

In this paper, we propose a structure-based similarity approach for comparing XML documents and XML grammars (DTDs
and/or XSDs), performing approximate structure XML validation. The proposed approach has several applications, including
document classification, transformation, and XML selective dissemination (e.g., user profiles being represented as grammars
against which the documents will be matched). Based on the tree edit distance concept, our approach takes into account the
most common XML grammar operators that designate constraints on the existence, repeatability and alternativeness of XML
elements/attributes, namely MinOccurs, MaxOccurs. It produces similarity values in ½0;1� interval (in comparison to Boolean
output obtained with classic XML validation methods). Also, an edit script can be generated from the edit distance compu-
tations which can describe the changes required to transform an XML document into one conforming to the grammar (which
is central for document transformation and correction applications). Note that our XML grammar tree model considers com-
plex declarations, including: (i) repeatable sequence expressions, (ii) repeatable alternative expressions, and (iii) recursive
expressions, which have been previously disregarded in most existing approaches, e.g., [9,32,57]. In addition, it is not limited

J. Tekli et al. / Information Sciences 295 (2015) 258–302 295

to context-free (DTD-like) grammar declarations: where the definition of an element is unique and independent of its posi-
tion in the grammar; but can be used with context-sensitive (XSD-based) declarations: where identically labeled elements
can have multiple definitions in different contexts in the grammar. Our theoretical and experimental results showed that our
approach yields accurate structural document/grammar similarity results (characterized by high structural document clas-
sification and ranking quality).

We are currently extending our approach to consider, not only the structural properties of XML documents and gram-
mars, but also the semantic similarities between XML element/attribute node labels (given a reference semantic information
source such as WordNet [45], Wikipedia [84], or Google [37]), through the investigation of alternative tree edit operations
cost models similarly to the studies in [63,66,70]. In the near future, we plan to extend our method to consider XML element/
attribute tag names as well information contents (element/attribute values). By adding additional constraints on the data
content of elements/attributes, grammars could be exploited as content-and-structure queries, taking into account the struc-
ture of XML data in the search process, and returning ranked answers as in information retrieval (IR). This would also give
rise to more elaborate content models, such elements defining hyper-links (IDREFS or XLink), which would require dedicated
graph-based comparison functions. Another direction is the extension of our grammar tree model to handle unordered XML
document trees, i.e., XML trees where only ancestor relations are considered to be significant in the XML structure, which
might be more suitable for various database applications such as document clustering and pattern discovery [24,41]. Note
that combining database (DB) structural ‘‘binary answer’’ XML search (e.g., XML-QL and XQuery) and information retrieval
query result ranking (e.g., approximate XML validation), is a prominent trend in both DB and IR research.

Acknowledgements

This work is supported in part by: the Research Support Foundation of the State of Sao Paulo (FAPESP Post-doc Fellowship
N# 2010/00330-2), STIC AmSud project Geo-Climate XMine co-funded by the French Ministry of Foreign Affairs, National
Brazilian Consul for Scientific and Technological Development – CNPq, CAPES – Brazil, the CEDRE research collaboration pro-
gram, project AO 2011 ‘‘Easy Search and Partitioning of Visual Multimedia Data Repositories’’ (funded by the French National
Center for Scientific Research – CNRS, and the Lebanese CNRS), and by the ACM French Chapter on Applied Computing
SIGAPP.fr.

Appendix A. Mathematical analysis regarding the Disjunctive Normal Form (DNF)

In the following, we consider three common configurations of ‘Or’ operator expressions: (i) concatenated, (ii) encapsu-
lated, and (iii) mixed; which usually appear in real XML grammars (based on empirical analyses in [11,23,38], as well as
the grammars utilized in our own experiments, described in Section 5 of the main paper). In the following, we show on
one hand that with concatenated and/or encapsulated configurations, the number of conjunctive declarations resulting from
the DNF representation of a grammar expression is linear in the number of ‘Or’ operators involved, denoted Nb(Or). On the
other hand, we show that mixed declarations might induce, in certain specific cases, an exponential increase in the number
of conjunctive grammars.

A.1. Grammars with concatenated ‘Or’ expressions

These correspond to grammars containing alternative expressions where ‘Or’operators appear exclusively at the same
level within the same grammar expression: h!ELEMENT AðBjCjDj . . .Þi such as ‘A’ is the root node, or an inner node in the
grammar, and ‘B’, ‘C’, ‘D’, . . . are either: (i) single node declaration, (ii) empty node declarations, or (iii) sequence expressions
(i.e., expressions of elements connected via the ‘And’operators). Given an XML grammar G consisting solely of concatenated
‘Or’ expressions (i.e., yielding the maximum Nb(Or) possible following this configuration), and based on the inductive math-
ematical reasoning in Table A.1, the maximum number of conjunctive grammars NG resulting from the DNF representation of
G, DNFðGÞ ¼ fCgG, is equal to:

Table A.1
XML grammars made of concatenated ‘Or’ operators, such as the number of ‘Or’ operators, and consequently the number of conjunctive grammars NG; are
maximized.

Grammar expressions Nb(Or) j G j NG j CG j

< ELEMENT root ða j bÞ > 1 3 2 2
< ELEMENT root ða j b j cÞ > 2 4 3 2
< ELEMENT root ða j b j c j dÞ > 3 5 4 2
< ELEMENT root ða j b j c j d j eÞ > 4 6 5 2
< ELEMENT root ða j b j c j d j e j f Þ > 5 7 6 2
. . .

Recursively, jGj-2 jGj jGj-1 2

296 J. Tekli et al. / Information Sciences 295 (2015) 258–302

NG ¼ NbðOrÞ þ 1 such as NG ¼ jGj � 1 and NbðOrÞ ¼ jGj � 2 ðiÞ

A.2. Grammars with encapsulated ‘Or’ expressions

These are grammars containing alternative expressions where ‘Or’ operators are encapsulated in each other, such as no
two ‘Or’ operators appear at the same structural level. Such grammars are of the form: h!ELEMENTAðBjCÞi h!ELEMENT
BðEjFÞi h!ELEMENT EðHjIÞi . . . where ‘A’ is the root node or an inner node, and ‘B’, ‘C’, ‘E’, . . . are either (i) single node
declaration, (ii) empty node declarations, or (iii) sequence expressions (i.e., expressions of elements connected via the
‘And’ operators). Thus, given an XML grammar G consisting solely of encapsulated ‘Or’ expressions (i.e., yielding the maxi-
mum Nb(Or) possible following this configuration), and based on the inductive mathematical reasoning in Table A.2, the
maximum number of conjunctive grammars NG resulting from DNFðGÞ ¼ fCgG, is equal to:

NG ¼ NbðOrÞ þ 1 such as NG ¼
jGj þ 1

2
and NbðOrÞ ¼ jGj � 1

2
ðiiÞ

A.3. Grammars with mixed expressions

These are grammars made of expressions containing both sequence (And) and alternative (Or) expressions. Here, 2 main
configurations can occur, which we identify as: (i) And–Or expressions and (ii) Or–And expressions.

� And–Or expressions – These are of the form E ¼ ðA1jA2j . . . jAnÞ where each Bi consists of a sequence expression, denoted
Bi ¼ ðB1;B2; . . . ;BmÞ. These come down to the cases of concatenated and/or encapsulated ‘Or’ expressions described above,
since sequence expressions are not affected via the DNF representation and can be processed as single node declarations.
� Or–And expressions – these are of the form E ¼ ðA1;A2; . . . ;AnÞ where each Ai consists of an alternative expression,

denoted Ai ¼ ðB1jB2j . . . jBmÞ. Here, one can realize that the number of conjunctive expressions resulting from the DNF rep-
resentation of E is exponential in the number of Ai expressions in E (i.e., the cardinality of E w.r.t. the main ‘And’ sequence
operator):

NE ¼ jAijjEj ¼ mn such as NbðOrÞ ¼ jEj � ðjAij � 1Þ ¼ n� ðm� 1Þ ðiiiÞ

Consequently, a grammar G containing multiple mixed expressions Ei, transformed into its DNF representation, would
inherently yield an exponential increase in the number of conjunctive grammars NG (in comparison with the linear depen-
dencies described in the concatenated and encapsulated cases discussed above).

To summarize, the number of conjunctive grammars NG resulting from the DNF representation of an XML grammar G
remains linear in the number of ‘Or’ operators involved in G, in many practical cases including: concatenated ‘Or’ expressions,
encapsulated ‘Or’ expressions, and mixed And–Or expressions. However, an exponential increase in NG can occur in the case
of mixed Or–And expressions. Here, note that mixed expressions (including both And–Or and Or–And declarations) only cover
12.65% of grammar expressions used in real XML grammars [11,23,38].

Appendix B. XML Grammar_to_Tree algorithm

The pseudo-code of our algorithm for transforming an XML grammar into its tree representation, entitled XGram_to_Tree,
is shown in Fig. B.1. Given an XML grammar G, an XML document tree D to be compared with the grammar, and our set of
transformation rules {R} (cf. Tables 1 and 2), the algorithm first runs the grammar G through the general transformation rules
(rules 1–3, cf. Table 1) so as to flatten repeatable expressions, eliminating all cardinality constraints associated to the And and
Or operators (cf. Fig. B.1, line 1, the rules being recursively applied on the input grammar G until no further transformations
are possible). Then, the algorithm runs the resulting (flattened) grammar G1 though the one-to-one transformation rules

Table A.2
Grammars made of encapsulated ‘Or’ operators, such as the number of ‘Or’ operators, and consequently the number of conjunctive grammars NG , are
maximized.

Grammar expressions Nb(Or) j G j NG j CG j

< ELEMENT root ða j bÞ > 1 3 2 2
< ELEMENT root ða j bÞ > < ELEMENT a ðc j dÞ > 2 5 3 3
< ELEMENT root ða j bÞ > < ELEMENT b ðc j dÞ > < ELEMENT c ðe j f Þ > 3 7 4 4
< ELEMENT root ða j bÞ > < ELEMENT b ðc j dÞ > < ELEMENT c ðe j f Þ > < ELEMENT e ðg j hÞ > 4 9 5 5
< ELEMENT root ða j bÞ > < ELEMENT b ðc j dÞ > < ELEMENT c ðe j f Þ > < ELEMENT e ðg j hÞ >

< ELEMENT g ðh j iÞ >
5 11 6 6

. . .

Recursively, jGj�1
2

jGj jGjþ1
2

jGjþ1
2

J. Tekli et al. / Information Sciences 295 (2015) 258–302 297

(rules 2+, 3+, and 4, cf. Table 2), handling MaxOccurs = ‘unbounded’ and recursive expressions w.r.t. the XML document tree at
hand (line 2). Subsequently, the algorithm transforms the resulting grammar G2 into its disjunctive normal form,
DNFðG2Þ ¼ fCgG2 (line 3) and then represents each resulting conjunctive XML grammar as a single rooted ordered labeled tree
(lines 4–8).

Appendix C. Definitions of edit operations used in our TEDXDoc XGram approach

Definition 1 (Insert Leaf Node). Let T be a tree with a node p 2 NT , and let T1; . . . ; Tm be the first level sub-trees corresponding
to node p (i.e., sub-trees rooted at the children of node pÞ. Given a node x not belonging to T; x R T , Ins(x, i, p, ‘Þ is a node
insertion operation applied to T, inserting x as the ith leaf child of p. In the transformed tree T 0, node p will have
T1; . . . ; Ti�1; x; Tiþ1; . . . ; Tmþ1 as its first level sub-trees, with ‘ the label of inserted leaf node x.

Definition 2 (Delete Leaf Node). Given a leaf node x in tree T, i.e., x 2 NT such as x.Deg = 0, DelðxÞ is a node deletion operation
applied to T, yielding T 0 where node p will have first level sub-trees T1; . . . ; Ti�1; Tiþ1; . . . ; Tm.

Definition 3 (Update Node (Label)). Given a node x in tree T; x 2 NT , and a label k, Updðx; kÞ is a node (label) update operation
applied to x resulting in T 0 which is identical to T except that in T0; x bears k as its label. The update operation could be also
formulated as follows: Updðx; yÞ where y:k denotes the new label to be assumed by x.

Definition 4 (Insert Tree). Let T be a tree, with a node p 2 NT , and let T1; . . . ; Tm be the first level sub-trees of node p. Given a
tree A not belonging to T; InsTree ðA; i; pÞ is a tree insertion operation applied to T, inserting A as the ith sub-tree of p. In the
transformed tree T 0, node p will have T1; . . . ; Ti�1;A; Tiþ1; . . . ; Tmþ1 as its first level sub-trees.

Definition 5 (Delete Tree). Let T be a tree with a node p 2 NT , having a tree A as the ith first level sub-tree of p, DelTree(A) is a
tree deletion operation applied to T, yielding T 0 where node p will have first level sub-trees T1; . . . ; Ti�1; Tiþ1; . . . ; Tm

Appendix D. Properties of our XML document/grammar similarity measure

D.1. Tree edit distance minimality property

Given an XML tree D and a conjunctive grammar tree C, one can transform D into a document tree conforming to C using
any of an infinite number of edit scripts (e.g., repeatedly inserting and deleting the same node and/or sub-tree, etc.). Such
edit scripts are obviously meaningless in the context of our study since we aim to identify the minimum cost edit script: that
applies the fewer and minimum cost operations transforming D into a document tree valid w.r.t. C. In other words, if we
consider LðCÞ to be the set of document trees generated by grammar C (i.e., the language of grammar CÞ, then we aim to

Fig. B.1. Pseudo-code of XGram to Tree, for transforming an XML grammar into its tree representation.

298 J. Tekli et al. / Information Sciences 295 (2015) 258–302

identifying the minimum distance (cost) necessary to transform document tree D into any document D0 2 LðCÞ. Hence, the
distance minimality property carries immediately from our definition of tree edit distance (cf. TEDXDoc XGram in Fig. 12) and
serves as the main directive in defining our TEDXDoc XGram algorithm.

D.2. Similarity measure metric properties

Our similarity measure in formula 5 is consistent with the formal definition of similarity, as a (semi-) metric function sat-
isfying (in part) the metric properties of Reflexivity, Minimality, Symmetricity and Triangular Inequality. Here, note that while
XML documents and XML grammars are different in nature (i.e., XML documents underline data instances, whereas XML
grammars underline data type), yet an XML document tree, following our model, comes down to a conjunctive XML gram-
mar tree free of cardinality constraints operators (i.e, when all elements of the grammar tree are associated default con-
straints MinOccurs = MaxOccurs = 1, which are equivalent to null constraints and can be omitted). This allowed us to verify
the following metric properties:

i. SimXDoc XGramðD;GÞ 2 ½0;1�.18

ii. SimXDoc XGramðD;GÞ ¼ 1) XML document tree D conforms to grammar GðG � DÞ.
iii. SimXDoc XGramðD;DÞ ¼ 1) Reflexivity.
iv. SimXDoc XGramðD1;D2Þ 6 SimXDoc XGramðD;DÞ) Minimality.
v. SimXDoc XGramðD1;D2Þ ¼ SimXDoc XGramðD2;D1Þ) Symmetricity.
vi. SimXDoc XGramðD1;D3ÞP SimXDoc XGramðD1;D2Þ � SimXDoc XGramðD2;D3Þ) Triangular inequality, (i.e., TEDXDoc XGramðD1;D3Þ 6

TEDXDoc XGramðD1;D2Þ þ TEDXDoc XGramðD2;D3ÞÞ.

Note that our measure is a semi-metric (and not a full metric) since: (i) it does not allow comparing two grammars (i.e.,
SimðG1;G2ÞÞ, nor (ii) using a grammar as the first parameter of the similarity measure (SimðG;DÞ is not allowed, i.e., we can-
not transform grammar G so that it includes in its language document D. We do it the other way around: transforming D so
that it becomes D � CÞ. Comparing/transforming grammars is out of the scope of this study.

Appendix E. Detailed computation examples

E.1. Extended TED recurrence (TED+) computations

Consider the example in Fig. 14. Fig. 14a depicts the computation of Dist[1,1] between partial document tree Eh1i and
partial grammar tree Ch1i and has been described in detail in the main paper (in short, no changes need to be made to
Eh1i since Ch1i � Eh1i). Fig. 14b depicts the computation of Dist[1, 2] between partial document tree Eh1i and Ch2i. Comput-
ing the a factor consists of deleting sub-tree E1 (consisting of leaf node aÞ, which cost = 1. Computing the b factor consists in
inserting 2 occurrences of sub-tree C2, in order to fulfill the corresponding R(C2).MinOccurs = 2 constraint in the transformed
partial document tree Eh1i to obtain Ch2i � Eh1i0. Computing the c factor consists in evaluating the edit distance between
sub-tree E2, the (only existing) match candidate with grammar sub-tree C2 (NbOcc[2] = 1). Nonetheless,
NbOcc½2� < RðC2Þ:MinOccurs ¼ 2 shows that one more occurrence of C2 is required to appear in Eh1i to obtain Ch2i � Eh1i0.
Thus, c1 is applied to account for the remaining sub-tree occurrence, yielding c = 3, which is the cost of inserting an occurrence
of C1 into Eh1i. Consequently, Dist[1,2] = Min(a; b; cÞ ¼ c ¼ 3, indicating that the minimum (cost) amount of change required
to transform Eh1i in order to obtain Ch2i � Eh1i0 is to insert an additional occurrence of C2 in Eh1i.

Similarly, consider Fig. 14c which depicts the computation of Dist[4,2] between partial document tree Fh4i and partial
grammar tree Ch2i. Computing the a factor consists in deleting sub-tree F4, which cost = 2. Computing the b consists in
inserting 2 occurrences of sub-tree C2, in order to fulfill the corresponding R(C2).MinOccurs = 2 constraint. Computing the
c factor consists in evaluating the edit distance between document sub-trees F2; F3; F4 on one hand, which are the consec-
utive first-level sub-trees in Fh4i which could match C2, and grammar sub-tree C2 on the other hand. Here,
NbOcc½2� ¼ 3 2 ½RðC1Þ:MinOccurs ¼ 2;RðC1Þ:MaxOccurs ¼ 3�, thus c2 is applied. This yields cost = 1, indicating that
C2 � fF2; F3g (inducing no edit distance cost, TEDXDoc XGramðF2;C2Þ þ TEDXDoc XGramðF3; C2Þ ¼ 0), while C2j � F4, requiring the
inserting of node e (TEDXDoc XGramðF4;C2Þ ¼ CostInsTreeðC22Þ ¼ 1) to obtain C2 � F 04. Then, Dist[4,2] = Min(a; b; cÞ ¼ c ¼ 1, indicat-
ing that the minimum (cost) amount of change required to transform Fh4i in order to obtain Ch2i � Fh4i0, is to insert node e
under sub-tree F4.

E.2. Complete TEDXDoc Gram matrix computations

Consider the edit distance matrixes in Fig. 15, depicting all recurrences when running the TEDXDoc Gram algorithm to com-
pare document trees D; E; F with grammar C of Fig. 13.

18 In practice, we will hardly ever obtain TEDXDoc XGram ¼ 1. Hence, SimXDoc XGram values will hardly ever reach 0. Note that alternative similarity formulas, such
as SimXDoc XGramðD;GÞ = 1 - (TEDXDoc XGramðD;GÞ/(—D— + —G—)) could be used to bring similarity values to a limited range, where SimXDoc XGram ¼ 00 is more
practically attainable. Yet, such a formula would violate the triangular inequality metric property, which is why it is disregarded in this approach.

J. Tekli et al. / Information Sciences 295 (2015) 258–302 299

Fig. 14a depicts the computation of TEDXdoc XgramðD; CÞ and has been discussed in detail in the main paper (in short,
TEDXdoc XgramðD;CÞ ¼ 0) SimXdoc XGramðD;CÞ ¼ 1=ð1þ TEDXDoc XGramðD;CÞÞ ¼ 1) C � D).

Fig. 14b depicts TEDXDoc XGramðE;CÞ ¼ 3) SimXdoc XGramðE;CÞ ¼ 1=ð1þ TEDXDoc XGramðE;CÞÞ ¼ 0:25) Cj�0:25E, i.e., document
tree E approximately validates C with a similarity score = 0.25. Here, Dist[0,0] = 0 since the document and grammar tree
roots match. Dist½1;1� ¼ Dist½0;0� þ TEDXDoc XGramðE1;C1Þ � CostUpdðRðE1Þk;RðC1ÞkÞ ¼ 0 since C1 � D1. Dist[2,2] = Dist[1,1] +
TEDXDoc XGramðE2; C2Þ þ CostInsTreeðC2Þ � ðRðC2Þ:MinOccurs� NbOcc½2�Þ ¼ 0þ 0þ 3 ¼ 3, since D2 is the only (exact) match of
C2;C2 � D2, (NbOcc[2] = 1) whereas the minimum number of occurrences of C2 required to appear in the document tree is
RðC2Þ:MinOccurs ¼ 2 (thus we need to consider the cost of inserting an additional occurrence of C2, i.e., CostInsTreeðC2Þ ¼ 3,
in order to obtain Ch2i � Dh2i0). Dist[3,3] = Dist[2,2] + TEDXDoc XGramðE3;C3Þ ¼ CostUpdðRðE3Þk;RðC3ÞkÞ ¼ 3þ 0 since C3 � E3

(given that one occurrence of C3 is required, and has actually appeared in the document tree). To sum up,
TEDXDoc XGramðE;CÞ ¼ 3) Cj�0:25E highlights the cost of inserting one additional occurrence of sub-tree C2 into document tree
E, to obtain C � E0.

Fig. 14c depicts TEDXDoc XGramðF;CÞ ¼ 4) SimXDoc XGramðF;CÞ ¼ 1=ð1þ TEDXDoc XGramðF;CÞÞ ¼ 0:2) Cj�0:2E. Here,
Dist[0,0] = 0 since the document and grammar tree roots match. Dist½1;1� ¼ Dist½0; 0� þ TEDXDoc XGramðF1;C1Þ � CostUpd

ðRðF1Þk;RðC1ÞkÞ ¼ 0 since C1 � F1. Dist½4;2� ¼ Dist½1;1� þ TEDXDoc XGramðF2;C2Þ þ TEDXDoc XGramðF3;C2Þ þ TEDXDoc XGramðF4;C2Þ ¼
0þ 0þ 0þ 1 ¼ 1 since C2 � fF2; F3g whereas C2j � F4 requiring the insertion of node e (TEDXDoc XGramðF4;C2Þ ¼
CostInsTreeðC22Þ ¼ 1) in order to obtain C2 � F4 (having NbOcc[2]=RðC3Þ.MaxOccurs = 3, i.e., 3 occurrences of C2 are allowed
to appear, and have actually appeared in the document tree). Dist½5;2� ¼ Dist½4;2� þ CostDelTree½5� ¼ 1þ 3 ¼ 4, considering
the cost of deleting sub-tree F5, since F5 is considering as an additional yet unwanted occurrence of sub-tree
C2ðNbOcc½2� ¼ 4 > RðC3Þ:MaxOccurs ¼ 3Þ. Dist½6;3� ¼ Dist½5;2� þ TEDXDoc XGramðF6;C3Þ ¼ 4, where TEDXDoc XGramðF6;C3Þ �
CostUpdðRðF6Þk;RðC3ÞkÞ ¼ 0 since C3 � F6. To sum up, TEDXDoc XGramðF;CÞ ¼ 4) Cj�0:2E underlines the costs of (i) inserting
node e in sub-tree F4 and (ii) deleting sub-tree F5 from document tree F, in order to obtain C � F 0. This means that F requires
more costly transformations conform to grammar tree C in comparison with document tree E.

In addition, consider a simple variation of grammar C where sub-tree C02’s root node is assigned RðC2Þ:MaxOccurs ¼ 1
instead of MaxOccurs = 3 (all other nodes remaining the same). In this case, the edit distance table in Fig. 14c would remain
the same except for: Dist½5;2� ¼ Dist½4;2� þ TEDXDoc XGramðF5;C2Þ ¼ 1þ 1 ¼ 2, where: Dist[4,2] = 1 underlines the cost of
inserting node e under sub-tree F4 in order to obtain C2 � F 04 (similarly to the previous example), and
TEDXDoc XGramðF5;C2Þ � CostUpdðRðF52Þk;RðC22ÞkÞ ¼ 1, transforming node label f into e in sub-tree F5 (TEDXDoc XGramðF5;C2Þ ¼

Table E.1
Tree edit distance computations when comparing XML document tree D and XML conjunctive grammar tree CI .a

a Recall that MinOccurs = 1 and MaxOccurs = 1 designate default values which are equivalent to null constraints, and thus can be omitted in the edit
distance matrixes (for ease of presentation).

Table E.2
Tree edit distance computations when comparing XML document tree D and XML conjunctive grammar tree CII .

300 J. Tekli et al. / Information Sciences 295 (2015) 258–302

CostUpdðRðF52Þ‘;RðC22Þ:‘; Þ ¼ 1) in order to obtain C2 � F 05. In other words, F5 is now considered as an (approximate) occur-
rence of sub-tree C2, since an infinite number of occurrences of C2 is accepted in the grammar tree
(NbOcc½2� ¼ 4 < RðC2Þ:MaxOccurs ¼ 1), in comparison with Example 3 where F5 was an unwanted occurrence (to be deleted
from F in order to obtain C � F 0Þ. To sum up, having RðC2Þ:MaxOccurs ¼ 1, TEDXDoc XGramðF;CÞ ¼ 2) Cj�0:334F, designating the
costs of (i) inserting node e under sub-tree F4 and (ii) updating node label f into e in sub-tree F5 (having C2j � fF4; F5g) in
order to obtain C � F 0.

E.3. Edit distance matrixes concerning the running example (in Section 4.4.3)

The highlighted parts in Tables E.1, E.2, and E.3 designate corresponding minimum edit scripts.

References

[1] S. Abiteboul et al, Data on the Web: From Relations to Semistructured Data and XML, first ed., Morgan Kaufman Publisher, 1999.
[2] N. Abu-Ghazaleh, et al., Differential serialization for optimized SOAP performance, in: Proceedings of the 13th International Symposium on High

Performance Distributed Computing (HPDC’04), 2004, pp. 55–64.
[3] T. Akatsu, Approximate string matching with don’t care characters, Inform. Process. Lett. (55) (1995) 235–239.
[4] A. Algergawy et al, XML data clustering: an overview, ACM Comput. Surv. 43 (4) (2011) 25.
[5] A. Algergawy, et al., XML schema element similarity measures: a schema matching context, in: Proceedings of the 8th International Conference on

Ontologies, DataBases, and Applications of Semantics (ODBASE 2009), Portugal, 2009, pp. 1246–1253.
[6] J. Amavi et al, On correcting XML documents with respect to a schema, Comp. J. (2013).
[7] A. Balmin et al, Incremental validation of XML documents, ACM Trans. Database Syst. 29 (4) (2004) 710–751.
[8] D. Barbosa, et al., Efficient incremental validation of XML documents, in: Proceedings of International ICDE Conference, 2004, pp. 671–682.
[9] E. Bertino et al, Measuring the structural similarity among XML documents and DTDs, J. Intell. Inform. Syst. 30 (1) (2008) 55–92.

[10] E. Bertino, G. Guerrini, M. Mesiti, A matching algorithm for measuring the structural similarity between an XML documents and a DTD and its
applications, Elsev. Inform. Syst. (29) (2004) 23–46.

[11] G.J. Bex, F. Neven, J.V. Bussche, DTDs versus XML schema: a practical study, in: International Workshop of the Web and Databases (WebDB’04), 2004,
pp. 79–84.

[12] P. Bille, A survey on tree edit distance and related problems, Theoret. Comp. Sci. 337 (1–3) (2005) 217–239.
[13] B. Bouchou, M. Alves, M. de Lima, A Grammarware for the incremental validation of integrity constraints on XML documents under multiple updates,

Trans. Large-Scale Data- Knowl.-Center. Syst. 6 (2012) 167–197.
[14] B. Bouchou et al, Efficient constraint validation for XML database, Informatica 31 (3) (2007) 285–309.
[15] B. Bouchou, et al., XML Document correction: incremental approach activated by schema validation, in: Proceedings of the International Database

Engineering and Applications Symposium (IDEAS), 2006, pp. 228–238.
[16] T. Bray, et al. Extensible Markup Language (XML) 1.0 – 5th Edition, W3C recommendation, 26 November 2008, 2008 <http://www.w3.org/TR/REC-xml/

> (cited November 2014).
[17] D. Buttler, A short survey of document structure similarity algorithms, in: Proceedings of the International Conference on Internet Computing (ICOMP),

2004, pp. 3–9.
[18] S. Chawathe, Comparing hierarchical data in external memory, in: International Conference on Very Large Databases (VLDB), 1999, pp. 90–101.
[19] S. Chawathe, H. Garcia-Molina, Meaningful change detection in structured data, in: ACM SIGMOD, 1997, pp. 26–37.
[20] A. Cheriat, et al., Incremental string correction: towards correction of XML documents, in: Proceedings of the Prague Stringology Conference (PSC),

2005, pp. 201–215.
[21] B. Chidlovskii, Using regular tree automata as XML schemas, in: IEEE Advances in Digital Libraries (ADL’00), 2000, pp. 89–98.
[22] C. Chitic, D. Rosu, On validation of XML streams using finite state machines, in: Proceedings of the 7th International Workshop on the Web and

Databases (WebDB ’04), ACM Press, New York, NY, USA, 2004, pp. 85–90.
[23] B. Choi, What are real DTDs like? in: Proceedings of the International Workshop on the Web and Databases (WebDB), 2003, pp. 43–48.
[24] I.J. Chowdhury, R. Nayak, A novel method for finding similarities between unordered trees using matrix data model, in: International Conference on

Web Information Systems and Engineering (WISE’13), 2013, pp. 421–430.
[25] G. Cobéna, et al., Detecting changes in XML documents, in: IEEE International Conference on Data Engineering (ICDE), 2002, pp. 41–52.
[26] T. Dalamagas et al, A methodology for clustering XML documents by structure, Inform. Syst. 31 (3) (2006) 187–228.
[27] H. Do, S. Melnik, E. Rahm, Comparison of schema matching evaluations, in: Proceedings of the International Workshop on the Web and Databases

(German Informatics Society), Erfurt, 2002, pp. 221–237.
[28] H. Do, E. Rahm, Matching large schemas: approaches and evaluation, Inform. Syst. 32 (6) (2007) 857–885.
[29] H.H. Do, E. Rahm, Matching large schemas: approaches and evaluation, Inform. Syst. 32 (6) (2007) 857–885.
[30] S. Flesca, et al., Detecting structural similarities between XML documents, in: ACM SIGMOD WebDB, 2002, pp. 55–60.

Table E.3
Tree edit distance computations when comparing XML document tree D and XML conjunctive grammar tree CIII .

J. Tekli et al. / Information Sciences 295 (2015) 258–302 301

http://refhub.elsevier.com/S0020-0255(14)00956-6/h0005
http://refhub.elsevier.com/S0020-0255(14)00956-6/h0005
http://refhub.elsevier.com/S0020-0255(14)00956-6/h0015
http://refhub.elsevier.com/S0020-0255(14)00956-6/h0020
http://refhub.elsevier.com/S0020-0255(14)00956-6/h0030
http://refhub.elsevier.com/S0020-0255(14)00956-6/h0035
http://refhub.elsevier.com/S0020-0255(14)00956-6/h0045
http://refhub.elsevier.com/S0020-0255(14)00956-6/h0050
http://refhub.elsevier.com/S0020-0255(14)00956-6/h0050
http://refhub.elsevier.com/S0020-0255(14)00956-6/h0060
http://refhub.elsevier.com/S0020-0255(14)00956-6/h0065
http://refhub.elsevier.com/S0020-0255(14)00956-6/h0065
http://refhub.elsevier.com/S0020-0255(14)00956-6/h0070
http://www.w3.org/TR/REC-xml/
http://refhub.elsevier.com/S0020-0255(14)00956-6/h0110
http://refhub.elsevier.com/S0020-0255(14)00956-6/h0110
http://refhub.elsevier.com/S0020-0255(14)00956-6/h0110
http://refhub.elsevier.com/S0020-0255(14)00956-6/h0130
http://refhub.elsevier.com/S0020-0255(14)00956-6/h0140
http://refhub.elsevier.com/S0020-0255(14)00956-6/h0145

[31] S. Gao, C.M. Sperberg-McQueen, H.S. Thompson, W3C XML Schema Definition Language (XSD) 1.1 Part 1: Structures. W3C Recommendation, 2009
<http://www.w3.org/TR/xmlschema11-1/> (cited May 2014).

[32] G. Grahne, A. Thomo, Approximate reasoning in semi-structured databases, in: Proceedings of the International Workshop on Knowledge
Representation meets Databases (KRDB), vol. 45, 2001, Rome.

[33] S. Helmer, Measuring the structural similarity of semistructured documents using entropy, in: Proceedings of the International Conference on Very
Large Databases (VLDB), 2007, pp. 1022–1032.

[34] J.E. Hopcroft et al, Introduction to Automata Theory, Languages, and Computation, second ed., Addison Wesley, 2001.
[35] G. Huet, Confluent Reductions: Abstract Properties and Applications to Term Rewriting Systems, J. ACM 27 (1980) 797–821.
[36] S.K. Kim, M. Lee, K.C. Lee, Validation of XML document updates based on XML schema in XML databases, in: International Conference on Database and

Expert Systems Applications (DEXA’03), LNCS, vol. 2736, 2003, pp. 98–108.
[37] I. Klapaftis, S. Manandhar, Google and wordnet based word sense disambiguation, in: Proceedings of the Workshop on Learning and Extending

Ontologies by Using Machine Learning Methods, 2005.
[38] A. Laender et al, An X-ray on web-available XML schemas, SIGMOD Rec. 38 (1) (2009) 37–42.
[39] G.M. Landau, U. Vishkin, Fast parallel and serial approximate string matching, J. Algor. (10) (1989) 157–169.
[40] M. Lee, L. Yang, W. Hsu, X. Yang, XClust: clustering XML schemas for effective integration, in: Proceedings of the International Conference on

Information and Knowledge Management (CIKM), 2002, pp. 292–299.
[41] W. Li, X. L, R. Te, Cluster dynamic XML documents based on frequently changing structures, in: Advances in Information Sciences and Service Sciences

(AISS’12), vol. 4(6), pp. 70–77.
[42] W. Liang, H. Yokota, SLAX: an improved leaf-clustering based approximate XML join algorithm for integrating XML data at subtree classes, Trans.

Inform. Process. Soc. Jpn 47 (2006) 47–57.
[43] M. McGill, Introduction to Modern Information Retrieval, McGraw-Hill, New York, 1983.
[44] S. Melnik, H. Garcia-Molina, E. Rahm, Similarity flooding: a versatile graph matching algorithm and its application to schema matching, in: Proceedings

of the IEEE International Conference on Data Engineering (ICDE), 2002, pp. 117–128.
[45] G. Miller, WordNet: an on-line lexical database, Int. J. Lexicogr. 3 (4) (1990).
[46] M. Murata et al, Taxonomy of XML schema languages using formal language theory, ACM TOIT 5 (4) (2005) 660–704.
[47] A. Neumann, Parsing and Querying XML Documents in SML, Ph.D. thesis, University of Trier, Trier, Germany, 2000.
[48] A. Nierman, H.V. Jagadish, Evaluating structural similarity in XML documents, in: Proceedings of the ACM SIGMOD International Workshop on the Web

and Databases (WebDB), 2002, pp. 61–66.
[49] L. Segoufin, V. Vianu, Validating streaming XML documents, in: Proceedings of the ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database

Systems (PODS), 2002, pp. 53–64.
[50] M. Shoaran, A. Thomo, Evolving schemas for streaming XML, Theor. Comput. Sci. 412 (35) (2011) 4545–4557.
[51] P. Shvaiko, J. Euzenat, A survey of schema-based matching approaches, J. Data Seman. IV (2005) 146–171.
[52] A. Solimando, G. Delzanno, G. Guerrini, Automata-based static analysis of XML document adaptation, in: Third International Symposium on Games,

Automata, Logics, and Formal Verification (GandALF’12), 2012, pp. 85–98.
[53] A. Solimando, et al., Static analysis of XML document adaptations, in: International Conference on Conceptual Modeling (ER), 2012, pp. 57–66.
[54] J. Starka, et al., XML document correction and Xquery analysis with analyzer, in: DATESO 2011, 2011, pp. 61–72.
[55] S. Staworko, J. Chomicky, Validity-sensitive querying of XML databases, Current Trends in Database Technology – EDBT 2006, Lecture Notes in

Computer Science, vol. 4254/2006, Springer, 2006, pp. 164–177.
[56] H. Su, S. Padmanabhan, M.L. Lo, Identification of syntactically similar DTD elements for schema matching, in: Proceedings of the International

Conference on Advances in Web-Age Information Management (WAIM), 2001, pp. 145–159.
[57] N. Suzuki, Finding an optimum edit script between an XML document and a DTD, in: Proceedings of the ACM Symposium on Applied Computing (ACM

SAC), 2005, pp. 647–653.
[58] M. Svoboda, I. Mlynkova, Correction of invalid XML documents with respect to single type tree grammars, in: Proceedings of NDT (Networked Digital

Technologies) Communications in Computer and Information Science, vol. 136, 2011, pp. 179–194.
[59] F.G. Taddesse et al, Semantic-based merging of RSS items, World Wide Web Journal, vol. 12, Springer, 2010. 11280.
[60] F.G. Taddesse, et al., Relating RSS news/items, in: International Conference on Web Engineering (ICWE’09), LNCS, 2009, pp. 44–452.
[61] N. Tansalarak, K.T. Claypool, QMatch – using paths to match XML schemas, Data Know. Eng. 60 (2) (2007) 260–282.
[62] J. Tekli et al, XML document–grammar comparison: related problems and applications, Cent. Euro. J. Comp. Sci. 1 (1) (2011) 117–136 (Inaugural Issue).
[63] J. Tekli, et al., Extensible user-based grammar matching, in: International Conference on Conceptual Modeling (ER), 2009, pp. 294–314.
[64] J. Tekli, et al., Semantic and structure based XML similarity: an integrated approach, in: International Conference on Management of Data (COMAD),

2006, pp. 32-43.
[65] J. Tekli, et al., Efficient XML structural similarity detection using sub-tree commonalities, in: Proceedings of the Brazilian Symposium on Databases

(SBBD) and SIGMOD DiSC, (Best paper award), 2007, pp. 116–130.
[66] J. Tekli et al, A novel XML structure comparison framework based on sub-tree commonalities and label semantics, Els. J. Web Semant. (JWS): Sci., Serv.

Agents World Wide Web 11 (2012) 14–40.
[67] J. Tekli, et al., A fine-grained XML structural comparison approach, in: International Conference on Conceptual Modeling (ER), 2007, pp. 582-598.
[68] J. Tekli, et al., Structural similarity evaluation between XML documents and DTDs, in: Proceedings of the 8th International Conference on Web

Information Systems Engineering (WISE), 2007, pp. 196–211.
[69] J. Tekli et al, An overview of XML similarity: background, current trends and future directions, Els. Comp. Sci. Rev. 3 (3) (2009) 151–173.
[70] J. Tekli et al, Minimizing user effort in XML grammar matching, Els. Inform. Sci. J. 210 (2012) 1–40.
[71] J. Tekli, et al., Differential SOAP multicasting, in: IEEE International Conference on Web Services (ICWS’11), Washington DC, 2011, pp. 1–8.
[72] J. Tekli et al, Using XML-based multicasting to improve web service scalability, Int. J. Web Serv. Res. (IJWSR) 9 (1) (2012) 1–29.
[73] J. Tekli, et al., Approximate XML Structure Validation, Technical Report ApproXMLVal-TR-14, LAU-ICMC-LIUPPA,ICMC, 2014 <http://sigappfr.acm.org/

Projects/XS3/ApproXMLVal-TR-14.pdf>.
[74] M. Teraguchi, et al., Optimized web services security performance with differential parsing, in: Proceedings of the 4th International Conference on

Service-Oriented Computing (ICSOC’06), 2006, pp. 277–288.
[75] A. Thomo, et al., Visibly pushdown transducers for approximate validation of streaming XML, in: International Symposium on Foundations of

Information and Knowledge Systems (FoIKS), 2008, pp. 219–238.
[76] Y. Toyama, On the Church–Rosser property for the direct sum of term rewriting systems, J. ACM 34 (1987) 128–143.
[77] W3 Consortium, The Document Object Model, 2005 <http://www.w3.org/DOM> (cited 28.05.09).
[78] C. Werner et al, WSDL-driven SOAP compression, Int. J. Web Serv. Res. 1 (2) (2005) 18–35.
[79] G. Xing, Fast approximate matching between XML documents and schemata, in: The Asia Pacific Web Conference, 2006, pp. 425–436.
[80] G. Xing et al, Computing edit distances between an XML document and a schema and its application in document classification, in: Proceedings of SAC

06, ACM, Dijon, France, 2006, pp. 831–835.
[81] K. Zhang et al, Approximate tree matching in the presence of variable length don’t cares, J. Algor. (16) (1994) 33–66.
[82] K. Zhang, D. Shasha, Simple fast algorithms for the editing distance between trees and related problems, SIAM J. Comput. 18 (6) (1989) 1245–1262.
[83] Z. Zhang, et al., Similarity metric in XML documents, in: Knowledge Management and Experience Management Workshop, 2003.
[84] C. Zirn, et al., Distinguishing between instances and classes in the Wikipedia taxonomy, in: European Semantic Web Conference (ESWC), 2008, pp.

376–387.

302 J. Tekli et al. / Information Sciences 295 (2015) 258–302

http://www.w3.org/TR/xmlschema11-1/
http://refhub.elsevier.com/S0020-0255(14)00956-6/h0170
http://refhub.elsevier.com/S0020-0255(14)00956-6/h0170
http://refhub.elsevier.com/S0020-0255(14)00956-6/h0175
http://refhub.elsevier.com/S0020-0255(14)00956-6/h0190
http://refhub.elsevier.com/S0020-0255(14)00956-6/h0195
http://refhub.elsevier.com/S0020-0255(14)00956-6/h0210
http://refhub.elsevier.com/S0020-0255(14)00956-6/h0210
http://refhub.elsevier.com/S0020-0255(14)00956-6/h0215
http://refhub.elsevier.com/S0020-0255(14)00956-6/h0215
http://refhub.elsevier.com/S0020-0255(14)00956-6/h0225
http://refhub.elsevier.com/S0020-0255(14)00956-6/h0230
http://refhub.elsevier.com/S0020-0255(14)00956-6/h0250
http://refhub.elsevier.com/S0020-0255(14)00956-6/h0255
http://refhub.elsevier.com/S0020-0255(14)00956-6/h0275
http://refhub.elsevier.com/S0020-0255(14)00956-6/h0275
http://refhub.elsevier.com/S0020-0255(14)00956-6/h0275
http://refhub.elsevier.com/S0020-0255(14)00956-6/h0295
http://refhub.elsevier.com/S0020-0255(14)00956-6/h0295
http://refhub.elsevier.com/S0020-0255(14)00956-6/h0305
http://refhub.elsevier.com/S0020-0255(14)00956-6/h0310
http://refhub.elsevier.com/S0020-0255(14)00956-6/h0330
http://refhub.elsevier.com/S0020-0255(14)00956-6/h0330
http://refhub.elsevier.com/S0020-0255(14)00956-6/h0345
http://refhub.elsevier.com/S0020-0255(14)00956-6/h0350
http://refhub.elsevier.com/S0020-0255(14)00956-6/h0360
http://sigappfr.acm.org/Projects/XS3/ApproXMLVal-TR-14.pdf
http://sigappfr.acm.org/Projects/XS3/ApproXMLVal-TR-14.pdf
http://refhub.elsevier.com/S0020-0255(14)00956-6/h0380
http://www.w3.org/DOM
http://refhub.elsevier.com/S0020-0255(14)00956-6/h0390
http://refhub.elsevier.com/S0020-0255(14)00956-6/h0400
http://refhub.elsevier.com/S0020-0255(14)00956-6/h0400
http://refhub.elsevier.com/S0020-0255(14)00956-6/h0400
http://refhub.elsevier.com/S0020-0255(14)00956-6/h0405
http://refhub.elsevier.com/S0020-0255(14)00956-6/h0410

