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Abstract: We present the most precise value for the Higgs boson cross-section in the

gluon-fusion production mode at the LHC. Our result is based on a perturbative expansion

through N3LO in QCD, in an effective theory where the top-quark is assumed to be in-

finitely heavy, while all other Standard Model quarks are massless. We combine this result

with QCD corrections to the cross-section where all finite quark-mass effects are included

exactly through NLO. In addition, electroweak corrections and the first corrections in the

inverse mass of the top-quark are incorporated at three loops. We also investigate the

effects of threshold resummation, both in the traditional QCD framework and following a

SCET approach, which resums a class of π2 contributions to all orders. We assess the uncer-

tainty of the cross-section from missing higher-order corrections due to both perturbative

QCD effects beyond N3LO and unknown mixed QCD-electroweak effects. In addition, we

determine the sensitivity of the cross-section to the choice of parton distribution function

(PDF) sets and to the parametric uncertainty in the strong coupling constant and quark

masses. For a Higgs mass of mH = 125 GeV and an LHC center-of-mass energy of 13 TeV,

our best prediction for the gluon fusion cross-section is

σ = 48.58 pb
+2.22 pb (+4.56%)
−3.27 pb (−6.72%) (theory)± 1.56 pb (3.20%) (PDF+αs)

Keywords: Higgs physics, QCD, gluon fusion.
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1. Introduction

With the discovery of the Higgs boson [1, 2], the Large Hadron Collider (LHC) has achieved

a major landmark in science. Indeed, we now have conclusive evidence that space is filled

with the Higgs field and that the mass of elementary particles is not an ad-hoc concept,

but an elaborate outcome of the mechanism of spontaneous symmetry breaking. Moreover,

with the Higgs boson the Standard Model is a mathematically self-consistent theory, and it

can be used to formulate physically credible predictions at extremely high energies, many

orders of magnitude higher than what we can probe with man-made experiments. This is

a great triumph of theoretical physics.

Besides the success of the Standard Model as a theory of electroweak interactions, it

is a phenomenologically incomplete theory, and it needs to be extended in order to obtain

a satisfying description of all known physics, including cosmology. It is unclear at what

energy the Standard Model will stop being a good theory and it will require the introduction

of new laws of physics. If open questions, such as for example the origin of dark matter,

are related to the question of the origin of mass of elementary particles, then it is likely

that Higgs phenomena will differ quantitatively from Standard Model expectations. We

should therefore view the Higgs boson discovery as the foundation of a long-term precision

physics program measuring the properties of the Higgs boson. This program may yield

direct or indirect evidence of physics beyond the Standard Model, and it requires the

measurement of the mass, spin/parity, width, branching ratios and production rates of the

Higgs boson. All of the above are predicted or constrained in the Standard Model and

its viable extensions. The success of the program will rely crucially on the combination of

highly precise experimental data with equally accurate theoretical predictions.

The purpose of this article is to supply a key ingredient to upcoming high-precision

studies of the Higgs boson by providing the most accurate determination of the Higgs pro-

duction cross-section in gluon fusion. Higgs production in gluon fusion is mediated mainly

through a top-quark loop [3]. Despite the absence of a tree-level contribution (which makes

gluon fusion a pure quantum process), it is the dominant production mode of the Higgs

boson due to the large gluon luminosity and the size of the top-quark Yukawa coupling.

Reliable predictions of this process require the inclusion of higher-order corrections, both

from the QCD and the electroweak sectors of the Standard Model. The phenomenological

importance of these corrections can be seen from the large size of the next-to-leading order

(NLO) QCD corrections [4, 5, 6, 7, 8, 9, 10, 11, 12], which almost double the original leading

order (LO) prediction [3]. The large size of the NLO corrections indicate potentially sig-

nificant contributions from even higher perturbative orders, thus resulting in a substantial

theoretical uncertainty on the gluon-fusion cross-section. This uncertainty is difficult to

quantify conventionally by varying nuisance parameters in the theoretical prediction such

as renormalization and factorization scales.

The past twenty years have seen substantial theoretical advances in the perturbative

description of Higgs production in gluon fusion, using a multitude of techniques and aim-

ing for various directions of improvement. The theoretical description of gluon fusion is

rendered particularly challenging by the fact that the Born process is already a one-loop
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process involving two mass scales (the masses of the top quark and the Higgs boson),

such that higher-order corrections will involve multi-scale multi-loop amplitudes. This

challenge can be overcome by integrating out the top quark at the level of the Standard

Model Lagrangian. This procedure results in an effective field theory (EFT) [13, 14, 15, 16]

containing a tree-level coupling of the Higgs boson to gluons. This EFT can be matched

onto the full Standard Model in a systematic manner, resulting in corrections from higher

orders in perturbation theory to the Wilson coefficients [17, 18, 19] and from subleading

terms in the large mass expansion [20, 21]. In the EFT framework the coefficient function

for inclusive Higgs production in gluon fusion depends only on the ratio of Higgs boson

mass mH to the partonic center-of-mass energy
√
s, usually expressed through the variable

z = m2
H/s. By comparing the full NLO QCD expression for the gluon fusion cross-section

with the EFT result, one observes that a very good approximation of the full NLO predic-

tion can be obtained by re-weighting the EFT prediction with the ratio of LO predictions

in the full and effective theories. This re-weighting is commonly applied to all predictions

obtained within the EFT framework.

NNLO corrections in the EFT [22, 23, 24] turn out to be substantial, albeit smaller

than at NLO. This slow convergence pattern entails the risk that the estimation of the

uncertainty at NNLO, obtained by varying the renormalization and factorization scales,

may be misleading. To settle the size of the QCD corrections, additional information about

the behavior of the perturbative expansion beyond NNLO is necessary.

A part of these corrections arises from the region of phase-space where the Higgs boson

is produced at or near to its kinematical threshold, z → 1. In this region, contributions from

soft and collinear gluon emission can be resummed to all orders in the coupling constant,

either using Mellin space methods [25, 26, 27, 28, 29] or within soft-collinear effective field

theory (SCET) [30, 31, 32, 33, 34]. Always working in the EFT framework, either method

enables the resummation of logarithmically-enhanced threshold corrections to the gluon

fusion process to high logarithmic order [35, 36, 37]. Both methods agree to a given formal

logarithmic accuracy, but their results can in principle differ [38, 39] by non-logarithmic

terms.

The combination of predictions at fixed order with threshold resummation (together

with electroweak corrections [40, 41, 42, 43], bottom and charm quark contributions through

NLO and subleading mass corrections at NNLO [20, 21, 44, 45]) provided the default

predictions for the interpretation of Higgs production data in the LHC Run 1 [46, 47, 48].

Besides uncertainties from the parametrization of parton distributions and the values of the

strong coupling and quark masses, these predictions were limited in accuracy by missing

terms at N3LO in the fixed-order expansion. By expanding resummed predictions in powers

of the coupling constant, logarithmic terms in perturbative orders beyond NNLO can be

extracted. These were used (often combined with the knowledge of the high-energy z → 0

behaviour of the coefficient function [49]) to obtain estimates of the fixed-order gluon

fusion cross-section at N3LO and beyond [50, 51, 52]. Although individual results for these

estimates typically quoted a very small residual uncertainty, the scatter among different

estimates was quite substantial, thereby putting serious doubts on the reliability of any

such estimation procedure. These ambiguities were resolved by the recent calculation of the
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full N3LO QCD corrections to the gluon fusion process [53], which are the key ingredient

to the work presented here.

The gluon-fusion cross-section in N3LO QCD in the EFT approach receives (besides

a network of lower order renormalization and mass-factorization terms [54, 55, 56, 57, 58])

contributions from four types of processes, ranging at fixed sum of loops and external legs

from three-loop virtual corrections to the ggH-vertex to triple real radiation corrections

from processes like gg → Hggg, and denoted respectively as VVV, (RV)2, RVV, RRV, RRR.

While the three-loop virtual corrections were already known for quite some time [59, 60],

new technical advances were needed in order to evaluate all the contribution from the differ-

ent real-radiation subprocesses, either in closed from or as a high-order expansion around

the threshold limit that is sufficient to precisely account for the full z-dependence. Based on

the two-loop matrix elements for Higgs-plus-jet production [61], closed expressions for the

RVV contributions could be obtained by direct integration [62, 63]. In the same way, it was

possible to derive closed expressions for the (RV)2 contribution [64, 65]. The major chal-

lenge in the RRV and RRR processes are the very intricate phase space integrals for double

real radiation at one loop and triple real radiation at tree level. These phase-space inte-

grals can be related to specific cuts of loop integrals using reverse-unitarity [22, 66, 67, 68],

allowing the application of modern integral reduction techniques [69, 70, 71] that express

all relevant phase-space integrals by a limited set of master integrals, which are functions

of z. With the same integral reduction techniques, differential equations [72, 73, 74] can

be derived for the master integrals. By solving these differential equations (either in closed

form [75], or as an expansion in z) for appropriate boundary conditions, the direct inte-

gration of the master integrals can be circumvented. The use of these techniques enabled

the computation of the RRV and RRR [76] contributions at threshold. Combining them

with the two-loop correction to the soft-gluon current [77, 78] enabled first breakthroughs

with the N3LO threshold cross-section [79, 80, 81] and the first beyond-threshold term [82].

More recently, the systematic expansion of the RRV [83] and RRR contributions to very

high orders in z enabled the calculation of the full N3LO gluon fusion cross-section [53].

In this publication, we combine the N3LO cross-section in the EFT with the previously

available state-of-the-art predictions for other types of corrections (electroweak, mass ef-

fects, resummation) to obtain a highly precise theoretical description of the inclusive Higgs

production cross-section in gluon fusion. We also assess remaining theoretical uncertainties

on the cross-section. Our results will form a cornerstone to precision studies of the Higgs

boson in the upcoming high-energy and high-luminosity data taking periods of the CERN

LHC.

Our paper is structured as follows: in Section 2 we present our setup and summarize

the different contributions that we include into our prediction. In Section 3 we study

the phenomenological impact of QCD corrections through N3LO in the large mt-limit.

We investigate the missing higher-order effects and threshold resummation in the EFT

in Section 4. Effects due to quark masses and electroweak corrections are studied in

Sections 5 and 6, and we assess the uncertainty on the cross-section due to PDFs and

the strong coupling constant in Section 7. In Section 8 we combine all effects and present

our recommendation for the most precise theoretical prediction of the inclusive Higgs cross-
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section. In Section 9 we draw our conclusions. We include appendices where we present

the coefficients appearing in the threshold expansion of the N3LO coefficient, as well as

tables summarizing our results for a variety of different Higgs masses and collider energies.

2. Setup

The inclusive hadronic cross-section σ for Higgs production in gluon fusion can be calcu-

lated as the convolution integral

σ = τ
∑
ij

(
fi ⊗ fj ⊗

σ̂ij(z)

z

)
(τ) , (2.1)

where σ̂ij are the partonic cross-sections for producing a Higgs boson from a scattering of

partons i and j, and fi and fj are the corresponding parton densities. We have defined

the ratios

τ =
m2
H

S
and z =

m2
H

s
, (2.2)

where mH , s and S denote the Higgs mass and the squared partonic and hadronic center-

of-mass energies. The convolution of two functions is defined as

(h⊗ g)(τ) =

∫ 1

0
dx dy h(x) g(y) δ(τ − xy) . (2.3)

In the Standard Model (SM) the Higgs boson is predominantly produced through the an-

nihilation of virtual top and bottom quarks, as well as W and Z bosons, produced in

gluon fusion. All of these channels are greatly enhanced by QCD corrections, and also

electroweak corrections are important. Hence, having good control over higher-order cor-

rections in perturbation theory, both in the QCD and electroweak sectors, is of paramount

importance to make precision predictions for Higgs production in the framework of the

SM. We note that non-perturbative contributions to the inclusive Higgs boson production

cross-section are suppressed by powers of (Λ/mH), with Λ being the QCD scale. For the

Drell-Yan process, the linear non-perturbative correction could be shown to vanish [84, 85],

such that the leading power correction term is quadratic and potentially relevant at low in-

variant masses. For the inclusive Higgs production cross-section, no thorough investigation

of the power corrections has been performed up to now, but even the linear term would be

a per-mille-level correction.

The goal of this paper is to provide the most precise predictions for the inclusive

hadronic Higgs production cross-section in the SM. We use state-of-the-art precision com-

putations for electroweak and QCD corrections to inclusive Higgs production and combine

them into the most precise theoretical prediction for the Higgs cross-sections available to

date. The master formula that summarizes all the ingredients entering our prediction for

the (partonic) cross-sections is

σ̂ij ' RLO
(
σ̂ij,EFT + δtσ̂

NNLO
ij,EFT + δσ̂ij,EW

)
+ δσ̂LOij,ex;t,b,c + δσ̂NLOij,ex;t,b,c . (2.4)
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Equation (2.4) includes QCD corrections to the production cross-section in an effective

theory where the top quark is infinitely heavy and has been integrated out. In this limit,

the Higgs boson couples directly to the gluons via an effective operator of dimension five,

Leff = LSM,5 −
1

4
C H GaµνG

µν
a , (2.5)

where H is the Higgs boson field, Gaµν is the gluon field strength tensor and LSM,5 denotes

the SM Lagrangian with Nf = 5 massless quark flavours. The Wilson coefficient C is

obtained by matching the effective theory to the full SM in the limit where the top quark

is infinitely heavy. In Appendix A we give its analytic expression through N3LO in the

MS and OS schemes [17, 18], in the five-flavour effective theory with the strong coupling

constant decoupled.

QCD corrections to the production cross-section σ̂ij,EFT in the heavy-top limit have

been computed at NLO [4, 5, 6] and NNLO [22, 23, 24]. Recently also the N3LO correc-

tions have become available [53]. One of the main goals of this work is to combine the

N3LO corrections in the large-mt limit with other effects that can provide corrections at a

similar level of accuracy, in particular quark-mass effects and electroweak corrections. We

also investigate the impact of the resummation of threshold logarithms, both within the

frameworks of exponentiation of large logarithms in Mellin space and using soft-collinear

effective theory (SCET).

While the production cross-section is known to high accuracy in the framework of the

effective theory, reaching a similar level of accuracy when including quark-mass effects (also

from bottom and charm quarks) is currently beyond our technical capabilities. Nonetheless,

various quark-mass effects have been computed, which we consistently include into our

prediction (2.4). First, it was already observed at LO and NLO that the validity of the

effective theory can be greatly enhanced by rescaling the effective theory by the exact LO

result. We therefore rescale the cross-section σ̂ij,EFT in the effective theory by the ratio

RLO ≡
σLOex;t

σLOEFT
, (2.6)

where σLOex;t denotes the exact (hadronic) LO cross-section in the SM with a massive top

quark and Nf = 5 massless quarks. Moreover, at LO and NLO we know the exact result

for the production cross-section in the SM, including all mass effects from top, bottom and

charm quarks. We include these corrections into our prediction via the terms δσ̂
(N)LO
ij,ex;t,b,c in

eq. (2.4), consistently matched to the contributions from the effective theory to avoid double

counting. As a consequence, eq. (2.4) agrees with the exact SM cross-section (with massless

u, d and s quarks) through NLO in QCD. Beyond NLO, we only know the value of the cross-

section in the heavy-top effective theory. We can, however, include subleading corrections

at NNLO in the effective theory as an expansion in the inverse top mass [20, 21, 44, 45].

These effects are taken into account through the term δtσ̂
NNLO
ij,EFT in eq. (2.4), rescaled by

RLO.

Finally, we also include electroweak corrections to the gluon-fusion cross-section (nor-

malised to the exact LO cross-section) through the term δσ̂ij,EW in eq. (2.4). Unlike QCD
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corrections, electroweak corrections have only been computed through NLO in the electro-

magnetic coupling constant α [40, 41, 42]. Moreover, mixed QCD-electroweak corrections,

i.e., corrections proportional to αα3
s, are known in an effective theory [43] valid in the limit

where not only the top quark but also the electroweak bosons are much heavier than the

Higgs boson. In this limit the interaction of the Higgs boson with the W and Z bosons

is described via a point-like vertex coupling the gluons to the Higgs boson. Higher-order

corrections in this limit can thus be included into the Wilson coefficient in front of the

dimension-five operator in eq. (2.5).

In the remainder of this paper we give a detailed account of all the ingredients that

enter our best prediction for the inclusive gluon-fusion cross-section. Furthermore, we

carefully analyze the residual uncertainty associated with all of these contributions. In this

way we obtain the most precise theoretical prediction for the Higgs production cross-section

available to date.

We conclude this section by summarizing, for later convenience, the default values of

the input parameters and the concrete choices for PDFs and quark-mass schemes used

in our numerical studies. In particular, we investigate three different setups, which are

summarized in Tab. 1–3. Note that we use NNLO PDFs even when we refer to lower

order terms of the cross-section, unless stated otherwise. The values for the quark masses

used are in accordance with the recommendations of the Higgs Cross Section Working

Group [86], wherein the top-quark mass was selected to facilitate comparisons with existing

experimental analyses at LHC, Run 11.

Table 1: Setup 1

√
S 13TeV

mh 125GeV

PDF PDF4LHC15 nnlo 100

as(mZ) 0.118

mt(mt) 162.7 GeV (MS)

mb(mb) 4.18 GeV (MS)

mc(3GeV ) 0.986GeV (MS)

µ = µR = µF 62.5GeV (= mH/2)

Table 2: Setup 2

√
S 13TeV

mh 125GeV

PDF PDF4LHC15 nnlo 100

as(mZ) 0.118

mt 172.5GeV (OS)

mb 4.92 GeV (OS)

mc 1.67 GeV (OS)

µ = µR = µF 62.5 GeV (= mH/2)

Table 3: Setup 3

√
S 13TeV

mh 125GeV

PDF abm12lhc 5 nnlo

as(mZ) 0.113

mt(mt) 162.7 GeV (MS)

mb(mb) 4.18GeV (MS)

mc(3GeV ) 0.986 GeV (MS)

µ = µR = µF 62.5 GeV (= mH/2)

3. The cross-section through N3LO in the infinite top-quark limit

3.1 The partonic cross-section at N3LO in the heavy-top limit

In this section we discuss the contribution σ̂ij,EFT in eq. (2.4) from the effective theory

where the top quark is infinitely heavy. This contribution can be expanded into a pertur-

bative series in the strong coupling constant,

σ̂ij,EFT
z

=
π |C|2

8V

∞∑
n=0

η
(n)
ij (z) ans , (3.1)

where V ≡ N2
c − 1 is the number of adjoint SU(Nc) colours, as ≡ αs(µ

2)/π denotes the

strong coupling constant evaluated at a scale µ and C is the Wilson coefficient introduced

1Note that the current world average mOS
t = 173.2 GeV is within the recommended uncertainty of 1

GeV from the proposed mOS
t = 172.5 GeV that we use here.
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in eq. (2.5), which admits itself a perturbative expansion in the strong coupling [17, 18, 19],

C = as

∞∑
n=0

Cn a
n
s . (3.2)

Here both the coefficients Cn and the strong coupling are functions of a common scale µ.

At LO in as only the gluon-gluon initial state contributes, and we have

η
(0)
ij (z) = δig δjg δ(1− z) . (3.3)

QCD corrections beyond LO are also known. In particular, the perturbative coefficients

η
(n)
ij are known at NLO [4, 5, 6] and NNLO [22, 23, 24] in QCD. Recently, also the N3LO

corrections η
(3)
ij have been computed [53]. As they are the main new addition in our

computation, we briefly review the N3LO corrections to the inclusive gluon fusion cross-

section in the heavy-top limit in this section.

We follow the notation of ref. [82] and we split the partonic cross-sections into a singular

and a regular part,

η
(3)
ij (z) = δig δjg η

(3),sing
gg (z) + η

(3),reg
ij (z) . (3.4)

The singular contribution is precisely the cross-section at threshold, also known as the

soft-virtual cross-section. It contains the contributions from purely virtual three-loop cor-

rections as well as from the emission of soft gluons [80, 79, 81, 87, 88]. The regular term

takes the form of a polynomial in log(1− z),

η
(3),reg
ij (z) =

5∑
m=0

logm(1− z) η(3,m),reg
ij (z) , (3.5)

where the η
(3,m),reg
ij (z) are holomorphic in a neighbourhood of z = 1. The functions η

(3,m),reg
ij

for m = 5, 4, 3 have been given in closed analytic form in ref. [82]. For m = 2, 1, 0 no closed

analytic expression is available in the literature so far (except for the qq′ channel [75]). In

ref. [53] these coefficients were computed as an expansion around threshold to order 30 in

z̄ ≡ 1 − z. In Appendix C we present the numerical values for the first 37 coefficients of

the expansion, setting the renormalization and factorization scales equal to the Higgs mass

and substituting Nf = 5 for the number of light quark flavors and Nc = 3 for the number

of quark colours. Moreover, it was shown in ref. [53] that a truncation of the series at order

O(z̄5) yields a good approximation to the hadronic cross-section. The first few terms of the

expansion may be insightful for theoretical studies of perturbative QCD and discovering

universality patterns in subleading terms of the soft expansion. We therefore provide the

analytic results for the coefficients in the threshold expansion up to O(z̄5) in Appendix D.

In the rest of this section we study the numerical impact of the N3LO corrections to

the inclusive gluon fusion cross-section in the heavy-top limit. We start by studying the

validity of approximating the cross-section by its threshold expansion and we quantify the

uncertainty introduced by truncating the expansion after only a finite number of terms.

We then move on and investigate the perturbative stability of σ̂ij,EFT by studying the scale

variation of the gluon-fusion cross-section at N3LO in the heavy-top limit.
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n = -1

n = 0

n = 1

0 5 10 15 20 25 30 35

-2

0

2

4

6

truncation order in (1-z) expansion

δ
σ
gg
N
3L
O
(p
b) 20 25 30 35

2.800

2.805

2.810

2.815

2.820

2.825

2.830

Figure 1: The numerical effect in Setup 1 (see Tab. 1) of the N3LO corrections in the gluon-gluon

channel as a function of the truncation order of the threshold expansion and for various values of

the parameter n in eq. (3.6).

3.2 Convergence of the threshold expansion at N3LO

As parts of the N3LO coefficient functions η
(3,m),reg
ij (z) have not yet been derived in closed

analytic form and are only known as truncated series expansions in z̄, it is important to

assess how well these truncated power series approximate the exact result. In other words,

we need to establish how well the threshold expansion converges. Indeed, the partonic

cross-sections σ̂ij,EFT need to be convoluted with the partonic luminosities, eq. (2.1), and

the convolution integrals receive in principle contributions down to values of z ' τ ' 10−4.

Hence, assessing the residual uncertainty due to the truncation of the series is of utmost

importance.

In ref. [82, 89] a method was introduced to study the convergence of the threshold

expansion. We start by casting the hadronic cross-section in the large-mt limit in the form

σEFT = τ1+n
∑
ij

(
f

(n)
i ⊗ f (n)

j ⊗
σ̂ij,EFT
z1+n

)
(τ) , (3.6)

where

f
(n)
i (z) ≡ fi(z)

zn
. (3.7)

For n = 0, we recover precisely the usual QCD factorization formula. For n 6= 0, however,

eq. (3.6) is a deformed, but equally valid and equivalent, formulation of the usual QCD

factorization formula (2.1). Indeed, it is easy to check that the hadronic cross-section σEFT
is independent of the arbitrary parameter n. Expanding σ̂ij,EFT /z

1+n into a series around
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n=-2. n=-1.5 n=-1.

n=-0.5 n=0. n=0.5

n=1. n=1.5 n=2.

20 25 30 35
2.00

2.05

2.10

2.15

2.20

truncation order in (1-z) expansion

σ
ef
tN
3L
O
(p
b)

Figure 2: The numerical effect in Setup 1 (see Tab. 1) of the N3LO corrections as a function of the

truncation order of the threshold expansion and for various values of the parameter n in eq. (3.6).

All channels are included.

z = 1, however, introduces a dependence on n order by order in the expansion, which only

cancels once infinitely many terms in the series are summed up. Hence, if a truncated

series is used to evaluate σ̂ij,EFT /z
1+n, the result will in general depend on n, and we can

use the spread of the n-dependence as a quantifier for the convergence of the series. In

Fig. 1 we show the N3LO contribution to the hadronic cross-section from the gg−channel.

We observe that the hadronic cross-section is very stable with respect to the choice of the

arbitrary parameter n after the first ∼ 5 terms in the threshold expansion. In ref. [53]

we observed a mild growth of the cross-section at high orders of the threshold expansion

(see inlay of Fig. 1 in ref. [53]). This is attributed to the presence of log z terms [49] (and

for n > −1 also global factors of 1/zn) which, after threshold expansion and convolution

with the parton distributions, yield a small part of the cross-section. In Fig. 2 we show

the convergence of the total cross-section, including all partonic channels, for a variety of

different values of n, from the 20th term onwards in the expansion. While we observe

good apparent convergence for n > −1, there remains a relatively large spread between

the different curves for n ≤ −1. The qualitative difference between these two cases can be

understood as follows: For n > −1, we absorb additional factors of 1/z into the partonic

cross-sections and expand them around z = 1. This may result in a slower convergence

of the partonic threshold expansion for small values of z. At the same time, however,

the luminosities are multiplied with powers of z which suppress the contribution from the

region z ∼ 0 in the convolution (3.6). The net effect is then a fast apparent convergence

for n > −1. This has to be contrasted with the case n ≤ −1, where the luminosities are

multiplied by factors of 1/z, which enhance the contribution from the region z ∼ 0 in
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Figure 3: The numerical effect in Setup 1 of the N3LO correction in the main partonic channels

and the total cross-section as a function of the truncation order in the threshold expansion, for

n = 0 in eq. (3.6).

the convolution (3.6). This leads to a slower apparent convergence, at least in the case

where only a few terms are taken into account in the threshold expansion. While the

spread between the different curves gives a measure for the quality of the convergence of

the threshold expansion, we know of no compelling argument why any of this curves should

be preferable over others at this order of the expansion. We observe, however, that the

different curves agree among each other within a range of 0.1 pb, thereby corroborating

our claim that the threshold expansion provides reliable results for the N3LO cross-section.

In Fig. 3 we plot the N3LO corrections for the gg and qg channels2, as well as the total

inclusive cross-section, as a function of the truncation order (for n = 0). The quark-initiated

channels contribute only a small fraction to the inclusive cross-section. The convergence of

the threshold expansion for these channels is less rapid than for the dominant gluon-gluon

channel. This is better demonstrated in Fig. 4, where we plot the ratio

∆X(N) ≡
σ

(3)
X,EFT (N)− σ(3)

X,EFT (Nlast)

σ
(3)
X,EFT (Nlast)

100% . (3.8)

Here, σ
(3)
X,EFT (N) denotes the contribution of the partonic channel X to the N3LO correc-

tion to the hadronic cross-section when computed through O(z̄N ) in the threshold expan-

sion. Nlast (equal to 37) is the highest truncation order used in our current computation.

Although the convergence of the quark-gluon and the quark channels is rather slow, the

2We sum of course over all possible quark and anti-quark flavours.
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Figure 4: The ratios of eq. (3.8) for the convergence for the threshold expansion at N3LO for

individual partonic channels, as well as for the full hadronic cross-section. The qq and qq′ channels

are negligible and are not shown in the plot.

total cross-section and the convergence rate of the threshold expansion are dominated by

the gluon-gluon channel. This enables us to obtain a reliable estimate of the cross-section

for Higgs production via gluon fusion, even though we have only included a finite number of

terms in the threshold expansion. We remark, however, that for quark-initiated processes

such as Drell-Yan production a computation in closed form will most likely be necessary.

Besides studying the n-dependence of the truncated power series, we have another way

to assess the convergence of the expansion. In ref. [82] it was shown that the knowledge of

the single-emission contributions at N3LO [64, 65, 63, 62] and the three-loop splitting func-

tions [57, 58] is sufficient to determine the coefficients η
(3,m)
ij in the N3LO cross-section (3.5)

exactly form = 5, 4, 3. Recently, also the double-emission contribution at one-loop has been

computed in closed form [90]. Using a similar analysis as for m = 5, 4, 3 in ref. [82], it has

now been possible to determine also the coefficients with m = 2, 1 exactly for all par-

tonic subchannels. As a consequence, we know all the logarithmically-enhanced terms in

eq. (3.5) in closed form, and we only need to resort to a truncated threshold expansion for

the constant term, m = 0. We can thus study the convergence of the threshold expansion

for the coefficients of η
(3,m)
ij , m ≥ 1. In particular, the use of the exact expressions instead

of a truncated expansion for the logarithmically-enhanced contributions changes the N3LO

correction to the cross-section by

σ
(3)
EFT

∣∣∣
expansion

− σ
(3)
EFT

∣∣∣
full logs

= 0.004 pb . (3.9)

Hence, the difference between exact expressions or truncated power series for the coefficients

with m ≥ 1 in eq. (3.5) is at the sub-per mille level, and thus completely negligible.
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Figure 5: The dependence of the cross-section on the renormalization scale for a fixed value of the

factorization scale.

To summarize, we have investigated the convergence of the threshold expansion at

N3LO using two different methods. Both methods confirm our expectation that the thresh-

old expansion provides a very good approximation to the exact result. The result of our

analysis can be quantified by assigning a (conservative) uncertainty estimate to the trun-

cation of the threshold expansion. We assign an uncertainty due to the truncation of the

threshold expansion which is as large as3.

δ(trunc) = 10×
σ

(3)
EFT (37)− σ(3)

EFT (27)

σN3LO
EFT

= 0.37% . (3.10)

The factor 10 is a conservative estimator of the progression of the series beyond the first 37

terms. Note that the complete N3LO cross-section appears in the denominator of eq. (3.10),

i.e., the uncertainty applies to the complete N3LO result, not just the coefficient of a5
s.

3.3 Scale variation at N3LO and the omission of N3LO effects in parton densities

Having established that the threshold expansion provides a reliable estimate of the N3LO

cross-section, we proceed to study the dependence of the cross-section on the renormaliza-

tion and factorization scales µR and µF .

In Fig. 5 we fix the factorization scale to µF = mH/2 and vary the renormalization

scale. We observe that the perturbative series in the strong coupling converges faster for

3In the estimate of the various components of the theoretical uncertainty that we carry out in these

sections, we always give numerical results for Setup I. When considering different parameters (Higgs mass

or collider energy, for example), we re-assess these uncertainties. For example, δ(trunc) increases from

0.11% at 2 TeV to 0.38% at 14 TeV.
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∆scale
EFT,k (µF = mH/2)

LO (k = 0) ±22.0%

NLO (k = 1) ±19.2%

NNLO (k = 2) ±9.5%

N3LO (k = 3) ±2.2%

Table 4: Renormalization scale variation of the cross-section as defined in eq. (3.11). The factor-

ization scale is fixed to µF = mH/2.

small values of the renormalization scale. It is well known that the scale variation is very

large at LO and NLO, and it is still significant at NNLO. To emphasize this point, we

indicate in Fig. 5 by horizontal lines the range of predictions for the cross-section at each

perturbative order when µR varies in the interval [mH/4,mH ]. This interval seems to

capture the characteristic physical scales of the process, as indicated by the convergence

pattern of the series. We quantify the renormalization scale variation by looking at the

spread around the average value of the cross-section in this interval, i.e., we define

∆scale
EFT,k = ±

σmax
EFT,k − σmin

EFT,k

σmax
EFT,k + σmin

EFT,k

100% , (3.11)

with

σmax
EFT,k = max

µR∈[mH/4,mH ]
σNkLO
EFT (µR) , (3.12)

and similarly for σmin
EFT,k. The results are shown in Tab. 4.

Before we move on to study the dependence of the cross-section on the factorization

scale, we note that we evolve the strong coupling αs(µR) at N3LO, and we use NNLO parton

densities at all perturbative orders. The scale variation differs quantitatively from the above

table and the convergence of the perturbative series is faster than what is displayed in Fig. 5

if one uses LO or NLO PDFs and αs evolution at the corresponding orders.

Let us now turn to the study of the factorization scale dependence of the N3LO cross-

section. In Fig. 6 we fix the renormalization scale to µR = mH/2 and we vary the factoriza-

tion scale. We observe that at all perturbative orders the variation with the factorization

scale is much smaller than with the corresponding variation of the renormalization scale.

At N3LO, the factorization scale dependence is practically constant over a wide range of

values of µF .

A comment is in order concerning the self-consistency of the factorization scale varia-

tion at N3LO. Traditionally, in a LO computation of a hadronic cross-section the parton-

densities are not taken to be constant, but they are evolved with the one-loop Altarelli-

Parisi splitting functions P (0). Similarly, at NLO and NNLO the P (1) and P (2) corrections

to the splitting functions are included. Following this approach, one would be compelled

to include the yet unknown P (3) corrections to the splitting functions in the evolution of

the parton densities for our N3LO Higgs cross-section computation, which is of course not

possible at this point. Nevertheless, our N3LO computation with corrections only through
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Figure 6: The dependence of the cross-section on the factorization scale for a fixed value of the

renormalization scale.
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Figure 7: The effect of using NLO or NNLO PDFs for the NNLO cross-section in the effective

theory as a function of the factorization scale and for a fixed value of the renormalization scale. A

shift is observed which varies little with the factorization scale.

P (2) in the DGLAP evolution is consistent in fixed-order perturbation theory, since this

is the highest-order splitting function term appearing in the mass factorization contribu-

tions. Including the P (3) corrections would be merely a phenomenological improvement
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(which is necessary for LO calculations in order to obtain qualitatively the physical energy

dependence of hadronic cross-sections) but it is not formally required. An inconsistency

may only arise due to the extraction of the parton densities from data for which there are

no N3LO predictions. In fact, this problem has already arisen at NNLO where in global

fits of parton distributions jet observables are fitted with NLO coefficient functions. When

additional processes are computed at N3LO, it is expected that the gluon and other parton

densities will be extracted with different values. To our understanding, the uncertainties

assigned to the parton densities do not presently account for missing higher-order correc-

tions, but merely incorporate the experimental uncertainties of the data from which they

were extracted.

To assess this uncertainty we resort to the experience from the previous orders and

present in Fig. 7 the NNLO gluon-fusion cross-section using either NNLO or NLO parton

densities as a function of the factorization scale (for a fixed renormalization scale). We

notice that the shape of the two predictions is very similar, indicating that differences in

the evolution kernels of the DGLAP equation beyond NLO have a small impact. However,

in the mass range [mH/4,mH ] the NNLO cross-section decreases by about 2.2 − 2.4%

when NNLO PDFs are used instead of NLO PDFs. We can attribute this shift mostly

to differences in the extraction of the parameterization of the parton densities at NLO

and NNLO. Similarly, we can expect a shift to occur when the N3LO cross-section gets

evaluated in the future with N3LO parton densities rather than the currently available

NNLO sets. The magnitude of the potential shift will be determined from the magnitude

of the unknown N3LO corrections in standard candle cross-sections used in the extraction

of parton densities. Given that N3LO corrections are expected to be milder in general than

their counterparts at NNLO, we anticipate that they will induce a smaller shift than what

we observe in Fig. 7. Based on these considerations, we assign a conservative uncertainty

estimate due to missing higher orders in the extraction of the parton densities obtained as4

δ(PDF− TH) =
1

2

∣∣∣∣∣σ
(2),NNLO
EFT − σ(2),NLO

EFT

σ
(2),NNLO
EFT

∣∣∣∣∣ =
1

2
2.31% = 1.16% , (3.13)

where σ
(2),(N)NLO
EFT denotes the NNLO cross-section evaluated with (N)NLO PDFs at the

central scale µF = µR = mH/2. In the above, we assumed conservatively that the size of

the N3LO corrections is about half of the corresponding NNLO corrections. This estimate

is supported by the magnitude of the third-order corrections to the coefficient functions for

deep inelastic scattering [92] and a related gluonic scattering process [93], which are the

only two coefficient functions that were computed previously to this level of accuracy.

So far we have only studied the scale variation from varying µF and µR separately. The

separation into a renormalization and factorization scale is to a certain extent conventional

and somewhat artificial. Indeed, only one regulator and one common scale is required for

4An alternative way to estimate this uncertainty, based on the Cacciari-Houdeau (CH) method, was

presented in ref. [91]. The uncertainty obtained form the CH method is sizeably smaller than the uncertainty

in eq. (3.13), and we believe that the CH method may underestimate the size of the missing higher-order

effects.
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Figure 8: The dependence of the cross-section on a common renormalization and factorization

scale µ = µF = µR.

∆scale
EFT,k

LO (k = 0) ±14.8%

NLO (k = 1) ±16.6%

NNLO (k = 2) ±8.8%

N3LO (k = 3) ±1.9%

Table 5: Scale variation of the cross-section as defined in eq. (3.11) for a common renormalization

and factorization scale µ = µF = µR.

the treatment of both infrared and ultraviolet singularities. For a physical process such

as inclusive Higgs production, where one cannot identify very disparate physical scales,

large separations between the renormalization from the factorization scale entail the risk

of introducing unnecessarily large logarithms. In Fig. 8 we present the dependence of the

cross-section on a common renormalization and factorization scale µ = µR = µF . Through

N3LO, the behaviour is very close to the scale-variation pattern observed when varying

only the renormalization scale with the factorization scale held fixed. More precisely, using

the same quantifier as introduced in eq. (3.11) for the variation of the renormalization scale

only, the variation of the cross-section in the range [mH/4,mH ] for the common scale µ

is shown in Tab. 5. We observe that the scale variation with µR = µF is slightly reduced

compared to varying only the renormalization scale at NLO and NNLO, and this difference

becomes indeed imperceptible at N3LO.

The scale variation is the main tool for estimating the theoretical uncertainty of a

cross-section in perturbative QCD, and it has been successfully applied to a multitude of
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Figure 9: The dependence of the cross-section on a common renormalization and factorization

scale µ = µF = µR per partonic channel.

processes. However, in Higgs production via gluon fusion it underestimates the uncertainty

both at LO and NLO. It is therefore a critical question to assess whether the scale variation

uncertainty is a reliable estimate of the true uncertainty due to missing higher orders in

perturbative QCD. We believe that this is most likely the case, because, at least for natural

choices of the scales in the interval [mH/4,mH ], the N3LO cross-section takes values within

the corresponding range of cross-section values at NNLO. Therefore, the progression of the

perturbative series from NNLO to N3LO corroborates the uncertainty obtained by the scale

variation. Indeed, for the central scale µ = mH/2 the N3LO cross-section is only ∼ 3.1%

higher than at NNLO, i.e., the shift from NNLO to N3LO is of the same size as the scale

variation uncertainty at N3LO. We will therefore take the scale variation uncertainty as

our uncertainty estimate for missing higher-order QCD corrections at N4LO and beyond.

In Section 4, we will also discuss the effect of missing higher orders through resummation

methods. This will give additional support to our claim that the scale variation at N3LO

provides a reliable estimate of missing higher orders beyond N3LO.

So far we have only discussed the scale variation for the total hadronic cross-section.

It is also interesting and instructive to analyze the scale dependence of the cross-section

for individual partonic channels. In Fig. 9 we present the scale dependence at N3LO of the

gluon-gluon channel, the quark-gluon channel and the total cross-section. The quark-quark

and quark-antiquark channels are very small and are not shown explicitly in the plot. We

see that, while the gluon-gluon channel dominates over the quark-gluon channel, the latter

is important in stabilizing the scale dependence of the total cross-section. Indeed, with the

exception of extremely small values of µ, the quark-gluon channel has the opposite slope as

the gluon-gluon channel, and therefore a somewhat larger scale variation of the gluon-gluon
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channel is getting cancelled in the total cross-section. This behaviour can be qualitatively

understood from the fact that a change in the factorization scale modifies the resolution on

quark-gluon splitting processes, therefore turning quarks into gluons and vice versa. We

remark that this feature is not captured by approximate predictions of the cross-section

based on the soft-approximations, which only include the gluon-gluon channel.

To summarize, we have identified in this section two sources of uncertainty for the

N3LO cross-section in the limit of infinite top mass. We observe that the dependence on

the factorization scale is flat over wide ranges of values of µF , and the scale variation is

dominated by the µR variation. Moreover, we see that the inclusion of the quark-gluon

channel plays an important role in stabilizing the scale dependence at N3LO. Our scale

variation estimate of the uncertainty is 1.9% (according to our prescription in eq. (3.11)).

We believe that at this order in perturbation theory this uncertainty gives a reliable esti-

mate of missing higher-order corrections from N4LO and beyond. In the next section we

give further support to this claim by analyzing the effect of various resummations beyond

N3LO.

4. Corrections at N4LO and beyond in the infinite top-quark limit

In the previous section we have argued that the scale variation at N3LO gives a reliable

estimate for the missing higher-order corrections to the hadronic gluon-fusion cross-section.

In this section we corroborate this claim by investigating various other sources of terms

beyond N3LO. We check that, if we restrict the analysis to the natural choice of scales from

the interval [mH/4,mH ], the phenomenological effect of these terms is always captured by

the scale variation at N3LO. We start by investigating higher-order terms generated by

using an alternative prescription to include the Wilson coefficient C into a perturbative

computation, and we turn to the study of higher-order effects due to resummation in

subsequent sections. We note at this point that the effect of missing higher-order terms

beyond N3LO was already investigated in ref. [52] by analysing the numerical impact of

the leading N4LO threshold logarithms. The conclusions of ref. [52] are consistent with the

findings in this section.

4.1 Factorization of the Wilson coefficient

The (partonic) cross-section in the effective theory is obtained by multiplying (the square

of) the Wilson coefficient by the perturbative expansion of the coefficient functions ηij ,

see eq. (3.1). As the Wilson coefficient itself admits a perturbative expansion, eq. (3.2),

eq. (3.1) takes the following form up to N3LO in perturbation theory,

σ̂ij,EFT
z

= σ0 |1 + . . .+ a3
s C3 +O(a4

s)|2
∑
i,j

(1 + . . .+ a3
s η

(3)
ij (z) +O(a4

s)) , (4.1)

where σ0 denotes the Born cross-section. Conventionally in fixed-order perturbation theory

through N3LO, one only includes corrections up to O(a5
s) from the product in eq. (4.1) and

drops all terms of higher order (the Born cross-section is proportional to a2
s). This is also

the approach adopted in Section 3, where consistently only terms up to O(a5
s) had been
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included. In this section we analyze how the cross-section changes if all the terms shown

in eq. (4.1) are included. In this way, we obviously include terms into our prediction that

are beyond the reach of our fixed-order N3LO computation. We stress that the inclusion of

these terms does not spoil the formal N3LO accuracy. They can lead, however, to sizeable

effects that can be used as a quantifier for missing higher-order terms.

In Fig. 10 we show the value of the cross-section as a function of a common renor-

malization and factorization scale µ, obtained by either truncating the full cross-section

(solid) or by multiplying the truncated Wilson coefficient and truncated coefficient function

(dashed). We stress that the difference between the two curves stems entirely from terms

at N4LO and beyond. However, we observe that if the scale is chosen to lie in our preferred

range µ ∈ [mH/4,mH ], then the two curves agree within the scale uncertainty at fixed

order N3LO, and the difference between the two cross-section values is always well below

2%. In particular, the two curves intersect for µ ' mH/2. Hence, if we choose the scale

µ in the range [mH/4,mH ], both approaches give phenomenologically equivalent answers,

and higher-order terms generated by the factorization of the Wilson coefficient only have

a very mild phenomenological impact, which is captured by the fixed-order scale variation.

We stress that this also supports the claim in Section 3 that the scale variation at N3LO

gives a reliable estimate of missing higher-order terms in perturbation theory.

4.2 Threshold resummation in Mellin space

Fixed-order computations beyond N3LO are currently beyond our technical capabilities.

Nevertheless, we can get some information on corrections at N4LO and beyond from re-

summation formulæ, which allow one to resum certain logarithmically-enhanced terms to

all orders in perturbation theory.

In this section we look in particular at higher-order corrections generated by the re-

summation of threshold logarithms in Mellin space. Before studying the phenomenology

of the resummed inclusive Higgs cross-section at N3LO+N3LL, we give a short review of

the formalism that allows one to resum large threshold logarithms in Mellin space.

The Mellin transform of the hadronic cross-section with respect to τ = m2
H/S is

σ(N) =

∫ 1

0
dτ τN−1 σ(τ)

τ
. (4.2)

In the following, we always work in the effective theory with an infinitely-heavy top quark.

Since the Mellin transform maps a convolution of the type (2.3) to an ordinary product,

the QCD factorization formula (2.1) takes a particularly simple form in Mellin space,

σ(N) =
∑
ij

fi(N) fj(N) σ̂ij(N) , (4.3)

with the Mellin moments

fi(N) =

∫ 1

0
dz zN−1 fi(z) ,

σ̂ij(N) =

∫ 1

0
dz zN−1 σ̂ij(z)

z
,

(4.4)
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Figure 10: Scale variation with µ = µR = µF at N3LO within Setup 1 (solid line), compared to

the factorized form of the cross-section where the Wilson coefficient and the coefficient functions

are separately truncated to O(a5
s) (dashed line).

where we suppressed the dependence of the PDFs and the partonic cross-sections on the

scales. The Mellin transform is invertible, and its inverse is given by

σ(τ) =
∑
ij

∫ c+i∞

c−i∞

dN

2πi
τ1−N fi(N) fj(N) σ̂ij(N) , (4.5)

where the contour of integration is chosen such that it lies to the right of all possible

singularities of the Mellin moments in the complex N plane.

From the definition of the Mellin transform it is apparent that the limit z → 1 of the

partonic cross-sections corresponds to the limit N →∞ of the Mellin moments of σ̂ij(N).

In the limit N →∞ the partonic cross-section in Mellin space can be written as [35]

σ̂ij(N) = δig δjg σ̂res(N) +O
(

1

N

)
= δig δjg a

2
s σ0

[
1 +

∞∑
n=1

ans

2n∑
m=0

σ̂n,m logmN

]
+O

(
1

N

)
,

(4.6)

where σ0 denotes the LO cross-section in the large-mt limit and σ̂res(N) is related to

the Mellin transform of the soft-virtual cross-section. The constant and logarithmically-
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divergent contributions in the limit N →∞ can be written in terms of an all-order resum-

mation formula [25, 35, 94, 95],

σ̂res(N) = a2
s σ0Cgg(as) exp [GH(as, logN)] , (4.7)

where the function Cgg contains all contributions that are constant for N → ∞. The

function GH exponentiates the large logarithmic contributions to all orders and can be

written as

GH(as, logN) = logN g
(1)
H (λ) +

∞∑
n=2

an−2
s g

(n)
H (λ) , λ ≡ β0 as logN , (4.8)

where β0 denotes the LO coefficient in the QCD β function. The functions g
(n)
H are known

exactly up to NNLL accuracy [28], i.e., up to g
(3)
H , which requires knowledge of the cusp

anomalous dimension up to three loops [35, 87]. In order to perform resummation at N3LL

accuracy [29, 36], the function g
(4)
H is needed. This function depends on the four-loop cusp

anomalous dimension, which is not yet known in QCD. We employ the Padé approximation

of ref. [28] for the four-loop cusp anomalous dimensions to obtain a numerical estimate for

g
(4)
H . The numerical impact of this approximation has been studied, e.g., in ref. [28] and

we checked that by varying the Padé approximation up and down by a factor of 10, our

results do not change5.

Let us now turn to the phenomenological implications of resummation at N3LL. We

obtain N3LO + N3LL predictions for the cross-section by matching the resummation for-

mula (4.7) to the fixed-order N3LO cross-section, i.e., by subtracting from eq. (4.7) its

expansion through O(a5
s). In this way we make sure that the resummation only starts at

O(a6
s), which is beyond the reach of our fixed-order calculation. We present our numerical

method to perform the inverse Mellin transform (4.5) in Appendix B. In Fig. 11 we show

the scale dependence of the resummed cross-section in comparison to the fixed-order cross-

section. We see that the resummation stabilizes the scale dependence of the cross-section

in comparison to the fixed-order result. At N3LO+N3LL, the value of the cross-section

is essentially independent of the scale choice, and roughly equal to the value of the fixed-

order cross-section at µ ≡ µF = µR = mH/2. In particular, at µ = mH/2 the effect

of the resummation on the N3LO cross-section is completely negligible, and in the range

µ ∈ [mH/4,mH ], the effect of the resummation is captured by the scale uncertainty at

fixed order (albeit at the upper end of the uncertainty band). Hence, the fixed-order result

at N3LO for µ ∈ [mH/4,mH ] contains the value of the cross-section at N3LO+N3LL. This

corroborates our claim made at the end of Section 3 that at N3LO the scale uncertainty

provides a reliable estimate of higher-order corrections at N4LO and beyond.

We conclude this section by studying the impact of changing the prescription of which

terms are exponentiated in Mellin space. The resummation formula eq. (4.7) exponentiates

the large-N limit of the fixed-order cross-section eq. (4.6), and as such it is only defined up

to subleading terms in this limit. It is therefore possible to construct different resummation

5We note, though, that the Padé approximation was obtained under the assumption of Casimir scaling

of the cusp anomalous dimension, an assumption which is likely to break down at four loops.
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Figure 11: Scale variation with µ = µR = µF at all perturbative orders through N3LO within

Setup 1, resummed at the corresponding logarithmic accuracy. The fixed-order cross-sections are

shown for comparison.

schemes that formally agree in the limit N → ∞, but that differ by terms that are sup-

pressed by 1/N . In particular, we may change the exponent in eq. (4.7) to GH(as, L(N)),

where L(N) is any function on Mellin space such that L(N) = logN + O(1/N). In the

remainder of this section we study the impact on the Higgs cross-section of different choices

for L(N) that have been considered in the literature (see, e.g., ref. [36]):

1. (PSI): L(N) = ψ(N), where ψ(N) = d
dN log Γ(N) denotes the digamma function.

This choice is motivated by the fact that the threshold logarithms appear as ψ(N)

in the Mellin transform of the soft-virtual partonic cross-section and that the Mellin

transform of the partonic cross-section is supposed to exhibit poles in Mellin space

rather than branch cuts.

2. (AP2): A different resummation scheme can be obtained by exponentiating the Mellin

transform of the Altarelli-Parisi splitting kernel. In particular, the function L(N) ≡
AP2[logN ] = 2 logN − 3 log(N + 1) + 2 log(N + 2) allows one to exponentiate the

first two subleading terms as z → 1 coming from the Altarelli-Parisi splitting function

P
(0)
gg (z).

3. (PSI+AP2): Combining the two previous variants, we obtain a new variant, corre-

sponding to L(N) ≡ AP2[ψ(N)] = 2ψ(N)− 3ψ(N + 1) + 2ψ(N + 2).
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Figure 12: Scale variation with µ = µR = µF of the N3LO+N3LL cross-section within Setup 1

for different resummation schemes. The fixed-order cross-sections are shown for comparison.

All these schemes are formally equivalent resummation schemes, because they agree in

the large-N limit. However, the formally subleading corrections can have a significant

numerical impact. In Fig. 12 we show the cross-section predictions for the four different

resummation schemes discussed in this section. We observe that within our preferred range

of scales, µ ∈ [mH/4,mH ], all four schemes considered in this paper give results that agree

within the fixed-order scale variation at N3LO, giving further support to our claim that the

scale variation at N3LO provides a reliable estimate of the remaining missing perturbative

orders. We note, however, that outside this range of scales the different prescriptions may

differ widely, and we know of no compelling argument why any one of these schemes should

be more correct or reliable than the others. Based on these two observations, we are led to

conclude that threshold resummation does not modify our result beyond its nominal theory

error interval over the fixed-order N3LO prediction when the scales are chosen in the range

[mH/4,mH ], and we will therefore not include the effects of threshold resummation in

Mellin space into our final cross-section prediction.

4.3 Threshold and π2-resummation in Soft-Collinear Effective Theory

In this section we discuss an alternative way to represent the soft-virtual cross-section

in Higgs production, based on ideas from Soft-Collinear Effective Theory (SCET) [30,

31, 96, 97, 98]. Just like in the case of threshold resummation in Mellin space, we start

by introducing the necessary terminology and review the main ideas, in particular the
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resummation formula of ref. [37, 99, 100]. At the end, we combine the N3LO coefficient

functions with the SCET resummation and study its phenomenological impact. In our

analysis we closely follow ref. [99] (for a pedagogical review see ref. [34]). For a comparison

to Mellin space resummation see for example refs. [38, 39].

Using SCET factorization theorems, the partonic cross-sections at threshold can be

factorized into a product of a hard function H, a soft function S̃ and the effective theory

Wilson coefficient C, multiplied by the Born cross-section σ0. SCET provides a field

theoretical description of these individual functions. They arise when effective field theory

is systematically applied and degrees of freedom corresponding to various energy scales are

integrated out. The individual coefficients are defined at the respective energy scales, but

the total cross-section is independent of these scales. The idea of the SCET formalism is to

exploit the factorization of degrees of freedom to derive and solve an evolution equation for

each coefficient in the cross-section separately. Consequently, one solves the renormalization

group equation for the hadronic cross-section, with the explicit aim to cure the dependence

of the cross-section on the various scales. We refer to the scheme outlined above as SCET

resummation.

A formula that achieves the aforementioned goals has been derived in ref. [37, 99]. It

reads,

σ̂SCET,thr
ij, EFT (z, µ2) = z

3
2 σ0 |C(m2

t , µ
2
t )|2

∣∣H(m2
H , µ

2
h)
∣∣2 U(m2

H , µ
2, µ2

t , µ
2
h, µ

2
s)

× z−ξ

(1− z)1−2ξ
S̃

(
log

(
m2
H(1− z)2

zµ2
s

)
+ ∂ξ, µ

2
s

)
e−2ξγE

Γ(2ξ)

∣∣∣∣∣
ξ=CAAγcusp (µ2,µ2s)

,(4.9)

with

U(m2
H , µ

2, µ2
t , µ

2
h, µ

2
s) =

αS(µ2)2

αS(µ2
t )

2

∣∣∣∣∣
(
−m2

H

µ2
h

)−CA/2Aγcusp (µ2s,µ
2
h)
∣∣∣∣∣
2(

β(µ2
s)αS(µ2

t )
2

β(µ2
t )αS(µ2

s)
2

)2

×
∣∣∣exp

[
CASγcusp(µ

2
s, µ

2
h)−AγV (µ2

s, µ
2
h) + 2Aγg(µ

2, µ2
s)
] ∣∣∣ . (4.10)

Here, CA = Nc is the quadratic Casimir of the adjoint representation of SU(Nc). The hard

function was computed through fourth order in refs. [37, 60] (in particular, see ref. [60]

eq. (7.6), (7.7) and (7.9)). The soft function was recently computed through N3LO in

ref. [81, 101]. We recomputed the soft function up to N3LO based on the soft-virtual

Higgs cross-section at N3LO of ref. [79], and we confirm the result of ref. [81, 101]. The

definition of Aγ and Sγ are given for example in ref. [37]. γcusp is the cusp anomalous

dimension [28, 102, 103, 104]. The anomalous dimension γV can be extracted from the

QCD form factor [60] and γg corresponds to the coefficient of δ(1 − z) of the g → g

splitting function [104] . In the previous expression, the soft scale µs, hard scale µh and top-

quark scale µt are the energy scales of the soft function, the hard function and the Wilson

coefficient. The function U mediates the evolution of the individual coefficient functions

to the common perturbative scale µ. We note that if we choose the scales according to

µ2 = µ2
h = µ2

s = µ2
t , then U(m2

H , µ
2, µ2

t , µh, µ
2
s) = 1, and eq. (4.9) corresponds to the

fixed-order soft-virtual cross-section. More precisely, if we expand the product of the soft
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and hard functions and the Wilson coefficient through order ans , then we reproduce the

fixed-order soft-virtual cross-section at NnLO up to terms that vanish in the threshold

limit.

Next, let us discuss the choice of the values of the scales µt, µh and µs. First, it is

natural to choose the top-quark scale µt to be the top-quark mass, because this it is the only

other mass scale in the Wilson coefficient. Similarly, it seems natural to choose the Higgs

mass to be the hard scale entering the hard function H. The cross-section depends on the

hard function via its modulus squared, and the hard function depends on the Higgs boson

mass via logarithms of the type log
(
−m2

H

µ2h

)
. Choosing µ2

h = m2
H , we have to analytically

continue the logarithms, which then give rise terms proportional to π2,∣∣∣ log

(
−m2

H − i0
µ2
h

) ∣∣∣2 =
∣∣∣ log

(
m2
H

µ2
h

)
− iπ

∣∣∣2 = log2

(
m2
H

µ2
h

)
+ π2. (4.11)

In ref. [99] it was observed that at NLO the π2 term is responsible for a large part of

the perturbative corrections at this order. It was suggested to analytically continue the

hard function to the space-like region by choosing µ2
h = −m2

H . In this approach no π2 is

produced by the analytic continuation of the fixed-order hard coefficient, and the analytic

continuation from the space-like to the time-like region is performed in the exponential of

eq. (4.10). In the following we also adopt this procedure, which is sometimes referred to

as π2-resummation, and we choose the hard scale as µ2
h = −m2

H .

Finally, we have to make a suitable choice for the soft scale µs. In ref. [97, 99] two

specific choices were outlined.

1. µI : The value of µs where the contribution of the second-order coefficient of the soft

function to the hadronic cross-section drops below 15% of the leading order coefficient.

2. µII : The value of µs that minimizes the contribution of the second-order coefficient

of the soft function to the hadronic cross-section.

Both of the above choices depend on mH and µ, and following ref. [37, 97] we choose the

average of both scales,

µs(µ,mH) =
µI(µ,mH) + µII(µ,mH)

2
. (4.12)

We have now all the ingredients to study the phenomenological implications of the

SCET resummation. We have implemented the resummation formula, eq. (4.9), into a

C++ code and combined it with fixed-order cross-section through N3LO. We write the full

SCET-resummed cross-section as

σ̂SCETij, EFT = σ̂SCET,thr
ij, EFT − σ̂SCET,thr

ij, EFT

∣∣∣
µ2=µ2h=µ2s=µ

2
t

+ σ̂ij, EFT . (4.13)

The above formula matches the resummation to our fixed-order cross-section at N3LO such

as not to spoil our fixed-order accuracy, and resummation effects only start contributing

from N4LO. In our implementation we followed closely the public code RGHiggs [37, 99, 100]

and validated our results by comparison.
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Figure 13: The Higgs boson production cross-section computed for the LHC using Setup 2 at

LO (green), NLO (orange), NNLO (blue), N3LO (red). Solid lines correspond to fixed-order (FO)

predictions and dashed lines to SCET predictions.

Unfortunately, not all anomalous dimensions required for the evolution of the N3LO

cross-section are known at this point. We therefore truncate all anomalous dimensions

at the maximally known order. Note that already at NNLO the unknown four-loop cusp

anomalous dimension would be required. We checked that the numerical dependence of

the result on the four-loop cusp anomalous dimension is small and insignificant for phe-

nomenological purposes.

In Fig. 13 we show the hadronic cross-section as a function of a common scale µ = µR =

µF . We observe that at lower orders there are significant differences between fixed-order

and SCET-resummed cross-sections. At N3LO, the scale dependence of the resummed

cross-section is flat over a wide range of scales. The dependence of the SCET-resummed

cross-section on unphysical scales is reduced overall. This can be regarded as a means to find

an optimal central value for our prediction. Comparing fixed-order and SCET-resummed

cross-section predictions at N3LO we find perfect agreement for µ = mH/2, which supports

our preferred choice for the central scale. The upward bound of the uncertainty interval

obtained by means of scale variation is comparable to the one obtained for the fixed-order

cross-section. The lower bound of SCET-resummed cross-section scale variation interval is

well contained within the fixed-order interval.

To conclude the analysis, we also need to assess the stability of our result under a

variation of the soft, hard and top scales. We do this by varying these scales independently.

The top-quark scale µt and the hard scale µh are varied by a factor of two up and down

around their respective central values, while the soft scale is varied in the interval µs ∈
[µs(mH/4,mH), µs(mH ,mH)]. The effect of the variation of the hard, soft and top-quark

– 26 –



scales is of the order of ±0.1% as noted already in ref. [37]. As the derived uncertainty

intervals and the central values of the SCET-resummed and fixed-order cross-sections are in

very good agreement, we will not consider the SCET-resummed cross-section in subsequent

chapters.

Let us conclude this section by commenting on the validity of using the π2-resummation

to predict constant terms at higher orders. Indeed, the exponentiation of the π2 terms

makes a prediction for terms proportional to powers of π2, and it is of course interesting to

see if these terms capture the bulk of the hard corrections not only at NLO, but also beyond.

In particular, we can compare the numerical size of the constant term at N3LO predicted

by the exponentiation of π2 to the exact soft-virtual cross-section at N3LO of ref. [79].

Since we are interested in fixed-order predictions, we start from eq. (4.9) and we choose

the scales according to µ = µt = µs = mH and µ2
h = −m2

H . Note that choosing µ2
h < 0

amounts to exponentiating π2 terms to all orders. Next, let us assume that we know the

hard and soft functions to some order in perturbation theory, say through O(ans ), and all

anomalous dimensions governing the evolution equations to one order higher than required

to obtain a result that is correct through order n. If we expand the SCET-resummed cross-

section in perturbation theory, then we will reproduce the exact soft-virtual cross-section

through O(ans ). By expanding the SCET-resummed cross-section to one order higher we

obtain a prediction of terms proportional to powers of π2. We want to assess the quality

of this prediction by comparing it to the known values of soft-virtual cross-section at low

orders. For example, before the coefficient of δ(1 − z) at N3LO was computed, all plus-

distribution terms of the soft-virtual cross-section at N3LO were already known [87, 88].

We could thus have made a prediction for the coefficient of δ(1 − z) at N3LO based on

π2 resummation. If we denote by C
(n)
δ the coefficient of the distribution δ(1 − z) in the

partonic soft-virtual cross-section accurate throughO(ans ), and where the term proportional

to an+1
s was obtained from the exponentiation of π2, we obtain the following sequence of

predictions:

C
(0)
δ = 1 + 14.80 as +O

(
a2
s

)
,

C
(1)
δ = 1 + 9.87 as + 45.35 a2

s +O
(
a3
s

)
,

C
(2)
δ = 1 + 9.87 as + 13.61 a2

s − 554.79 a3
s +O

(
a4
s

)
,

C
(3)
δ = 1 + 9.87 as + 13.61 a2

s + 1124.31 a3
s +O

(
a4
s

)
,

(4.14)

with as ≡ as(m
2
H). In the previous expressions the Wilson coefficient was set to unity

and the number of colours and light flavours are Nc = 3 and Nf = 5 respectively, and we

truncated all numerical results after two digits. We observe that, in the scenario where

only the LO cross-section is known, we are able to predict the order of magnitude of the

NLO correction, and this prediction would indeed suggest large corrections at NLO. At

higher orders, however, the quality of the predictions deteriorates, and in C
(2)
δ even the

prediction of the sign of the N3LO correction is wrong. Even if we include the coefficients

of the other distributions contributing to the soft-virtual cross-sections, we observe a sim-

ilar unsatisfactory pattern. We conclude that π2 terms originating from the systematic

exponentiation of the analytic continuation of the hard function constitute only one source
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of large perturbative corrections to the Higgs boson cross-section, and hence on its own

this procedure of predicting higher orders does not provide reliable estimates of the missing

dominant corrections.

5. Quark-mass effects

So far we have only considered QCD corrections to the effective theory where the top quark

is infinitely heavy. In this section we discuss effects that are not captured by the effective

theory, but that can still give rise to sizeable contributions. In particular, we discuss

the inclusion of quark-mass effects from top, bottom and charm quarks, to the extent

that these corrections are available in the literature. We start by discussing the effect of

quark masses at LO and NLO, where it is possible to obtain exact results including all

quark-mass effects. In order to stress the importance of including these effects, we remind

that the cross-section changes by +6.3% already at LO if the exact top-mass dependence

is taken into account. The exact mass dependence of the cross-section is also known at

NLO [5, 6, 7, 8, 9, 10, 11, 12, 40], and we can thus include all effects from top, bottom

and charm quarks up to that order. The value of the cross-section through NLO as we

add quark-mass effects for the parameters of Setup 1 (cf. Tab. 1) is summarized in Tab. 6.

Beyond NLO finite quark-mass effects are in general unknown, and they can at best be

included in an approximate fashion.

Table 6: Quark-mass effects for the parameters of Setup 1.

σLOEFT 15.05 pb σNLOEFT 34.66 pb

RLO σ
LO
EFT 16.00 pb RLO σ

NLO
EFT 36.84 pb

σLOex;t 16.00 pb σNLOex;t 36.60 pb

σLOex;t+b 14.94 pb σNLOex;t+b 34.96 pb

σLOex;t+b+c 14.83 pb σNLOex;t+b+c 34.77 pb

Let us start by analyzing finite top-mass effects. The exact NLO cross-section is ap-

proximated well by rescaling the EFT cross-section at NLO by the leading-order ratio RLO
defined in eq. (2.6). For example, within Setup 1 we have RLO = 1.063, and we see from

Tab. 6 that the rescaled NLO cross-section in the effective theory, RLO σ
NLO
EFT , reproduces

the NLO cross-section σNLOex;t with full top-mass dependence within 0.65%. Because of this,

it has become standard to multiply the EFT cross-section at NNLO by RLO, and we follow

this prescription also for the N3LO coefficient.

In addition to this rescaling, in ref. [20, 21, 44, 45] top-mass corrections at NNLO

were computed as an expansion in mH/mt, after factorizing the exact LO cross-section.

We include these corrections into our prediction via the term δtσ̂
NNLO
ij,EFT in eq. (2.4). In

particular, we include the contribution from the subleading 1/mt terms for the numerically

significant gg and qg channels [45]. The gg channel increases the rescaled EFT cross-

section at NNLO by roughly +0.8%, while the qg channel leads to a negative contribution

of −0.1%, so that the total net effect is of the order of +0.7%. Note that the small size
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of these effects corroborates the hypothesis that the cross-section in the effective theory

rescaled by RLO gives a very good approximation of the exact result.

Despite the fact that the approximation is good, these contributions come with an

uncertainty of their own: the 1/mt expansion is in fact an expansion in s/m2
t , and con-

sequently it needs to be matched to the high-energy limit of the cross-section, known to

leading logarithmic accuracy from kt-factorization. The high-energy limit corresponds to

the contribution from small values of z to the convolution integral in eq. (2.1). Since this

region is suppressed by the luminosity, a lack of knowledge of the precise matching term is

not disastrous and induces an uncertainty of roughly 1%, which is of the order of magnitude

of the net contribution. In conclusion, following the analysis of ref. [45], whose conclusions

were confirmed by ref. [21], we assign an overall uncertainty of 1% due to the unknown

top-quark effects at NNLO.

So far we have only discussed the effect of including top mass effects at NNLO. Despite

their suppressed Yukawa couplings, the bottom and charm quarks also contribute to the

Higgs cross-section, mainly through interference with the top quark. Indeed, we can easily

see from Tab. 6 that the inclusion of bottom-quark effects at LO and NLO leads to sizeable

negative contributions to the cross-section, and hence it is not unreasonable to expect this

trend to continue at NNLO. Unlike the case of the top quark, however, the contributions of

the bottom and charm quarks at NNLO are entirely unknown. We estimate the uncertainty

of the missing interference between the top and light quarks within the MS as:

δ(tbc)MS = ±

∣∣∣∣∣ δσNLOex;t − δσNLOex;t+b+c

δσNLOex;t

∣∣∣∣∣ (RLOδσ
NNLO
EFT + δtσ̂

NNLO
gg+qg,EFT ) ' ±0.31 pb , (5.1)

where

δσNLOX ≡ σNLOX − σLOX and δσNNLOX ≡ σNNLOX − σNLOX . (5.2)

With respect to the NNLO cross-section with the exact top effects described in the previous

paragraph, this uncertainty is at the level of 0.6%, but it becomes slightly larger at lower

energies. For example, at a 2 TeV proton-proton collider it increases to 1.1%.

So far, we have assumed that all quark masses are given in the MS-scheme. We now

analyze how our predictions are affected if we use the on-shell (OS) scheme. In Tab. 7 we

summarize the values of the NLO cross-sections with the quark masses of Setup 1 (MS)

and Setup 2 (OS) for a common scale choice µF = µR = mH/2. Moreover, the ratio RLO
as well as the Wilson coefficient multiplying the cross-section are functions of the top mass,

and so they are affected by the choice of the renormalization scheme.

First, let us comment on the use of the OS-scheme for the top-quark mass on the

Wilson coefficient. The analytic expression for the Wilson coefficient in the two schemes is

the same through NNLO but differs at N3LO (see Appendix A). However, this difference

is compensated by the different values of the top-quark mass in the two schemes and the

numerical value of the Wilson coefficient in the two schemes at N3LO agrees to better than

a per mille (see penultimate line of Tab. 7). Next, let us turn to the scheme-dependence

of RLO. For the top mass of Setup 1 (MS), the value of this ratio is RLO = 1.063, while

for the top mass of Setup 2 (OS), we find RLO = 1.066, i.e., the scheme dependence of the

rescaled EFT prediction is at the level of 0.3%.
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Figure 14: The dependence of the cross-section on a common renormalization and factorization

scale µ = µF = µR in the EFT vs the EFT rescaled with the exact LO contribution in the MS-

scheme.

Since the top mass runs in the MS-scheme, the LO cross-section acquires its own scale

dependence through the dependence of the top mass on the renormalization scale. In

Fig. 14 we compare the two approximations as a function of the renormalization schale µ

in the MS−scheme. We observe that the scale variation of the rescaled-EFT cross-section

is slightly smaller. The variation of the rescaled N3LO cross-section in the scale range

µ ∈ [mH4 ,mH ] is ±1.3% (compared to ±1.9% in the pure EFT, cf. Section 3.3). Note

that in the OS-scheme the scale uncertainty is the same for the rescaled and pure EFT

cross-sections, because the ratio RLO is a constant in this scheme.

The largest scheme dependence appears at LO and NLO due to the non-negligible

interference between top and light quarks (see Tab. 7). At LO, the results for the cross-

section in the two schemes are in excellent agreement. However, including bottom and

charm quark loops gives rise to substantial differences, which at LO are as large as −6.9%.

While the difference between the two schemes is reduced to −2.1% at NLO, it still remains

larger than the uncertainty estimate of eq. (5.1).

From Tab. 8 it becomes evident that the difference between the results in the two

schemes originates from the light-quark contributions. The first line of Tab. 8 shows that,

if we only include mass effects from the top quark through NLO, then the results in both

schemes are in perfect agreement. Fortunately, light-quark contributions are suppressed in

the Standard Model in comparison to the pure top-quark contributions. Indeed, if we set

the top-quark Yukawa coupling to zero and only include contributions from bottom and

charm quarks (see third line from the bottom of Tab. 8), we observe that the NLO cross-

section in the MS scheme is only about a third compared to its value in the OS-scheme.

Similarly, the value of the cross-section changes by an order of magnitude between the two
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Table 7: Dependence on the renormalization scheme for the quark masses of Setup 1 and Setup

2. The relative scheme dependence is defined as δσsc = (σOS/σMS − 1)× 100%.

MS OS δσsc

σLOex;t 16.00 pb 16.04 pb 0.25%

σLOex;t+b 14.94 pb 14.24 pb -4.8%

σLOex;t+b+c 14.83 pb 13.81 pb -6.9%

σNLOex;t 36.60 pb 36.63 pb 0.08%

σNLOex;t+b 34.96 pb 34.49 pb -1.3%

σNLOex;t+b+c 34.77 pb 34.04 pb -2.1%

σNNLOEFT 43.65 pb 43.66 pb 0.02%

RLO σ
NNLO
EFT 46.39 pb 46.53 pb 0.3%

σN
3LO

EFT 45.06 pb 45.06 pb 0%

RLO σ
N3LO
EFT 47.88 pb 48.03 pb 0.3%

Table 8: NLO K-factors (K = σNLO/σLO) in the MS and OS schemes and the ratio of the

cross-sections (Rscheme = σMS/σOS) at LO and NLO, for various quark flavor combinations in the

loops.

KMS KOS RLOscheme RNLOscheme

σt 2.288 2.284 0.998 0.999

σb 2.39 1.58 0.22 0.33

σc 2.58 1.38 0.05 0.09

σt+b 2.34 2.42 1.05 1.01

σt+c 2.29 2.32 1.02 1.01

σb+c 2.41 1.55 0.18 0.28

σt+b+c 2.35 2.47 1.07 1.02

σt+b+c − σt 1.56 1.16 0.53 0.71

renormalization schemes if only the charm-quark loop is included and both bottom and

top-quark Yukawa couplings are set to zero. The very large size of the differences between

the two schemes shed some doubt on how well we control the perturbative corrections

due to light-quark masses even at NLO. Nonetheless, it is at least encouraging that the

scheme dependence of the contributions from bottom and charm quarks alone is signifi-

cantly smaller at NLO than at LO. Moreover, since the cross-section is dominated by the

top quark, the overall scheme dependence due to the light quarks is significantly reduced

when the top-quark Yukawa coupling is set to its physical coupling.

For our purposes, the most interesting contribution is σt+b+c − σt in the last line of

Tab. 8, which is the difference between the exact cross-section and the cross-section when

all Yukawa couplings, except for the Yukawa coupling of the top quark, are set to zero.

This part of the cross-section is only known through NLO and is not captured (at least
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not in any direct or trustworthy way) by existing NNLO computations6. We observe that

the NLO K-factor of this contribution is smaller than the NLO K-factor of pure top-

quark contributions in the cross-section. Therefore, we anticipate that the estimate of

the magnitude of the σt+b+c − σt correction at NNLO, based on the size of the top-only

NNLO K-factor in eq. (5.1), is a conservative estimate within the MS-scheme. However, as

we notice from the value of RNLOscheme, there is a scheme dependence of ∼ 30% at NLO. Our

preferred scheme is the MS-scheme due to the bad convergence of the perturbative series for

the conversion from an MS mass to a pole mass for the bottom and charm quarks [106, 107].

To account for the difference with the OS scheme, we enlarge the uncertainty on σt+b+c−σt,
as estimated via eq. (5.1) within the MS scheme, by multiplying it with a factor of 1.3,

δ(t, b, c) = 1.3 δ(t, b, c)MS . (5.3)

Let us conclude this section by commenting on the amount by which the cross-section

changes when the values of the quark masses used as input vary from those of Setup 1.

As argued in the previous section, the dependence on the rescaled EFT cross-section on

the top-quark mass is extremely mild. We will therefore focus in this section on the exact

QCD corrections (including the light quarks) through NLO, and we study the variation

of the cross-section when the quark masses are varied following the internal note of the

HXSWG [86], which either conforms to the PDG recommendation or is more conservative

(see Tab. 9). We see that the parametric uncertainties are entirely negligible, at the level

of 0.1% or below. Finally, the parametric uncertainty on the ration RLO does not exceed

0.1%. For this reason, we will not consider parametric uncertainties on quark masses any

further.

Table 9: Parametric uncertainties on quark masses.

Top quark Bottom quark Charm quark

δmt = 1 GeV σNLOex;t+b+c 34.77 δmb = 0.03 GeV σNLOex;t+b+c 34.77 δmc = 0.026 GeV σNLOex;t+b+c 34.77

mt + δmt σNLOex;t+b+c 34.74 mb + δmb σNLOex;t+b+c 34.76 mc + δmc σNLOex;t+b+c 34.76

mt − δmt σNLOex;t+b+c 34.80 mb − δmb σNLOex;t+b+c 34.79 mc − δmc σNLOex;t+b+c 34.78

6. Electroweak corrections

So far we have only considered higher-order QCD corrections to the gluon fusion cross-

section. However, in order to obtain precise predictions for the Higgs cross-section also

electroweak (EW) corrections need to be taken into account. The EW corrections to the

LO gluon fusion cross-section have been computed in ref. [40, 41, 42]. For a Higgs mass of

mH = 125 GeV, they increase the LO cross-section by 5.2%, and we take these corrections

into account in our cross-section prediction.

Given the large size of the NLO QCD corrections to the Higgs cross-section, we may

expect that also the EW corrections to the NLO QCD cross-section cannot be neglected.

6For first steps towards computing this contribution at NNLO we refer the reader to ref. [105].
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Figure 15: Relative EW corrections as a function of the parameter yλ defined in eq. (6.3). Within

the range yλ ∈ [1/3, 3] the EW corrections are modified by −0.2% to +0.4%. The EW correction

under the assumption of complete factorization (CF) lies in the middle of the variation range.

Unfortunately, these so-called mixed QCD-EW corrections are at present unknown. The

contribution from light quarks, which at O(aEWa
2
s) is the dominant one accounting for

∼ 95% of the total EW corrections at that order, was computed in ref. [43] within an effec-

tive field theory approach where the W and Z bosons are assumed heavier than the Higgs

boson and have been integrated out. This has the effect of introducing EW corrections to

the Wilson coefficient describing the effective coupling of the Higgs boson to the gluons in

eq. (2.5),

C ≡ CQCD + λEW (1 + C1w as + C2w a
2
s + . . .) , (6.1)

where CQCD encodes the pure QCD corrections to the Wilson coefficient, λEW denotes

the EW corrections to the LO cross-section of ref. [41] and C1w are the mixed QCD-EW

corrections in the EFT approach of ref. [43]. The value of the coefficient C1w is [43]

C1w =
7

6
. (6.2)

Adopting the modification of the Wilson coefficient also for higher orders in as leads to a

total correction of 5.0%. We stress that the numerical effect of this correction is very similar

to that of the ‘complete factorization’ approach to include EW corrections of ref. [41], which

lead to an increase of the NLO cross-section by 5.1%.

The effective theory method for the mixed QCD-EW corrections is of course not en-

tirely satisfactory, because the computation of the EW Wilson coefficient assumes the

validity of the mH/mV expansion, V = W,Z while clearly mH > mV . We thus need to

carefully assess the uncertainty on the mixed QCD-EW corrections due to the EFT ap-

proximation. In the region mH > mV , we expect threshold effects to be important and
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one should not expect that a naive application of the EFT can give a reliable value for the

cross-section. However, in eq. (6.1) the EFT is only used to predict the relative size of QCD

radiative corrections with respect to the leading order electroweak corrections. This can

only vary mildly above and below threshold. For phenomenological purposes, we expect

that the rescaling with the exact λEW in eq. (6.1) captures the bulk of threshold effects at

all perturbative orders. To quantify the remaining uncertainty in this approach, we allow

the coefficient C1w to vary by a factor of 3 around its central value in eq. (6.2). We do this

by introducing a rescaling factor yλ by

λEW (1 + C1w as + . . .)→ λEW (1 + yλC1w as + . . .) . (6.3)

Varying yλ in the range [1/3, 3], we see that the cross-section varies by −0.2% to +0.4%.

We summarize the dependence of the cross-section on yλ in Fig. 15. Note that the result

obtained by assuming complete factorization of EW and QCD corrections (marked by

‘CF’ in Fig. 15) lies in the middle of the variation range, slightly higher than the yλ = 1

prediction. Finally, we stress that the choice of the range is largely arbitrary of course. It

is worth noting, however, that in order to reach uncertainties of the order of 1%, one needs

to enlarge the range to yλ ∈ [−3, 6].

An alternative way to assess the uncertainty on the mixed QCD-EW corrections is to

note that the factorization of the EW corrections is exact in the soft and collinear limits

of the NLO phase space. The hard contribution, however, might be badly captured. At

NLO in QCD, the hard contribution amounts to ∼ 40% of the O(a3
s) contribution to the

cross-section, where we define the hard contribution as the NLO cross-section minus its

soft-virtual contribution, i.e., the NLO contribution that does not arise from the universal

exponentiation of soft gluon radiation (see Section 4). In the notation of Section 3 the hard

contribution is defined as the convolution of the parton-level quantity

σ̂
(1),hard
ij

z
≡ π|C0|2

8V
a3
s η

(1),reg
ij (z) (6.4)

with the PDFs, which receive contributions from the gg, qg and qq̄ initial state channels.

The mixed QCD-EW corrections are 3.2% of the total cross-section. Even if the uncertainty

of the factorization ansatz is taken to be as large as the entire hard contribution, we will

obtain an estimate of the uncertainty equal to 0.4× 3.2% = 1.3% with respect to the total

cross-section.

An alternative way to define the hard contribution is to look at the real emission

cross-section regulated by a subtraction term in the FKS scheme [108]. We could then

exclude the contribution of the integrated subtraction term, which is proportional to the

Born matrix element, and hence of soft-collinear nature. We would then estimate the hard

contribution as ∼ 10% of the O(a3
s) contribution to the cross-section, which would lead to

an uncertainty equal to 0.1× 3.2% = 0.32%.

We note that the different estimates of the uncertainty range from 0.2% to 1.3%. We

therefore assign, conservatively, an uncertainty of 1% due to mixed QCD-EW corrections

for LHC energies. This uncertainty decreases for smaller collider energies as the soft con-

tributions become more important and the factorization ansatz becomes more accurate.
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For example, at a 2 TeV proton-proton collider the most conservative estimate of the

uncertainty is 0.8%.

7. PDF comparison

So far we have only discussed perturbative higher-order corrections to the partonic cross-

sections. The full hadronic cross-section is then obtained by convoluting the partonic

coefficient functions by the parton distribution functions. In the last few years significant

progress has been made towards the improvement of the PDF fits, also through the inclusion

of new data from collider and fixed-target experiments. We refer to the analysis in the

latest PDF4LHC working group paper [109] for a review of the updated sets ABM12 [110],

CT14 [111], JR14 [112], MMHT2014 [113], NNPDF3.0 [114] and HERAPDF2.0 [115], which

are available through NNLO, as well as the NLO set CJ12 [116]. In this Section, we will

compare the predictions from various pdf sets using Setup 1 and the partonic cross-sections

derived in the rescaled EFT through N3LO for a factorisation and renormalisation scale

µ = mH/2.

The three sets that enter the PDF4LHC fit (CT14, MMHT14 and NNPDF3.0) and

HERAPDF2.0, are provided at the same value of the strong coupling constant as the global

PDF4LHC15 combination [109],

αs(m
2
Z) = 0.118 . (7.1)

This value is consistent with the PDG average [117].

In Fig. 16 we compare the 68% C.L. predictions from CT14, MMHT2014 and NNPDF3.0

with those from the PDF4LHC15 combination. For comparison purposes, in this section

we combine (potentially asymmetric) PDF and αs uncertainties in quadrature7,

δ±(PDF + αs) =
√
δ±(PDF )2 + δ±(αs)2 . (7.2)

From Fig. 16, we observe that the predictions obtained from the three sets that enter

the PDF4LHC15 combination lie well within 1% of each other over the whole range of

center-of-mass energies from 2 to 15 TeV. In particular, MMHT2014 and NNPDF3.0 agree

at the per mille level. The combined PDF+αs uncertainty is at the level of 3 − 4% for

LHC energies, and it captures very well the small differences in the predictions among the

different sets.

Good agreement with the PDF4LHC15 predictions is also obtained for LHC energies

using the HERAPDF2.0 set (Fig. 17). HERAPDF2.0 does not enter the PDF4LHC fit,

but is given at the same central value of αs. However, these PDFs give a cross-section that

is about 6% lower at Tevatron energies, and increase above the PDF4LHC15 predictions

at higher center-of-mass energies.

7We note that the probabilistic interpretation of such an uncertainty combination in terms of confidence

level intervals is not straightforward, when the individual uncertainties are not symmetric [118]. For a

detailed discussion of the (PDF+αs) uncertainty entering our final recommendation for the value of the

cross-section, see Section 8.
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Figure 16: Higgs production cross-section and the relative PDF+αs uncertainty at 68% C.L.

using the CT14, MMHT2014 and NNPDF3.0 sets, normalized by the central value obtained with

the PDF4LHC15 combination.

The situation is very different for the ABM12 set, which uses a lower central value of

the strong coupling constant

αABMs = 0.1132± 0.0011 . (7.3)

This value is the result of the ABM fit. As one can see from Fig. 18, the ABM12 set gives

a prediction that is about 23% lower than the one from PDF4LHC15 at Tevatron energies,

and 9 − 7% lower at LHC energies. The PDF+αs error is 1.2%, which does not account

for this discrepancy. We note here that the variation range for αs used for the PDF+αs
variation in the ABM12 set is determined by the fitting procedure and is slightly smaller

than the range suggested by the PDF4LHC recommendation [109].

To understand how much of this difference comes from the choice of a different value

of the strong coupling constant, we plot in Fig. 18 the prediction from CT14 at the same

value of αs as the one obtained by ABM12. At αs = 0.118 the predictions from CT14

are in very good agreement with those from PDF4LHC15 (Fig. 16). At a lower value of

αs, CT14 gives a cross-section that is about 10% smaller than the result at αs = 0.118

(12% at Tevatron energies). The dependence on the center-of-mass energy appears to be

much milder than the one exhibited by ABM12. However, the PDF+αs uncertainty might

improve the agreement between the two sets. Unfortunately, only one error set for CT14

at αs = 0.113 is available, and we cannot assess this uncertainty.
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Figure 17: Higgs production cross-section and 68% C.L. PDF+αs uncertainty from the HERA-

PDF2.0 fit, normalized by the central value obtained with the PDF4LHC combination.
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Figure 18: Higgs production cross-section and 68% C.L. PDF+αs uncertainty from the ABM12

fit and from the CT14 set computed at αs = αABMs , normalized by the central value obtained with

the PDF4LHC combination.
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8. Recommendation for the LHC

In previous sections we have considered various effects that contribute to the gluon-fusion

Higgs production cross-section at higher orders. In this section we combine all these effects,

and as a result we are able to present the most precise prediction for the gluon-fusion cross-

section available to date. In particular (for the Setup 1 of Tab. 1) for a Higgs boson with

a mass mH = 125 GeV, the cross-section at the LHC with a center-of-mass energy of 13

TeV is

σ = 48.58 pb
+2.22 pb (+4.56%)
−3.27 pb (−6.72%) (theory)± 1.56 pb (3.20%) (PDF+αs) . (8.1)

Equation (8.1) is one of the main results of our work. In the following, we will analyze it

in some detail.

Let us start by commenting on the central value of the prediction (8.1). Since eq. (8.1)

is the combination of all the effects considered in previous sections, it is interesting to see

how the final prediction is built up from the different contributions. The breakdown of the

different effects is:

48.58 pb = 16.00 pb (+32.9%) (LO, rEFT)

+ 20.84 pb (+42.9%) (NLO, rEFT)

− 2.05 pb (−4.2%) ((t, b, c), exact NLO)

+ 9.56 pb (+19.7%) (NNLO, rEFT)

+ 0.34 pb (+0.2%) (NNLO, 1/mt)

+ 2.40 pb (+4.9%) (EW, QCD-EW)

+ 1.49 pb (+3.1%) (N3LO, rEFT)

(8.2)

where we denote by rEFT the contributions in the large-mt limit, rescaled by the ratio

RLO of the exact LO cross-section by the cross-section in the EFT (see Section 5). All the

numbers in eq. (8.2) have been obtained by setting the renormalization and factorization

scales equal to mH/2 and using the same set of parton densities at all perturbative orders.

Specifically, the first line, (LO, rEFT), is the cross-section at LO taking into account only

the top quark. The second line, (NLO, rEFT) are the NLO corrections to the LO cross-

section in the rescaled EFT, and the third line, ((t, b, c), exact NLO), is the correction

that needs to be added to the first two lines in order to obtain the exact QCD cross-section

through NLO, including the full dependence on top, bottom and charm quark masses.

The fourth and fifth lines contain the NNLO QCD corrections to the NLO cross-section

in the rescaled EFT: (NNLO, rEFT) denotes the NNLO corrections in the EFT rescaled

by RLO, and (NNLO, 1/mt) contains subleading corrections in the top mass at NNLO

computed as an expansion in 1/mt. The sixth line, (EW, QCD-EW), contains the two-

loop electroweak corrections, computed exactly, and three-loop mixed QCD-electroweak

corrections, computed in an effective theory approach. The last line, (N3LO, rEFT), is

the main addition of our work and contains the N3LO corrections to the NNLO rEFT

cross-section, rescaled by RLO. Resummation effects, within the resummation frameworks

studied in Section 4, contribute at the per mille level for our choice of the central scale,

µ = mH/2, and are therefore neglected.
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Next, let us analyze the uncertainties quoted in our cross-section prediction. We

present our result in eq. (8.1) with two uncertainties which we describe in the following. The

first uncertainty in eq. (8.1) is the theory uncertainty related to missing corrections in the

perturbative description of the cross-section. Just like for the central value, it is interesting

to look at the breakdown of how the different effects build up the final number. Collecting

all the uncertainties described in previous sections, we find the following components:

δ(scale) δ(trunc) δ(PDF-TH) δ(EW) δ(t, b, c) δ(1/mt)

+0.10 pb
−1.15 pb ±0.18 pb ±0.56 pb ±0.49 pb ±0.40 pb ±0.49 pb

+0.21%
−2.37% ±0.37% ±1.16% ±1% ±0.83% ±1%

In the previous table, δ(scale) and δ(trunc) denote the scale and truncation uncertainties

on the rEFT cross-section, and δ(PDF-TH) denotes the uncertainty on the cross-section

prediction due to our ignorance of N3LO parton densities, cf. Section 3. δ(EW), δ(t, b, c)

and δ(1/mt) denote the uncertainties on the cross-section due to missing quark-mass effects

at NNLO and mixed QCD-EW corrections. The first uncertainty in eq. (8.1) is then

obtained by adding linearly all these effects. The parametric uncertainty due to the mass

values of the top, bottom and charm quarks is at the per mille level, and hence completely

negligible. We note that including into our prediction resummation effects in the schemes

that we have studied in Section 4 would lead to a very small scale variation, which we

believe unrealistic and which we do not expect to capture the uncertainty due to missing

higher-order corrections at N4LO and beyond. Based on this observation, as well as on the

fact that the definition of the resummation scheme may suffer from large ambiguities, we

prefer a prudent approach and we adopt to adhere to fixed-order perturbation theory as

an estimator of remaining theoretical uncertainty from QCD.

The second uncertainty in eq. (8.1) is the PDF+αs uncertainty due to the determina-

tion of the parton distribution functions and the strong coupling constant, following the

PDF4LHC recommendation. When studying the correlations with other uncertainties in

Monte-Carlo simulations, it is often necessary to separate the PDF and αs uncertainties:

δ(PDF) δ(αs)

±0.90 pb +1.27pb
−1.25pb

±1.86% +2.61%
−2.58%

Since the δ(αs) error is asymmetric, in the combination presented in eq. (8.1) we conser-

vatively add in quadrature the largest of the two errors to the PDF error.

As pointed out in Section 7, the PDF4LHC uncertainty estimate quoted above does

not cover the cross-section value as predicted by the ABM12 set of parton distribution func-

tions. For comparison we quote here the corresponding cross-section value and PDF+αs
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uncertainty with the ABM12 set8:

σABM12 = 45.07 pb
+2.00 pb (+4.43%)
−2.88 pb (−6.39%) (theory)± 0.52 pb (1.17%) (PDF+αs) . (8.3)

The significantly lower central value is mostly due to the smaller value of αs, which

however is also smaller than the world average.

It is also interesting to compare our prediction (8.1) to the value one would have

obtained without the knowledge of the N3LO corrections in the rEFT. We find

σNNLO = 47.02 pb
+5.13 pb (10.9%)
−5.17 pb (11.0%) (theory)+1.48 pb

−1.46 pb
(3.14%)
(3.11%) (PDF+αs) . (8.4)

The central value in eq. (8.4) is obtained by summing all terms in eq. (8.2) except for

the term in the last line. Moreover, we do not include the uncertainties δ(PDF-TH)

and δ(trunc) from missing higher orders in the extraction of the parton densities and

from the truncation of the threshold expansion (because the NNLO cross-sections are

known in a closed analytic form). The scale variation uncertainty δ(scale) at NNLO is

approximately five times larger than at N3LO. This explains the reduction by a factor

of two in the total δ(theory) uncertainty by including the N3LO corrections presented in

this publication. We stress at this point that uncertainties on the NNLO cross-section

have been investigated by different groups in the past, yielding a variety of uncertainty

estimates at NNLO [46, 51, 52, 100, 119, 120, 121, 122]. Here we adopt exactly the same

prescription to estimate the uncertainty at NNLO and at N3LO, and we do not only rely

on scale variation for the NNLO uncertainty estimate, as was often done in the past.

Finally, we have also studied how our predictions change as we vary the center-of-mass

energy and the value of the Higgs mass. Our predictions for different values of the proton-

proton collision energy and a Higgs mass of mH = 125 GeV are summarized in Tab. 10.

In comparison to the official recommendation of the LHC Higgs Cross-section Working

Group earlier than our work [48], our results have a larger central value by about 11%.

The difference can be attributed to the choice of optimal renormalization and factorization

scale, the effect of the N3LO corrections, the different sets of parton distribution functions

and value of αs as well as smaller differences due to the treatment of finite quark-mass

effects. In comparison to the earlier recommendation from some of the authors in ref. [120],

our result has a central value which is higher by 3.5%. The difference can be attributed to

the effect of the N3LO corrections, the different sets of parton distribution functions and

value of αs as well as smaller differences due to the treatment of finite quark-mass effects.

Additional cross-section predictions for a variety of collider energies and Higgs boson

masses can be found in Appendix E.

9. Conclusion

In this paper we have presented the most precise prediction for the Higgs boson gluon-

fusion cross-section at the LHC. In order to achieve this task, we have combined all known

8We use the abm11 5 as nlo and abm11 5 as nnlo set to estimate the δ(PDF-TH): these sets are fits

with a fixed value of αs which allows us to compare NLO and NNLO grids for the same αs value. Using

this prescription δ(PDF-TH)= 1.1% very similar to the corresponding uncertainty for the set.
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ECM σ δ(theory) δ(PDF) δ(αs)

2 TeV 1.10 pb +0.04pb
−0.09pb(+4.06%

−7.88%) ± 0.03 pb (± 3.17%) +0.04pb
−0.04pb(+3.36%

−3.69%)

7 TeV 16.85 pb +0.74pb
−1.17pb(+4.41%

−6.96%) ± 0.32 pb (± 1.89%) +0.45pb
−0.45pb(+2.67%

−2.66%)

8 TeV 21.42 pb +0.95pb
−1.48pb(+4.43%

−6.90%) ± 0.40 pb (± 1.87%) +0.57pb
−0.56pb(+2.65%

−2.62%)

13 TeV 48.58 pb +2.22pb
−3.27pb(+4.56%

−6.72%) ± 0.90 pb (± 1.86%) +1.27pb
−1.25pb(+2.61%

−2.58%)

14 TeV 54.67 pb +2.51 pb
−3.67 pb (+4.58%

−6.71%) ±1.02 pb (± 1.86%) +1.43pb
−1.41pb(+2.61%

−2.59%)

Table 10: Gluon-fusion Higgs cross-section at a proton-proton collider for various values of the

collision energy.

ECM σ δ(theory) δ(PDF + αs)

7 TeV 15.13 pb +7.1%
−7.8%

+7.6%
−7.1%

8 TeV 19.27 pb +7.2%
−7.8%

+7.5%
−6.9%

Table 11: Earlier recommendation for the gluon-fusion Higgs cross-section at a proton-proton

collider by the Higgs Cross-Section Working Group [48].

ECM σ δ(theory) δ(PDF + αs)

8 TeV 20.69 pb +8.37%
−9.26%

+7.79%
−7.53%

Table 12: Earlier recommendation for the gluon-fusion Higgs cross-section at a proton-proton

collider by some of the authors in ref. [120].

higher-order effects from QCD, EW and quark-mass corrections. The main component

that made our computation possible was the recent computation of the N3LO correction

to the cross-section in an effective field theory where the top quark was integrated out.

In an appendix we present analytic expressions for the partonic subchannels of the N3LO

partonic cross-sections which have not been presented elsewhere in the literature, in the

form of a series expansion around the threshold limit.

The N3LO corrections moderately increase (∼ 3%) the cross-section for renormaliza-

tion and factorization scales equal to mH/2. In addition, they notably stabilize the scale

variation, reducing it almost by a factor of five compared to NNLO. The N3LO scale-

variation band is included entirely within the NNLO scale-variation band for scales in

the interval [mH/4,mH ]. Moreover, we have found good evidence that the N3LO scale

variation captures the effects of missing higher perturbative orders in the EFT. We base

this conclusion on the following observations: First, we observed that expanding in αs
separately the Wilson coefficient and matrix-element factors in the cross-section gives re-

sults consistent with expanding directly their product through N3LO. Second, a traditional
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threshold resummation in Mellin space up to N3LL did not contribute significantly to the

cross-section beyond N3LO in the range of scales µ ∈ [mH/4,mH ]. Although the effects

of threshold resummation are in general sensitive to ambiguities due to subleading terms

beyond the soft limit, we found that within our preferred range of scales, several variants of

the exponentiation formula gave very similar phenomenological results, which are always

consistent with fixed-order perturbation theory. Finally, a soft-gluon and π2-resummation

using the SCET formalism also gave consistent results with fixed-order perturbation theory

at N3LO. While ambiguities in subleading soft terms limit the use of soft-gluon resumma-

tion as an estimator of higher-order effects, and while it is of course possible that some

variant of resummation may yield larger corrections, it is encouraging that this does not

happen for the mainstream prescriptions studied here.

Besides studying the effect of QCD corrections in the EFT at high orders, we also inves-

tigated the cross-section in the EFT after inclusion of exact LO and NLO QCD corrections

in the full Standard Model theory (with finite top, bottom and charm quark masses) and

1/mt corrections at NNLO. We also included known two-loop electroweak corrections and

an estimate of three-loop mixed QCD-EW corrections into our final prediction.

No prediction for the cross-section would be complete without estimating the residual

uncertainties that may affect our result. We have identified several sources of theoretical

uncertainties, namely, the truncation of the threshold expansion, the QCD scale variation,

missing higher-order corrections in the extraction of parton densities, missing finite quark-

mass effects beyond NLO and missing mixed QCD-EW corrections. After adding all these

uncertainties linearly, we obtain a residual theoretical uncertainty of about 5 − 6%. We

have also studied the sensitivity of the cross-section on the choice of parton distribution

functions. The CT14, MSTW and NNPDF sets are in good agreement among themselves,

and have been combined together according to the PDF4LHC recommendation. They yield

a combined uncertainty due to both αs and parton densitites of the order of ∼ 3.5%. The

PDF4LHC sets give cross-section values that are in good agreement with the cross-section

as computed with HERAPDF sets. However, the ABM12 set of parton densities yields

results which are significantly lower and outside the quoted range of uncertainty.

We expect that further progress can be made in order to improve even more the

precision of our computation. A forthcoming computation of the N3LO cross-section in the

EFT in a closed analytic form will remove the truncation uncertainty. Future computations

of the NNLO QCD cross-section in the full Standard Model (including finite top, bottom

and charm masses) and a complete computation of three-loop mixed QCD-EW corrections

will remove further significant sources of uncertainties. Progress in the determination

of parton densities, with more precise LHC data and more precise computations of cross-

sections used in the extraction of parton densities, will be crucial to corroborate the PDF+

αs uncertainty and to resolve discrepancies due to systematic effects.

To conclude, we have presented the predictions for the Higgs boson cross-section in

gluon fusion, based on very high orders in perturbation theory. In this way, we have

obtained the most precise prediction of the Higgs boson production cross-section at the LHC

to date. We are looking forward to comparisons of our results with precise measurements

of the Higgs boson cross-section at the LHC in the future.
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A. Analytic expression for the Wilson coefficient

In the effective theory (i.e., for Nf light flavors), with the top quark decoupled from the

running of the strong coupling constant, the MS-scheme Wilson coefficient reads [17, 18]
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The analogous result in the on-shell scheme can be derived combining the OS decoupling

constant ζg and the OS Wilson coefficient with αs running in the full theory, that one can

find in the literature (see, for example, ref. [17, 18]). The result is
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B. Numerical implementation of the Mellin inversion

In this section we describe our numerical implementation of the inverse Mellin transform,

σgg(τ) =

∫ c+i∞

c−i∞

dN

2πi
τ1−N f2

g (N) σ̂gg(N) , (B.1)
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where fg(N) are the Mellin moments of the gluon density and σ̂gg(N) the (resummed)

partonic cross-section. The integration contour is the straight vertical line Re(N) = c,

chosen according to the minimal prescription [27], i.e., all the poles in σ̂gg(N) lie to the

left of the contour, except for the Landau pole in Mellin space, which lies to the right of

the contour. The position of the Landau pole in Mellin space is given by

NL ≡ exp
1

2β0 as(µ2
R)
. (B.2)

We parametrize the integration contour as N = c+ it, and we obtain

σgg(τ) = τ−c
∫ ∞

0

dt

π
Re
[
τ−it f2

g (c+ it) σ̂gg(c+ it)
]
. (B.3)

In order to evaluate the integral, we need to know the Mellin moments of the gluon density

for complex values of the Mellin variable N . To our knowledge, the public PDF sets do not

provide grids which allow one to immediately obtain the Mellin moments of the PDFs, and

so we need to use our own method to perform the inverse Mellin transform in eq. (B.3).

This method is described in the remainder of this appendix.

We start by truncating the integral (B.3) at some large value tmax, and we approximate

the integral over the range [0, tmax] by a Gauss-Legendre quadrature of order l,

σgg(τ) ' τ−c tmax

2π

l∑
k=1

w
(l)
k Re

[
τ−it

(l)
k f2

g

(
c+ it

(l)
k

)
σ̂gg

(
c+ it

(l)
k

)]
, (B.4)

where t
(l)
k = tmax

2

(
1 + u

(l)
k

)
, and u

(l)
k are the zeroes of the l-th Legendre polynomial Pl(x).

The Gauss-Legendre weights are given by
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) , (B.5)

where al denotes the coefficient of xl in Pl(x). The advantage of eq. (B.4) is that we

only need to know the Mellin moments of the gluon density on the finite set of points

N
(l)
k ≡ c + itmax

2

(
1 + u

(l)
k

)
. We can evaluate these Mellin moments numerically once and

for all (for a given PDF set and factorization scale) and store them in a grid,

fg

(
N

(l)
k

)
=

∫ 1

0
dxxN

(l)
k −1 fg(x) . (B.6)

Note that the integral (B.6) is numerically convergent for Re
(
N

(l)
k

)
> 0.

Equation (B.4) is our master formula for the computation of inverse Mellin transforms.

We have generated grids fg

(
N

(l)
k

)
for various choices of PDF sets and factorization scales,

making it straightforward to compute eq. (B.4) for any of these choices. Let us make

some comments about the master formula (B.4). First, we see that the right-hand side

of eq. (B.4) depends on three free parameters: the real part c of the integration contour,

the truncation tmax and the order l of the Gauss-Legendre quadrature. While the inverse
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Mellin transform must obviously be independent of these parameters, they may introduce

some systematic uncertainties. In our implementation we choose c = 2.5, and we checked

that the value of the integral remains unchanged under small deformations of this value.

Next, it is easy to check that the Mellin moments are highly suppressed for Im(N) � 1.

In our implementation we choose tmax = 125, and we checked that the contribution to the

integral from the range [100, 125] is completely negligible. Note that this implies that the

bulk of the value of the integral comes from the region where Im(N) is small. We therefore

partition the range [0, tmax] into subregions of increasing length, and in every subregion

we approximate the integral by a Gauss-Legendre quadrature of order l = 20. In this way

we make sure that the sum in eq. (B.4) receives mostly contributions from points where

Im(N) is small.

Finally, let us briefly comment on the choice of the straight-line contour in the inverse

Mellin transform. Indeed, we could deform the contour such as to maximize the convergence

of the numerical integration. In particular, in ref. [123] it was argued that the inverse Mellin

transform converges faster if the contour is chosen as N = c + t exp(iφ), π/2 < φ < π.

In this case, however, we have Re(N) = c + t cosφ, and so Re(N) < 0 for large enough

t, which contradicts the convergence criterion for the integral (B.6). Hence, as we need to

perform the integral (B.6) numerically in our approach, we cannot choose the optimized

integration contour of ref. [123]. We note, however, that since it is sufficient to generate

the grids fg

(
N

(l)
k

)
for a sufficiently large number of points once and for all, speed is not

an issue and we do not loose anything by choosing φ = π/2.
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C. Numerical values for the coefficients of the threshold expansion

C.1 The gg channel

η(3,2),reg
gg = −11089.328 + 1520.0814z̄ + 8805.7669z̄2 − 12506.932z̄3

− 440.32959z̄4 + 1232.0873z̄5 + 1646.4249z̄6 + 1781.8637z̄7

+ 1835.6555z̄8 + 1861.3612z̄9 + 1876.6428z̄10 + 1888.2649z̄11

+ 1899.1749z̄12 + 1910.7995z̄13 + 1923.8791z̄14 + 1938.8053z̄15

+ 1955.7742z̄16 + 1974.8643z̄17 + 1996.0810z̄18 + 2019.3836z̄19

+ 2044.7025z̄20 + 2071.9510z̄21 + 2101.0331z̄22 + 2131.8486z̄23

+ 2164.2968z̄24 + 2198.2785z̄25 + 2233.6976z̄26 + 2270.4621z̄27

+ 2308.4845z̄28 + 2347.6819z̄29 + 2387.9764z̄30 + 2429.2946z̄31

+ 2471.5678z̄32 + 2514.7317z̄33 + 2558.7261z̄34 + 2603.4947z̄35

+ 2648.9850z̄36 + 2695.1477z̄37

(C.1)

η(3,1),reg
gg = 15738.441− 13580.184z̄ + 1757.5646z̄2 + 16078.884z̄3

+ 82.947070z̄4 + 222.78697z̄5 + 947.71319z̄6 + 1490.0998z̄7

+ 1869.9658z̄8 + 2145.3018z̄9 + 2354.6608z̄10 + 2520.8158z̄11

+ 2657.1437z̄12 + 2771.7331z̄13 + 2869.6991z̄14 + 2954.4505z̄15

+ 3028.3834z̄16 + 3093.2654z̄17 + 3150.4554z̄18 + 3201.0314z̄19

+ 3245.8702z̄20 + 3285.6978z̄21 + 3321.1237z̄22 + 3352.6649z̄23

+ 3380.7639z̄24 + 3405.8019z̄25 + 3428.1091z̄26 + 3447.9734z̄27

+ 3465.6466z̄28 + 3481.3499z̄29 + 3495.2787z̄30 + 3507.6057z̄31

+ 3518.4844z̄32 + 3528.0516z̄33 + 3536.4294z̄34 + 3543.7272z̄35

+ 3550.0434z̄36 + 3555.4664z̄37

(C.2)

η(3,0),reg
gg = −5872.5889 + 13334.440z̄ − 8488.6090z̄2 − 4281.1568z̄3

+ 2157.5052z̄4 + 907.63249z̄5 + 234.32211z̄6 − 49.179428z̄7

− 157.42872z̄8 − 187.57931z̄9 − 182.18174z̄10 − 160.17000z̄11

− 130.14932z̄12 − 96.114987z̄13 − 59.980602z̄14 − 22.710016z̄15

+ 15.172227z̄16 + 53.350662z̄17 + 91.615033z̄18 + 129.81315z̄19

+ 167.82893z̄20 + 205.57154z̄21 + 242.96939z̄22 + 279.96631z̄23

+ 316.51876z̄24 + 352.59361z̄25 + 388.16630z̄26 + 423.21933z̄27

+ 457.74098z̄28 + 491.72418z̄29 + 525.16567z̄30 + 558.06524z̄31

+ 590.42510z̄32 + 622.24942z̄33 + 653.54391z̄34 + 684.31546z̄35

+ 714.57190z̄36 + 744.32176z̄37

(C.3)
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C.2 The qg channel

η(3,2),reg
qg = 513.56298− 754.78793z̄ − 280.97494z̄2 − 2.0101406z̄3

+ 503.52967z̄4 + 627.89991z̄5 + 691.45552z̄6 + 733.60753z̄7

+ 765.14788z̄8 + 790.66308z̄9 + 812.57547z̄10 + 832.30620z̄11

+ 850.73481z̄12 + 868.42184z̄13 + 885.73010z̄14 + 902.89588z̄15

+ 920.07262z̄16 + 937.35866z̄17 + 954.81528z̄18 + 972.47867z̄19

+ 990.36794z̄20 + 1008.4906z̄21 + 1026.8464z̄22 + 1045.4298z̄23

+ 1064.2318z̄24 + 1083.2414z̄25 + 1102.4464z̄26 + 1121.8338z̄27

+ 1141.3904z̄28 + 1161.1034z̄29 + 1180.9600z̄30 + 1200.9479z̄31

+ 1221.0555z̄32 + 1241.2716z̄33 + 1261.5856z̄34 + 1281.9875z̄35

+ 1302.4680z̄36 + 1323.0182z̄37

(C.4)

η(3,1),reg
qg = −313.98523 + 807.28021z̄ + 673.01632z̄2 + 424.92437z̄3

− 94.523260z̄4 − 16.197667z̄5 + 53.689920z̄6 + 107.82115z̄7

+ 152.20191z̄8 + 190.11227z̄9 + 223.24799z̄10 + 252.59416z̄11

+ 278.80517z̄12 + 302.36320z̄13 + 323.64795z̄14 + 342.97017z̄15

+ 360.58960z̄16 + 376.72599z̄17 + 391.56667z̄18 + 405.27209z̄19

+ 417.98023z̄20 + 429.81014z̄21 + 440.86488z̄22 + 451.23389z̄23

+ 460.99506z̄24 + 470.21638z̄25 + 478.95737z̄26 + 487.27030z̄27

+ 495.20115z̄28 + 502.79050z̄29 + 510.07423z̄30 + 517.08417z̄31

+ 523.84857z̄32 + 530.39259z̄33 + 536.73868z̄34 + 542.90692z̄35

+ 548.91525z̄36 + 554.77980z̄37

(C.5)

η(3,0),reg
qg = 204.62079 + 94.711709z̄ − 336.52127z̄2 + 51.214999z̄3

+ 240.58379z̄4 + 132.45353z̄5 + 96.832530z̄6 + 88.263488z̄7

+ 90.475716z̄8 + 97.701845z̄9 + 107.59956z̄10 + 119.06337z̄11

+ 131.49609z̄12 + 144.53662z̄13 + 157.94768z̄14 + 171.56432z̄15

+ 185.26783z̄16 + 198.97100z̄17 + 212.60919z̄18 + 226.13430z̄19

+ 239.51072z̄20 + 252.71229z̄21 + 265.72011z̄22 + 278.52088z̄23

+ 291.10563z̄24 + 303.46873z̄25 + 315.60716z̄26 + 327.51992z̄27

+ 339.20753z̄28 + 350.67174z̄29 + 361.91520z̄30 + 372.94122z̄31

+ 383.75366z̄32 + 394.35673z̄33 + 404.75490z̄34 + 414.95284z̄35

+ 424.95529z̄36 + 434.76706z̄37

(C.6)
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C.3 The qq̄ channel

η
(3,2),reg
qq̄ = 52.489897z̄ + 121.14225z̄2 + 546.26186z̄3

+ 430.10665z̄4 + 395.20262z̄5 + 377.03244z̄6 + 365.05682z̄7

+ 356.30539z̄8 + 349.64832z̄9 + 344.54422z̄10 + 340.68027z̄11

+ 337.84848z̄12 + 335.89655z̄13 + 334.70587z̄14 + 334.18036z̄15

+ 334.24025z̄16 + 334.81815z̄17 + 335.85649z̄18 + 337.30562z̄19

+ 339.12245z̄20 + 341.26935z̄21 + 343.71330z̄22 + 346.42520z̄23

+ 349.37931z̄24 + 352.55277z̄25 + 355.92522z̄26 + 359.47847z̄27

+ 363.19620z̄28 + 367.06378z̄29 + 371.06801z̄30 + 375.19698z̄31

+ 379.43991z̄32 + 383.78703z̄33 + 388.22945z̄34 + 392.75910z̄35

+ 397.36861z̄36 + 402.05123z̄37

(C.7)

η
(3,1),reg
qq̄ = −13.561787z̄ − 122.83887z̄2 − 747.63122z̄3

− 396.29959z̄4 − 305.88934z̄5 − 259.42707z̄6 − 228.03650z̄7

− 204.06989z̄8 − 184.61437z̄9 − 168.25305z̄10 − 154.17060z̄11

− 141.84193z̄12 − 130.90258z̄13 − 121.08653z̄14 − 112.19267z̄15

− 104.06504z̄16 − 96.580303z̄17 − 89.639462z̄18 − 83.162027z̄19

− 77.081876z̄20 − 71.344195z̄21 − 65.903187z̄22 − 60.720315z̄23

− 55.762951z̄24 − 51.003310z̄25 − 46.417609z̄26 − 41.985393z̄27

− 37.688995z̄28 − 33.513090z̄29 − 29.444339z̄30 − 25.471089z̄31

− 21.583127z̄32 − 17.771478z̄33 − 14.028228z̄34 − 10.346383z̄35

− 6.7197486z̄36 − 3.1428213z̄37

(C.8)

η
(3,0),reg
qq̄ = −37.707516z̄ + 64.836867z̄2 + 370.64251z̄3

+ 99.620940z̄4 + 86.612810z̄5 + 95.425837z̄6 + 108.12237z̄7

+ 121.73122z̄8 + 135.50571z̄9 + 149.18659z̄10 + 162.65901z̄11

+ 175.86438z̄12 + 188.77159z̄13 + 201.36522z̄14 + 213.63958z̄15

+ 225.59530z̄16 + 237.23713z̄17 + 248.57249z̄18 + 259.61045z̄19

+ 270.36110z̄20 + 280.83500z̄21 + 291.04293z̄22 + 300.99558z̄23

+ 310.70347z̄24 + 320.17681z̄25 + 329.42545z̄26 + 338.45884z̄27

+ 347.28601z̄28 + 355.91555z̄29 + 364.35564z̄30 + 372.61407z̄31

+ 380.69820z̄32 + 388.61503z̄33 + 396.37117z̄34 + 403.97291z̄35

+ 411.42620z̄36 + 418.73668z̄37

(C.9)

– 55 –



C.4 The qq channel

η(3,2),reg
qq = 52.489897z̄ + 115.88299z̄2 + 206.89141z̄3

+ 237.16727z̄4 + 253.85312z̄5 + 264.50690z̄6 + 271.88762z̄7

+ 277.47724z̄8 + 282.11036z̄9 + 286.26594z̄10 + 290.22209z̄11

+ 294.14093z̄12 + 298.11608z̄13 + 302.20004z̄14 + 306.42029z̄15

+ 310.78904z̄16 + 315.30914z̄17 + 319.97778z̄18 + 324.78884z̄19

+ 329.73434z̄20 + 334.80540z̄21 + 339.99280z̄22 + 345.28737z̄23

+ 350.68023z̄24 + 356.16287z̄25 + 361.72729z̄26 + 367.36598z̄27

+ 373.07194z̄28 + 378.83869z̄29 + 384.66021z̄30 + 390.53096z̄31

+ 396.44582z̄32 + 402.40008z̄33 + 408.38938z̄34 + 414.40972z̄35

+ 420.45742z̄36 + 426.52908z̄37

(C.10)

η(3,1),reg
qq = −13.561787z̄ − 100.44381z̄2 − 197.02897z̄3

− 201.49505z̄4 − 196.70233z̄5 − 189.72948z̄6 − 181.90181z̄7

− 174.01305z̄8 − 166.44104z̄9 − 159.32993z̄10 − 152.70888z̄11

− 146.55489z̄12 − 140.82408z̄13 − 135.46673z̄14 − 130.43420z̄15

− 125.68188z̄16 − 121.17016z̄17 − 116.86451z̄18 − 112.73513z̄19

− 108.75638z̄20 − 104.90636z̄21 − 101.16628z̄22 − 97.520078z̄23

− 93.954009z̄24 − 90.456274z̄25 − 87.016749z̄26 − 83.626728z̄27

− 80.278716z̄28 − 76.966251z̄29 − 73.683754z̄30 − 70.426402z̄31

− 67.190021z̄32 − 63.970996z̄33 − 60.766195z̄34 − 57.572901z̄35

− 54.388756z̄36 − 51.211716z̄37

(C.11)

η(3,0),reg
qq = −39.014783z̄ + 16.214979z̄2 + 49.524960z̄3

+ 45.647897z̄4 + 49.192648z̄5 + 56.534430z̄6 + 65.488703z̄7

+ 75.308404z̄8 + 85.593580z̄9 + 96.089042z̄10 + 106.62551z̄11

+ 117.09068z̄12 + 127.41095z̄13 + 137.53925z̄14 + 147.44661z̄15

+ 157.11652z̄16 + 166.54094z̄17 + 175.71767z̄18 + 184.64838z̄19

+ 193.33742z̄20 + 201.79079z̄21 + 210.01561z̄22 + 218.01959z̄23

+ 225.81076z̄24 + 233.39727z̄25 + 240.78718z̄26 + 247.98841z̄27

+ 255.00867z̄28 + 261.85538z̄29 + 268.53568z̄30 + 275.05640z̄31

+ 281.42407z̄32 + 287.64490z̄33 + 293.72482z̄34 + 299.66944z̄35

+ 305.48412z̄36 + 311.17392z̄37
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C.5 The qq′ channel

η
(3,2),reg
qq′ = 52.489897z̄ + 115.95707z̄2 + 207.09717z̄3

+ 237.47076z̄4 + 254.23192z̄5 + 264.94538z̄6 + 272.37440z̄7

+ 278.00388z̄8 + 282.67045z̄9 + 286.85449z̄10 + 290.83519z̄11

+ 294.77542z̄12 + 298.76938z̄13 + 302.87003z̄14 + 307.10519z̄15

+ 311.48736z̄16 + 316.01959z̄17 + 320.69926z̄18 + 325.52041z̄19

+ 330.47516z̄20 + 335.55474z̄21 + 340.75002z̄22 + 346.05189z̄23

+ 351.45154z̄24 + 356.94052z̄25 + 362.51087z̄26 + 368.15511z̄27

+ 373.86629z̄28 + 379.63795z̄29 + 385.46411z̄30 + 391.33924z̄31

+ 397.25825z̄32 + 403.21643z̄33 + 409.20946z̄34 + 415.23335z̄35

+ 421.28443z̄36 + 427.35932z̄37

(C.13)

η
(3,1),reg
qq′ = −13.561787z̄ − 101.23393z̄2 − 199.27314z̄3

− 204.58988z̄4 − 200.32378z̄5 − 193.67683z̄6 − 186.04539z̄7

− 178.26735z̄8 − 170.74845z̄9 − 163.65084z̄10 − 157.01563z̄11

− 150.82793z̄12 − 145.04949z̄13 − 139.63457z̄14 − 134.53740z̄15

− 129.71545z̄16 − 125.13066z̄17 − 120.74964z̄18 − 116.54344z̄19

− 112.48710z̄20 − 108.55918z̄21 − 104.74128z̄22 − 101.01763z̄23

− 97.374684z̄24 − 93.800809z̄25 − 90.286003z̄26 − 86.821649z̄27

− 83.400317z̄28 − 80.015589z̄29 − 76.661913z̄30 − 73.334486z̄31

− 70.029139z̄32 − 66.742261z̄33 − 63.470710z̄34 − 60.211761z̄35

− 56.963043z̄36 − 53.722495z̄37

(C.14)

η
(3,0),reg
qq′ = −38.124370z̄ + 21.925696z̄2 + 62.593745z̄3

+ 62.740689z̄4 + 68.779415z̄5 + 77.692571z̄6 + 87.639674z̄7

+ 98.079383z̄8 + 108.73738z̄9 + 119.43753z̄10 + 130.06186z̄11

+ 140.53231z̄12 + 150.79875z̄13 + 160.83049z̄14 + 170.61028z̄15

+ 180.13007z̄16 + 189.38806z̄17 + 198.38664z̄18 + 207.13098z̄19

+ 215.62804z̄20 + 223.88584z̄21 + 231.91300z̄22 + 239.71843z̄23

+ 247.31108z̄24 + 254.69977z̄25 + 261.89310z̄26 + 268.89942z̄27

+ 275.72674z̄28 + 282.38271z̄29 + 288.87465z̄30 + 295.20952z̄31

+ 301.39392z̄32 + 307.43414z̄33 + 313.33611z̄34 + 319.10548z̄35

+ 324.74760z̄36 + 330.26751z̄37
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D. Color and flavor number dependence for the first coefficients of the

threshold expansion

In this appendix we present analytic result for the first few coefficients in the threshold

expansion for each partonic channel. We use the notation

η
(3,m),reg
ij =

∞∑
n=0

3∑
a=−3

2∑
b=0

Na
cN

b
f z̄
nCij [m, a, b, n], (D.1)

The non-zero coefficients Cij [m, a, b, n] for m = 0, 1, 2 and n ≤ 5 are given in the remainder

of this appendix.

D.1 The gg channel

Cgg[2, 3, 0, 0] = −2147ζ2
12

− 181ζ3 +
2711

27

Cgg[2, 3, 0, 1] =
22645ζ2

48
+ 362ζ3 −

363355

288

Cgg[2, 3, 0, 2] =
2006159

2592
− 30767ζ2

144

Cgg[2, 3, 0, 3] =
7441ζ2

36
+ 181ζ3 −

11532781

10368

Cgg[2, 3, 0, 4] =
11263ζ2

90
+ 181ζ3 −

609287813

1296000

Cgg[2, 3, 0, 5] =
779ζ2

9
+ 181ζ3 −

849910693

2592000

Cgg[2, 2, 1, 0] =
545ζ2

48
− 4139

216

Cgg[2, 2, 1, 1] =
192943

1728
− 629ζ2

24

Cgg[2, 2, 1, 2] =
ζ2
72
− 315721

5184

Cgg[2, 2, 1, 3] =
285745

3456
− 1069ζ2

72

Cgg[2, 2, 1, 4] =
15200689

345600
− 1069ζ2

72

Cgg[2, 2, 1, 5] =
174604379

5184000
− 2155ζ2

144

Cgg[2, 1, 2, 0] =
59

108
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Cgg[2, 1, 2, 1] = −1571

864

Cgg[2, 1, 2, 2] =
145

216

Cgg[2, 1, 2, 3] = −2693

2592

Cgg[2, 1, 2, 4] = −19133

25920

Cgg[2, 1, 2, 5] = −31681

51840

Cgg[2, 0, 1, 0] =
1

4

Cgg[2, 0, 1, 1] =
119ζ2

24
− 1193

54

Cgg[2, 0, 1, 2] =
5221

288

Cgg[2, 0, 1, 3] =
173ζ2

36
− 40231

1728

Cgg[2, 0, 1, 4] =
173ζ2

36
− 32005

3456

Cgg[2, 0, 1, 5] =
359ζ2

72
− 3976679

518400

Cgg[2,−1, 2, 1] =
199

432

Cgg[2,−1, 2, 2] = −19

72

Cgg[2,−1, 2, 3] =
355

864

Cgg[2,−1, 2, 4] =
17

64

Cgg[2,−1, 2, 5] =
11201

51840

Cgg[2,−2, 1, 1] =
475

192
− 23ζ2

24

Cgg[2,−2, 1, 2] = −275

96
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Cgg[2,−2, 1, 3] =
5053

1152
− 29ζ2

36

Cgg[2,−2, 1, 4] =
26765

13824
− 29ζ2

36

Cgg[2,−2, 1, 5] =
1660559

1036800
− 37ζ2

45

Cgg[1, 3, 0, 0] =
2375ζ2

18
+ 362ζ3 + 77ζ4 −

9547

108

Cgg[1, 3, 0, 1] = −142441ζ2
144

− 11093ζ3
12

− 154ζ4 +
1077125

432

Cgg[1, 3, 0, 2] =
26317ζ2

48
+

16115ζ3
36

− 645199

432

Cgg[1, 3, 0, 3] = −66785ζ2
96

− 3613ζ3
9

− 77ζ4 +
25909463

10368

Cgg[1, 3, 0, 4] = −513361ζ2
1440

− 20779ζ3
90

− 77ζ4 +
5210522741

5184000

Cgg[1, 3, 0, 5] = −5660203ζ2
21600

− 27031ζ3
180

− 77ζ4 +
115009800821

155520000

Cgg[1, 2, 1, 0] = −1813ζ2
72

− 223ζ3
12

+
8071

324

Cgg[1, 2, 1, 1] =
673ζ2

9
+

349ζ3
8
− 608693

2592

Cgg[1, 2, 1, 2] = −1601ζ2
48

− ζ3
6

+
692437

5184

Cgg[1, 2, 1, 3] =
4127ζ2

108
+

599ζ3
24

− 741821

3456

Cgg[1, 2, 1, 4] =
101351ζ2

4320
+

599ζ3
24

− 263548441

2592000

Cgg[1, 2, 1, 5] =
36493ζ2

2160
+

18137ζ3
720

− 515585813

6480000

Cgg[1, 1, 2, 0] =
4ζ2
9
− 163

324

Cgg[1, 1, 2, 1] =
2195

648
− 11ζ2

12

Cgg[1, 1, 2, 2] = −4109

1728
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Cgg[1, 1, 2, 3] =
1619

576
− 17ζ2

36

Cgg[1, 1, 2, 4] =
720019

518400
− 17ζ2

36

Cgg[1, 1, 2, 5] =
130223

129600
− 511ζ2

1080

Cgg[1, 0, 1, 0] =
ζ2
24

+ 3ζ3 −
17

4

Cgg[1, 0, 1, 1] = −239ζ2
18

− 365ζ3
24

+
142381

2592

Cgg[1, 0, 1, 2] =
147ζ2

16
− 20647

432

Cgg[1, 0, 1, 3] = −5221ζ2
432

− 889ζ3
72

+
102361

1728

Cgg[1, 0, 1, 4] = −5129ζ2
864

− 889ζ3
72

+
14772497

829440

Cgg[1, 0, 1, 5] = −5363ζ2
1440

− 9137ζ3
720

+
313545373

20736000

Cgg[1,−1, 2, 1] =
ζ2
36
− 181

162

Cgg[1,−1, 2, 2] =
1187

864

Cgg[1,−1, 2, 3] =
ζ2
36
− 725

648

Cgg[1,−1, 2, 4] =
ζ2
36
− 599

2304

Cgg[1,−1, 2, 5] =
31ζ2
1080

− 136769

1296000

Cgg[1,−2, 1, 1] =
71ζ2
24

+
23ζ3
12
− 245

48

Cgg[1,−2, 1, 2] =
47

8
− 109ζ2

48

Cgg[1,−2, 1, 3] =
1129ζ2

432
+

14ζ3
9
− 117785

10368

Cgg[1,−2, 1, 4] =
1313ζ2

864
+

14ζ3
9
− 655181

165888
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Cgg[1,−2, 1, 5] =
25019ζ2
21600

+
19ζ3
12
− 1041496027

311040000

Cgg[0, 3, 0, 0] =
725ζ3ζ2

6
− 11183ζ2

162
− 32849ζ3

216
− 821ζ4

12
− 186ζ5 +

834419

23328

Cgg[0, 3, 0, 1] = −725

3
ζ3ζ2 +

2578495ζ2
2592

+
54373ζ3

54
+

9287ζ4
48

+ 372ζ5 −
112071959

46656

Cgg[0, 3, 0, 2] = −1587065ζ2
2592

− 12167ζ3
24

− 14905ζ4
144

+
136933337

93312

Cgg[0, 3, 0, 3] = −725

6
ζ3ζ2 +

17524253ζ2
20736

+
315079ζ3

432
+

22799ζ4
288

+ 186ζ5 −
7695352049

2985984

Cgg[0, 3, 0, 4] = −725

6
ζ3ζ2 +

225231577ζ2
648000

+
173857ζ3

432
+

58783ζ4
1440

+ 186ζ5 −
4501027226621

4665600000

Cgg[0, 3, 0, 5] = −725

6
ζ3ζ2 +

22725557ζ2
96000

+
378617ζ3

1200
+

6739ζ4
288

+ 186ζ5 −
6555187542491

9331200000

Cgg[0, 2, 1, 0] =
4579ζ2

324
+

1789ζ3
72

+
19ζ4

8
− 527831

46656

Cgg[0, 2, 1, 1] = −60211ζ2
648

− 670ζ3
9
− 569ζ4

96
+

9673753

46656

Cgg[0, 2, 1, 2] =
111257ζ2

2592
+

1333ζ3
48

+
17ζ4
36
− 26275573

186624

Cgg[0, 2, 1, 3] = −42613ζ2
648

− 16411ζ3
432

− 955ζ4
288

+
57063737

248832

Cgg[0, 2, 1, 4] = −4880261ζ2
129600

− 28189ζ3
1080

− 955ζ4
288

+
9425777309

103680000

Cgg[0, 2, 1, 5] = −1879457ζ2
64800

− 907349ζ3
43200

− 9799ζ4
2880

+
32259119399

466560000

Cgg[0, 1, 2, 0] = −19ζ2
36
− 5ζ3

27
+

49

729

Cgg[0, 1, 2, 1] =
677ζ2
432

+
10ζ3
27
− 59731

23328

Cgg[0, 1, 2, 2] =
36443

15552
− 109ζ2

216

Cgg[0, 1, 2, 3] =
137ζ2
162

+
5ζ3
27
− 79931

23328

Cgg[0, 1, 2, 4] =
1043ζ2
1620

+
5ζ3
27
− 66874081

46656000
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Cgg[0, 1, 2, 5] =
35627ζ2
64800

+
5ζ3
27
− 6687083

6220800

Cgg[0, 0, 1, 0] = −5ζ2
24
− 149ζ3

72
− ζ4

4
+

5065

1728

Cgg[0, 0, 1, 1] =
3689ζ2

216
+

2273ζ3
144

+
5ζ4
3
− 401911

7776

Cgg[0, 0, 1, 2] = −3859ζ2
288

− 1199ζ3
96

+
578489

10368

Cgg[0, 0, 1, 3] =
52769ζ2

2592
+

2485ζ3
216

+
179ζ4

96
− 25339

384

Cgg[0, 0, 1, 4] =
190591ζ2

20736
+

36403ζ3
8640

+
179ζ4

96
− 705541369

49766400

Cgg[0, 0, 1, 5] =
19819151ζ2

2592000
+

31817ζ3
21600

+
1801ζ4

960
− 244316987519

18662400000

Cgg[0,−1, 2, 1] =
583

486
− 7ζ2

27

Cgg[0,−1, 2, 2] =
7ζ2
72
− 9235

5184

Cgg[0,−1, 2, 3] =
374

243
− 29ζ2

108

Cgg[0,−1, 2, 4] =
53797

248832
− 2ζ2

9

Cgg[0,−1, 2, 5] =
37539559

233280000
− 13387ζ2

64800

Cgg[0,−2, 1, 1] = −47ζ2
16
− 43ζ3

16
+

23ζ4
96

+
61

12

Cgg[0,−2, 1, 2] =
117ζ2

32
+

67ζ3
32
− 4673

768

Cgg[0,−2, 1, 3] = −12257ζ2
2592

− 53ζ3
27
− 5ζ4

144
+

221

18

Cgg[0,−2, 1, 4] = −11377ζ2
5184

− 1631ζ3
1728

− 5ζ4
144

+
6529079

1990656

Cgg[0,−2, 1, 5] = −2375053ζ2
1296000

− 1691ζ3
2880

− 13ζ4
240

+
54978128417

18662400000
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D.2 The qg channel

Cqg[2, 3, 0, 0] =
1729ζ2

576
+

1687ζ3
96

− 120073

41472

Cqg[2, 3, 0, 1] =
4577ζ2

288
+

1687ζ3
96

− 3446137

41472

Cqg[2, 3, 0, 2] =
7249ζ2

288
+

1687ζ3
48

− 2118601

20736

Cqg[2, 3, 0, 3] =
1613ζ2

96
+

1687ζ3
48

− 1498555

20736

Cqg[2, 3, 0, 4] =
9919ζ2
1152

+
1687ζ3

48
− 22757717

663552

Cqg[2, 3, 0, 5] =
15487ζ2

5760
+

1687ζ3
48

− 1473963793

82944000

Cqg[2, 2, 1, 0] =
6427

10368
− 185ζ2

288

Cqg[2, 2, 1, 1] =
33127

10368
− 185ζ2

288

Cqg[2, 2, 1, 2] =
116677

20736
− 185ζ2

144

Cqg[2, 2, 1, 3] =
69853

20736
− 185ζ2

144

Cqg[2, 2, 1, 4] =
117373

82944
− 185ζ2

144

Cqg[2, 2, 1, 5] =
860453

2073600
− 185ζ2

144

Cqg[2, 1, 2, 0] = − 11

432

Cqg[2, 1, 2, 1] = − 5

432

Cqg[2, 1, 2, 2] = − 25

432

Cqg[2, 1, 2, 3] = − 13

432

Cqg[2, 1, 2, 4] = − 25

1728
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Cqg[2, 1, 2, 5] = − 29

8640

Cqg[2, 1, 0, 0] = −1589ζ2
288

− 4241ζ3
192

+
46025

13824

Cqg[2, 1, 0, 1] = −11845ζ2
576

− 4241ζ3
192

+
1439677

13824

Cqg[2, 1, 0, 2] = −2665ζ2
72

− 4241ζ3
96

+
1986127

13824

Cqg[2, 1, 0, 3] = −7019ζ2
288

− 4241ζ3
96

+
4076855

41472

Cqg[2, 1, 0, 4] = −1903ζ2
144

− 4241ζ3
96

+
35022785

663552

Cqg[2, 1, 0, 5] = −15013ζ2
2880

− 4241ζ3
96

+
302835701

9216000

Cqg[2, 0, 1, 0] =
59ζ2
72
− 215

288

Cqg[2, 0, 1, 1] =
59ζ2
72
− 6229

1728

Cqg[2, 0, 1, 2] =
59ζ2
36
− 329

48

Cqg[2, 0, 1, 3] =
59ζ2
36
− 21001

5184

Cqg[2, 0, 1, 4] =
59ζ2
36
− 69071

41472

Cqg[2, 0, 1, 5] =
59ζ2
36
− 516223

1036800

Cqg[2,−1, 2, 0] =
11

432

Cqg[2,−1, 2, 1] =
5

432

Cqg[2,−1, 2, 2] =
25

432

Cqg[2,−1, 2, 3] =
13

432

Cqg[2,−1, 2, 4] =
25

1728
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Cqg[2,−1, 2, 5] =
29

8640

Cqg[2,−1, 0, 0] =
541ζ2
192

+
485ζ3

96
− 14087

41472

Cqg[2,−1, 0, 1] =
979ζ2
192

+
485ζ3

96
− 966503

41472

Cqg[2,−1, 0, 2] =
2597ζ2

192
+

485ζ3
48

− 237743

5184

Cqg[2,−1, 0, 3] =
4883ζ2

576
+

485ζ3
48

− 7263

256

Cqg[2,−1, 0, 4] =
737ζ2
144

+
485ζ3

48
− 4504849

221184

Cqg[2,−1, 0, 5] =
997ζ2
360

+
485ζ3

48
− 1382797423

82944000

Cqg[2,−2, 1, 0] =
1313

10368
− 17ζ2

96

Cqg[2,−2, 1, 1] =
4247

10368
− 17ζ2

96

Cqg[2,−2, 1, 2] =
25451

20736
− 17ζ2

48

Cqg[2,−2, 1, 3] =
4717

6912
− 17ζ2

48

Cqg[2,−2, 1, 4] =
6923

27648
− 17ζ2

48

Cqg[2,−2, 1, 5] =
57331

691200
− 17ζ2

48

Cqg[2,−3, 0, 0] = −29ζ2
96
− 103ζ3

192
− 145

1536

Cqg[2,−3, 0, 1] = −41ζ2
96
− 103ζ3

192
+

3467

1536

Cqg[2,−3, 0, 2] = −323ζ2
192

− 103ζ3
96

+
6695

1536

Cqg[2,−3, 0, 3] = −523ζ2
576

− 103ζ3
96

+
32287

13824

Cqg[2,−3, 0, 4] = −197ζ2
384

− 103ζ3
96

+
46277

24576
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Cqg[2,−3, 0, 5] = −157ζ2
640

− 103ζ3
96

+
131239907

82944000

Cqg[1, 3, 0, 0] = −3755ζ2
1152

− 283ζ3
72

− 871ζ4
96

+
1641013

248832

Cqg[1, 3, 0, 1] = −60559ζ2
1152

− 9739ζ3
288

− 871ζ4
96

+
45245365

248832

Cqg[1, 3, 0, 2] = −7921ζ2
128

− 30493ζ3
576

− 871ζ4
48

+
28811983

124416

Cqg[1, 3, 0, 3] = −166477ζ2
3456

− 2065ζ3
64

− 871ζ4
48

+
20750399

124416

Cqg[1, 3, 0, 4] = −398975ζ2
13824

− 7661ζ3
576

− 871ζ4
48

+
341816329

3981312

Cqg[1, 3, 0, 5] = −6957287ζ2
345600

+
1087ζ3
2880

− 871ζ4
48

+
143432872057

2488320000

Cqg[1, 2, 1, 0] =
155ζ2
288

+
125ζ3
144

− 157411

62208

Cqg[1, 2, 1, 1] =
361ζ2
288

+
125ζ3
144

− 592291

62208

Cqg[1, 2, 1, 2] =
205ζ2

96
+

125ζ3
72

− 1036031

62208

Cqg[1, 2, 1, 3] =
1073ζ2

864
+

125ζ3
72

− 687467

62208

Cqg[1, 2, 1, 4] =
551ζ2
1728

+
125ζ3

72
− 3241357

497664

Cqg[1, 2, 1, 5] = −3101ζ2
8640

+
125ζ3

72
− 12023201

2488320

Cqg[1, 1, 2, 0] =
29

432

Cqg[1, 1, 2, 1] = − 11

432

Cqg[1, 1, 2, 2] =
59

288

Cqg[1, 1, 2, 3] =
61

864

Cqg[1, 1, 2, 4] =
47

1728
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Cqg[1, 1, 2, 5] =
13

1728

Cqg[1, 1, 0, 0] =
20545ζ2

3456
+

2297ζ3
288

+
3787ζ4

384
− 46859

9216

Cqg[1, 1, 0, 1] =
241543ζ2

3456
+

11645ζ3
288

+
3787ζ4

384
− 2069755

9216

Cqg[1, 1, 0, 2] =
330233ζ2

3456
+

20977ζ3
288

+
3787ζ4

192
− 489517

1536

Cqg[1, 1, 0, 3] =
241585ζ2

3456
+

12959ζ3
288

+
3787ζ4

192
− 27336073

124416

Cqg[1, 1, 0, 4] =
202327ζ2

4608
+

6185ζ3
288

+
3787ζ4

192
− 491187695

3981312

Cqg[1, 1, 0, 5] =
2218337ζ2

69120
+

139ζ3
30

+
3787ζ4

192
− 24426241103

276480000

Cqg[1, 0, 1, 0] = −473ζ2
432

− 55ζ3
36

+
9859

3456

Cqg[1, 0, 1, 1] = −695ζ2
432

− 55ζ3
36

+
39623

3456

Cqg[1, 0, 1, 2] = −689ζ2
216

− 55ζ3
18

+
5873

288

Cqg[1, 0, 1, 3] = −137ζ2
72

− 55ζ3
18

+
209369

15552

Cqg[1, 0, 1, 4] = −1015ζ2
1728

− 55ζ3
18

+
977155

124416

Cqg[1, 0, 1, 5] =
1103ζ2
2880

− 55ζ3
18

+
22420963

3888000

Cqg[1,−1, 2, 0] = − 29

432

Cqg[1,−1, 2, 1] =
11

432

Cqg[1,−1, 2, 2] = − 59

288

Cqg[1,−1, 2, 3] = − 61

864

Cqg[1,−1, 2, 4] = − 47

1728
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Cqg[1,−1, 2, 5] = − 13

1728

Cqg[1,−1, 0, 0] = −7039ζ2
3456

− 85ζ3
18
− 53ζ4

96
− 340909

248832

Cqg[1,−1, 0, 1] = −65383ζ2
3456

− 2071ζ3
288

− 53ζ4
96

+
11607347

248832

Cqg[1,−1, 0, 2] = −130325ζ2
3456

− 12637ζ3
576

− 53ζ4
48

+
11806439

124416

Cqg[1,−1, 0, 3] = −83435ζ2
3456

− 7969ζ3
576

− 53ζ4
48

+
7098125

124416

Cqg[1,−1, 0, 4] = −235115ζ2
13824

− 1267ζ3
144

− 53ζ4
48

+
163055503

3981312

Cqg[1,−1, 0, 5] = −4762843ζ2
345600

− 191ζ3
36

− 53ζ4
48

+
27832701149

829440000

Cqg[1,−2, 1, 0] =
481ζ2
864

+
95ζ3
144

− 20051

62208

Cqg[1,−2, 1, 1] =
307ζ2
864

+
95ζ3
144

− 120923

62208

Cqg[1,−2, 1, 2] =
911ζ2
864

+
95ζ3
72
− 232537

62208

Cqg[1,−2, 1, 3] =
571ζ2
864

+
95ζ3
72
− 50003

20736

Cqg[1,−2, 1, 4] =
29ζ2
108

+
95ζ3
72
− 222421

165888

Cqg[1,−2, 1, 5] = −13ζ2
540

+
95ζ3
72
− 58155383

62208000

Cqg[1,−3, 0, 0] = −83ζ2
128

+
65ζ3
96
− 91ζ4

384
− 431

3072

Cqg[1,−3, 0, 1] =
613ζ2
384

+
55ζ3
96
− 91ζ4

384
− 3989

1024

Cqg[1,−3, 0, 2] =
517ζ2
128

+
49ζ3
24
− 91ζ4

192
− 11945

1536

Cqg[1,−3, 0, 3] =
8327ζ2
3456

+
53ζ3
48
− 91ζ4

192
− 56939

13824

Cqg[1,−3, 0, 4] =
27109ζ2
13824

+
359ζ3
576

− 91ζ4
192

− 4561379

1327104
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Cqg[1,−3, 0, 5] =
125689ζ2

69120
+

283ζ3
960

− 91ζ4
192

− 7094805577

2488320000

Cqg[0, 3, 0, 0] = −505

48
ζ3ζ2 +

3691ζ2
1296

+
34117ζ3

3456
− 649ζ4

2304
+

1687ζ5
96

− 1457441

995328

Cqg[0, 3, 0, 1] = −505

48
ζ3ζ2 +

624575ζ2
10368

+
54085ζ3

864
+

17939ζ4
2304

+
1687ζ5

96
− 59565061

331776

Cqg[0, 3, 0, 2] = −505

24
ζ3ζ2 +

168217ζ2
2592

+
143947ζ3

1728
+

2927ζ4
288

+
1687ζ5

48
− 118254245

497664

Cqg[0, 3, 0, 3] = −505

24
ζ3ζ2 +

128537ζ2
2592

+
76855ζ3

1152
+

1285ζ4
288

+
1687ζ5

48
− 26723083

165888

Cqg[0, 3, 0, 4] = −505

24
ζ3ζ2 +

1711207ζ2
82944

+
167051ζ3

3456
− 261ζ4

256
+

1687ζ5
48

− 1182915463

15925248

Cqg[0, 3, 0, 5] = −505

24
ζ3ζ2 +

27596011ζ2
3456000

+
7045877ζ3

172800
− 57137ζ4

11520
+

1687ζ5
48

− 737446993121

16588800000

Cqg[0, 2, 1, 0] = −139ζ2
324

− 47ζ3
27

+
193ζ4
576

+
82171

248832

Cqg[0, 2, 1, 1] = −7163ζ2
2592

− 1585ζ3
864

+
193ζ4
576

+
2073437

248832

Cqg[0, 2, 1, 2] = −529ζ2
162

− 3401ζ3
864

+
193ζ4
288

+
1035035

62208

Cqg[0, 2, 1, 3] = −3133ζ2
1296

− 2801ζ3
864

+
193ζ4
288

+
795053

93312

Cqg[0, 2, 1, 4] = −1151ζ2
1152

− 2939ζ3
1152

+
193ζ4
288

+
18979949

5971968

Cqg[0, 2, 1, 5] = −24941ζ2
86400

− 35309ζ3
17280

+
193ζ4
288

+
4717058237

3732480000

Cqg[0, 1, 2, 0] = − ζ3
72
− 125

3888

Cqg[0, 1, 2, 1] =
59

1944
− ζ3

72

Cqg[0, 1, 2, 2] = − ζ3
36
− 4573

15552

Cqg[0, 1, 2, 3] = − ζ3
36
− 1051

15552

Cqg[0, 1, 2, 4] = − ζ3
36
− 179

7776
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Cqg[0, 1, 2, 5] = − ζ3
36
− 139

15552

Cqg[0, 1, 0, 0] =
2807ζ3ζ2

192
− 5833ζ2

1296
− 4001ζ3

432
− 73ζ4

64
− 1447ζ5

64
+

53237

995328

Cqg[0, 1, 0, 1] =
2807ζ3ζ2

192
− 822677ζ2

10368
− 259225ζ3

3456
− 2081ζ4

256
− 1447ζ5

64
+

223748699

995328

Cqg[0, 1, 0, 2] =
2807ζ3ζ2

96
− 2146133ζ2

20736
− 188917ζ3

1728
− 5365ζ4

384
− 1447ζ5

32
+

162487697

497664

Cqg[0, 1, 0, 3] =
2807ζ3ζ2

96
− 1519481ζ2

20736
− 2993ζ3

36
− 371ζ4

48
− 1447ζ5

32
+

106728905

497664

Cqg[0, 1, 0, 4] =
2807ζ3ζ2

96
− 6084335ζ2

165888
− 832939ζ3

13824
− 21791ζ4

9216
− 1447ζ5

32
+

1784995513

15925248

Cqg[0, 1, 0, 5] =
2807ζ3ζ2

96
− 431450027ζ2

20736000
− 17502863ζ3

345600
+

1493ζ4
1024

− 1447ζ5
32

+
11203424776447

149299200000

Cqg[0, 0, 1, 0] =
229ζ2
324

+
1723ζ3

864
− 5ζ4

32
− 17219

124416

Cqg[0, 0, 1, 1] =
8471ζ2
2592

+
1789ζ3

864
− 5ζ4

32
− 1295837

124416

Cqg[0, 0, 1, 2] =
395ζ2

81
+

4109ζ3
864

− 5ζ4
16
− 617845

31104

Cqg[0, 0, 1, 3] =
4427ζ2
1296

+
3001ζ3

864
− 5ζ4

16
− 945307

93312

Cqg[0, 0, 1, 4] =
15587ζ2
10368

+
2015ζ3

864
− 5ζ4

16
− 2590181

746496

Cqg[0, 0, 1, 5] =
153551ζ2
259200

+
1291ζ3

864
− 5ζ4

16
− 386889707

373248000

Cqg[0,−1, 2, 0] =
ζ3
72

+
125

3888

Cqg[0,−1, 2, 1] =
ζ3
72
− 59

1944

Cqg[0,−1, 2, 2] =
ζ3
36

+
4573

15552

Cqg[0,−1, 2, 3] =
ζ3
36

+
1051

15552

Cqg[0,−1, 2, 4] =
ζ3
36

+
179

7776
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Cqg[0,−1, 2, 5] =
ζ3
36

+
139

15552

Cqg[0,−1, 0, 0] = −55

12
ζ3ζ2 +

95ζ2
72
− 463ζ3

1152
+

2245ζ4
2304

+
545ζ5

96
+

422195

331776

Cqg[0,−1, 0, 1] = −55

12
ζ3ζ2 +

72847ζ2
3456

+
1261ζ3

96
− 35ζ4

2304
+

545ζ5
96

− 48336041

995328

Cqg[0,−1, 0, 2] = −55

6
ζ3ζ2 +

48605ζ2
1152

+
517ζ3

18
+

443ζ4
144

+
545ζ5

48
− 197233

2048

Cqg[0,−1, 0, 3] = −55

6
ζ3ζ2 +

266753ζ2
10368

+
61867ζ3

3456
+

799ζ4
288

+
545ζ5

48
− 85508497

1492992

Cqg[0,−1, 0, 4] = −55

6
ζ3ζ2 +

1464109ζ2
82944

+
22661ζ3

1728
+

6935ζ4
2304

+
545ζ5

48
− 1960413023

47775744

Cqg[0,−1, 0, 5] = −55

6
ζ3ζ2 +

29578963ζ2
2073600

+
631069ζ3

57600
+

36971ζ4
11520

+
545ζ5

48
− 4948133456027

149299200000

Cqg[0,−2, 1, 0] = −5ζ2
18
− 73ζ3

288
− 103ζ4

576
− 15911

82944

Cqg[0,−2, 1, 1] = −109ζ2
216

− 17ζ3
72
− 103ζ4

576
+

518237

248832

Cqg[0,−2, 1, 2] = −29ζ2
18
− 59ζ3

72
− 103ζ4

288
+

22295

6912

Cqg[0,−2, 1, 3] = −647ζ2
648

− 25ζ3
108

− 103ζ4
288

+
75127

46656

Cqg[0,−2, 1, 4] = −1307ζ2
2592

+
757ζ3
3456

− 103ζ4
288

+
1741499

5971968

Cqg[0,−2, 1, 5] = −9841ζ2
32400

+
3163ζ3
5760

− 103ζ4
288

− 282720389

1244160000

Cqg[0,−3, 0, 0] =
31ζ3ζ2

64
+
ζ2
3
− 5ζ3

24
+

43ζ4
96
− 41ζ5

64
+

1699

12288

Cqg[0,−3, 0, 1] =
31ζ3ζ2

64
− 757ζ2

384
− 93ζ3

128
+

275ζ4
768

− 41ζ5
64

+
40525

12288

Cqg[0,−3, 0, 2] =
31ζ3ζ2

32
− 2759ζ2

768
− 259ζ3

96
+

281ζ4
384

− 41ζ5
32

+
45607

6144

Cqg[0,−3, 0, 3] =
31ζ3ζ2

32
− 14107ζ2

6912
− 319ζ3

216
+

71ζ4
144

− 41ζ5
32

+
5829529

1492992

Cqg[0,−3, 0, 4] =
31ζ3ζ2

32
− 266297ζ2

165888
− 16553ζ3

13824
+

383ζ4
1024

− 41ζ5
32

+
154172873

47775744
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Cqg[0,−3, 0, 5] =
31ζ3ζ2

32
− 29915669ζ2

20736000
− 75061ζ3

69120
+

4493ζ4
15360

− 41ζ5
32

+
381731617669

149299200000

D.3 The qq̄ channel

Cqq̄[2, 4, 0, 2] =
5

64

Cqq̄[2, 4, 0, 3] =
16009

1728
− 19ζ2

16

Cqq̄[2, 4, 0, 4] =
21065

3456
− 19ζ2

16

Cqq̄[2, 4, 0, 5] =
427607

86400
− 19ζ2

16

Cqq̄[2, 3, 1, 3] = −277

288

Cqq̄[2, 3, 1, 4] = −187

288

Cqq̄[2, 3, 1, 5] = −1447

2880

Cqq̄[2, 3, 0, 1] =
1985

384
− 43ζ2

32

Cqq̄[2, 3, 0, 2] =
2403

256
− 129ζ2

64

Cqq̄[2, 3, 0, 3] =
37931

2304
− 215ζ2

64

Cqq̄[2, 3, 0, 4] =
182303

9216
− 559ζ2

128

Cqq̄[2, 3, 0, 5] =
1911623

86400
− 10019ζ2

1920

Cqq̄[2, 2, 2, 3] =
1

54

Cqq̄[2, 2, 2, 4] =
1

54

Cqq̄[2, 2, 2, 5] =
1

54

Cqq̄[2, 2, 1, 1] = −29

96
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Cqq̄[2, 2, 1, 2] = −23

64

Cqq̄[2, 2, 1, 3] = −121

192

Cqq̄[2, 2, 1, 4] = −595

768

Cqq̄[2, 2, 1, 5] = −50621

57600

Cqq̄[2, 2, 0, 2] = −1

8

Cqq̄[2, 2, 0, 3] =
37ζ2
12
− 21199

864

Cqq̄[2, 2, 0, 4] =
37ζ2
12
− 100649

6912

Cqq̄[2, 2, 0, 5] =
37ζ2
12
− 972487

86400

Cqq̄[2, 1, 1, 3] =
71

32

Cqq̄[2, 1, 1, 4] =
409

288

Cqq̄[2, 1, 1, 5] =
3017

2880

Cqq̄[2, 1, 0, 1] =
115ζ2

32
− 4525

384

Cqq̄[2, 1, 0, 2] =
345ζ2

64
− 5463

256

Cqq̄[2, 1, 0, 3] =
575ζ2

64
− 88283

2304

Cqq̄[2, 1, 0, 4] =
1495ζ2

128
− 424709

9216

Cqq̄[2, 1, 0, 5] =
5359ζ2

384
− 89227561

1728000

Cqq̄[2, 0, 2, 3] = − 1

27

Cqq̄[2, 0, 2, 4] = − 1

27
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Cqq̄[2, 0, 2, 5] = − 1

27

Cqq̄[2, 0, 1, 1] =
29

48

Cqq̄[2, 0, 1, 2] =
23

32

Cqq̄[2, 0, 1, 3] =
121

96

Cqq̄[2, 0, 1, 4] =
595

384

Cqq̄[2, 0, 1, 5] =
50621

28800

Cqq̄[2, 0, 0, 2] = − 1

32

Cqq̄[2, 0, 0, 3] =
2359

108
− 41ζ2

24

Cqq̄[2, 0, 0, 4] =
72661

6912
− 41ζ2

24

Cqq̄[2, 0, 0, 5] =
123961

17280
− 41ζ2

24

Cqq̄[2,−1, 1, 3] = −149

96

Cqq̄[2,−1, 1, 4] = −257

288

Cqq̄[2,−1, 1, 5] = −1693

2880

Cqq̄[2,−1, 0, 1] =
3095

384
− 101ζ2

32

Cqq̄[2,−1, 0, 2] =
3717

256
− 303ζ2

64

Cqq̄[2,−1, 0, 3] =
62773

2304
− 505ζ2

64

Cqq̄[2,−1, 0, 4] =
302509

9216
− 1313ζ2

128

Cqq̄[2,−1, 0, 5] =
31878871

864000
− 23533ζ2

1920
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Cqq̄[2,−2, 2, 3] =
1

54

Cqq̄[2,−2, 2, 4] =
1

54

Cqq̄[2,−2, 2, 5] =
1

54

Cqq̄[2,−2, 1, 1] = −29

96

Cqq̄[2,−2, 1, 2] = −23

64

Cqq̄[2,−2, 1, 3] = −121

192

Cqq̄[2,−2, 1, 4] = −595

768

Cqq̄[2,−2, 1, 5] = −50621

57600

Cqq̄[2,−2, 0, 2] =
1

8

Cqq̄[2,−2, 0, 3] = −13ζ2
12
− 685

96

Cqq̄[2,−2, 0, 4] = −13ζ2
12
− 3965

2304

Cqq̄[2,−2, 0, 5] = −13ζ2
12
− 10859

28800

Cqq̄[2,−3, 1, 3] =
85

288

Cqq̄[2,−3, 1, 4] =
35

288

Cqq̄[2,−3, 1, 5] =
41

960

Cqq̄[2,−3, 0, 1] =
29ζ2
32
− 185

128

Cqq̄[2,−3, 0, 2] =
87ζ2
64
− 657

256

Cqq̄[2,−3, 0, 3] =
145ζ2

64
− 12421

2304
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Cqq̄[2,−3, 0, 4] =
377ζ2
128

− 60103

9216

Cqq̄[2,−3, 0, 5] =
6757ζ2
1920

− 12762641

1728000

Cqq̄[2,−4, 0, 2] = − 3

64

Cqq̄[2,−4, 0, 3] =
43ζ2
48

+
325

576

Cqq̄[2,−4, 0, 4] =
43ζ2
48
− 749

2304

Cqq̄[2,−4, 0, 5] =
43ζ2
48
− 3529

7200

Cqq̄[1, 4, 0, 2] = −3

8

Cqq̄[1, 4, 0, 3] =
1663ζ2

288
+

15ζ3
8
− 9755

384

Cqq̄[1, 4, 0, 4] =
1261ζ2

288
+

15ζ3
8
− 21521

1536

Cqq̄[1, 4, 0, 5] =
10807ζ2

2880
+

15ζ3
8
− 2306837

216000

Cqq̄[1, 3, 1, 2] =
1

32

Cqq̄[1, 3, 1, 3] =
361

108
− 7ζ2

18

Cqq̄[1, 3, 1, 4] =
709

432
− 7ζ2

18

Cqq̄[1, 3, 1, 5] =
10321

9600
− 7ζ2

18

Cqq̄[1, 3, 0, 1] =
277ζ2

96
+

27ζ3
8
− 17327

1728

Cqq̄[1, 3, 0, 2] =
149ζ2

32
+

81ζ3
16
− 44593

2304

Cqq̄[1, 3, 0, 3] =
773ζ2

96
+

135ζ3
16

− 239897

6912

Cqq̄[1, 3, 0, 4] =
7331ζ2

768
+

351ζ3
32

− 83303

2048
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Cqq̄[1, 3, 0, 5] =
66187ζ2

6400
+

2097ζ3
160

− 115335101

2592000

Cqq̄[1, 2, 2, 3] = − 5

54

Cqq̄[1, 2, 2, 4] = − 1

27

Cqq̄[1, 2, 2, 5] = − 11

1080

Cqq̄[1, 2, 1, 1] =
233

432
− ζ2

24

Cqq̄[1, 2, 1, 2] =
379

576
− ζ2

16

Cqq̄[1, 2, 1, 3] =
2359

1728
− 5ζ2

48

Cqq̄[1, 2, 1, 4] =
2447

1536
− 13ζ2

96

Cqq̄[1, 2, 1, 5] =
9034181

5184000
− 233ζ2

1440

Cqq̄[1, 2, 0, 2] =
35

64

Cqq̄[1, 2, 0, 3] = −493ζ2
36

− 125ζ3
24

+
171829

2592

Cqq̄[1, 2, 0, 4] = −695ζ2
72

− 125ζ3
24

+
1315813

41472

Cqq̄[1, 2, 0, 5] = −22697ζ2
2880

− 125ζ3
24

+
14886211

648000

Cqq̄[1, 1, 1, 2] = − 1

32

Cqq̄[1, 1, 1, 3] =
23ζ2
36
− 2507

324

Cqq̄[1, 1, 1, 4] =
23ζ2
36
− 2185

648

Cqq̄[1, 1, 1, 5] =
23ζ2
36
− 531247

259200

Cqq̄[1, 1, 0, 1] = −755ζ2
96

− 125ζ3
16

+
39757

1728
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Cqq̄[1, 1, 0, 2] = −97ζ2
8
− 375ζ3

32
+

103001

2304

Cqq̄[1, 1, 0, 3] = −1027ζ2
48

− 625ζ3
32

+
187739

2304

Cqq̄[1, 1, 0, 4] = −19579ζ2
768

− 1625ζ3
64

+
5296159

55296

Cqq̄[1, 1, 0, 5] = −320311ζ2
11520

− 5825ζ3
192

+
1819688119

17280000

Cqq̄[1, 0, 2, 3] =
5

27

Cqq̄[1, 0, 2, 4] =
2

27

Cqq̄[1, 0, 2, 5] =
11

540

Cqq̄[1, 0, 1, 1] =
ζ2
12
− 233

216

Cqq̄[1, 0, 1, 2] =
ζ2
8
− 379

288

Cqq̄[1, 0, 1, 3] =
5ζ2
24
− 2359

864

Cqq̄[1, 0, 1, 4] =
13ζ2
48
− 2447

768

Cqq̄[1, 0, 1, 5] =
233ζ2
720

− 9034181

2592000

Cqq̄[1, 0, 0, 2] =
13

64

Cqq̄[1, 0, 0, 3] =
117ζ2

16
+

113ζ3
24

− 297883

5184

Cqq̄[1, 0, 0, 4] =
217ζ2

48
+

113ζ3
24

− 840017

41472

Cqq̄[1, 0, 0, 5] =
1057ζ2

320
+

113ζ3
24

− 6645283

518400

Cqq̄[1,−1, 1, 2] = − 1

32

Cqq̄[1,−1, 1, 3] =
1765

324
− ζ2

9

– 79 –



Cqq̄[1,−1, 1, 4] =
2359

1296
− ζ2

9

Cqq̄[1,−1, 1, 5] =
226493

259200
− ζ2

9

Cqq̄[1,−1, 0, 1] =
679ζ2

96
+

11ζ3
2
− 27533

1728

Cqq̄[1,−1, 0, 2] =
329ζ2

32
+

33ζ3
4
− 72223

2304

Cqq̄[1,−1, 0, 3] =
1789ζ2

96
+

55ζ3
4
− 135581

2304

Cqq̄[1,−1, 0, 4] =
17165ζ2

768
+

143ζ3
8
− 3844775

55296

Cqq̄[1,−1, 0, 5] =
1416061ζ2

57600
+

2563ζ3
120

− 666337109

8640000

Cqq̄[1,−2, 2, 3] = − 5

54

Cqq̄[1,−2, 2, 4] = − 1

27

Cqq̄[1,−2, 2, 5] = − 11

1080

Cqq̄[1,−2, 1, 1] =
233

432
− ζ2

24

Cqq̄[1,−2, 1, 2] =
379

576
− ζ2

16

Cqq̄[1,−2, 1, 3] =
2359

1728
− 5ζ2

48

Cqq̄[1,−2, 1, 4] =
2447

1536
− 13ζ2

96

Cqq̄[1,−2, 1, 5] =
9034181

5184000
− 233ζ2

1440

Cqq̄[1,−2, 0, 2] = −35

64

Cqq̄[1,−2, 0, 3] =
121ζ2

36
− 31ζ3

24
+

45781

2592

Cqq̄[1,−2, 0, 4] =
173ζ2

72
− 31ζ3

24
+

56863

41472
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Cqq̄[1,−2, 0, 5] =
5837ζ2
2880

− 31ζ3
24
− 726763

1296000

Cqq̄[1,−3, 1, 2] =
1

32

Cqq̄[1,−3, 1, 3] = −5ζ2
36
− 341

324

Cqq̄[1,−3, 1, 4] = −5ζ2
36
− 29

324

Cqq̄[1,−3, 1, 5] =
26087

259200
− 5ζ2

36

Cqq̄[1,−3, 0, 1] = −67ζ2
32
− 17ζ3

16
+

189

64

Cqq̄[1,−3, 0, 2] = −45ζ2
16
− 51ζ3

32
+

1535

256

Cqq̄[1,−3, 0, 3] = −127ζ2
24

− 85ζ3
32

+
83423

6912

Cqq̄[1,−3, 0, 4] = −1639ζ2
256

− 221ζ3
64

+
797797

55296

Cqq̄[1,−3, 0, 5] = −410189ζ2
57600

− 3961ζ3
960

+
845660317

51840000

Cqq̄[1,−4, 0, 2] =
11

64

Cqq̄[1,−4, 0, 3] = −793ζ2
288

− ζ3
12
− 3763

3456

Cqq̄[1,−4, 0, 4] = −475ζ2
288

− ζ3
12

+
2017

1728

Cqq̄[1,−4, 0, 5] = −173ζ2
144

− ζ3
12

+
939047

864000

Cqq̄[0, 4, 0, 1] =
1

128

Cqq̄[0, 4, 0, 2] =
2131

2304
− 3ζ2

64

Cqq̄[0, 4, 0, 3] = −3161ζ2
288

− 709ζ3
144

+
215ζ4
192

+
1379425

41472

Cqq̄[0, 4, 0, 4] = −629ζ2
96

− 589ζ3
144

+
215ζ4
192

+
54485

3456
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Cqq̄[0, 4, 0, 5] = −284243ζ2
57600

− 2681ζ3
720

+
215ζ4
192

+
299614483

25920000

Cqq̄[0, 3, 1, 2] = − 73

576

Cqq̄[0, 3, 1, 3] =
149ζ2
108

+
11ζ3
72
− 13891

2592

Cqq̄[0, 3, 1, 4] =
199ζ2
216

+
11ζ3
72
− 1189

648

Cqq̄[0, 3, 1, 5] =
613ζ2
864

+
11ζ3
72
− 5066843

5184000

Cqq̄[0, 3, 0, 1] = −197ζ2
48

− 131ζ3
48

− 101ζ4
64

+
33977

3456

Cqq̄[0, 3, 0, 2] = −453ζ2
64

− 279ζ3
64

− 303ζ4
128

+
31879

1536

Cqq̄[0, 3, 0, 3] = −2351ζ2
192

− 495ζ3
64

− 505ζ4
128

+
779173

20736

Cqq̄[0, 3, 0, 4] = −133561ζ2
9216

− 433ζ3
48

− 1313ζ4
256

+
29306059

663552

Cqq̄[0, 3, 0, 5] = −18335807ζ2
1152000

− 276937ζ3
28800

− 23533ζ4
3840

+
60602991071

1244160000

Cqq̄[0, 2, 2, 3] =
17

108
− 5ζ2

108

Cqq̄[0, 2, 2, 4] = − 5ζ2
108
− 11

648

Cqq̄[0, 2, 2, 5] = − 5ζ2
108
− 563

10800

Cqq̄[0, 2, 1, 1] =
7ζ2
24

+
ζ3
24
− 55

108

Cqq̄[0, 2, 1, 2] =
11ζ2
32

+
ζ3
16
− 313

384

Cqq̄[0, 2, 1, 3] =
173ζ2
288

+
5ζ3
48
− 5783

3456

Cqq̄[0, 2, 1, 4] =
95ζ2
128

+
13ζ3
96
− 108079

55296

Cqq̄[0, 2, 1, 5] =
73111ζ2
86400

+
233ζ3
1440

− 676881547

311040000
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Cqq̄[0, 2, 0, 2] = −3ζ2
32
− 1145

1152

Cqq̄[0, 2, 0, 3] =
5855ζ2

288
+

3737ζ3
288

− 35ζ4
32
− 5154815

62208

Cqq̄[0, 2, 0, 4] =
12005ζ2

1152
+

1435ζ3
144

− 35ζ4
32
− 16620643

497664

Cqq̄[0, 2, 0, 5] =
47617ζ2

6400
+

12439ζ3
1440

− 35ζ4
32
− 1854331939

77760000

Cqq̄[0, 1, 1, 2] =
79

576

Cqq̄[0, 1, 1, 3] = −869ζ2
432

− 5ζ3
8

+
94471

7776

Cqq̄[0, 1, 1, 4] = −605ζ2
432

− 5ζ3
8

+
57785

15552

Cqq̄[0, 1, 1, 5] = −2461ζ2
2160

− 5ζ3
8

+
30477989

15552000

Cqq̄[0, 1, 0, 1] =
941ζ2

96
+

647ζ3
96

+
11ζ4

4
− 78403

3456

Cqq̄[0, 1, 0, 2] =
545ζ2

32
+

167ζ3
16

+
33ζ4

8
− 73127

1536

Cqq̄[0, 1, 0, 3] =
17477ζ2

576
+

449ζ3
24

+
55ζ4

8
− 3625007

41472

Cqq̄[0, 1, 0, 4] =
331541ζ2

9216
+

5627ζ3
256

+
143ζ4

16
− 68306477

663552

Cqq̄[0, 1, 0, 5] =
27415817ζ2

691200
+

18151ζ3
768

+
2563ζ4

240
− 118149584303

1036800000

Cqq̄[0, 0, 2, 3] =
5ζ2
54
− 17

54

Cqq̄[0, 0, 2, 4] =
5ζ2
54

+
11

324

Cqq̄[0, 0, 2, 5] =
5ζ2
54

+
563

5400

Cqq̄[0, 0, 1, 1] = −7ζ2
12
− ζ3

12
+

55

54

Cqq̄[0, 0, 1, 2] = −11ζ2
16
− ζ3

8
+

313

192
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Cqq̄[0, 0, 1, 3] = −173ζ2
144

− 5ζ3
24

+
5783

1728

Cqq̄[0, 0, 1, 4] = −95ζ2
64
− 13ζ3

48
+

108079

27648

Cqq̄[0, 0, 1, 5] = −73111ζ2
43200

− 233ζ3
720

+
676881547

155520000

Cqq̄[0, 0, 0, 1] = − 1

64

Cqq̄[0, 0, 0, 2] =
3ζ2
16
− 487

576

Cqq̄[0, 0, 0, 3] = −2269ζ2
432

− 3329ζ3
288

− 61ζ4
48

+
1045447

15552

Cqq̄[0, 0, 0, 4] = − ζ2
27
− 1123ζ3

144
− 61ζ4

48
+

9209057

497664

Cqq̄[0, 0, 0, 5] =
137969ζ2
172800

− 1763ζ3
288

− 61ζ4
48

+
382859723

31104000

Cqq̄[0,−1, 1, 2] =
61

576

Cqq̄[0,−1, 1, 3] = −25ζ2
216

+
19ζ3
24
− 63923

7776

Cqq̄[0,−1, 1, 4] =
ζ2
27

+
19ζ3
24
− 14981

7776

Cqq̄[0,−1, 1, 5] =
649ζ2
4320

+
19ζ3
24
− 15354391

15552000

Cqq̄[0,−1, 0, 1] = −175ζ2
24

− 127ζ3
24

− 49ζ4
64

+
54875

3456

Cqq̄[0,−1, 0, 2] = −821ζ2
64

− 499ζ3
64

− 147ζ4
128

+
50617

1536

Cqq̄[0,−1, 0, 3] = −13795ζ2
576

− 2729ζ3
192

− 245ζ4
128

+
20117

324

Cqq̄[0,−1, 0, 4] = −262399ζ2
9216

− 2163ζ3
128

− 637ζ4
256

+
48694777

663552

Cqq̄[0,−1, 0, 5] = −109135907ζ2
3456000

− 29473ζ3
1600

− 11417ζ4
3840

+
169583381857

2073600000

Cqq̄[0,−2, 2, 3] =
17

108
− 5ζ2

108
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Cqq̄[0,−2, 2, 4] = − 5ζ2
108
− 11

648

Cqq̄[0,−2, 2, 5] = − 5ζ2
108
− 563

10800

Cqq̄[0,−2, 1, 1] =
7ζ2
24

+
ζ3
24
− 55

108

Cqq̄[0,−2, 1, 2] =
11ζ2
32

+
ζ3
16
− 313

384

Cqq̄[0,−2, 1, 3] =
173ζ2
288

+
5ζ3
48
− 5783

3456

Cqq̄[0,−2, 1, 4] =
95ζ2
128

+
13ζ3
96
− 108079

55296

Cqq̄[0,−2, 1, 5] =
73111ζ2
86400

+
233ζ3
1440

− 676881547

311040000

Cqq̄[0,−2, 0, 2] =
3ζ2
32

+
1121

1152

Cqq̄[0,−2, 0, 3] = −5687ζ2
864

+
373ζ3

96
+

43ζ4
32
− 1175681

62208

Cqq̄[0,−2, 0, 4] = −17213ζ2
3456

+
33ζ3
16

+
43ζ4
32

+
60455

497664

Cqq̄[0,−2, 0, 5] = −721999ζ2
172800

+
587ζ3
480

+
43ζ4
32

+
26661703

38880000

Cqq̄[0,−3, 1, 2] = − 67

576

Cqq̄[0,−3, 1, 3] =
323ζ2
432

− 23ζ3
72

+
11125

7776

Cqq̄[0,−3, 1, 4] =
191ζ2
432

− 23ζ3
72

+
713

15552

Cqq̄[0,−3, 1, 5] =
151ζ2
540

− 23ζ3
72

+
76931

15552000

Cqq̄[0,−3, 0, 1] =
51ζ2
32

+
41ζ3
32
− 13ζ4

32
− 387

128

Cqq̄[0,−3, 0, 2] =
23ζ2

8
+

55ζ3
32
− 39ζ4

64
− 3123

512

Cqq̄[0,−3, 0, 3] =
3371ζ2

576
+

311ζ3
96

− 65ζ4
64
− 508315

41472
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Cqq̄[0,−3, 0, 4] =
21473ζ2

3072
+

3025ζ3
768

− 169ζ4
128

− 1077151

73728

Cqq̄[0,−3, 0, 5] =
27064243ζ2

3456000
+

253577ζ3
57600

− 3029ζ4
1920

− 25716898777

1555200000

Cqq̄[0,−4, 0, 1] =
1

128

Cqq̄[0,−4, 0, 2] = −9ζ2
64
− 15

256

Cqq̄[0,−4, 0, 3] =
2143ζ2

864
− 109ζ3

288
− 19ζ4

192
+

53047

41472

Cqq̄[0,−4, 0, 4] =
1985ζ2
1728

− 5ζ3
36
− 19ζ4

192
− 164903

165888

Cqq̄[0,−4, 0, 5] =
1511ζ2
1728

− 23ζ3
1440

− 19ζ4
192

− 36656149

51840000

D.4 The qq channel

Cqq[2, 3, 0, 1] =
1985

384
− 43ζ2

32

Cqq[2, 3, 0, 2] =
2403

256
− 129ζ2

64

Cqq[2, 3, 0, 3] =
37955

2304
− 215ζ2

64

Cqq[2, 3, 0, 4] =
182495

9216
− 559ζ2

128

Cqq[2, 3, 0, 5] =
14956

675
− 10019ζ2

1920

Cqq[2, 2, 1, 1] = −29

96

Cqq[2, 2, 1, 2] = −23

64

Cqq[2, 2, 1, 3] = −121

192

Cqq[2, 2, 1, 4] = −595

768

Cqq[2, 2, 1, 5] = −50621

57600
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Cqq[2, 2, 0, 2] = − 1

64

Cqq[2, 2, 0, 3] = − 3

64

Cqq[2, 2, 0, 4] = − 107

1536

Cqq[2, 2, 0, 5] = − 671

7680

Cqq[2, 1, 0, 1] =
115ζ2

32
− 4525

384

Cqq[2, 1, 0, 2] =
345ζ2

64
− 5463

256

Cqq[2, 1, 0, 3] =
575ζ2

64
− 88427

2304

Cqq[2, 1, 0, 4] =
1495ζ2

128
− 425861

9216

Cqq[2, 1, 0, 5] =
5359ζ2

384
− 89556961

1728000

Cqq[2, 0, 1, 1] =
29

48

Cqq[2, 0, 1, 2] =
23

32

Cqq[2, 0, 1, 3] =
121

96

Cqq[2, 0, 1, 4] =
595

384

Cqq[2, 0, 1, 5] =
50621

28800

Cqq[2, 0, 0, 2] =
5

64

Cqq[2, 0, 0, 3] =
49

192

Cqq[2, 0, 0, 4] =
587

1536

Cqq[2, 0, 0, 5] =
1233

2560
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Cqq[2,−1, 0, 1] =
3095

384
− 101ζ2

32

Cqq[2,−1, 0, 2] =
3717

256
− 303ζ2

64

Cqq[2,−1, 0, 3] =
62989

2304
− 505ζ2

64

Cqq[2,−1, 0, 4] =
304237

9216
− 1313ζ2

128

Cqq[2,−1, 0, 5] =
32125921

864000
− 23533ζ2

1920

Cqq[2,−2, 1, 1] = −29

96

Cqq[2,−2, 1, 2] = −23

64

Cqq[2,−2, 1, 3] = −121

192

Cqq[2,−2, 1, 4] = −595

768

Cqq[2,−2, 1, 5] = −50621

57600

Cqq[2,−2, 0, 2] = − 7

64

Cqq[2,−2, 0, 3] = − 71

192

Cqq[2,−2, 0, 4] = − 853

1536

Cqq[2,−2, 0, 5] = −359

512

Cqq[2,−3, 0, 1] =
29ζ2
32
− 185

128

Cqq[2,−3, 0, 2] =
87ζ2
64
− 657

256

Cqq[2,−3, 0, 3] =
145ζ2

64
− 12517

2304

Cqq[2,−3, 0, 4] =
377ζ2
128

− 60871

9216
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Cqq[2,−3, 0, 5] =
6757ζ2
1920

− 12982241

1728000

Cqq[2,−4, 0, 2] =
3

64

Cqq[2,−4, 0, 3] =
31

192

Cqq[2,−4, 0, 4] =
373

1536

Cqq[2,−4, 0, 5] =
2357

7680

Cqq[1, 3, 0, 1] =
277ζ2

96
+

27ζ3
8
− 17327

1728

Cqq[1, 3, 0, 2] =
149ζ2

32
+

81ζ3
16
− 44593

2304

Cqq[1, 3, 0, 3] =
773ζ2

96
+

135ζ3
16

− 240269

6912

Cqq[1, 3, 0, 4] =
7331ζ2

768
+

351ζ3
32

− 751631

18432

Cqq[1, 3, 0, 5] =
66187ζ2

6400
+

2097ζ3
160

− 14463727

324000

Cqq[1, 2, 1, 1] =
233

432
− ζ2

24

Cqq[1, 2, 1, 2] =
379

576
− ζ2

16

Cqq[1, 2, 1, 3] =
2359

1728
− 5ζ2

48

Cqq[1, 2, 1, 4] =
2447

1536
− 13ζ2

96

Cqq[1, 2, 1, 5] =
9034181

5184000
− 233ζ2

1440

Cqq[1, 2, 0, 2] =
31

192

Cqq[1, 2, 0, 3] =
91

192

Cqq[1, 2, 0, 4] =
2029

3072
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Cqq[1, 2, 0, 5] =
60109

76800

Cqq[1, 1, 1, 2] = − 1

48

Cqq[1, 1, 1, 3] = − 1

16

Cqq[1, 1, 1, 4] = − 107

1152

Cqq[1, 1, 1, 5] = − 671

5760

Cqq[1, 1, 0, 1] = −755ζ2
96

− 125ζ3
16

+
39757

1728

Cqq[1, 1, 0, 2] = −97ζ2
8
− 375ζ3

32
+

103001

2304

Cqq[1, 1, 0, 3] = −1027ζ2
48

− 625ζ3
32

+
188483

2304

Cqq[1, 1, 0, 4] = −19579ζ2
768

− 1625ζ3
64

+
5330431

55296

Cqq[1, 1, 0, 5] = −320311ζ2
11520

− 5825ζ3
192

+
1834676719

17280000

Cqq[1, 0, 1, 1] =
ζ2
12
− 233

216

Cqq[1, 0, 1, 2] =
ζ2
8
− 379

288

Cqq[1, 0, 1, 3] =
5ζ2
24
− 2359

864

Cqq[1, 0, 1, 4] =
13ζ2
48
− 2447

768

Cqq[1, 0, 1, 5] =
233ζ2
720

− 9034181

2592000

Cqq[1, 0, 0, 2] = − 89

192

Cqq[1, 0, 0, 3] = −827

576

Cqq[1, 0, 0, 4] = −18019

9216
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Cqq[1, 0, 0, 5] = −524983

230400

Cqq[1,−1, 1, 2] =
1

24

Cqq[1,−1, 1, 3] =
1

8

Cqq[1,−1, 1, 4] =
107

576

Cqq[1,−1, 1, 5] =
671

2880

Cqq[1,−1, 0, 1] =
679ζ2

96
+

11ζ3
2
− 27533

1728

Cqq[1,−1, 0, 2] =
329ζ2

32
+

33ζ3
4
− 72223

2304

Cqq[1,−1, 0, 3] =
1789ζ2

96
+

55ζ3
4
− 136697

2304

Cqq[1,−1, 0, 4] =
17165ζ2

768
+

143ζ3
8
− 3896183

55296

Cqq[1,−1, 0, 5] =
1416061ζ2

57600
+

2563ζ3
120

− 677578559

8640000

Cqq[1,−2, 1, 1] =
233

432
− ζ2

24

Cqq[1,−2, 1, 2] =
379

576
− ζ2

16

Cqq[1,−2, 1, 3] =
2359

1728
− 5ζ2

48

Cqq[1,−2, 1, 4] =
2447

1536
− 13ζ2

96

Cqq[1,−2, 1, 5] =
9034181

5184000
− 233ζ2

1440

Cqq[1,−2, 0, 2] =
85

192

Cqq[1,−2, 0, 3] =
835

576

Cqq[1,−2, 0, 4] =
17777

9216

– 91 –



Cqq[1,−2, 0, 5] =
101797

46080

Cqq[1,−3, 1, 2] = − 1

48

Cqq[1,−3, 1, 3] = − 1

16

Cqq[1,−3, 1, 4] = − 107

1152

Cqq[1,−3, 1, 5] = − 671

5760

Cqq[1,−3, 0, 1] = −67ζ2
32
− 17ζ3

16
+

189

64

Cqq[1,−3, 0, 2] = −45ζ2
16
− 51ζ3

32
+

1535

256

Cqq[1,−3, 0, 3] = −127ζ2
24

− 85ζ3
32

+
84911

6912

Cqq[1,−3, 0, 4] = −1639ζ2
256

− 221ζ3
64

+
820645

55296

Cqq[1,−3, 0, 5] = −410189ζ2
57600

− 3961ζ3
960

+
875637517

51840000

Cqq[1,−4, 0, 2] = − 9

64

Cqq[1,−4, 0, 3] = −281

576

Cqq[1,−4, 0, 4] = −5845

9216

Cqq[1,−4, 0, 5] = −164329

230400

Cqq[0, 3, 0, 1] = −197ζ2
48

− 131ζ3
48

− 25ζ4
16

+
33977

3456

Cqq[0, 3, 0, 2] = −453ζ2
64

− 279ζ3
64

− 75ζ4
32

+
31855

1536

Cqq[0, 3, 0, 3] = −2365ζ2
192

− 495ζ3
64

− 125ζ4
32

+
1560251

41472

Cqq[0, 3, 0, 4] = −134977ζ2
9216

− 433ζ3
48

− 325ζ4
64

+
9788189

221184
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Cqq[0, 3, 0, 5] = −18610607ζ2
1152000

− 276937ζ3
28800

− 1165ζ4
192

+
3796028021

77760000

Cqq[0, 2, 1, 1] =
7ζ2
24

+
ζ3
24
− 55

108

Cqq[0, 2, 1, 2] =
11ζ2
32

+
ζ3
16
− 313

384

Cqq[0, 2, 1, 3] =
173ζ2
288

+
5ζ3
48
− 5783

3456

Cqq[0, 2, 1, 4] =
95ζ2
128

+
13ζ3
96
− 108079

55296

Cqq[0, 2, 1, 5] =
73111ζ2
86400

+
233ζ3
1440

− 676881547

311040000

Cqq[0, 2, 0, 1] = −3ζ3
32

Cqq[0, 2, 0, 2] = −25ζ2
128

− 15ζ3
128

− 493

1152

Cqq[0, 2, 0, 3] = −57ζ2
128

− 49ζ3
384

− 235

192

Cqq[0, 2, 0, 4] = −1931ζ2
3072

− 205ζ3
1536

− 56633

36864

Cqq[0, 2, 0, 5] = −3941ζ2
5120

− 5309ζ3
38400

− 22924469

13824000

Cqq[0, 1, 1, 2] =
19

288

Cqq[0, 1, 1, 3] =
53

288

Cqq[0, 1, 1, 4] =
1049

4608

Cqq[0, 1, 1, 5] =
3101

12800

Cqq[0, 1, 0, 1] =
941ζ2

96
+

647ζ3
96

+
85ζ4
32
− 78403

3456

Cqq[0, 1, 0, 2] =
545ζ2

32
+

167ζ3
16

+
255ζ4

64
− 72983

1536

Cqq[0, 1, 0, 3] =
17729ζ2

576
+

449ζ3
24

+
425ζ4

64
− 3636437

41472
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Cqq[0, 1, 0, 4] =
340037ζ2

9216
+

5627ζ3
256

+
1105ζ4

128
− 68657525

663552

Cqq[0, 1, 0, 5] =
28405097ζ2

691200
+

18151ζ3
768

+
3961ζ4

384
− 29704217657

259200000

Cqq[0, 0, 1, 1] = −7ζ2
12
− ζ3

12
+

55

54

Cqq[0, 0, 1, 2] = −11ζ2
16
− ζ3

8
+

313

192

Cqq[0, 0, 1, 3] = −173ζ2
144

− 5ζ3
24

+
5783

1728

Cqq[0, 0, 1, 4] = −95ζ2
64
− 13ζ3

48
+

108079

27648

Cqq[0, 0, 1, 5] = −73111ζ2
43200

− 233ζ3
720

+
676881547

155520000

Cqq[0, 0, 0, 1] =
3ζ3
32

Cqq[0, 0, 0, 2] =
37ζ2
128

+
15ζ3
128

+
1103

1152

Cqq[0, 0, 0, 3] =
203ζ2
384

+
49ζ3
384

+
4985

1728

Cqq[0, 0, 0, 4] =
6613ζ2
9216

+
205ζ3
1536

+
403535

110592

Cqq[0, 0, 0, 5] =
13187ζ2
15360

+
5309ζ3
38400

+
55230241

13824000

Cqq[0,−1, 1, 2] = − 19

144

Cqq[0,−1, 1, 3] = − 53

144

Cqq[0,−1, 1, 4] = −1049

2304

Cqq[0,−1, 1, 5] = −3101

6400

Cqq[0,−1, 0, 1] = −175ζ2
24

− 127ζ3
24

− 5ζ4
8

+
54875

3456

Cqq[0,−1, 0, 2] = −821ζ2
64

− 499ζ3
64

− 15ζ4
16

+
50401

1536
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Cqq[0,−1, 0, 3] = −14173ζ2
576

− 2729ζ3
192

− 25ζ4
16

+
2592121

41472

Cqq[0,−1, 0, 4] = −275143ζ2
9216

− 2163ζ3
128

− 65ζ4
32

+
49221349

663552

Cqq[0,−1, 0, 5] = −116555507ζ2
3456000

− 29473ζ3
1600

− 233ζ4
96

+
670254847

8100000

Cqq[0,−2, 1, 1] =
7ζ2
24

+
ζ3
24
− 55

108

Cqq[0,−2, 1, 2] =
11ζ2
32

+
ζ3
16
− 313

384

Cqq[0,−2, 1, 3] =
173ζ2
288

+
5ζ3
48
− 5783

3456

Cqq[0,−2, 1, 4] =
95ζ2
128

+
13ζ3
96
− 108079

55296

Cqq[0,−2, 1, 5] =
73111ζ2
86400

+
233ζ3
1440

− 676881547

311040000

Cqq[0,−2, 0, 1] =
3ζ3
32

Cqq[0,−2, 0, 2] =
ζ2

128
+

15ζ3
128

− 727

1152

Cqq[0,−2, 0, 3] =
107ζ2
384

+
49ζ3
384

− 3625

1728

Cqq[0,−2, 0, 4] =
4153ζ2
9216

+
205ζ3
1536

− 297373

110592

Cqq[0,−2, 0, 5] =
1819ζ2
3072

+
5309ζ3
38400

− 1667483

552960

Cqq[0,−3, 1, 2] =
19

288

Cqq[0,−3, 1, 3] =
53

288

Cqq[0,−3, 1, 4] =
1049

4608

Cqq[0,−3, 1, 5] =
3101

12800

Cqq[0,−3, 0, 1] =
51ζ2
32

+
41ζ3
32
− 15ζ4

32
− 387

128
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Cqq[0,−3, 0, 2] =
23ζ2

8
+

55ζ3
32
− 45ζ4

64
− 3091

512

Cqq[0,−3, 0, 3] =
3539ζ2

576
+

311ζ3
96

− 75ζ4
64
− 515935

41472

Cqq[0,−3, 0, 4] =
7787ζ2
1024

+
3025ζ3

768
− 195ζ4

128
− 9928391

663552

Cqq[0,−3, 0, 5] =
30361843ζ2

3456000
+

253577ζ3
57600

− 233ζ4
128

− 13192092551

777600000

Cqq[0,−4, 0, 1] = −3ζ3
32

Cqq[0,−4, 0, 2] = −13ζ2
128

− 15ζ3
128

+
13

128

Cqq[0,−4, 0, 3] = −139ζ2
384

− 49ζ3
384

+
755

1728

Cqq[0,−4, 0, 4] = −4973ζ2
9216

− 205ζ3
1536

+
63737

110592

Cqq[0,−4, 0, 5] = −10459ζ2
15360

− 5309ζ3
38400

+
1042367

1536000

D.5 The qq′ channel

Cqq′ [2, 3, 0, 1] =
1985

384
− 43ζ2

32

Cqq′ [2, 3, 0, 2] =
2403

256
− 129ζ2

64

Cqq′ [2, 3, 0, 3] =
37955

2304
− 215ζ2

64

Cqq′ [2, 3, 0, 4] =
182495

9216
− 559ζ2

128

Cqq′ [2, 3, 0, 5] =
14956

675
− 10019ζ2

1920

Cqq′ [2, 2, 1, 1] = −29

96

Cqq′ [2, 2, 1, 2] = −23

64

Cqq′ [2, 2, 1, 3] = −121

192
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Cqq′ [2, 2, 1, 4] = −595

768

Cqq′ [2, 2, 1, 5] = −50621

57600

Cqq′ [2, 1, 0, 1] =
115ζ2

32
− 4525

384

Cqq′ [2, 1, 0, 2] =
345ζ2

64
− 5463

256

Cqq′ [2, 1, 0, 3] =
575ζ2

64
− 88427

2304

Cqq′ [2, 1, 0, 4] =
1495ζ2

128
− 425861

9216

Cqq′ [2, 1, 0, 5] =
5359ζ2

384
− 89556961

1728000

Cqq′ [2, 0, 1, 1] =
29

48

Cqq′ [2, 0, 1, 2] =
23

32

Cqq′ [2, 0, 1, 3] =
121

96

Cqq′ [2, 0, 1, 4] =
595

384

Cqq′ [2, 0, 1, 5] =
50621

28800

Cqq′ [2,−1, 0, 1] =
3095

384
− 101ζ2

32

Cqq′ [2,−1, 0, 2] =
3717

256
− 303ζ2

64

Cqq′ [2,−1, 0, 3] =
62989

2304
− 505ζ2

64

Cqq′ [2,−1, 0, 4] =
304237

9216
− 1313ζ2

128

Cqq′ [2,−1, 0, 5] =
32125921

864000
− 23533ζ2

1920

Cqq′ [2,−2, 1, 1] = −29

96
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Cqq′ [2,−2, 1, 2] = −23

64

Cqq′ [2,−2, 1, 3] = −121

192

Cqq′ [2,−2, 1, 4] = −595

768

Cqq′ [2,−2, 1, 5] = −50621

57600

Cqq′ [2,−3, 0, 1] =
29ζ2
32
− 185

128

Cqq′ [2,−3, 0, 2] =
87ζ2
64
− 657

256

Cqq′ [2,−3, 0, 3] =
145ζ2

64
− 12517

2304

Cqq′ [2,−3, 0, 4] =
377ζ2
128

− 60871

9216

Cqq′ [2,−3, 0, 5] =
6757ζ2
1920

− 12982241

1728000

Cqq′ [1, 3, 0, 1] =
277ζ2

96
+

27ζ3
8
− 17327

1728

Cqq′ [1, 3, 0, 2] =
149ζ2

32
+

81ζ3
16
− 44593

2304

Cqq′ [1, 3, 0, 3] =
773ζ2

96
+

135ζ3
16

− 240269

6912

Cqq′ [1, 3, 0, 4] =
7331ζ2

768
+

351ζ3
32

− 751631

18432

Cqq′ [1, 3, 0, 5] =
66187ζ2

6400
+

2097ζ3
160

− 14463727

324000

Cqq′ [1, 2, 1, 1] =
233

432
− ζ2

24

Cqq′ [1, 2, 1, 2] =
379

576
− ζ2

16

Cqq′ [1, 2, 1, 3] =
2359

1728
− 5ζ2

48

Cqq′ [1, 2, 1, 4] =
2447

1536
− 13ζ2

96
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Cqq′ [1, 2, 1, 5] =
9034181

5184000
− 233ζ2

1440

Cqq′ [1, 1, 0, 1] = −755ζ2
96

− 125ζ3
16

+
39757

1728

Cqq′ [1, 1, 0, 2] = −97ζ2
8
− 375ζ3

32
+

103001

2304

Cqq′ [1, 1, 0, 3] = −1027ζ2
48

− 625ζ3
32

+
188483

2304

Cqq′ [1, 1, 0, 4] = −19579ζ2
768

− 1625ζ3
64

+
5330431

55296

Cqq′ [1, 1, 0, 5] = −320311ζ2
11520

− 5825ζ3
192

+
1834676719

17280000

Cqq′ [1, 0, 1, 1] =
ζ2
12
− 233

216

Cqq′ [1, 0, 1, 2] =
ζ2
8
− 379

288

Cqq′ [1, 0, 1, 3] =
5ζ2
24
− 2359

864

Cqq′ [1, 0, 1, 4] =
13ζ2
48
− 2447

768

Cqq′ [1, 0, 1, 5] =
233ζ2
720

− 9034181

2592000

Cqq′ [1,−1, 0, 1] =
679ζ2

96
+

11ζ3
2
− 27533

1728

Cqq′ [1,−1, 0, 2] =
329ζ2

32
+

33ζ3
4
− 72223

2304

Cqq′ [1,−1, 0, 3] =
1789ζ2

96
+

55ζ3
4
− 136697

2304

Cqq′ [1,−1, 0, 4] =
17165ζ2

768
+

143ζ3
8
− 3896183

55296

Cqq′ [1,−1, 0, 5] =
1416061ζ2

57600
+

2563ζ3
120

− 677578559

8640000

Cqq′ [1,−2, 1, 1] =
233

432
− ζ2

24

Cqq′ [1,−2, 1, 2] =
379

576
− ζ2

16
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Cqq′ [1,−2, 1, 3] =
2359

1728
− 5ζ2

48

Cqq′ [1,−2, 1, 4] =
2447

1536
− 13ζ2

96

Cqq′ [1,−2, 1, 5] =
9034181

5184000
− 233ζ2

1440

Cqq′ [1,−3, 0, 1] = −67ζ2
32
− 17ζ3

16
+

189

64

Cqq′ [1,−3, 0, 2] = −45ζ2
16
− 51ζ3

32
+

1535

256

Cqq′ [1,−3, 0, 3] = −127ζ2
24

− 85ζ3
32

+
84911

6912

Cqq′ [1,−3, 0, 4] = −1639ζ2
256

− 221ζ3
64

+
820645

55296

Cqq′ [1,−3, 0, 5] = −410189ζ2
57600

− 3961ζ3
960

+
875637517

51840000

Cqq′ [0, 3, 0, 1] = −197ζ2
48

− 131ζ3
48

− 25ζ4
16

+
33977

3456

Cqq′ [0, 3, 0, 2] = −453ζ2
64

− 279ζ3
64

− 75ζ4
32

+
31855

1536

Cqq′ [0, 3, 0, 3] = −2365ζ2
192

− 495ζ3
64

− 125ζ4
32

+
1560251

41472

Cqq′ [0, 3, 0, 4] = −134977ζ2
9216

− 433ζ3
48

− 325ζ4
64

+
9788189

221184

Cqq′ [0, 3, 0, 5] = −18610607ζ2
1152000

− 276937ζ3
28800

− 1165ζ4
192

+
3796028021

77760000

Cqq′ [0, 2, 1, 1] =
7ζ2
24

+
ζ3
24
− 55

108

Cqq′ [0, 2, 1, 2] =
11ζ2
32

+
ζ3
16
− 313

384

Cqq′ [0, 2, 1, 3] =
173ζ2
288

+
5ζ3
48
− 5783

3456

Cqq′ [0, 2, 1, 4] =
95ζ2
128

+
13ζ3
96
− 108079

55296

Cqq′ [0, 2, 1, 5] =
73111ζ2
86400

+
233ζ3
1440

− 676881547

311040000
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Cqq′ [0, 1, 0, 1] =
941ζ2

96
+

647ζ3
96

+
85ζ4
32
− 78403

3456

Cqq′ [0, 1, 0, 2] =
545ζ2

32
+

167ζ3
16

+
255ζ4

64
− 72983

1536

Cqq′ [0, 1, 0, 3] =
17729ζ2

576
+

449ζ3
24

+
425ζ4

64
− 3636437

41472

Cqq′ [0, 1, 0, 4] =
340037ζ2

9216
+

5627ζ3
256

+
1105ζ4

128
− 68657525

663552

Cqq′ [0, 1, 0, 5] =
28405097ζ2

691200
+

18151ζ3
768

+
3961ζ4

384
− 29704217657

259200000

Cqq′ [0, 0, 1, 1] = −7ζ2
12
− ζ3

12
+

55

54

Cqq′ [0, 0, 1, 2] = −11ζ2
16
− ζ3

8
+

313

192

Cqq′ [0, 0, 1, 3] = −173ζ2
144

− 5ζ3
24

+
5783

1728

Cqq′ [0, 0, 1, 4] = −95ζ2
64
− 13ζ3

48
+

108079

27648

Cqq′ [0, 0, 1, 5] = −73111ζ2
43200

− 233ζ3
720

+
676881547

155520000

Cqq′ [0,−1, 0, 1] = −175ζ2
24

− 127ζ3
24

− 5ζ4
8

+
54875

3456

Cqq′ [0,−1, 0, 2] = −821ζ2
64

− 499ζ3
64

− 15ζ4
16

+
50401

1536

Cqq′ [0,−1, 0, 3] = −14173ζ2
576

− 2729ζ3
192

− 25ζ4
16

+
2592121

41472

Cqq′ [0,−1, 0, 4] = −275143ζ2
9216

− 2163ζ3
128

− 65ζ4
32

+
49221349

663552

Cqq′ [0,−1, 0, 5] = −116555507ζ2
3456000

− 29473ζ3
1600

− 233ζ4
96

+
670254847

8100000

Cqq′ [0,−2, 1, 1] =
7ζ2
24

+
ζ3
24
− 55

108

Cqq′ [0,−2, 1, 2] =
11ζ2
32

+
ζ3
16
− 313

384

Cqq′ [0,−2, 1, 3] =
173ζ2
288

+
5ζ3
48
− 5783

3456
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Cqq′ [0,−2, 1, 4] =
95ζ2
128

+
13ζ3
96
− 108079

55296

Cqq′ [0,−2, 1, 5] =
73111ζ2
86400

+
233ζ3
1440

− 676881547

311040000

Cqq′ [0,−3, 0, 1] =
51ζ2
32

+
41ζ3
32
− 15ζ4

32
− 387

128

Cqq′ [0,−3, 0, 2] =
23ζ2

8
+

55ζ3
32
− 45ζ4

64
− 3091

512

Cqq′ [0,−3, 0, 3] =
3539ζ2

576
+

311ζ3
96

− 75ζ4
64
− 515935

41472

Cqq′ [0,−3, 0, 4] =
7787ζ2
1024

+
3025ζ3

768
− 195ζ4

128
− 9928391

663552

Cqq′ [0,−3, 0, 5] =
30361843ζ2

3456000
+

253577ζ3
57600

− 233ζ4
128

− 13192092551

777600000
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E. Cross sections in the HXSWG recommended mass range

We present here the gluon-fusion Higgs production cross-section at a proton-proton collider

for center-of-mass energies of 2, 7, 8, 13 and 14 TeV and for a Higgs boson of mass from

120 GeV to 130 GeV. The choice of these parameters follows the indications of the Higgs

Cross Section Working Group [86].

The components that enter (linearly) the theory uncertainty have been discussed in

the text. To summarize the main points of that discussion, the scale variation uncertainty

is assessed at each energy and Higgs mass through a scan over µ ∈ [mH/4,mH ]. The

uncertainties due to truncation, unknown N3LO PDFs and unknown finite-mass effects are

also evaluated every time, following the procedure described in the text. For the missing

QCD-EW effects, we find that a reasonable estimate yields a 1% uncertainty. At 2 TeV,

however, we adopt δ(EW) = 0.8%, which is the most conservative estimate we obtain over

the mass range analyzed. Finally, we assign a 1% uncertainty to missing finite-top mass

effects at NNLO [21, 45]. We use the PDF set PDF4LHC15.
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√
s = 2 TeV

mH σ δ(theory) δ(PDF) δ(αs)

120.0 1.24 pb +0.05pb
−0.10pb(+4.18%

−8.06%) ± 0.04 pb (± 3.06%) +0.04pb
−0.05pb(+3.34%

−3.65%)

120.5 1.23 pb +0.05pb
−0.10pb(+4.17%

−8.04%) ± 0.04 pb (± 3.07%) +0.04pb
−0.04pb(+3.34%

−3.65%)

121.0 1.21 pb +0.05pb
−0.10pb(+4.16%

−8.02%) ± 0.04 pb (± 3.08%) +0.04pb
−0.04pb(+3.35%

−3.66%)

121.5 1.20 pb +0.05pb
−0.10pb(+4.15%

−8.% ) ± 0.04 pb (± 3.09%) +0.04pb
−0.04pb(+3.35%

−3.66%)

122.0 1.18 pb +0.05pb
−0.09pb(+4.13%

−7.99%) ± 0.04 pb (± 3.1%) +0.04pb
−0.04pb(+3.35%

−3.66%)

122.5 1.17 pb +0.05pb
−0.09pb(+4.12%

−7.97%) ± 0.04 pb (± 3.12%) +0.04pb
−0.04pb(+3.35%

−3.67%)

123.0 1.15 pb +0.05pb
−0.09pb(+4.11%

−7.95%) ± 0.04 pb (± 3.13%) +0.04pb
−0.04pb(+3.35%

−3.67%)

123.5 1.14 pb +0.05pb
−0.09pb(+4.09%

−7.94%) ± 0.04 pb (± 3.14%) +0.04pb
−0.04pb(+3.35%

−3.67%)

124.0 1.13 pb +0.05pb
−0.09pb(+4.08%

−7.92%) ± 0.04 pb (± 3.15%) +0.04pb
−0.04pb(+3.35%

−3.68%)

124.1 1.12 pb +0.05pb
−0.09pb(+4.08%

−7.91%) ± 0.04 pb (± 3.15%) +0.04pb
−0.04pb(+3.35%

−3.68%)

124.2 1.12 pb +0.05pb
−0.09pb(+4.08%

−7.91%) ± 0.04 pb (± 3.15%) +0.04pb
−0.04pb(+3.35%

−3.68%)

124.3 1.12 pb +0.05pb
−0.09pb(+4.07%

−7.91%) ± 0.04 pb (± 3.16%) +0.04pb
−0.04pb(+3.35%

−3.68%)

124.4 1.12 pb +0.05pb
−0.09pb(+4.07%

−7.9% ) ± 0.04 pb (± 3.16%) +0.04pb
−0.04pb(+3.35%

−3.68%)

124.5 1.11 pb +0.05pb
−0.09pb(+4.07%

−7.9% ) ± 0.04 pb (± 3.16%) +0.04pb
−0.04pb(+3.36%

−3.68%)

124.6 1.11 pb +0.05pb
−0.09pb(+4.07%

−7.9% ) ± 0.04 pb (± 3.16%) +0.04pb
−0.04pb(+3.36%

−3.68%)

124.7 1.11 pb +0.04pb
−0.09pb(+4.06%

−7.89%) ± 0.04 pb (± 3.17%) +0.04pb
−0.04pb(+3.36%

−3.68%)

124.8 1.10 pb +0.04pb
−0.09pb(+4.06%

−7.89%) ± 0.04 pb (± 3.17%) +0.04pb
−0.04pb(+3.36%

−3.68%)

124.9 1.10 pb +0.04pb
−0.09pb(+4.06%

−7.89%) ± 0.03 pb (± 3.17%) +0.04pb
−0.04pb(+3.36%

−3.68%)

125.0 1.10 pb +0.04pb
−0.09pb(+4.06%

−7.88%) ± 0.03 pb (± 3.17%) +0.04pb
−0.04pb(+3.36%

−3.69%)
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mH σ δ(theory) δ(PDF) δ(αs)

125.1 1.10 pb +0.04pb
−0.09pb(+4.05%

−7.88%) ± 0.03 pb (± 3.18%) +0.04pb
−0.04pb(+3.36%

−3.69%)

125.2 1.09 pb +0.04pb
−0.09pb(+4.05%

−7.88%) ± 0.03 pb (± 3.18%) +0.04pb
−0.04pb(+3.36%

−3.69%)

125.3 1.09 pb +0.04pb
−0.09pb(+4.05%

−7.87%) ± 0.03 pb (± 3.18%) +0.04pb
−0.04pb(+3.36%

−3.69%)

125.4 1.09 pb +0.04pb
−0.09pb(+4.05%

−7.87%) ± 0.03 pb (± 3.18%) +0.04pb
−0.04pb(+3.36%

−3.69%)

125.5 1.09 pb +0.04pb
−0.09pb(+4.04%

−7.87%) ± 0.03 pb (± 3.18%) +0.04pb
−0.04pb(+3.36%

−3.69%)

125.6 1.08 pb +0.04pb
−0.09pb(+4.04%

−7.86%) ± 0.03 pb (± 3.19%) +0.04pb
−0.04pb(+3.36%

−3.69%)

125.7 1.08 pb +0.04pb
−0.08pb(+4.04%

−7.86%) ± 0.03 pb (± 3.19%) +0.04pb
−0.04pb(+3.36%

−3.69%)

125.8 1.08 pb +0.04pb
−0.08pb(+4.04%

−7.86%) ± 0.03 pb (± 3.19%) +0.04pb
−0.04pb(+3.36%

−3.69%)

125.9 1.08 pb +0.04pb
−0.08pb(+4.03%

−7.85%) ± 0.03 pb (± 3.19%) +0.04pb
−0.04pb(+3.36%

−3.69%)

126.0 1.07 pb +0.04pb
−0.08pb(+4.03%

−7.85%) ± 0.03 pb (± 3.20%) +0.04pb
−0.04pb(+3.36%

−3.69%)

126.5 1.06 pb +0.04pb
−0.08pb(+4.02%

−7.83%) ± 0.03 pb (± 3.21%) +0.04pb
−0.04pb(+3.36%

−3.70%)

127.0 1.05 pb +0.04pb
−0.08pb(+4.01%

−7.82%) ± 0.03 pb (± 3.22%) +0.04pb
−0.04pb(+3.36%

−3.70%)

127.5 1.04 pb +0.04pb
−0.08pb(+3.99%

−7.80%) ± 0.03 pb (± 3.23%) +0.03pb
−0.04pb(+3.36%

−3.70%)

128.0 1.02 pb +0.04pb
−0.08pb(+3.98%

−7.78%) ± 0.03 pb (± 3.24%) +0.03pb
−0.04pb(+3.36%

−3.71%)

128.5 1.01 pb +0.04pb
−0.08pb(+3.97%

−7.76%) ± 0.03 pb (± 3.26%) +0.03pb
−0.04pb(+3.37%

−3.71%)

129.0 1.00 pb +0.04pb
−0.08pb(+3.96%

−7.75%) ± 0.03 pb (± 3.27%) +0.03pb
−0.04pb(+3.37%

−3.72%)

129.5 0.99 pb +0.04pb
−0.08pb(+3.95%

−7.73%) ± 0.03 pb (± 3.28%) +0.03pb
−0.04pb(+3.37%

−3.72%)

130.0 0.98 pb +0.04pb
−0.08pb(+3.93%

−7.71%) ± 0.03 pb (± 3.29%) +0.03pb
−0.04pb(+3.37%

−3.72%)

Table 13: Gluon-fusion Higgs production cross-section at a proton-proton collider for
√
s = 2 TeV.

Details on the calculation of the theory error are given at the beginning of this Appendix and in

the main text.
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√
s = 7 TeV

mH σ δ(theory) δ(PDF) δ(αs)

120.0 18.31 pb +0.83pb
−1.30pb(+4.51%

−7.12%) ± 0.35 pb (± 1.89%) +0.49pb
−0.49pb(+2.69%

−2.67%)

120.5 18.16 pb +0.82pb
−1.29pb(+4.50%

−7.11%) ± 0.34 pb (± 1.89%) +0.49pb
−0.48pb(+2.69%

−2.67%)

121.0 18.00 pb +0.81pb
−1.28pb(+4.49%

−7.09%) ± 0.34 pb (± 1.89%) +0.48pb
−0.48pb(+2.68%

−2.66%)

121.5 17.85 pb +0.8pb
−1.26pb(+4.48%

−7.07%) ± 0.34 pb (± 1.89%) +0.48pb
−0.48pb(+2.68%

−2.66%)

122.0 17.71 pb +0.79pb
−1.25pb(+4.47%

−7.06%) ± 0.33 pb (± 1.89%) +0.47pb
−0.47pb(+2.68%

−2.66%)

122.5 17.56 pb +0.78pb
−1.24pb(+4.46%

−7.04%) ± 0.33 pb (± 1.89%) +0.47pb
−0.47pb(+2.68%

−2.66%)

123.0 17.41 pb +0.77pb
−1.22pb(+4.45%

−7.03%) ± 0.33 pb (± 1.89%) +0.47pb
−0.46pb(+2.68%

−2.66%)

123.5 17.27 pb +0.77pb
−1.21pb(+4.44%

−7.01%) ± 0.33 pb (± 1.89%) +0.46pb
−0.46pb(+2.68%

−2.66%)

124.0 17.13 pb +0.76pb
−1.20pb(+4.43%

−7.% ) ± 0.32 pb (± 1.89%) +0.46pb
−0.46pb(+2.68%

−2.66%)

124.1 17.10 pb +0.76pb
−1.20pb(+4.43%

−6.99%) ± 0.32 pb (± 1.89%) +0.46pb
−0.45pb(+2.68%

−2.66%)

124.2 17.07 pb +0.76pb
−1.19pb(+4.43%

−6.99%) ± 0.32 pb (± 1.89%) +0.46pb
−0.45pb(+2.68%

−2.66%)

124.3 17.04 pb +0.75pb
−1.19pb(+4.42%

−6.99%) ± 0.32 pb (± 1.89%) +0.46pb
−0.45pb(+2.67%

−2.66%)

124.4 17.02 pb +0.75pb
−1.19pb(+4.42%

−6.98%) ± 0.32 pb (± 1.89%) +0.46pb
−0.45pb(+2.67%

−2.66%)

124.5 16.99 pb +0.75pb
−1.19pb(+4.42%

−6.98%) ± 0.32 pb (± 1.89%) +0.45pb
−0.45pb(+2.67%

−2.66%)

124.6 16.96 pb +0.75pb
−1.18pb(+4.42%

−6.98%) ± 0.32 pb (± 1.89%) +0.45pb
−0.45pb(+2.67%

−2.66%)

124.7 16.93 pb +0.75pb
−1.18pb(+4.41%

−6.97%) ± 0.32 pb (± 1.89%) +0.45pb
−0.45pb(+2.67%

−2.66%)

124.8 16.9 pb +0.75pb
−1.18pb(+4.41%

−6.97%) ± 0.32 pb (± 1.89%) +0.45pb
−0.45pb(+2.67%

−2.66%)

124.9 16.88 pb +0.74pb
−1.18pb(+4.41%

−6.97%) ± 0.32 pb (± 1.89%) +0.45pb
−0.45pb(+2.67%

−2.66%)

125.0 16.85 pb +0.74pb
−1.17pb(+4.41%

−6.96%) ± 0.32 pb (± 1.89%) +0.45pb
−0.45pb(+2.67%

−2.66%)
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mH σ δ(theory) δ(PDF) δ(αs)

125.1 16.82 pb +0.74pb
−1.17pb(+4.41%

−6.96%) ± 0.32 pb (± 1.89%) +0.45pb
−0.45pb(+2.67%

−2.66%)

125.2 16.79 pb +0.74pb
−1.17pb(+4.40%

−6.96%) ± 0.32 pb (± 1.89%) +0.45pb
−0.45pb(+2.67%

−2.66%)

125.3 16.77 pb +0.74pb
−1.17pb(+4.40%

−6.96%) ± 0.32 pb (± 1.89%) +0.45pb
−0.45pb(+2.67%

−2.66%)

125.4 16.74 pb +0.74pb
−1.16pb(+4.40%

−6.95%) ± 0.32 pb (± 1.89%) +0.45pb
−0.44pb(+2.67%

−2.66%)

125.5 16.71 pb +0.74pb
−1.16pb(+4.40%

−6.95%) ± 0.32 pb (± 1.89%) +0.45pb
−0.44pb(+2.67%

−2.66%)

125.6 16.68 pb +0.73pb
−1.16pb(+4.40%

−6.95%) ± 0.32 pb (± 1.89%) +0.45pb
−0.44pb(+2.67%

−2.66%)

125.7 16.66 pb +0.73pb
−1.16pb(+4.40%

−6.94%) ± 0.31 pb (± 1.89%) +0.44pb
−0.44pb(+2.67%

−2.66%)

125.8 16.63 pb +0.73pb
−1.15pb(+4.39%

−6.94%) ± 0.31 pb (± 1.89%) +0.44pb
−0.44pb(+2.67%

−2.66%)

125.9 16.60 pb +0.73pb
−1.15pb(+4.39%

−6.94%) ± 0.31 pb (± 1.89%) +0.44pb
−0.44pb(+2.67%

−2.66%)

126.0 16.58 pb +0.73pb
−1.15pb(+4.39%

−6.93%) ± 0.31 pb (± 1.89%) +0.44pb
−0.44pb(+2.67%

−2.65%)

126.5 16.44 pb +0.72pb
−1.14pb(+4.38%

−6.92%) ± 0.31 pb (± 1.89%) +0.44pb
−0.44pb(+2.67%

−2.65%)

127.0 16.31 pb +0.71pb
−1.13pb(+4.37%

−6.9% ) ± 0.31 pb (± 1.89%) +0.44pb
−0.43pb(+2.67%

−2.65%)

127.5 16.18 pb +0.70pb
−1.11pb(+4.36%

−6.88%) ± 0.31 pb (± 1.89%) +0.43pb
−0.43pb(+2.67%

−2.65%)

128.0 16.05 pb +0.70pb
−1.1pb (+4.35%

−6.87%) ± 0.30 pb (± 1.89%) +0.43pb
−0.43pb(+2.67%

−2.65%)

128.5 15.92 pb +0.69pb
−1.09pb(+4.33%

−6.85%) ± 0.30 pb (± 1.89%) +0.42pb
−0.42pb(+2.66%

−2.65%)

129.0 15.8 pb +0.68pb
−1.08pb(+4.33%

−6.84%) ± 0.30 pb (± 1.89%) +0.42pb
−0.42pb(+2.66%

−2.65%)

129.5 15.67 pb +0.68pb
−1.07pb(+4.32%

−6.82%) ± 0.30 pb (± 1.89%) +0.42pb
−0.42pb(+2.66%

−2.65%)

130.0 15.55 pb +0.67pb
−1.06pb(+4.31%

−6.80%) ± 0.29 pb (± 1.89%) +0.41pb
−0.41pb(+2.66%

−2.65%)

Table 14: Gluon-fusion Higgs production cross-section at a proton-proton collider for
√
s = 7 TeV.

Details on the calculation of the theory error are given at the beginning of this Appendix and in

the main text.
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√
s = 8 TeV

mH σ δ(theory) δ(PDF) δ(αs)

120.0 23.22 pb +1.05pb
−1.64pb(+4.54%

−7.05%) ± 0.44 pb (± 1.88%) +0.62pb
−0.61pb(+2.67%

−2.64%)

120.5 23.03 pb +1.04pb
−1.62pb(+4.53%

−7.04%) ± 0.43 pb (± 1.88%) +0.61pb
−0.61pb(+2.66%

−2.64%)

121.0 22.85 pb +1.03pb
−1.60pb(+4.52%

−7.02%) ± 0.43 pb (± 1.87%) +0.61pb
−0.60pb(+2.66%

−2.64%)

121.5 22.66 pb +1.02pb
−1.59pb(+4.51%

−7.01%) ± 0.42 pb (± 1.87%) +0.60pb
−0.60pb(+2.66%

−2.63%)

122.0 22.48 pb +1.01pb
−1.57pb(+4.50%

−6.99%) ± 0.42 pb (± 1.87%) +0.60pb
−0.59pb(+2.66%

−2.63%)

122.5 22.30 pb +1.pb
−1.55pb(+4.49%

−6.97%) ± 0.42 pb (± 1.87%) +0.59pb
−0.59pb(+2.66%

−2.63%)

123.0 22.12 pb +0.99pb
−1.54pb(+4.48%

−6.96%) ± 0.41 pb (± 1.87%) +0.59pb
−0.58pb(+2.66%

−2.63%)

123.5 21.94 pb +0.98pb
−1.52pb(+4.47%

−6.94%) ± 0.41 pb (± 1.87%) +0.58pb
−0.58pb(+2.65%

−2.63%)

124.0 21.77 pb +0.97pb
−1.51pb(+4.46%

−6.93%) ± 0.41 pb (± 1.87%) +0.58pb
−0.57pb(+2.65%

−2.63%)

124.1 21.73 pb +0.97pb
−1.50pb(+4.45%

−6.92%) ± 0.41 pb (± 1.87%) +0.58pb
−0.57pb(+2.65%

−2.63%)

124.2 21.70 pb +0.97pb
−1.50pb(+4.45%

−6.92%) ± 0.41 pb (± 1.87%) +0.58pb
−0.57pb(+2.65%

−2.63%)

124.3 21.66 pb +0.96pb
−1.50pb(+4.45%

−6.92%) ± 0.41 pb (± 1.87%) +0.57pb
−0.57pb(+2.65%

−2.63%)

124.4 21.63 pb +0.96pb
−1.50pb(+4.45%

−6.91%) ± 0.40 pb (± 1.87%) +0.57pb
−0.57pb(+2.65%

−2.63%)

124.5 21.59 pb +0.96pb
−1.49pb(+4.44%

−6.91%) ± 0.40 pb (± 1.87%) +0.57pb
−0.57pb(+2.65%

−2.63%)

124.6 21.56 pb +0.96pb
−1.49pb(+4.44%

−6.91%) ± 0.40 pb (± 1.87%) +0.57pb
−0.57pb(+2.65%

−2.63%)

124.7 21.53 pb +0.96pb
−1.49pb(+4.44%

−6.91%) ± 0.40 pb (± 1.87%) +0.57pb
−0.57pb(+2.65%

−2.63%)

124.8 21.49 pb +0.95pb
−1.48pb(+4.44%

−6.9% ) ± 0.40 pb (± 1.87%) +0.57pb
−0.56pb(+2.65%

−2.63%)

124.9 21.46 pb +0.95pb
−1.48pb(+4.44%

−6.9% ) ± 0.40 pb (± 1.87%) +0.57pb
−0.56pb(+2.65%

−2.63%)

125.0 21.42 pb +0.95pb
−1.48pb(+4.43%

−6.9% ) ± 0.40 pb (± 1.87%) +0.57pb
−0.56pb(+2.65%

−2.62%)
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mH σ δ(theory) δ(PDF) δ(αs)

125.1 21.39 pb +0.95pb
−1.47pb(+4.43%

−6.89%) ± 0.40 pb (± 1.87%) +0.57pb
−0.56pb(+2.65%

−2.63%)

125.2 21.36 pb +0.95pb
−1.47pb(+4.43%

−6.89%) ± 0.40 pb (± 1.87%) +0.57pb
−0.56pb(+2.65%

−2.62%)

125.3 21.32 pb +0.94pb
−1.47pb(+4.43%

−6.89%) ± 0.40 pb (± 1.87%) +0.57pb
−0.56pb(+2.65%

−2.62%)

125.4 21.29 pb +0.94pb
−1.47pb(+4.43%

−6.88%) ± 0.40 pb (± 1.87%) +0.56pb
−0.56pb(+2.65%

−2.62%)

125.5 21.26 pb +0.94pb
−1.46pb(+4.42%

−6.88%) ± 0.40 pb (± 1.87%) +0.56pb
−0.56pb(+2.65%

−2.62%)

125.6 21.22 pb +0.94pb
−1.46pb(+4.42%

−6.88%) ± 0.40 pb (± 1.87%) +0.56pb
−0.56pb(+2.65%

−2.62%)

125.7 21.19 pb +0.94pb
−1.46pb(+4.42%

−6.87%) ± 0.40 pb (± 1.87%) +0.56pb
−0.56pb(+2.65%

−2.62%)

125.8 21.16 pb +0.93pb
−1.45pb(+4.42%

−6.87%) ± 0.40 pb (± 1.87%) +0.56pb
−0.55pb(+2.65%

−2.62%)

125.9 21.12 pb +0.93pb
−1.45pb(+4.42%

−6.87%) ± 0.39 pb (± 1.87%) +0.56pb
−0.55pb(+2.65%

−2.62%)

126.0 21.09 pb +0.93pb
−1.45pb(+4.41%

−6.86%) ± 0.39 pb (± 1.87%) +0.56pb
−0.55pb(+2.65%

−2.62%)

126.5 20.92 pb +0.92pb
−1.43pb(+4.40%

−6.85%) ± 0.39 pb (± 1.87%) +0.55pb
−0.55pb(+2.65%

−2.62%)

127.0 20.76 pb +0.91pb
−1.42pb(+4.39%

−6.83%) ± 0.39 pb (± 1.87%) +0.55pb
−0.54pb(+2.64%

−2.62%)

127.5 20.60 pb +0.9pb
−1.4pb(+4.38%

−6.82%) ± 0.38 pb (± 1.87%) +0.54pb
−0.54pb(+2.64%

−2.62%)

128.0 20.44 pb +0.89pb
−1.39pb(+4.37%

−6.80%) ± 0.38 pb (± 1.87%) +0.54pb
−0.54pb(+2.64%

−2.62%)

128.5 20.28 pb +0.89pb
−1.38pb(+4.36%

−6.79%) ± 0.38 pb (± 1.87%) +0.54pb
−0.53pb(+2.64%

−2.62%)

129.0 20.13 pb +0.88pb
−1.36pb(+4.35%

−6.77%) ± 0.38 pb (± 1.87%) +0.53pb
−0.53pb(+2.64%

−2.62%)

129.5 19.98 pb +0.87pb
−1.35pb(+4.35%

−6.75%) ± 0.37 pb (± 1.87%) +0.53pb
−0.52pb(+2.64%

−2.61%)

130.0 19.82 pb +0.86pb
−1.34pb(+4.34%

−6.74%) ± 0.37 pb (± 1.87%) +0.52pb
−0.52pb(+2.64%

−2.61%)

Table 15: Gluon-fusion Higgs production cross-section at a proton-proton collider for
√
s = 8 TeV.

Details on the calculation of the theory error are given at the beginning of this Appendix and in

the main text.
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√
s = 13 TeV

mH σ δ(theory) δ(PDF) δ(αs)

120.0 52.22 pb +2.44pb
−3.59pb(+4.67%

−6.88%) ± 0.98 pb (± 1.87%) +1.37pb
−1.36pb(+2.63%

−2.61%)

120.5 51.84 pb +2.41pb
−3.56pb(+4.65%

−6.86%) ± 0.97 pb (± 1.87%) +1.36pb
−1.35pb(+2.63%

−2.60%)

121.0 51.46 pb +2.39pb
−3.52pb(+4.64%

−6.85%) ± 0.96 pb (± 1.87%) +1.35pb
−1.34pb(+2.63%

−2.60%)

121.5 51.08 pb +2.37pb
−3.49pb(+4.64%

−6.83%) ± 0.95 pb (± 1.86%) +1.34pb
−1.33pb(+2.62%

−2.60%)

122.0 50.71 pb +2.34pb
−3.46pb(+4.62%

−6.82%) ± 0.94 pb (± 1.86%) +1.33pb
−1.32pb(+2.62%

−2.60%)

122.5 50.35 pb +2.32pb
−3.42pb(+4.61%

−6.80%) ± 0.94 pb (± 1.86%) +1.32pb
−1.31pb(+2.62%

−2.59%)

123.0 49.98 pb +2.30pb
−3.39pb(+4.60%

−6.78%) ± 0.93 pb (± 1.86%) +1.31pb
−1.30pb(+2.62%

−2.59%)

123.5 49.63 pb +2.28pb
−3.36pb(+4.59%

−6.77%) ± 0.92 pb (± 1.86%) +1.30pb
−1.29pb(+2.62%

−2.59%)

124.0 49.27 pb +2.26pb
−3.33pb(+4.58%

−6.75%) ± 0.92 pb (± 1.86%) +1.29pb
−1.27pb(+2.61%

−2.59%)

124.1 49.20 pb +2.25pb
−3.32pb(+4.58%

−6.75%) ± 0.91 pb (± 1.86%) +1.29pb
−1.27pb(+2.61%

−2.59%)

124.2 49.13 pb +2.25pb
−3.31pb(+4.58%

−6.75%) ± 0.91 pb (± 1.86%) +1.28pb
−1.27pb(+2.61%

−2.59%)

124.3 49.06 pb +2.24pb
−3.31pb(+4.58%

−6.74%) ± 0.91 pb (± 1.86%) +1.28pb
−1.27pb(+2.61%

−2.59%)

124.4 48.99 pb +2.24pb
−3.30pb(+4.57%

−6.74%) ± 0.91 pb (± 1.86%) +1.28pb
−1.27pb(+2.61%

−2.59%)

124.5 48.92 pb +2.24pb
−3.30pb(+4.57%

−6.74%) ± 0.91 pb (± 1.86%) +1.28pb
−1.26pb(+2.61%

−2.59%)

124.6 48.85 pb +2.23pb
−3.29pb(+4.57%

−6.73%) ± 0.91 pb (± 1.86%) +1.28pb
−1.26pb(+2.61%

−2.58%)

124.7 48.78 pb +2.23pb
−3.28pb(+4.57%

−6.73%) ± 0.91 pb (± 1.86%) +1.27pb
−1.26pb(+2.61%

−2.58%)

124.8 48.71 pb +2.22pb
−3.28pb(+4.56%

−6.73%) ± 0.90 pb (± 1.86%) +1.27pb
−1.26pb(+2.61%

−2.58%)

124.9 48.64 pb +2.22pb
−3.27pb(+4.56%

−6.72%) ± 0.90 pb (± 1.86%) +1.27pb
−1.26pb(+2.61%

−2.58%)

125.0 48.58 pb +2.22pb
−3.27pb(+4.56%

−6.72%) ± 0.90 pb (± 1.86%) +1.27pb
−1.25pb(+2.61%

−2.58%)
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mH σ δ(theory) δ(PDF) δ(αs)

125.1 48.51 pb +2.21pb
−3.26pb(+4.56%

−6.72%) ± 0.90 pb (± 1.86%) +1.27pb
−1.25pb(+2.61%

−2.58%)

125.2 48.44 pb +2.21pb
−3.25pb(+4.56%

−6.72%) ± 0.90 pb (± 1.86%) +1.26pb
−1.25pb(+2.61%

−2.58%)

125.3 48.37 pb +2.20pb
−3.25pb(+4.55%

−6.71%) ± 0.90 pb (± 1.86%) +1.26pb
−1.25pb(+2.61%

−2.58%)

125.4 48.30 pb +2.20pb
−3.24pb(+4.55%

−6.71%) ± 0.90 pb (± 1.86%) +1.26pb
−1.25pb(+2.61%

−2.58%)

125.5 48.23 pb +2.20pb
−3.23pb(+4.55%

−6.71%) ± 0.89 pb (± 1.85%) +1.26pb
−1.24pb(+2.61%

−2.58%)

125.6 48.16 pb +2.19pb
−3.23pb(+4.55%

−6.70%) ± 0.89 pb (± 1.85%) +1.26pb
−1.24pb(+2.61%

−2.58%)

125.7 48.10 pb +2.19pb
−3.22pb(+4.55%

−6.70%) ± 0.89 pb (± 1.85%) +1.25pb
−1.24pb(+2.61%

−2.58%)

125.8 48.03 pb +2.18pb
−3.22pb(+4.55%

−6.70%) ± 0.89 pb (± 1.85%) +1.25pb
−1.24pb(+2.61%

−2.58%)

125.9 47.96 pb +2.18pb
−3.21pb(+4.54%

−6.69%) ± 0.89 pb (± 1.85%) +1.25pb
−1.24pb(+2.61%

−2.58%)

126.0 47.89 pb +2.17pb
−3.20pb(+4.54%

−6.69%) ± 0.89 pb (± 1.85%) +1.25pb
−1.24pb(+2.61%

−2.58%)

126.5 47.56 pb +2.15pb
−3.17pb(+4.53%

−6.67%) ± 0.88 pb (± 1.85%) +1.24pb
−1.23pb(+2.61%

−2.58%)

127.0 47.23 pb +2.14pb
−3.14pb(+4.52%

−6.66%) ± 0.87 pb (± 1.85%) +1.23pb
−1.22pb(+2.60%

−2.57%)

127.5 46.9 pb +2.12pb
−3.12pb(+4.51%

−6.64%) ± 0.87 pb (± 1.85%) +1.22pb
−1.21pb(+2.60%

−2.57%)

128.0 46.58 pb +2.1pb
−3.09pb(+4.50%

−6.63%) ± 0.86 pb (± 1.85%) +1.21pb
−1.20pb(+2.60%

−2.57%)

128.5 46.25 pb +2.08pb
−3.06pb(+4.49%

−6.61%) ± 0.85 pb (± 1.85%) +1.20pb
−1.19pb(+2.60%

−2.57%)

129.0 45.94 pb +2.06pb
−3.03pb(+4.48%

−6.60%) ± 0.85 pb (± 1.85%) +1.19pb
−1.18pb(+2.60%

−2.57%)

129.5 45.62 pb +2.04pb
−3.pb (+4.47%

−6.58%) ± 0.84 pb (± 1.85%) +1.18pb
−1.17pb(+2.60%

−2.56%)

130.0 45.31 pb +2.02pb
−2.97pb(+4.46%

−6.57%) ± 0.84 pb (± 1.84%) +1.18pb
−1.16pb(+2.59%

−2.56%)

Table 16: Gluon-fusion Higgs production cross-section at a proton-proton collider for
√
s = 13

TeV. Details on the calculation of the theory error are given at the beginning of this Appendix and

in the main text.
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√
s = 14 TeV

mH σ δ(theory) δ(PDF) δ(αs)

120.0 58.71 pb +2.75pb
−4.03pb(+4.69%

−6.86%) ± 1.10 pb (± 1.87%) +1.54pb
−1.53pb(+2.63%

−2.61%)

120.5 58.29 pb +2.73pb
−3.99pb(+4.68%

−6.85%) ± 1.09 pb (± 1.87%) +1.53pb
−1.52pb(+2.63%

−2.61%)

121.0 57.87 pb +2.70pb
−3.95pb(+4.67%

−6.83%) ± 1.08 pb (± 1.87%) +1.52pb
−1.51pb(+2.62%

−2.60%)

121.5 57.45 pb +2.67pb
−3.92pb(+4.66%

−6.81%) ± 1.07 pb (± 1.87%) +1.51pb
−1.49pb(+2.62%

−2.60%)

122.0 57.04 pb +2.65pb
−3.88pb(+4.65%

−6.80%) ± 1.07 pb (± 1.87%) +1.49pb
−1.48pb(+2.62%

−2.60%)

122.5 56.64 pb +2.63pb
−3.84pb(+4.64%

−6.78%) ± 1.06 pb (± 1.87%) +1.48pb
−1.47pb(+2.62%

−2.60%)

123.0 56.24 pb +2.60pb
−3.81pb(+4.63%

−6.77%) ± 1.05 pb (± 1.87%) +1.47pb
−1.46pb(+2.62%

−2.59%)

123.5 55.84 pb +2.58pb
−3.77pb(+4.62%

−6.75%) ± 1.04 pb (± 1.86%) +1.46pb
−1.45pb(+2.61%

−2.59%)

124.0 55.45 pb +2.55pb
−3.74pb(+4.61%

−6.74%) ± 1.03 pb (± 1.86%) +1.45pb
−1.44pb(+2.61%

−2.59%)

124.1 55.37 pb +2.55pb
−3.73pb(+4.60%

−6.73%) ± 1.03 pb (± 1.86%) +1.45pb
−1.43pb(+2.61%

−2.59%)

124.2 55.29 pb +2.54pb
−3.72pb(+4.60%

−6.73%) ± 1.03 pb (± 1.86%) +1.44pb
−1.43pb(+2.61%

−2.59%)

124.3 55.21 pb +2.54pb
−3.71pb(+4.60%

−6.73%) ± 1.03 pb (± 1.86%) +1.44pb
−1.43pb(+2.61%

−2.59%)

124.4 55.14 pb +2.53pb
−3.71pb(+4.60%

−6.72%) ± 1.03 pb (± 1.86%) +1.44pb
−1.43pb(+2.61%

−2.59%)

124.5 55.06 pb +2.53pb
−3.70pb(+4.60%

−6.72%) ± 1.02 pb (± 1.86%) +1.44pb
−1.42pb(+2.61%

−2.59%)

124.6 54.98 pb +2.53pb
−3.69pb(+4.59%

−6.72%) ± 1.02 pb (± 1.86%) +1.44pb
−1.42pb(+2.61%

−2.59%)

124.7 54.9 pb +2.52pb
−3.69pb(+4.59%

−6.72%) ± 1.02 pb (± 1.86%) +1.43pb
−1.42pb(+2.61%

−2.59%)

124.8 54.83 pb +2.52pb
−3.68pb(+4.59%

−6.71%) ± 1.02 pb (± 1.86%) +1.43pb
−1.42pb(+2.61%

−2.59%)

124.9 54.75 pb +2.51pb
−3.67pb(+4.59%

−6.71%) ± 1.02 pb (± 1.86%) +1.43pb
−1.42pb(+2.61%

−2.59%)

125.0 54.67 pb +2.51pb
−3.67pb(+4.58%

−6.71%) ± 1.02 pb (± 1.86%) +1.43pb
−1.41pb(+2.61%

−2.59%)
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mH σ δ(theory) δ(PDF) δ(αs)

125.1 54.60 pb +2.50pb
−3.66pb(+4.58%

−6.70%) ± 1.02 pb (± 1.86%) +1.42pb
−1.41pb(+2.61%

−2.58%)

125.2 54.52 pb +2.50pb
−3.65pb(+4.58%

−6.70%) ± 1.01 pb (± 1.86%) +1.42pb
−1.41pb(+2.61%

−2.58%)

125.3 54.45 pb +2.49pb
−3.65pb(+4.58%

−6.70%) ± 1.01 pb (± 1.86%) +1.42pb
−1.41pb(+2.61%

−2.58%)

125.4 54.37 pb +2.49pb
−3.64pb(+4.58%

−6.69%) ± 1.01 pb (± 1.86%) +1.42pb
−1.4pb (+2.61%

−2.58%)

125.5 54.29 pb +2.48pb
−3.63pb(+4.58%

−6.69%) ± 1.01 pb (± 1.86%) +1.42pb
−1.4pb (+2.61%

−2.58%)

125.6 54.22 pb +2.48pb
−3.63pb(+4.57%

−6.69%) ± 1.01 pb (± 1.86%) +1.41pb
−1.4pb (+2.61%

−2.58%)

125.7 54.14 pb +2.48pb
−3.62pb(+4.57%

−6.68%) ± 1.01 pb (± 1.86%) +1.41pb
−1.4pb (+2.61%

−2.58%)

125.8 54.07 pb +2.47pb
−3.61pb(+4.57%

−6.68%) ± 1.00 pb (± 1.86%) +1.41pb
−1.4pb (+2.61%

−2.58%)

125.9 53.99 pb +2.47pb
−3.61pb(+4.57%

−6.68%) ± 1.00 pb (± 1.86%) +1.41pb
−1.39pb(+2.61%

−2.58%)

126.0 53.92 pb +2.46pb
−3.60pb(+4.57%

−6.67%) ± 1.00 pb (± 1.86%) +1.4pb
−1.39pb(+2.61%

−2.58%)

126.5 53.55 pb +2.44pb
−3.57pb(+4.56%

−6.66%) ± 0.99 pb (± 1.86%) +1.39pb
−1.38pb(+2.60%

−2.58%)

127.0 53.18 pb +2.42pb
−3.53pb(+4.55%

−6.64%) ± 0.99 pb (± 1.86%) +1.38pb
−1.37pb(+2.60%

−2.58%)

127.5 52.82 pb +2.4pb
−3.50pb(+4.54%

−6.63%) ± 0.98 pb (± 1.85%) +1.37pb
−1.36pb(+2.60%

−2.57%)

128.0 52.46 pb +2.38pb
−3.47pb(+4.53%

−6.61%) ± 0.97 pb (± 1.85%) +1.36pb
−1.35pb(+2.60%

−2.57%)

128.5 52.10 pb +2.35pb
−3.44pb(+4.52%

−6.60%) ± 0.96 pb (± 1.85%) +1.35pb
−1.34pb(+2.60%

−2.57%)

129.0 51.75 pb +2.33pb
−3.41pb(+4.51%

−6.58%) ± 0.96 pb (± 1.85%) +1.34pb
−1.33pb(+2.60%

−2.57%)

129.5 51.40 pb +2.31pb
−3.38pb(+4.50%

−6.57%) ± 0.95 pb (± 1.85%) +1.33pb
−1.32pb(+2.59%

−2.57%)

130.0 51.05 pb +2.29pb
−3.34pb(+4.49%

−6.55%) ± 0.94 pb (± 1.85%) +1.32pb
−1.31pb(+2.59%

−2.56%)

Table 17: Gluon-fusion Higgs production cross-section at a proton-proton collider for
√
s = 14

TeV. Details on the calculation of the theory error are given at the beginning of this Appendix and

in the main text.
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