
Zurich Open Repository and
Archive
University of Zurich
Main Library
Strickhofstrasse 39
CH-8057 Zurich
www.zora.uzh.ch

Year: 2016

Preventive effects of minocycline in a neurodevelopmental two-hit model
with relevance to schizophrenia

Giovanoli, S; Engler, H; Engler, A; Richetto, J; Feldon, J; Riva, M A; Schedlowski, M; Meyer, Urs

Abstract: Maternal immune activation can increase the vulnerability of the offspring to develop neuroim-
mune and behavioral abnormalities in response to stress in puberty. In offspring of immune-challenged
mothers, stress-induced inflammatory processes precede the adult onset of multiple behavioral dysfunc-
tions. Here, we explored whether an early anti-inflammatory intervention during peripubertal stress
exposure might prevent the subsequent emergence of adult behavioral pathology. We used an environ-
mental two-hit model in mice, in which prenatal maternal administration of the viral mimetic poly(I:C)
served as the first hit, and exposure to sub-chronic unpredictable stress during peripubertal maturation as
the second hit. Using this model, we examined the effectiveness of the tetracycline antibiotic minocycline
(MINO) given during stress exposure to block stress-induced inflammatory responses and to prevent sub-
sequent behavioral abnormalities. We found that combined exposure to prenatal immune activation and
peripubertal stress caused significant deficits in prepulse inhibition and increased sensitivity to the psy-
chotomimetic drugs amphetamine and dizocilpine in adulthood. MINO treatment during stress exposure
prevented the emergence of these behavioral dysfunctions. In addition, the pharmacological intervention
blocked hippocampal and prefrontal microglia activation and interleukin-1� expression in offspring exposed
to prenatal infection and peripubertal stress. Together, these findings demonstrate that presymptomatic
MINO treatment can prevent the subsequent emergence of multiple behavioral abnormalities relevant to
human neuropsychiatric disorders with onset in early adulthood, including schizophrenia. Our epidemi-
ologically informed two-hit model may thus encourage attempts to explore the use of anti-inflammatory
agents in the early course of brain disorders that are characterized by signs of central nervous system
inflammation during development.

DOI: https://doi.org/10.1038/tp.2016.38

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-134390
Veröffentlichte Version

 

 

Originally published at:
Giovanoli, S; Engler, H; Engler, A; Richetto, J; Feldon, J; Riva, M A; Schedlowski, M; Meyer, Urs (2016).
Preventive effects of minocycline in a neurodevelopmental two-hit model with relevance to schizophrenia.
Translational Psychiatry, 6(4):e772.
DOI: https://doi.org/10.1038/tp.2016.38

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ZORA

https://core.ac.uk/display/78272644?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1038/tp.2016.38
https://doi.org/10.5167/uzh-134390
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1038/tp.2016.38


OPEN

ORIGINAL ARTICLE

Preventive effects of minocycline in a neurodevelopmental
two-hit model with relevance to schizophrenia
S Giovanoli1,2,7, H Engler3,7, A Engler3, J Richetto4,5,6, J Feldon2, MA Riva4,5, M Schedlowski3 and U Meyer1,2,6

Maternal immune activation can increase the vulnerability of the offspring to develop neuroimmune and behavioral abnormalities
in response to stress in puberty. In offspring of immune-challenged mothers, stress-induced inflammatory processes precede
the adult onset of multiple behavioral dysfunctions. Here, we explored whether an early anti-inflammatory intervention during
peripubertal stress exposure might prevent the subsequent emergence of adult behavioral pathology. We used an environmental
two-hit model in mice, in which prenatal maternal administration of the viral mimetic poly(I:C) served as the first hit, and exposure
to sub-chronic unpredictable stress during peripubertal maturation as the second hit. Using this model, we examined the
effectiveness of the tetracycline antibiotic minocycline (MINO) given during stress exposure to block stress-induced inflammatory
responses and to prevent subsequent behavioral abnormalities. We found that combined exposure to prenatal immune activation
and peripubertal stress caused significant deficits in prepulse inhibition and increased sensitivity to the psychotomimetic drugs
amphetamine and dizocilpine in adulthood. MINO treatment during stress exposure prevented the emergence of these behavioral
dysfunctions. In addition, the pharmacological intervention blocked hippocampal and prefrontal microglia activation and
interleukin-1β expression in offspring exposed to prenatal infection and peripubertal stress. Together, these findings demonstrate
that presymptomatic MINO treatment can prevent the subsequent emergence of multiple behavioral abnormalities relevant to
human neuropsychiatric disorders with onset in early adulthood, including schizophrenia. Our epidemiologically informed two-hit
model may thus encourage attempts to explore the use of anti-inflammatory agents in the early course of brain disorders that are
characterized by signs of central nervous system inflammation during development.

Translational Psychiatry (2016) 6, e772; doi:10.1038/tp.2016.38; published online 5 April 2016

INTRODUCTION
Converging evidence implicates a role of immune mechanisms in
normal and pathological brain development.1,2 The antenatal
period is highly sensitive to the damaging effects induced
by environmental insults, and therefore, considerable efforts
have been made to explore the impact of immune-mediated
adversities such as prenatal infection in neuropsychiatric and
neurological disorders with developmental components.3 Besides
schizophrenia,4 maternal exposure to infection and/or inflamma-
tory processes is associated with increased risk of bipolar
disorder,5 autism,6 mental retardation7 and cerebral palsy.8

Prenatal infection and/or inflammation may thus represent a
general vulnerability factor for neurodevelopmental brain dis-
orders, so that the specificity of subsequent neuropathology and
psychopathological symptoms is likely to be influenced by the
genetic and environmental context in which the prenatal
adversities occur.9,10

Exposure to psychological trauma during sensitive periods of
postnatal maturation is another environmental factor implicated
in the etiology of major psychotic and affective disorders.11,12

Using a translational mouse model, we have recently shown that
combined exposure to prenatal immune challenge and peripu-
bertal stress induces synergistic pathological effects on adult

behavioral functions and neurochemistry.13 Hence, prenatal
immune adversities can function as a neurodevelopmental disease
primer that increases the offspring’s vulnerability to the detri-
mental neuropathological effects of subsequent stress exposure
during peripubertal life. In this environmental two-hit model,
offspring exposed to combined prenatal immune challenge and
peripubertal stress also showed signs of central nervous system
inflammation in the form of microglia overactivation and
hypersecretion of inflammatory cytokines in stress-sensitive brain
areas.13 Intriguingly, these inflammatory abnormalities preceded
the emergence of behavioral dysfunctions, the latter of which
showed a delayed onset in adulthood.13 In view of these findings,
we have hypothesized that the induction of peripubertal
inflammation in prenatally primed offspring may interfere with
the processes of neuronal maturation, thereby contributing to the
delayed emergence of behavioral dysfunctions in adulthood.13

These putative processes may also have implications for
preventive interventions. Indeed, the attenuation of inflammatory
reactions in the event of peripubertal stress exposure may readily
prevent the adult onset of behavioral pathologies.
In the present study, we tested this hypothesis by examining

whether minocycline (MINO) administration during peripubertal
stress exposure could block stress-induced inflammatory
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responses and prevent subsequent behavioral dysfunctions
in offspring exposed to initial prenatal immune challenge. MINO
is a broad-spectrum antibiotic of the tetracycline family that
is believed to act through inhibition of secreted matrix
metalloproteinase-9.14,15 Importantly, MINO was found to be
neuroprotective and highly effective in inhibiting microglia
activation and associated neuroinflammation in numerous patho-
logical conditions,16–18 including models of intense prenatal or
neonatal immune activation with relevance to schizophrenia.19–22

Another important property of MINO is that it readily crosses the
blood–brain barrier15 and can be easily administered via regular
drinking water, eliminating potential confounds associated with
stress effects induced by more invasive routes of administration.
Therefore, we opted for MINO as a suitable pharmacological
intervention to test our hypothesis that reducing stress-induced
inflammatory reactions in prenatally primed offspring may
prevent the subsequent emergence of behavioral dysfunctions
in adulthood.
We conducted these investigations using the recently estab-

lished mouse model of combined prenatal immune activation and
peripubertal stress in mice.13 In this model, prenatal immune
activation is induced by the viral mimetic polyriboinosinic–
polyribocytidilic acid (poly(I:C)), a synthetic analog of double-
stranded RNA that induces a cytokine-associated viral-like acute
phase response.23 Offspring born to poly(I:C)-exposed or control
mothers are then left undisturbed or exposed to variable and
unpredictable stress during peripubertal development.13 Using
this environmental two-hit model, the present study tested
whether MINO treatment during the course of peripubertal stress
exposure would prevent the adult emergence of behavioral
abnormalities identified previously,13 including increased anxiety-
like behavior, impaired sensorimotor gating and potentiated
sensitivity to psychotomimetic drugs. These behavioral investiga-
tions were conducted after a MINO washout period of 4 weeks.
Hence, our preventive approach is contrary to the recent
investigations assessing behavioral effects of MINO in develop-
mental immune activation models, where the drug was given
either throughout behavioral testing,19 or where behavioral
examinations started 1 day after the last MINO exposure.20,21

Even though the findings from these latter models suggest that
MINO is capable of correcting infection-induced behavioral
abnormalities relevant to schizophrenia and related disorders,
these effects arise from symptomatic rather than preventive
interventions. The present study is thus expected to provide novel
information with regard to the preventive potential of presympto-
matic MINO treatment in a multi-factorial model of schizophrenia
and related disorders.

MATERIALS AND METHODS
Animals
C57BL6/J mice (Jackson Laboratory; distributed via Charles River Labora-
tories, Sulzfeld, Germany) were used throughout the study. A description
of the animal housing and maintenance is provided in the Supplementary
Information. The number of animals used per group is summarized in
Supplementary Tables 1 and 2). All procedures described in the present
study were approved by the Cantonal Veterinarian's Office of Zurich,
Switzerland. All efforts were made to minimize the number of animals used
and their suffering.

Prenatal immune activation
Pregnant dams on gestation day 9 (GD9) received either a single injection
of poly(I:C) (potassium salt; Sigma-Aldrich, Buchs, Switzerland) at a dose of
1 mg kg− 1 or vehicle (sterile pyrogen-free 0.9% NaCl) as fully described the
Supplementary Information. The dose of poly(I:C) was chosen based on our
previous findings showing that this immunological manipulation leads to
modest and transient cytokine elevations in the maternal host.13 Here, we
confirmed the transient induction of one key inflammatory cytokine,

namely interleukin (IL)-6, in the maternal host following treatment with the
chosen dose of poly(I:C) (Supplementary Figure 1). The gestational stage
(that is, GD9) roughly corresponds to the first trimester of human
pregnancy with respect to fetal developmental biology and was chosen
based on our previous findings.13

Peripubertal stress exposure
Male and female offspring born to poly(I:C)-treated (POL) or saline-treated
control (CON) mothers were weaned on postnatal day (PND) 21 and caged
as littermates of two to three animals per cage. Litters with four or more
animals per sex were split into separate cages and were assigned to
different treatments, to minimize potential confounds associated with litter
effects. At peripubertal age, between PND 30 and 40, mice were then
either exposed to variable and unpredictable stress (S+) or left undisturbed
( = no stressor; S− ). According to protocols established before,13 the stress
procedure included exposure to five distinct stressors ((1) electric foot
shock; (2) restraint stress; (3) swimming stress; (4) food deprivation; (5)
repeated home cage changes) applied on alternate days. A detailed
description of the peripubertal stress protocol is given in the
Supplementary Information. All animals of a particular housing cage
underwent the same peripubertal procedures in terms of stress exposure
and drug treatment (see below). The allocation of cages to the peripubertal
procedures was randomized.
The peripubertal period was selected based on our previous findings

showing that prenatally immune-challenged animals exhibit a maximal
sensitivity for stress-induced neuropathological changes at this age.13

Besides the drastic hormonal changes, this developmental period is also
characterized by considerable neuroplastic rearrangements during which
neural circuits mature and thereby undergo various structural and
functional changes.24–26 Environmental insults during this phase of
postnatal maturation are therefore likely to interfere with normal brain
development and thus represent a relevant vulnerability factor in the
development of psychiatric diseases.13,26

MINO treatment
MINO hydrochloride (MINO; Sigma-Aldrich) was dissolved in regular tap
water and provided via regular drinking bottles to avoid additional
peripubertal stress exposure resulting from daily injections. Vehicle
(VEH)-exposed animals received tap water only. MINO was administered
during the course of peripubertal stress exposure to block the central
inflammatory responses to stress.13 More specifically, MINO treatment
started 24 h before exposure to the first stressor on PND 30 and
ended after completion of the stress procedure on PND 40. It was
administered at a dose of 30 mg kg− 1 per day (per os in drinking water)
based on our pilot studies showing that MINO at this dose is highly
effective in preventing the up- and downregulation of pro-inflammatory
cytokine expression and neuron–microglia inhibitory signaling typically
emerging in the brains of prenatally immune-challenged offspring
exposed to acute pubertal stress (see Supplementary Figure 2). The
dosage used here is in the range of other oral MINO regimens known to
block stress-induced microglia activation and neuronal maladaptations.17

For each cage, the dose of MINO was calculated based on the average
liquid consumption and body weight per cage; this was adjusted every
second day based on the liquid consumption and body weight assessed
on the preceding 2 days.

Behavioral analyses
Behavioral tests in MINO- or VEH-treated offspring subjected to single or
combined immune activation and stress started 4 weeks after exposure to
the last stressor, that is, between PND 70 and PND 90. This testing age was
selected because it corresponds to the early-adult stage of maturation
when the combined effects of prenatal immune activation and peripu-
bertal stress become behaviorally manifested.13 In a first cohort of animals,
MINO or VEH was given to CON and POL offspring with (S+) or without
(S− ) peripubertal stress exposure. The inclusion of the latter condition
served to ascertain whether the MINO administration regimen might be
associated with unwanted side effects on adult behavioral functions in
non-stressed animals. Animals from the first cohort were tested in the
elevated plus maze test to measure innate anxiety-like behavior, and in the
test of prepulse inhibition (PPI) of the acoustic startle reflex to assess
sensorimotor gating. The sample size consisted of 12–18 animals per
group based on our previous findings.13 A second cohort of animals
(N= 12–16 animals per group) was used to explore the beneficial effects of

Minocycline effects in an environmental two-hit model
S Giovanoli et al

2

Translational Psychiatry (2016), 1 – 9



MINO against hypersensitivity to the psychotomimetic drugs ampheta-
mine (AMPH) and dizocilpine (MK-801). For this purpose, we only included
stressed (S+) POL and CON offspring (with or without MINO treatment)
because the preceding tests using the first cohort of animals did not reveal
any significant behavioral effects of MINO in non-stressed (S− ) animals.
The tests assessing AMPH and MK-801 sensitivity were evaluated in terms
of drug-induced changes in locomotor activity and were conducted in
two independent sub-groups of animals to avoid repeated exposure to
psychotomimetic drugs. A detailed description of the behavioral test
apparatuses and procedure is provided in the Supplementary Information.

Immunohistochemical analyses
To ascertain the effects of MINO on microglia activation, we performed
immunohistochemical analyses of ionized calcium-binding adaptor mole-
cule 1 (Iba1) and cluster of differentiation 68 (CD68), two cellular markers
expressed by the entire (non-activated and activated) and primarily
activated microglia population, respectively.27 In addition, we explored the
effects of MINO treatment on pro-inflammatory cytokine expression by
immunohistochemical evaluations of IL-1β protein to confirm our gene
expression pilot data (see Supplementary Figure 2). For all immunohisto-
chemical evaluations, MINO or VEH were given to CON and POL offspring
during the course of the peripubertal stress exposure as described above,
and the animals were then killed 24 h after exposure to the last stressor on
PND 41. Only one offspring per litter was allocated for peripubertal
euthanasia to minimize potential confounds associated with litter effects.
The age of euthanasia was chosen based on our previous findings,
showing that the inflammatory effects of combined exposure to the two
environmental insults are transient and are primarily manifested in the
event of and/or shortly after experience of the second environmental hit in
puberty.13 A detailed description of the methods used for the immuno-
histochemical analyses is provided in the Supplementary Information.
Iba1-, CD68- and IL-1β-positive cells were counted in the hippocampus

and prefrontal cortex using unbiased stereological estimations as fully
described in the Supplementary Information. In addition to the stereo-
logical estimates, we characterized microglia morphology by quantifying
the cell soma area and number of primary processes of Iba1-positive
microglia cells. The methods used for the assessment of microglia
morphology are also fully described in the Supplementary Information.
All quantifications were performed in the hippocampus and the prefrontal
cortex because these brain regions were shown to be highly sensitive to
stress-induced inflammatory changes.13 For all stereological and morpho-
logical analyses, the experimenter was blind to the animals’ treatment
conditions and only had access to codes in the form of a number.

Statistical analyses
All data met the assumptions of normal distribution and equality of
variance and were analyzed using analysis of variance (ANOVA) to identify
the main effects of sex, prenatal immune treatment, postnatal stress
treatment and preventive MINO treatment, as well as their interactions.
The individual ANOVAs used for each test are outlined in Supplementary
Tables 3–5, which also summarize the statistical outcomes obtained by
ANOVA. Fisher's least significant difference post hoc tests were used
whenever significant interactions were obtained by the initial ANOVAs. No
pre-established inclusion/exclusion criteria were used. Statistical signifi-
cance was set at Po0.05. All statistical analyses were performed using the
statistical software StatView (version 5.0; Abacus, Phoenix, AZ, USA)
implemented on a PC running the Windows XP operating system.

RESULTS
MINO fails to prevent the emergence of increased anxiety-like
behavior induced by peripubertal stress
First, we explored whether the MINO treatment would prevent the
emergence of increased anxiety-like behavior typically seen in
offspring exposed to peripubertal stress with or without additional
prenatal immune challenge.13 Consistent with our previous
findings,13 we found that peripubertal stress increased
anxiety-like behavior in the elevated plus maze test regardless
of the prenatal immune histories. Hence, stressed offspring
displayed a significant reduction in the frequency to enter the
open arms compared with non-stressed animals, and this effect
similarly emerged in the two prenatal conditions (see Figure 1a).

The stress-induced changes in open arm frequencies were not
accompanied by concomitant alterations in basal locomotor
activity as indexed by the total distance moved on the elevated
plus maze (Figure 1b). MINO treatment failed to prevent the
stress-induced changes in anxiety-like behavior: a comparable
reduction in open arm frequencies was observed in stressed
animals regardless of whether they received MINO or VEH
(Figure 1a). MINO also did not affect the animals’ basal locomotor
activity scores as measured by the distance moved during the
elevated plus maze test (Figure 1b).

MINO prevents the development of sensorimotor gating
deficiency following combined prenatal immune activation and
peripubertal stress
In a next series of investigations, we tested whether MINO
treatment might be effective in preventing the adult emergence

Figure 1. Elevated plus maze performance in adult offspring
exposed to single or combined prenatal immune activation and
peripubertal stress with or without preventive minocycline (MINO)
treatment. Pregnant mice were injected with 1 mg kg− 1 poly(I:C)
(POL) or physiological saline (control (CON)), and the resulting
offspring were subjected to sub-chronic stress (S+) or left
undisturbed (S− ) during peripubertal maturation. During the stress
procedure, half of the animals received MINO treatment
(30 mg kg− 1 per day, per os in drinking water), and the other half
vehicle (VEH; = regular tap water) treatment. (a) The bar plot
depicts percent open arm entries (%). §Po0.001, reflecting the
significant main effect of peripubertal stress. N= 12–18 per group.
(b) The bar plot shows the total distance moved (m) during the
entire test period. N= 12–18 per group. All data are means± s.e.m.
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of sensorimotor gating deficiency following combined prenatal
immune activation and peripubertal stress.13 Sensorimotor gating
was evaluated using the paradigm of PPI of the acoustic startle
reflex. In line with our previous findings,13 we revealed interactive
effects between the two environmental manipulations on PPI
disruption in adulthood: Neither prenatal immune activation alone
nor stress alone was sufficient to significantly affect PPI in the VEH
condition, but only the combination of the two insults resulted in
a significant attenuation of PPI (Figure 2). Peripubertal MINO
administration prevented the disruption of PPI in offspring exposed
to combined immune activation and stress (Figure 2). Indeed, MINO
treatment in stressed POL offspring significantly elevated PPI scores

to levels found in VEH-treated CON offspring with or without
additional stress exposure (Figure 2). MINO administration also
increased PPI levels in non-stressed offspring. This effect, however,
was only evident in non-stressed CON animals, likely because of
their relatively low basal PPI scores (Figure 2).
Single or combined exposure to immune activation and stress

did not affect the reactivity to pulse-alone trials or prepulse
alone trials (Supplementary Table 6). Peripubertal MINO treatment
also did not influence these dependent variables, suggesting
that the beneficial effects of the drug on PPI scores in stressed
POL offspring are independent of possible influences on startle
reactivity and prepulse-induced reactivity.

Figure 2. Prepulse inhibition of the acoustic startle reflex in adult offspring exposed to single or combined prenatal immune activation and
peripubertal stress with or without preventive minocycline (MINO) treatment. Pregnant mice were injected with 1 mg kg− 1 poly(I:C) (POL) or
physiological saline (control (CON)), and the resulting offspring were subjected to sub-chronic stress (S+) or left undisturbed (S− ) during
peripubertal maturation. During the stress procedure, half of the animals received MINO treatment (30 mg kg− 1 per day, per os in drinking
water), and the other half vehicle (VEH; = regular tap water) treatment. (a) The line plots depict percent prepulse inhibition as a function of
increasing prepulse intensities (dB above background of 65 dB). (b) The bar plots show the mean percent prepulse inhibition across all five
prepulse intensities. §Po0.01, reflecting the significant difference between CON/S− /MINO offspring and CON/S− /VEH offspring; #Po0.05,
reflecting the significant difference between CON/S− /MINO offspring and POL/S− /MINO offspring; *Po0.05 and **Po0.01, reflecting the
indicated differences in the S+ groups. N= 12–18 per group. All data are means± s.e.m.
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MINO prevents the emergence of hypersensitivity to
psychotomimetic drugs induced by combined prenatal immune
activation and peripubertal stress
Another pathological feature emerging following combined
exposure to prenatal immune activation and peripubertal stress is
the adult onset of increased sensitivity to psychotomimetic drugs.13

We have previously revealed interactive effects between these two
environmental manipulations on the development of potentiated
locomotor reactions to the indirect dopamine receptor agonist
AMPH and the non-competitive NMDA receptor antagonist
MK-801.13 Here, we tested whether MINO treatment may be
effective in preventing these abnormalities. Consistent with our
previous report,13 AMPH-induced locomotor activity in the open
field test was significantly increased in POL offspring exposed to
peripubertal stress compared with stressed CON offspring (see
Figure 3a). MINO treatment fully prevented this pathological
phenotype in stressed POL offspring without significantly influen-
cing AMPH-induced activity in stressed CON offspring.
MINO treatment also prevented the potentiation of MK-801-

induced hyperactivity induced by combined prenatal immune

activation and peripubertal stress (see Figure 3b). Similar to its
effects against AMPH hyperactivity, MINO treatment reduced the
MK-801-induced hyperlocomotor responses in stressed POL
offspring to levels found in stressed CON offspring that had been
treated with VEH or MINO.
MINO treatment did not affect basal locomotor activity as

assessed during the initial saline exposure phase that preceded
the subsequent AMPH (Figure 3a) or MK-801 (Figure 3b) exposure
phase. These effects are consistent with the outcomes in the
elevated plus maze test (Figure 1b) and suggest that the beneficial
effects of MINO against psychotomimetic drugs-induced hyper-
activity emerge independently of possible influences on basal
locomotor activity.

MINO blocks microglia activation and IL-1β expression in offspring
with combined exposure to prenatal immune activation and stress
in puberty
We have previously demonstrated that offspring born to immune-
challenged mothers show an increased sensitivity to stress-

Figure 3. Effects of minocycline (MINO) on the locomotor responses to acute challenge with psychotomimetic drugs in adult offspring
exposed to prenatal control treatment or immune activation with additional stress exposure in puberty. Pregnant mice were injected with
1 mg kg− 1 poly(I:C) (POL) or physiological saline (control (CON)), and the resulting offspring were subjected to sub-chronic stress (S+) during
peripubertal development. During the stress procedure, half of the animals received MINO treatment (30 mg kg− 1 per day, per os in drinking
water), and the other half vehicle (VEH; = regular tap water) treatment. (a) Locomotor reaction to the indirect dopamine receptor agonist
amphetamine (Amph; 2.5 mg kg− 1, i.p.). The line plot depicts the distance moved in an open field arena to initial vehicle (saline (Sal))
treatment and subsequent Amph treatment as a function of successive 5-min bins. The bar plot depicts the mean distance moved after Amph
treatment. **Po0.01 and ***Po0.001; N= 12–16 per group. (b) Locomotor reaction to the non-competitive NMDA receptor antagonist
dizocilpine (MK-801; 0.15 mg kg− 1, i.p.). The line plot shows the distance moved in an open field arena to initial vehicle (Sal) treatment and
subsequent MK-801 treatment as a function of successive 5-min bins. *Po0.05, reflecting the significant difference between VEH-exposed
CON/S+ and POL/S+ offspring at individual bins; §Po0.05, reflecting the significant difference between VEH-exposed POL/S+ and MINO-
treated POL/S+ offspring at individual bins. N= 16 per group. All data are means± s.e.m.
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induced activation of hippocampal and prefrontal microglia
cells.13 Intriguingly, such microglia abnormalities in prenatally
immune-challenged offspring were clearly evident shortly after
exposure to the last stressor in peripubertal life, but absent when
the offspring reached adulthood.13 Hence, prenatal immune
activation can prime latent microglia overactivation in response
to stress, which precedes the adult onset of multiple behavioral
abnormalities. Here, we ascertained the effectiveness of MINO to
block the activation of microglia cells in offspring with initial
prenatal immune activation exposed to stress relative to prenatal
CON offspring exposed to stress.
MINO treatment did not change the number of Iba1-positive cells

in the hippocampus (Figure 4a) and prefrontal cortex
(Supplementary Figure 3), suggesting that it did not influence the
overall density of the entire (non-activated and activated) microglia
cell population. On the other hand, the pharmacological interven-
tion was effective in preventing morphological and cellular signs of
microglia activation in prenatally primed offspring: MINO normal-
ized the enlargement of Iba1-positive cell soma areas in the

hippocampus of stressed POL offspring to levels present in stressed
CON offspring (Figure 4b), and it fully blocked the induction of
hippocampal (Figures 4c and d) and prefrontal (Supplementary
Figure 3) CD68 expression typically seen in offspring with combined
exposure to prenatal immune activation and peripubertal stress.
Consistent with our previous investigations13 and pilot data

(Supplementary Figure 2), we found that POL offspring exhibited
significantly enhanced IL-1β expression in response to peripuber-
tal stress compared with stress exposure in CON offspring
(Figure 5). MINO administration prevented this augmentation in
inflammatory cytokine expression, so that the numbers of IL-1β-
positive cells were highly comparable between VEH-treated CON
offspring with stress and MINO-treated POL offspring with stress
(Figure 5).

DISCUSSION
Our study demonstrates that administration of the tetracycline
antibiotic MINO during the course of peripubertal stress exposure

Figure 4. Effects of minocycline (MINO) on microglia abnormalities in the hippocampus of stressed offspring born to control or gestationally
immune-challenged mothers. Pregnant mice were injected with 1 mg kg− 1 poly(I:C) (POL) or physiological saline (control (CON)), and the
resulting offspring were subjected to sub-chronic stress (S+) during peripubertal maturation. During the stress procedure, half of the animals
received MINO treatment (30 mg kg− 1 per day, per os in drinking water), and the other half vehicle (VEH; = regular tap water) treatment. (a)
The bar plots depict the stereological estimates of Iba1-positive cells, as well as cell soma area and number of primary processes of Iba1-
positive microglia. *Po0.05 and #P= 0.07; N= 5 per group. (b) The photomicrographs show representative sections stained with anti-Iba1
antibody. Note the enlargement of the cell soma area in Iba1-positive microglia cells in VEH-treated POL/S+ offspring relative to the other
groups (indicated by the black arrow head). (c) The bar plot shows the stereological estimates of activated CD68-positive microglia cells.
*Po0.05, N= 5 per group. (d) The photomicrographs show representative coronal brain sections stained with anti-CD68 antibody. Note the
increase in microglial CD68 expression in VEH-treated POL/S+ offspring relative to the other groups. All data are means± s.e.m.
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prevents the subsequent emergence of behavioral abnormalities
in offspring with a history of prenatal immune activation. In our
environmental two-hit model, combined exposure to prenatal
immune challenge and peripubertal stress induced synergistic
pathological effects on adult behavioral functions relevant
primarily to schizophrenia,13 which included impairments in PPI
and increased sensitivity to the psychotomimetic drugs AMPH and
MK-801. Peripubertal MINO administration proved to be highly
efficient in blocking the development of these abnormalities. Our
results further suggest that these preventive effects of MINO are
largely sex-independent, as we did not reveal any significant four-
way interactions between prenatal immune activation, postnatal
stress exposure, preventive MINO treatment and sex. This is
consistent with the findings by Zhu et al.22 who reported no sex-
dependent effects of MINO in the correction of behavioral deficits
and microglial activation following prenatal exposure to high
doses of poly(I:C) in mice. Thus, hormonal differences between
male and female offspring during peripubertal maturation seem
to have a minor influence on the effectiveness of the MINO
treatment in preventing long-term behavioral pathologies.
In contrast to its effects on sensorimotor gating and psychoso-

matic drug sensitivity, however, MINO failed to prevent the stress-
induced increase in anxiety-like behavior. The latter developed
after peripubertal stress regardless of whether the offspring had
been exposed to the first environmental hit in prenatal life. These
findings indicate that MINO is not simply associated with general
protective effects against stress-induced behavioral abnormalities,
but rather, it seems to be particularly efficient in preventing

pathological effects that require the combination of two environ-
mental adversities, in this case prenatal immune activation
followed by peripubertal stress exposure.
The beneficial effects of MINO on PPI impairments and

hypersensitivity to psychotomimetic drugs are consistent with
the drug’s beneficial effects revealed in other rodent models that
capture abnormalities in these behavioral domains.28,29 Notably,
our data corroborate the recent findings obtained in more severe
maternal or neonatal immune activation models, in which
exposure to high doses of poly(I:C) or the bacterial lipopolysac-
charide in rats or mice resulted in persistent microglia activation,
increased inflammatory cytokine production and PPI impairments
even in the absence of additional environmental adversities such
as stress.19–22 Consistent with our results, chronic MINO treatment
effectively normalized these inflammatory abnormalities and
restored the disruption of behavioral dysfunctions in these models
of intense early-life immune challenge.19–22 Our study provides
two important extensions to these recent findings. First, our data
are based on a multi-factorial model of schizophrenia and related
disorders that incorporates two etiologically relevant (environ-
mental) risk factors rather than one only. Second, we conducted
all behavioral investigations after a comparatively long drug
washout period of 4 weeks, whereas behavioral examinations in
previous developmental immune activation models took place
either shortly after, or concurrently with, MINO treatment.20,21

Hence, previous developmental immune activation models
reported symptomatic effects of MINO treatment against
schizophrenia-related abnormalities, while our study probed
preventive effects of the drug.
There are also important distinctions between the present two-

hit model and more severe early-life immune activation models
with respect to the persistence of neuroimmune changes.
Maternal or neonatal exposure to intense immune challenges
stimuli can cause long-lasting inflammatory changes in the
offspring’s brains, some of which can persist from juvenile to
adult stages of life.19–22,30,31 These enduring changes contrast the
nature of inflammatory signs in our two-hit model, in which
increased microglia activation and brain inflammatory cytokine
production emerge in immune-challenged offspring only if they
are exposed to additional environmental adversities such as
peripubertal stress. Hence, a second environmental hit is required
to unmask latent neuroimmune pathologies following priming by
mild prenatal immune activation.13 On unmasking, the neuroim-
mune anomalies are transient and are evident only during the
course and shortly after exposure to the second environmental hit
in puberty.13 Against these backgrounds, our findings highlight
that MINO can exert beneficial effects even if its administration is
restricted to a developmental period of transient brain inflamma-
tion that precedes the adult onset of behavioral abnormalities.
These data may thus encourage clinical attempts to explore the
preventive potential of MINO when administered during early or
even presymptomatic phases of chronic mental illnesses with
delayed onset in early adulthood, including schizophrenia and
related psychotic disorders.32 Thus far, MINO has demonstrated
some positive effects in the treatment of neuropsychiatric
disorders once overt psychopathological symptoms manifest,33–
35 but its preventive potential when given during earlier
(presymptomatic or first onset) phases still awaits examination.
Such early anti-inflammatory interventions may indeed be
effective in view of the converging findings, suggesting that
altered inflammatory processes are also relevant before and/or
during the onset of full-blown neuropsychiatric disease.36–40

However, presymptomatic treatments also raise important issues
regarding unwanted side effects as not all persons at risk
transition to disease. We found that presymptomatic MINO
administration did not lead to any adverse behavioral outcome
in control animals that were exposed to only one or none of the
environmental insults. At the same time, however, the early

Figure 5. Effects of minocycline (MINO) on IL-1β-positive cells in the
hippocampus of stressed offspring born to control or gestationally
immune-challenged mothers. Pregnant mice were injected with
1 mg kg− 1 poly(I:C) (POL) or physiological saline (control (CON)), and
the resulting offspring were subjected to sub-chronic stress (S+)
during peripubertal maturation. During the stress procedure, half of
the animals received MINO treatment (30 mg kg− 1 per day, per os in
drinking water), and the other half vehicle (VEH; = regular tap
water) treatment. (a) The bar plot shows the stereological estimates
of IL-1β-positive cells. *Po0.05, N= 5 per group. (b) The photo-
micrographs (b1–b3) show representative IL-1β immunoreactivity
(indicated by the black arrowheads) in the hippocampal formation
visualized with a Nissl/IL-1β double-staining. Note that IL-1β
immunoreactivity was present in cells displaying noticeable
immunoreactive processes (b1 and b2) and in cells with no
immunoreactive processes (b3). All data are means± s.e.m.
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intervention was effective in preventing the development of
functional abnormalities in offspring exposed to combined
immune activation and stress. Even though these findings are
highly consistent with other studies,19–21 the limited set of
behavioral tests performed here cannot fully exclude potential
side effects of the MINO treatment in control (or healthy) subjects
that would otherwise not go on to develop adult behavioral
dysfunctions. This aspect is, however, of high importance and
clearly warrants further attention in future studies.
The mechanisms through which MINO prevented the subse-

quent emergence of behavioral abnormalities remain unknown
and require further investigation. It can be excluded, however,
that the drug’s beneficial effects are related to a direct action on
neurobehavioral processes in adulthood. The main reason for this
assumption is that MINO was administered only during a
restricted period in peripubertal life, which was followed by a
drug washout period of 4 weeks. It is therefore more likely that
MINO may have exerted its beneficial effects by mitigating
abnormalities in brain maturation, which are primed by (mild)
prenatal immune activation and set in motion by subsequent
exposure to peripubertal stress. The peripubertal period is
arguably a very sensitive and dynamic period of neuronal and
hormonal rearrangements that prepare the growing organism to
the demands in adult life,41,42 so that altered neuroinflammatory
processes occurring during this period can be expected to have
long-lasting consequences on adult brain functions.43

Based on the present findings, it would be tempting to
speculate that abnormal microglia activation during peripubertal
brain maturation may assume a key role in these processes.
Microglia play crucial roles in both neuronal protection and
pathology, and are often referred to as a ‘double-edged
sword’.44,45 On the one hand, they secrete neurotrophic factors
pivotal for cellular repair, and recruit immune cells into the brain
for clearance of infection or cellular debris. On the other hand,
chronic or exaggerated microglia activation is linked to excessive
secretion of pro-inflammatory factors and has been linked to
neurodegenerative processes.44,45 Of particular interest for the
present findings may be the recently described role of microglia in
patterning and wiring of the developing and maturing brain,
whereby altered microglia functions can negatively influence
various processes such as programmed cell death, activity-
dependent synaptic pruning and synapse maturation.46,47 At the
present stage, however, the hypothesized mechanistic role of
abnormal microglia activation still needs to be met with caution in
the present two-hit model. Indeed, we did not establish a direct
link between peripubertal inflammation and disruption of
neuronal substrates across postnatal maturation, nor did we
examine alternative mechanism by which MINO could exert
beneficial effects in this two-hit model. Despite the converging
evidence that MINO can effectively block microglia activation and
subsequent inflammatory processes,16–18 it is arguably not a
specific microglia inhibitor, but instead, it is associated with
various other pharmacological properties.14,15,48 Nonetheless, our
findings suggest that MINO exerts beneficial effects in a
developmental disruption model with inflammatory components
that bears etiological relevance to brain disorders with delayed
onsets in adulthood.13

In conclusion, our findings provide novel evidence showing that
the tetracycline antibiotic MINO exhibits preventive effects against
adult behavioral abnormalities in a developmental two-hit model
relevant to schizophrenia and related disorders. Our preclinical
data may encourage attempts to explore the use of transient
MINO treatment for preventive reasons, especially for brain
disorders that are characterized by a delayed onset in adulthood.
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