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SUMMARY

The anticonvulsant pregabalin promotes neural
regeneration in a mouse model of spinal cord injury
(SCI). We have also previously observed that anti-
convulsants improve motor outcomes following hu-
man SCI. The present study examined the optimal
timing and type of anticonvulsants administered
in a large, prospective, multi-center, cohort study
in acute SCI. Mixed-effects regression techniques
were used to model total motor scores at 1, 3, 6,
and 12 months post injury. We found that early
(not late) administration of anticonvulsants signifi-
cantly improved motor recovery (6.25 points over 1
year). The beneficial effect of anticonvulsants re-
mained significant after adjustment for differences
in 1-month motor scores and injury characteristics.
A review of a subset of patients revealed that gaba-
pentinoids were the most frequently administrated
anticonvulsant. Together with preclinical findings,
intervention with anticonvulsants represents a po-
tential pharmacological strategy to improve motor
function after SCI.

INTRODUCTION

Andrea Tedeschi and colleagues recently demonstrated that the

anticonvulsant pregabalin promotes neural regeneration in the

injured mouse spinal cord (Tedeschi et al., 2016). Emerging evi-

dence of pregabalin-induced regeneration builds on existing

preclinical literature that has reported neuroprotective effects

of other gabapentinoids, such as gabapentin (Emmez et al.,

2010; Ha et al., 2008; Kale et al., 2011). In line with these findings,

we have previously shown that anticonvulsants are associated

with improved motor outcomes following human spinal cord

injury (SCI) (Cragg et al., 2016). However, in our previous study,

the type of anticonvulsant and the timing of administration that

conferred this benefit were unknown. In a ‘‘bench-to-bedside’’

approach, we investigated the effect of the type and timing of

anticonvulsant administration on neurological (motor) recovery

in the first year post-injury. Together, these preclinical and hu-

man studies could inform a randomized clinical trial to determine

the efficacy of gabapentinoids as a pharmacological intervention

to enhance motor recovery after acute SCI.

RESULTS

There were 83 ‘‘early users’’ of anticonvulsants, 72 ‘‘late users,’’

and 470 ‘‘non-users,’’ for a total of 625 individuals with a valid

categorization (Table 1; Table 2; Figure 1; see Experimental Pro-

cedures). In a larger sample than in our previous study (Cragg

et al., 2016), longitudinal analysis confirmed that anticonvulsants

administered within 1-month post-injury significantly improved

motor recovery (n = 83 on the drug, p = 0.019, for the Drug 3

Time interaction term). This difference persisted after adjusting

for 1-month American Spinal Injury Association (ASIA) Impair-

ment Scale (AIS) grade (injury completeness), motor score, and

injury level.

Our next analysis addressed the effects of timing of adminis-

tration. Unlike administration within the first month, late adminis-

tration at 3, 6, or 12months had no significant effect on recovery.

Based on this result, late (3-, 6-, or 12-month) users were group-

ed together for subsequent analyses. Using these groupings,

we found that early anticonvulsant use improved motor

recovery compared with later administration (Figure 2). Early

use conferred a benefit of 6.25 more motor points, on average,

over the course of 12 months compared to non-use (Table S1).

Early users recovered 4.68 more motor points more than late

users. Improved motor recovery in early users remained signifi-

cant after adjusting for level and severity of injury and 1-month

motor scores (Table S1). Including anticonvulsant use also

significantly improved the baseline statistical model (Table S2).

1614 Cell Reports 18, 1614–1618, February 14, 2017 ª 2017 The Authors.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:kramer@icord.org
http://dx.doi.org/10.1016/j.celrep.2017.01.048
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2017.01.048&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


The number of times anticonvulsants were administered at

each of the four time points (i.e., 0, 1, 2, and 3+), changes in

pain (see Experimental Procedures for description of variables),

and administration of anti-spasmodics (p = 0.20) had no signifi-

cant effects on motor recovery.

A retrospective chart review on patients from the original anal-

ysis (n = 40) (Cragg et al., 2016) who had been administered

anticonvulsants within 1 month revealed that 33 (83%) received

gabapentinoids (n = 24 pregabalin, n = 9 gabapentin). When

comparing only early gabapentinoid users versus non-users us-

ing the same longitudinal modeling approach, we found that the

beneficial effect remained significant (p < 0.05 for greater recov-

ery in motor points over the first year) for this group.

DISCUSSION

In a large and representative sample of acute SCI patients, our

findings confirm that anticonvulsants, administered at therapeu-

tic doses for the management of neuropathic pain, enhance

motor recovery after acute SCI. Timing of administration was in-

tegral for enhanced recovery, with early use (i.e., within 1month),

but not late use (i.e., >1 month), benefiting the recovery of mus-

cle strength. Our new analysis also ruled out one potential mech-

anism (i.e., reductions in pain) and identified the class of anticon-

vulsants as gabapentinoids (i.e., pregabalin and gabapentin).

Experimental studies in rodent models have clearly demon-

strated a ‘‘window of opportunity’’ for pharmacological interven-

tions to repair the injured spinal cord (Elkabes and Nicot 2014;

Wu et al., 2013). The observation of a time-dependent effect in

humans (i.e., within 1 month but not later) suggests that anticon-

vulsants may be directly, through their biological activity in the

CNS, benefiting motor outcomes after SCI. This is bolstered by

the observation that changes in pain had no effect, discounting

the theory that anticonvulsants are impacting motor outcomes

indirectly through pain relief.

Both regeneration and neuroprotection may be important

mechanisms to consider underlying the direct effects of anticon-

vulsants. First, a recent study reported that the administration

of pregabalin 1 hr post-injury resulted in an increased number

of regenerating axons rostral to the lesion site (Tedeschi et al.,

2016). Further, delaying pregabalin treatment for weeks showed

anatomical regeneration of axons, but to a lesser extent, with the

rationale that axonsmaybeset too late in their growth state (when

the glial scar is already formed) (Tedeschi et al., 2016). This bene-

ficial effect was mediated via blocking a2-d subunits, for which

both pregabalin and gabapentin have a high affinity and selec-

tively bind (Gee et al., 1996; Gong et al., 2001). Second, the neu-

roprotective effects of gabapentinoids have also been widely

demonstrated across a number of animal models of neurological

conditions, including SCI (Emmez et al., 2010; Ha et al., 2008;

Kale et al., 2011). Neuroprotection has been attributed to various

other biological actions of gabapentinoids in the CNS (e.g.,

changes in glutamate metabolism) (Ha et al., 2008).

That gabapentinoids have the potential to improve function via

multiple pathways (i.e., regeneration and neuroprotection) may

make them suitable candidates for translation into humans. First,

Table 1. Cohort Description

Characteristics n (%)

Total 625

Sex

Male 507 (81.1)

Female 118 (18.9)

Age at Injury

Median (IQR) 48 (32)

AIS at 1 Month

A 239 (38.2)

B 75 (12.0)

C 99 (15.8)

D 212 (33.9)

Neurological Level of Injury at 1 Month

Upper cervical 176 (28.2)

Lower cervical 139 (22.2)

Thoracolumbar 310 (49.6)

Anticonvulsant Use

Anticonvulsant use at t = 1 month 83 (13.3)

Anticonvulsant use at t = 3 months 78 (12.5)

Anticonvulsant use at t = 6 months 65 (10.4)

Anticonvulsant use at t = 12 months 42 (6.7)

Total Motor Score at 1 Month

Median (IQR) 50 (27.0)

IQR, interquartile range; AIS, American Spinal Injury Association Impair-

ment Scale; t, time.

Table 2. Anticonvulsant Group Descriptions

Characteristics

n (%)

Non-Users Late Users Early Users

Total 470 72 83

Sex

Male 383 (81.5) 61 (84.7) 63 (75.9)

Female 87 (18.5) 11 (15.3) 20 (24.1)

Age at Injury

Median (IQR) 47 (32.75) 52.5 (26.0) 48 (30.5)

AIS Grade at 1 Month

A 190 (40.4) 28 (38.9) 21 (25.3)

B 58 (12.3) 9 (12.5) 8 (9.6)

C 72 (15.3) 14 (19.4) 13 (15.7)

D 150 (31.9) 21 (29.2) 41 (49.4)

Neurological Level of Injury at 1 Month

Upper cervical 121 (25.7) 23 (31.9) 32 (38.6)

Lower cervical 110 (23.4) 15 (20.8) 14 (16.9)

Thoracolumbar 239 (50.9) 34 (47.2) 37 (44.6)

Total Motor Score at 1 Month

Median (IQR) 50 (27.75) 50 (22.5) 58 (36.5)

Change in Motor Score from 1 to 6 Months

Median (IQR) 3 (12.0) 6 (18.0) 8 (16.5)

Change in Motor Score from 1 to 12 Months

Median (IQR) 4 (15.0) 7 (22.5) 11 (20.0)

IQR, interquartile range; AIS, American Spinal Injury Association Impair-

ment Scale.
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a regenerative window could mean a longer opportunity for de-

livery, outside the boundary of conventional neuroprotective

interventions (e.g., minutes to hours post-injury). This has impor-

tant clinical implications, increasing the number of patients that

can be treated based on later admission times to acute care

facilities. The translational potential of gabapentinoids is also

enhanced by the fact that they have an established safety profile

in the acute stage of SCI. A clinical trial to assess the efficacy

of gabapentinoids to improve motor outcomes after SCI could

administer gabapentin and pregabalin in routine clinical dosages

as related to the management of pain without changing practice

guidelines for neuropathic pain, simply by shifting to a prophy-

lactic management regime. The time from discovery to transla-

tion is long and arduous, and it means that even existing preclin-

ical therapies currently being tested in animal models are years

away from applications in humans (Ramer et al., 2014). Gaba-

pentinoids offer a rare and exciting opportunity to repurpose a

medication already in use, which, in turn, circumvents many of

the difficulties of performing early-phase clinical trials in the field

of SCI (e.g., expensive and time consuming).

It is well known that nearly every individual sustaining SCI re-

ceives multiple types and classes of medications to manage

a litany of problems associated with traumatic SCI. Somewhat

surprisingly, very little is known to what degree these acute med-

ications have downstream and unintended effects that could be

beneficial or detrimental on neurological recovery. This is all the

more surprising, in light of the fact that many common medica-

tions coincidentally administered in early phases of SCI have

been tested in experimental models (Hirsch and Hunot 2009;

Wang et al., 2015; Melzer et al., 2008). As an example, phenytoin

(trade name, Dilantin), a potent sodium channel blocker and

anticonvulsant administered for neuropathic pain in the 1990s

(i.e., pre-dating gabapentinoids), has demonstrated comparable

benefits to other neuroprotective treatments currently in clinical

trial (e.g., Riluzole) (Schwartz and Fehlings, 2001). Somemedica-

tions have demonstrated detrimental effects. This includes opi-

oids, which have been shown to limit the recovery of locomotor

function (Hook et al., 2009, 2011; Woller et al., 2012). This should

be considered a major concern, as opioids are ubiquitously

administered for pain management in humans sustaining an

acute traumatic SCI. That these important preclinical observa-

tions have not yet been examined in the context of human SCI

points to a failure in translation and potentially missed opportu-

nities to maximize neurological recovery.

A limitation of our study is that we do not have information on

exact timing or dosage of anticonvulsant administration within

1 month. Since anticonvulsants were administered for neuro-

pathic pain, we can speculate that dosages are in line with

current management guidelines (Guy et al., 2016). Very little in-

formation is known about neuropathic pain in the very acute

stages of injury. This makes speculation of when the initiation

of anticonvulsant administration may have been more difficult.

Moreover, outside the scope of the current study, an important

and remaining issue is whether anticonvulsant-induced motor

recovery results in improved functional outcomes (e.g., ambula-

tion and use of the hands) (Wu et al., 2015). At this point, the

observed five- to seven-point improvement in muscle strength

based on uncertain dosages and frequency should be inter-

preted as evidence of a modest change. The next step, which

may only be achievable in a clinical trial, would be to determine

whether optimizing dosages and timing (within the 1-month

time frame) could enhance this effect and, in turn, lead to

improvements in function (i.e., the Functional Independence

Measure and the Spinal Cord Independence Measure).

In summary, we have provided corresponding evidence in hu-

mans that anticonvulsants have beneficial effects on motor re-

covery after an acute SCI. These effects are time dependent

(within 1 month) and primarily related to the application of gaba-

pentinoids. Future studies may be warranted to assess the

efficacy of anticonvulsants as a repurposed therapy to enhance

motor outcomes after acute SCI.

EXPERIMENTAL PROCEDURES

Our observational cohort study analyzed prospectively gathered data from the

European Multi-centre Study about SCI (EMSCI). Further details on the EMSCI

database can be found elsewhere (http://www.emsci.org) (Tanadini et al.,

2014). The cohort (2007–2011) previously utilized by Cragg et al. was

Figure 1. Participants Included from the EMSCI Dataset

EMSCI, European Multi-Center Study about Spinal Cord Injury; AIS, ASIA

impairment scale.
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combined with an updated cohort from 2011. From all EMSCI participants, we

included only individuals with a defined level of injury (spinal cord levels C1–

T9), an injury severity measure (AIS grades A–D), and pain assessment within

1 month post-injury (Figure 1). The primary outcome variable was total motor

score (measure of muscle strength in the upper and lower extremities)

as defined by the International Standards for Neurological Classification of

Spinal Cord Injury (ISNCSCI) (Kirshblum et al., 2011). Total motor scores

were measured on a scale ranging from 0 to 100, at 1, 3, 6, and 12 months

post-injury.

Pain characteristics, descriptors, classifications, and medications were

tracked post-injury via a questionnaire by trained examiners. Specific data

extracted included medication type and timing, pain intensity (numeric rating

scale, representing the average intensity in the last week prior), and pain

classification (nociceptive or neuropathic). Data regarding dosages, reason

for administration, and frequency of administration within the time periods

were not available. However, anticonvulsants—specifically, gabapentin and

pregabalin—are currently the frontline treatments for neuropathic pain after

SCI. Both drugs are administered at a base dose, with flexible dosing in-

creases dependent on effectiveness and tolerance (Guy et al., 2016). Three

groups were defined: ‘‘non-users’’ (i.e., never administered anticonvulsants

with at least two valid assessments), ‘‘late users’’ (i.e., administered anticon-

vulsants but not within the 1-month time point), and ‘‘early users’’ (i.e.,

administered anticonvulsants within the 1-month time point). As a proxy for

frequency of use, we examined the number of times anticonvulsant adminis-

tration was recorded (i.e., taken at how many of the four time points: zero,

one, two, or three or more times). Regarding pain intensity, three measures

were derived: (1) pain intensity at each time point, (2) the average pain inten-

sity across the four time points, and (3) changes in pain intensity scores over

the four time points.

Potential confounding variables examined included: age at injury, sex,

1-month motor scores, neurological level of injury, and injury severity accord-

ing to the AIS. In addition, the use of anti-spasmodics was examined as

potential confounder. To account for the longitudinal data and potential con-

founders, multivariable analyses were performed using linear mixed-effects

regression (LMER) models (R package: lme4). To assess differences between

groups, we examined Covariate 3 Time interactions. We plotted the fitted

(predicted) values from the LMER (Figure 2). For each group, we also took

the fitted values from the LMER model at each time point and plotted the

proportional increase in motor score relative to the 1-month score (Figure 2).

RStudio statistical software, version 0.99.484, was used for all analyses (R

Core Team 2015).

SUPPLEMENTAL INFORMATION

Supplemental Information includes three tables and can be found with this

article online at http://dx.doi.org/10.1016/j.celrep.2017.01.048.
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A

B

Figure 2. The Effects of Anticonvulsant Administration on Motor

Outcomes

(A) The effects of anticonvulsant use (early versus late/none) onmotor recovery

following SCI at 1, 3, 6, and 12 months. Boxplots show raw data at each time

point. Boxplot whiskers indicate the maximum andminimum limits of the data,

excluding outliers. Proportion of potential recovery indicates the proportion of

‘‘available’’ recovery (for a total motor score of 100) achieved over 12 months.

For example, if an individual had a 1-month motor score of 40, their potential

recovery would be 60 points (100 � 40).

(B) The modeled effects of anticonvulsant use on motor recovery following

SCI. This model was derived from linear mixed-effects methods, including

early users (n = 83), late users (n = 72), and non-users (n = 470). There was a

significant Drug 3 Time interaction (i.e., greater slope or recovery) in early

users compared with non-users, even after adjusting for injury characteristics.

The unadjusted fitted curve is based on the unadjusted mixed-effects model.

The bottom curve depicts the proportion of recovery (relative to 1-month

scores) at each time point based on the predicted values of the unadjusted

curve.
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