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We study the commensurability oscillations in silicene subject to a perpendicular electric field Ez, a

weak magnetic field B, and a weak periodic potential V ¼ V0 cosðCyÞ;C ¼ 2p=a0 with a0 its period.

The field Ez and/or the modulation lift the spin degeneracy of the Landau levels and lead to spin and

valley resolved Weiss oscillations. The spin resolution is maximal when the field Ez is replaced by a

periodic one Ez ¼ E0 cosðDyÞ;D ¼ 2p=b0, while the valley one is maximal for b0¼ a0. In certain

ranges of B values, the current is fully spin or valley polarized. Additional quantum Hall conductivity

plateaux arise due to spin and valley intra-Landau-level transitions. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4878509]

A monolayer honeycomb structure of silicon, called sili-

cene, has been predicted to be stable1 and several attempts

have been made to synthesize it.2 Silicene has Dirac cones

similar to those of graphene but contrary to it, in which the

spin-orbit interaction (SOI) is very weak, silicene has a

strong SOI due to its low-buckled geometry and large atomic

intrinsic SOI that leads to a gap of 1.55 meV.3 This gap can

be further controlled by an external electric field Ez and is

facilitated by the buckled structure of silicene. This and its

compatibility with silicon-based technology led already to

many studies, reviewed in Ref. 4, such as the spin-Hall effect3,5

and the capacitance of an electrically tunable silicene device.6

Moreover, very recent theoretical studies predict the stability

of silicene on nonmetallic surfaces such as graphene,7 boron

nitride or SiC,9 and in graphene-silicene-graphene structures.8

Since the SOI can lead to spin-resolved transport, perti-

nent to quantum computing, it is worth studying it further in

silicene and contrast the results with those for graphene in

which the SOI is very weak. We explore the influence of SOI

on the commensurability or Weiss oscillations10 in silicene in

the presence of the field Ez, of a perpendicular magnetic field

Bjjz, and of a weak periodic potential VðyÞ ¼ V0 cosðCyÞ.
These oscillations result from the fact that modulation-

broadened Landau levels (LLs) have a bandwidth that oscil-

lates with weak B and express the commensurability between

the modulation period and the cyclotron diameter at the

Fermi level. The study is an extension of that for a two-

dimensional electron gas (2DEG)11 and of that for gra-

phene.12,13 In addition, we consider a periodic field

Ez ¼ E0cosðDyÞ. If one or two such modulations is present,

the spin degeneracy is lifted and leads to spin-dependent

commensurability oscillations when B is varied; the lifting is

stronger for a periodic field Ez.

Unmodulated silicene. The one-electron Hamiltonian,

near the K and K0 valleys, in a magnetic field B, in the

Landau gauge for the vector potential A, is3

H ¼ vFðpxrx � spyryÞ � ðsszkso � ‘EzÞrz; (1)

after shifting the wave vectors kx and ky by eAl=�h; l ¼ x; y,

i.e., by setting P ¼ pþ eA, with p is the momentum opera-

tor and e is the electron charge. Here, vF is the Fermi veloc-

ity, s ¼ þð�Þ is the K (K0) valley index, ri (i¼ x,y,z) is the

pseudospin Pauli matrices, 2‘ is the vertical distance

between the sublattices A and B, and Ez is an electric field

normal to the silicene sheet, see Fig. 1. Further, kso is the

SOI strength and sz¼ 1 (sz¼�1) the up (down) electron

spin. Inserting the factors s and ri in Eq. (1) gives the

Hamiltonian H6 with the þ (–) sign for the K (K0) valley

H6 ¼
k6ðszÞ vF p6

vF p7 �k6ðszÞ

� �
; (2)

where k6ðszÞ ¼ 7ksosz þ ‘Ez and p6 ¼ px6ipy. Using the

gauge Ax¼�By and the ansatz Wðx; yÞ ¼ expðikxxÞwðyÞ=ffiffiffiffiffi
Lx

p
, with Lx the system’s length in the x direction, leads to

the eigenvalues

E6
n;sz;p
¼ p�hxc nþ ½�k6ðszÞ�2

� �1=2

: (3)

Here, p¼þ1(�1) labels the electron (hole) states, n ðn � 1Þ
is the LL index, �k6 ¼ k6=�hxc; xc ¼

ffiffiffi
2
p

vF=lB, and

lB ¼
ffiffiffiffiffiffiffiffiffiffi
�h=eB

p
. Note that the energy does not depend on kx.

Setting n ¼ y=lB � lBkx the associated spatial eigenfunctions

of an electron near the K point are

wþn ðnÞ ¼
gþ1 /nðnÞ

gþ2 /n�1ðnÞ

� �
; (4)

FIG. 1. Buckled honeycomb lattice of silicene. The two sublattices, formed

by the blue and red atoms, are vertically separated by a distance 2‘.

0003-6951/2014/104(21)/213109/4/$30.00 VC 2014 AIP Publishing LLC104, 213109-1
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with /n the normalized Harmonic oscillator function and

gþ1 ¼
kþðszÞ þ Eþn;sz;p

2Eþn;sz;p

" #1=2

; gþ2 ¼ �p
Eþn;sz;p

� kþðszÞ
2Eþn;sz;p

" #1=2

:

(5)

For an electron near the K0 valley, the results are similar. For

n¼ 0, each valley involves only one solution with energy

E6
0;sz
¼ 6�hxck6ðszÞ and eigenfunctions wþ0 ¼ ½/0ðnÞ; 0�T

and w�0 ¼ ½0;/0ðnÞ�T . The electron energies at the K and K0

valleys are related by Eþn;61;p ¼ E�n;71;p for n � 1, and

Eþ0;61 ¼ �E�0;71 for n¼ 0.

Modulated silicene. We now assess the influence of an

external periodic potential and/or that of a modulated field

Ez. As in the case of a 2DEG10,11 or graphene,12 the main

effect of either modulation is to broaden the LLs into energy

bands that oscillate with B and kx. Each LL though splits into

four branches, two for the valley and two for the spin degree

of freedom due to the SOI.

(i) Potential modulation. We consider a periodic potential

VðyÞ ¼ V0cosðCyÞ; C ¼ 2p=a0, with a0 its period,

added to H as V(y)I, with I is the identity matrix. For

small V0, we can use first-order perturbation theory to

find the correction to the eigenvalues (3). For an elec-

tron near the K and K0 valleys, the correction is

DE6
n;sz;p
ðkxÞ ¼ V0 cosðCx0Þe�u=2G6

n;sz;p
; (6)

Gþn;sz;p
¼ jgþ1 j

2LnðuÞ þ jgþ2 j
2Ln�1ðuÞ; (7)

G�n;sz;p
¼ jg�1 j

2Ln�1ðuÞ þ jg�2 j
2LnðuÞ; (8)

where u ¼ C2l2B=2; x0 ¼ l2
Bkx, and Ln(u) are the

Laguerre polynomials. The energy correction depends

on the wave vector kx through x0. That is, the periodic

potential broadens the discrete LLs into bands. Given

that the polynomials Ln(u) oscillate for large n, in

addition to the function cosðCx0Þ, one easily sees that

the bandwidths (6) oscillate with the magnetic field B.

For n¼ 0, the energy correction is

DE6
0;sz
ðkxÞ ¼ V0 cosðCx0Þ e�u=2: (9)

Note that the bandwidths (6) are different for spins up

and down because of the spin-dependent coefficients

g6
1;2.

(ii) Field modulation. We replace the field Ez in Eq. (1) by

a periodic one EzðyÞ ¼ E0 cosðDyÞ with D ¼ 2p=b0 and

b0 is the period. The energy correction is

D0E6
n;sz;p
ðkxÞ ¼ hn; sz; p; kxj‘EzðnÞrzjn; sz; p; kxi; (10)

¼ ‘E0cosðDx0Þe�u0=2G06n;sz;p
; (11)

G0þn;sz;p
¼ jgþ1 j

2Lnðu0Þ � jgþ2 j
2Ln�1ðu0Þ; (12)

G0�n;sz;p
¼ jg�1 j

2Ln�1ðu0Þ � jg�2 j
2Lnðu0Þ; (13)

where u0 ¼ D2l2
B=2. For n¼ 0, we find

D0E6
0;sz
ðkxÞ ¼ 6‘E0 cosðDx0Þ e�u0=2: (14)

In Fig. 2, we show the broadened LLs versus the mag-

netic field B, for kx¼ 108 m�1, in the presence of a field

modulation, with b0¼ 300 nm and ‘E0 ¼ 1 meV. We

used the strength of the SOI3 kso¼ 3.9 meV and the

Fermi velocity vF¼ 5.42� 105 m/s. The LLs resulting

only from the potential modulation, with a0¼ 300 nm

and V0¼ 1 meV, are shown in the inset. As seen, the os-

cillatory Ez and V lift the spin and valley degeneracy of

the LLs. Each LL ðn � 1Þ splits into four branches

except for certain values of B at which cosðDx0Þ ¼ 0

and the bandwidth vanishes. That occurs at fields

B¼Bc/(2mþ 1), with Bc ¼ 2ðh=eÞkx=pb0 and m is a

nonnegative integer. Notice that the n¼ 0 LL splits into

two valley branches with the same spin as can be seen

from E6
0;sz
¼ 6�hxck6ðszÞ þ D0E6

0;sz
. For positive ener-

gies, this is the down spin.

The lifting of the spin and valley degeneracy results

from the fact that for ‘E0 ¼ 0 the eigenvalues (3) are

spin and valley degenerate, Eþn;sz¼61;p ¼ E�n;sz¼71;p

¼ p�hxcðnþ �k
2

soÞ
1=2

, but the eigenfunctions are not

since the coefficients g6
1;2 are spin dependent, e.g.,

ðgþ1 Þ
2jsz¼61 ¼ ðg�2 Þ

2jsz¼71 ¼ ½7kso þ Eþn;sz;p
�=2Eþn;sz;p

.

Then, all energy corrections depend on the spin.

At very low fields B the function cosðCx0Þ in Eq. (6)

fluctuates rapidly but the function e�u=2 drastically

reduces the oscillation amplitude. The same holds for the

function cosðDx0Þ. Once Bc is attained, the energies

increase monotonically and the bandwidth ceases to

oscillate. This explains the form of the n ¼ 0 LL.

The dc diffusive conductivity is given by11

rd
l� ¼

be2

S

X
f

sfffð1� ffÞv�fvlf ; (15)

where sf is the momentum relaxation time and vlf is

the diagonal matrix elements of the velocity operator.

Further, ff ¼ ½1þ exp bðEf � EFÞ��1
is the Fermi-

Dirac function with b¼ 1/kBT and T is the temperature.

We focus here on the large-amplitude oscillations

described by Eq. (12) and neglect the small-amplitude

ones described by the collisional contribution.11

FIG. 2. Landau levels vs magnetic field B, in the presence of a field Ez mod-

ulation with b0¼ 300 nm and ‘E0 ¼ 1 meV. Notice that the two curves for

n¼ 0 involve the same spin (down) but different valleys. The inset shows

the LLs in the presence of only a potential modulation with a0¼ 300 nm and

V0¼ 1 meV.

213109-2 Shakouri et al. Appl. Phys. Lett. 104, 213109 (2014)
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Regarding the Hall conductivity rnd
l� , one can cast

the form used in Ref. 11 in the familiar one

rnd
l� ¼

i�he2

S

X
f 6¼f0

ðff � ff0 Þ v�ff0 vlf0f

ðEf � Ef0 Þ2
; (16)

where v�ff0 and vlff0 are the nondiagonal matrix ele-

ments of the velocity operator and l; � ¼ x; y. The sum

runs over all quantum numbers jfi ¼ jk; kx; ky; szi; jf0i.
(iii) 1D periodic potential or Ez modulation. The modula-

tion broadens the LLs into bands, cf. Eq. (6), and

this induces a group velocity, proportional to the LL

bandwidth, that results in a diffusive conductivity.

Then, the electron velocity in the n-th Landau band

is given by

v6
x;n;sz;p

ðkxÞ ¼ �ðV0Cl2
B=�hÞsinðCx0Þe�u=2G6

n;sz;p
ðuÞ; (17)

and that due to a field modulation, v06x , by Eq. (14) with

V0, u, C, and G replaced by ‘E0; u0, D, and G0, respec-

tively. When the temperature is sufficiently low, the

relaxation time can be evaluated at the Fermi energy,

sf � sF. For a weak modulation, one can neglect12 the

kx dependence of ff. The result is

rxx ¼
e2

h

bV2
0s

�h
ue�u

X
n;sz;p;6

ffð1� ffÞ ðG6
n;sz;p
Þ2: (18)

For a field modulation, we obtain Eq. (15) with V0,

u, C, and G replaced by ‘E0; u0, D, and G0, respec-

tively.

Figure 3 shows the diffusive conductivity in the

presence of only a field modulation. The solid (dashed)

curve is the up (down) spin contribution. The oscilla-

tions are considerably spin resolved and at certain

ranges of the field B (coloured areas) a nearly 100%

spin-polarized current is obtained. The two valleys

make nearly the same contribution, i.e., no

valley-resolved current is achieved because

jv0þx j ¼ jv0�x j. If only the V(y) modulation is present

ðjvþx j ¼ jv�x jÞ, no sizable valley or spin gap is created in

the oscillations, see the inset in Fig. 3. However, the os-

cillation amplitude is about 60 times larger than that of

the field modulation because jG6
n;sz;p
j � jG06n;sz;p

j. Notice

that rxx � 0 for 0.7 T<B< 0.8 T.

(iv) Potential and field modulations. To avoid the draw-

backs of a single modulation and further asses the influ-

ence of parameters on the valley and spin splittings, we

can combine the two modulations. To this end, we

assume that a field modulation is already present, with

fixed E0 ¼ 1 meV=‘ and b0¼ 300 nm, and vary

the strength V0 and period a0 of the potential

modulation. We plot the valley polarization pv

¼ ðrþ � r�Þ=ðrþ þ r�Þ as a function of the ratio

V0/‘E0 for different magnetic fields B in Fig. 4(a) and

different periods a0 in Fig. 4(b); the two valley conduc-

tivities rþ and r– include both spins. For low V0, the

polarization pv is maximal, whereas for high V0 it disap-

pears. Moreover, pv is maximal when the two modula-

tions have the same period. In Fig. 4(c), we plot pv and

the spin polarization ps, defined in a similar way, as

functions of the field B for V0¼ 0.2 meV and a0¼ b0.

As seen, the presence of both modulations leads to a siz-

able pv because the total velocity differs for the two val-

leys; that is jv0þx þ vþx j 6¼ jv0�x þ v�x j. Both pv and ps

oscillate nearly periodically with B but their periods

increase at high B, cf. Eqs. (6) and (9). In contrast to

Fig. 3, the spin gap is smaller and decreases at low fields

B because the LL index n near EF is large; thus

k6ðszÞ � E6
n;sz;p

which yields jg6
1 j

2 � jg6
2 j

2 � 1=2.

Hall conductivity ryx. It is given by Eq. (16) and its

evaluation requires the velocity operator v̂ ¼ r~pH, which

for the two valleys is given by v̂6 ¼ vFðrxêx7ryêyÞ. All its

matrix elements, evaluated analytically, are diagonal in kx

ðdkx;k0xÞ. To better understand the effect of the field Ez modu-

lation on ryx, we also consider a constant field Ez that leads

to kx-independent LLs. Now a periodic, weak field Ez per-

turbs the states jfi0 and the new ones jfi can be

FIG. 3. Spin-up (solid curve) and spin-down (dashed curve) contributions to

the diffusive conductivity, in units of r0 ¼ ðe2=hÞbsð‘E0Þ2=h, versus the

field B, when only the field modulation is present with E0 ¼ 1 meV=‘,
b0¼ 300 nm, T¼ 3 K, and ne¼ 5� 1011 cm�2. In the coloured regions, the

conductivity is nearly spin polarized and the colour is that of the dominant

spin state. The inset shows results only for a potential modulation with

V0¼ 1 meV, a0¼ 300 nm, and the same T and ne. Note the increase in the os-

cillation amplitude.

FIG. 4. (a) Valley polarization pv versus the ratio V0/‘E0 for different fields

B. The parameters are E0 ¼ 1 meV=‘, b0¼ a0¼ 300 nm, T¼ 3 K, and

ne¼ 5� 1011 cm�2. (b) The same as in (a) but for different periods a0 at

B¼ 0.6 T. pv is maximal for low strengths V0 and a0¼ b0. (c) Valley (solid

curve) and spin (dotted curve) polarizations versus magnetic field B for

V0¼ 0.2 meV and a0¼ b0¼ 300 nm.
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approximated by first-order perturbation theory. With

ð‘E0Þf0f¼0hf0j‘E0rzjfi0, they read

jfi ¼ jfi0 þ
X
f0 6¼f

ð‘E0Þf0f
Ef � Ef0

jf0i0: (19)

Figure 5 shows the Hall conductivity versus the field B. The

dashed, dotted, and solid curves show, respectively, the well-

known plateaux for integer n (Ez¼ 0), the ones for constant

field ðEz ¼ 3:9 meV=‘Þ, and those for a periodic field

ðEz ¼ 5 cosðDyÞmeV=‘Þ . All of them occur precisely at

those fields B at which EF (or nF) jumps from one LL to

another (topmost curve) as indicated by the arrows for

nF¼ 2. The value Ez ¼ 3:9 meV=‘ was chosen to cancel the

SOI term for spin up (down) in the K (K0) valley, as in gra-

phene which has a very weak SOI. For a constant field, all

LLs split due to the spin and valley degrees of freedom and

the number of sharp changes in EF increases; the valley split-

ting though is very weak, hence the extra plateaux are mostly

due to spin resolution. However, for a modulated field, the

LL valley splitting is comparable to their spin splitting, see

Fig. 2. In Fig. 5, the large plateaux (dashed curve) are

replaced by a series of short plateaux and steps (solid curve)

due to spin or valley transitions shown by arrows. The extra

plateaux arise at fields B ¼ Ne/0=m; the modulation does

not affect their location but only the height of the steps

between them at a finite temperature.

As for the results in the presence of only a potential

modulation V(y): (i) they affect ryx very little, and (ii) they

differ from the field modulation ones because V(y) enters the

Hamiltonian (1) as V(y) I, whereas Ez(y) enters it as EzðyÞrz.

That is, Ez(y) affects the carriers’ spin and valley degrees of

freedom but V(y) does not.

In summary, we studied commensurability oscillations

in silicene due to a weak electric field Ez and/or potential

periodic modulation. A constant Ez and the strong SOI lead

to spin and valley split LLs. The modulations broaden the

LLs into bands and lead to a diffusive conductivity. The spin

splitting due to only potential modulation is very weak but

for field modulation it is relatively large, cf. Fig. 3. Also, the

valley polarization pv vanishes when only one modulation is

present. These drawbacks are avoided when both modula-

tions are present, have the same period, and the ratio of their

strengths V0/‘E0 is small, cf. Fig. 4. For V0=‘E0 � 1, the spin

polarization ps and pv disappear; both are nearly periodic in

the field B, phase-shifted by p, and their periods increase

with B.

We also studied the Hall conductivity ryx and showed

that the field modulation creates extra narrow plateaux

within the standard, integer-n LL plateaux. All of them are

due to sharp changes in EF, as it moves through the LLs, and

the new ones result from the lifting of the spin and valley

degeneracies and the corresponding transitions between the

four ðn � 1Þ or two (n¼ 0) sublevels. The step structure,

within an integer-n LL plateau, replaces the latter by a series

of narrow plateaux and steps.
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