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Mitochondrial function controls intestinal
epithelial stemness and proliferation
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Ori Staszewski4, Elena M. Lobner1, Theresa Schöttl5, Pieter Giesbertz6, Olivia I. Coleman1, Marco Prinz4,7,

Achim Weber8, Markus Gerhard3, Martin Klingenspor5,9, Klaus-Peter Janssen10, Mathias Heikenwalder2,11

& Dirk Haller1,9

Control of intestinal epithelial stemness is crucial for tissue homeostasis. Disturbances

in epithelial function are implicated in inflammatory and neoplastic diseases of the

gastrointestinal tract. Here we report that mitochondrial function plays a critical role

in maintaining intestinal stemness and homeostasis. Using intestinal epithelial cell

(IEC)-specific mouse models, we show that loss of HSP60, a mitochondrial chaperone,

activates the mitochondrial unfolded protein response (MT-UPR) and results in mitochondrial

dysfunction. HSP60-deficient crypts display loss of stemness and cell proliferation,

accompanied by epithelial release of WNT10A and RSPO1. Sporadic failure of Cre-mediated

Hsp60 deletion gives rise to hyperproliferative crypt foci originating from OLFM4þ stem

cells. These effects are independent of the MT-UPR-associated transcription factor CHOP.

In conclusion, compensatory hyperproliferation of HSP60þ escaper stem cells suggests

paracrine release of WNT-related factors from HSP60-deficient, functionally impaired IEC to

be pivotal in the control of the proliferative capacity of the stem cell niche.
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T
he intestinal epithelial cell (IEC) layer constitutes a rapidly
self-renewing interface in intimate contact with the enteral
environment and the immune system of the host, enabling

intestinal homeostasis. Disturbances of this homeostasis can give
rise to chronic degenerative diseases of the gastrointestinal
tract such as colorectal cancer (CRC) or inflammatory bowel
diseases (IBD)1. Genome-wide association studies on 425,000
IBD patients comprising Crohn’s disease (CD) and ulcerative
colitis (UC) identified 4200 susceptibility loci associated with
IBD2,3 and about 20 loci associated with CRC4. Many of the so far
investigated genes affect the functions of the intestinal
epithelium5,6.

Epithelial crypts are the sites where epithelial cells differentiate
from pluripotent stem cells. After several cycles of proliferation in
the transit amplifying zone, stem-cell-derived progenitor cells
differentiate into absorptive enterocytes or into cells of the
secretory lineage (goblet, enteroendocrine and tuft cells)7. On the
contrary, Paneth cells directly descend from stem cells and
remain within the crypt to fulfil their role in antimicrobial
defence and stem cell maintenance8,9. Defects in epithelial cell
homeostasis affecting antimicrobial defence, barrier permeability
and IEC-immune cell interaction are crucial features of disease
pathogenesis of IBD5. Chronic inflammation is a major risk factor
for the development of CRC, largely accounting for the increased
risk seen in IBD patients10. Specifically for CRC many of the so
far identified loci have been associated with the regulation of
proliferation4.

To maintain homeostasis and IEC functionality on a cellular
level, the abundance and capacity of organelles need to be
tightly regulated and adapted to the actual cellular demand.
One critical process that limits organelle and cellular function
is the availability of properly folded and functional
proteins. Unfolded protein responses (UPR) are autoregulatory
mechanisms that evolved in the cytoplasm, the endoplasmic
reticulum (ER) and mitochondria to ensure adaptation to
fluctuating cellular demands of proteins upon environmental
triggers and/or host-derived signals11–13. Triggers affecting
protein homeostasis comprise infections, oxidative stress and
metabolic alterations14,15. UPR of the ER is particularly
important for Paneth and Goblet cell function, since these cells
are specialized in the production and secretion of proteins
assembled in the ER. We and others provided evidence that a
deregulated ER-UPR in IEC is indeed relevant for the
pathogenesis in human IBD16–18. Furthermore, recent studies
revealed that an activated ER-UPR in crypt base columnar
cells via stem cell-specific depletion of the ER chaperone
glucose-regulated protein 78 (GRP78) antagonizes stem cell
properties and proliferation19. Besides in the ER, UPR
mechanisms also evolved in mitochondria (MT-UPR), and an
adequate amount of properly folded and functional proteins is
essential for their fundamental metabolic functions (for example,
oxidative phosphorylation and beta oxidation)20. Consistently,
Mohrin et al.21 showed that a Sirtuin 7-mediated branch of the
MT-UPR couples cellular energy metabolism and proliferation in
hematopoietic stem cells. ER-UPR and MT-UPR signalling share
certain features such as activation of the transcription factor
C/EBP homologous protein (CHOP), and consistently, epithelial
mitochondrial dysfunction and failure in cellular oxidative
metabolism have been implicated in the pathogenesis of IBD22

and CRC6.
Studies in yeast from the late 1980s attribute an essential role

to heat shock protein 60 (HSP60) in mitochondrial protein
homeostasis23,24. Mutations in the HSPD1 gene encoding HSP60
were discovered to cause hereditary spastic paraplegia in humans,
a severe neurodegenerative disorder caused by mitochondrial
dysfunction25–27. Moreover, constitutive HSP60 deficiency

antagonizes cell viability in yeast28 and leads to embryonic
lethality in mice29. We demonstrated increased HSP60 expression
and activated MT-UPR signalling in the epithelium of IBD
patients as well as murine models of colitis and proposed a link
between ER- and MT-UPR through the cytoplasmic kinase
PKR30. MT-UPR in mammals is rather poorly described, but
mechanistic studies in a primate-derived cell line identified the
transcription factor CHOP and its cofactor C/EBPb to induce
expression of MT-UPR responsive chaperones like HSP60,
its co-chaperone HSP10 and proteases like ATP-dependent
caseinolytic peptidase proteolytic subunit homologue (CLPP)31–33.
By using an epithelial-specific Chop transgenic mouse model,
we recently showed delayed epithelial proliferation and intestinal
wound healing in response to increased levels of CHOP, suggesting
CHOP to affect intestinal homeostasis by attenuating cell cycle
progression34.

To investigate the role of the mitochondrial chaperone HSP60
in the regulation of epithelial cell homeostasis in the intestine,
we generated epithelial-specific knockout mice. In the present
study we show that HSP60 deficiency leads to mitochondrial
dysfunction and antagonizes epithelial stem cell homeostasis
through CHOP-independent mechanisms. The mitochondrial
dysfunction was associated with paracrine release of
WNT-related signals and hyperproliferation of residual stem
cells that have escaped Hsp60 deletion. Conclusively, these data
indicate a fundamental role of mitochondrial function in the
control of the epithelial stem cell niche.

Results
Epithelial Hsp60 deficiency impacts IEC proliferation. To
investigate the role of HSP60 in IEC homeostasis, we generated
conditional knockout mice. Exons 4–8 covering main parts of the
ATPase domain were flanked with loxP sites via homologous
recombination in embryonic stem cells. Tissue-specific deletion of
the conditional knockout allele (Hsp60flox/flox) was achieved by
breeding mice to different Cre recombinase expressing mice
(Fig. 1a). Crossing of Hsp60flox/flox mice with VillinCre transgenic
mice caused embryonic lethality due to general developmental
retardation shortly after the onset of Villin expression
(Supplementary Fig. 1)35. To circumvent this problem we used
tamoxifen-inducible VillinCreERT2-Tg mice to generate an
epithelial-specific Hsp60 knockout in adult mice (Fig. 1b).
Due to severe wasting mice fulfilled abortion criteria and were
killed 2 days after the end of tamoxifen administration (d2).
Histopathological evaluation of intestinal tissue sections in
Hsp60D/DIEC mice revealed numerous hyperproliferative crypt
foci forming nodular structures with decreasing abundance from
the duodenum to the colon (Fig. 1c). Immunohistochemical
stainings confirmed the loss of epithelial HSP60 protein
expression in most intestinal tissue areas (Fig. 1c). In contrast,
hyperproliferative crypt nodules displayed strong expression of
HSP60 (Fig. 1c). Laser-dissection microscopy was used to isolate
genomic DNA from the epithelium of HSP60-positive,
hyperproliferative crypt nodules and HSP60-negative villus tips
of jejunal tissue sections. Interestingly, and in contrast to the
villus tip, Hsp60 knockout alleles were absent in IEC from
hyperproliferative crypt nodules, indicating the presence of
escaper regions for genomic recombination (Fig. 1d). HSP60
deficiency and the consequential disturbances in epithelial
morphology were associated with low levels of inflammatory
tissue activation, including moderately elevated numbers of
F4/80-positive macrophages. Yet, expression levels of selected
cytokines and chemokines showed no clear inflammatory pattern
(Supplementary Fig. 2).

Investigating the impact of HSP60 loss on mitochondrial
morphology, electron microscopic analysis was employed and
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Figure 1 | Formation of hyperproliferative crypt nodules in the small intestine of Hsp60D/DIEC mice. (a) Schematic illustration of the targeted genomic

modifications to generate mice carrying a conditional knockout allele for Hsp60 (Flox allele). Expression of Cre recombinase and induction of Cre activity by

tamoxifen generate the Hsp60 knockout specifically in intestinal epithelial cells (IEC) or intestinal stem cells (ISC). (b) Schedule for oral tamoxifen

administration to induce HSP60 deficiency in IEC of adult mice. Agarose gels showing the presence of the knockout allele specifically in IEC isolates.

(c) Representative H&E and corresponding HSP60 IHC stainings of Hsp60flox/flox and Hsp60D/DIEC mice along the intestinal tract. Images of HSP60 IHC in

higher magnification show HSP60-deficient villus versus HSP60-positive crypt regions of the jejunum. HSP60-positive crypt nodules in Hsp60D/DIEC mice

were counted along the intestinal tract using HSP60 IHC stainings. The graph represents quantifications of Hsp60D/DIEC mice (N¼ 6) with 4100 crypts

counted per animal. Lines indicate mean numbers. One-way analysis of variance (ANOVA) followed by Dunn’s test was used to test for significance.

(d) Genomic DNA was isolated from villi and hyperproliferative crypt nodules of Hsp60D/DIEC mice using laser-dissection microscopy (N¼ 3).

Presence and absence of the Hsp60 knockout allele and Cre transgene was determined via PCR. DNA control PCR were run to check for equal loading

(e) Correlation (Pearson) of MT-UPR marker gene expression with Hsp60 mRNA levels in IEC isolated from jejunal fractions of villus tip and crypt bottom

of Hsp60D/DIEC mice (N¼6). P values indicate one-sided significance. Asterisks indicate significant differences *Po0.05, **Po0.01, ***Po0.001;

NS, not significant.
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indicated preservation of mitochondrial numbers and diameter
in the epithelium of Hsp60D/DIEC mice. However, mitochondrial
cristae appeared less structured under conditions of
HSP60 deficiency (Supplementary Fig. 3A), suggesting altered
mitochondrial functionality.

Loss of HSP60 activates MT-UPR independently of CHOP. To
characterize the impact of HSP60 deficiency on UPR activation in
the epithelium, we differentially isolated jejunal IEC along the
villus–crypt axis. Isolated IEC from the villus tip compartment
were characterized by a high degree of HSP60 deficiency, whereas
the crypt bottom combined HSP60-deficient areas and HSP60-
positive hyperproliferative crypt foci. In IEC from villus tip and
crypt bottom, expression of the co-chaperone Hsp10 and the
transcription factor Chop, two surrogate markers of MT-UPR,
highly correlated with Hsp60 deficiency, confirming the presence
of activated MT-UPR in both compartments (Fig. 1e).

Since CHOP is involved in the induction of apoptotic
processes36,37, we performed a TUNEL assay to investigate
whether the induction of Chop expression seen in Hsp60D/DIEC

led to increased apoptosis of IEC. However, the lack of
TUNEL-positive epithelial cells clearly indicated the absence of
pro-apoptotic mechanisms in the entire epithelium including
highly Chop-expressing villi IEC. (Supplementary Fig. 3B).

To test whether the presence of HSP60-positive hyperproli-
ferative crypt foci might be due to CHOP-mediated signals of the
surrounding HSP60-deficient epithelium, we next generated
Chop� /� Hsp60D/DIEC mice. Interestingly, the lack of CHOP
did not interfere with formation and extent of HSP60-positive
hyperproliferative crypt nodules (Fig. 2a–c; Supplementary
Fig. 4). However, the absence of severe wasting in Chop� /�

Hsp60D/DIEC mice allowed for tissue analysis beyond time
point d2, demonstrating complete tissue reconstitution. Neither
hyperproliferative crypt foci forming nodular structures nor
increased expression of the proliferation marker Ki67 were
detectable 12 days after the end of tamoxifen administration (d12).
Already by d8, HSP60-deficient crypts were completely resorbed
with the total number of (HSP60-positive) crypts per centimetre
again reaching control levels (Supplementary Fig. 5A,B),
indicating formation of hyperproliferative crypt nodules to be
an essential step in epithelial reconstitution. Further analysis
of MT-UPR-associated gene expression indicated activated
MT-UPR signalling in villus tip as well as crypt bottom IEC
from both Hsp60D/DIEC and Chop� /� Hsp60D/DIEC mice,
with only minor differences between the animal models
(Fig. 2d). Thus, presence of hyperproliferative crypt foci and
MT-UPR activation in response to epithelial HSP60 loss seemed
to be independent of the MT-UPR-associated transcription
factor CHOP.

Dissecting the impact of HSP60 deficiency on IEC
proliferation, immunofluorescence analysis was used to visualize
HSP60 and Ki67 in paraffin-embedded jejunal tissue sections.
In crypts of Hsp60flox/lox (CTRL) mice, HSP60 co-localized with
Ki67-positive cells. In contrast, Ki67 expression was largely absent
in HSP60-deficient crypts of Hsp60D/DIEC mice (Fig. 3a).
Surrounded by this HSP60-deficient epithelial environment,
HSP60 positive, hyperproliferative crypt nodules were strongly
positive for Ki67 expression. The number of Ki67 positive cells in
these nodules was three to four times higher compared
with CTRL crypts (Fig. 3). This phenotype was confirmed in
Chop� /� Hsp60D/DIEC mice (Fig. 3b), again supporting CHOP-
independent mechanisms to induce hyperproliferative crypt foci.

Loss of HSP60 results in mitochondrial dysfunction. In addi-
tion to UPR activation, HSP60 deficiency diminished expression

of marker genes related to mitochondrial function, mitochondrial
DNA-encoded Cyclooxygenase I (mtCoxI) and Ornithine
transcarbamylase (Otc; Fig. 4a). Again demonstrating the CHOP-
independency of the observed effects, Chop� /� Hsp60D/DIEC

mice showed comparably reduced expression levels of both
genes (Supplementary Fig. 5C). While MT-COXI is involved in
oxidative phosphorylation, OTC is part of the urea cycle and
syntheizes the amino-acid citrulline from glutamine in the gut.
In kidneys, citrulline is converted into arginine38. Constituting
a functional read-out of IEC mitochondrial function,
Hsp60D/DIEC mice displayed markedly reduced plasma citrulline
concentrations with concomitantly unaltered levels of glutamine
and arginine (Fig. 4b).

To further validate the effect of HSP60 loss on mitochondrial
function, we used small intestinal organoid culture and
induced Hsp60 knockout ex vivo. Already after one day of
4-hydroxytamoxifen (4-OHT) treatment (d1), the knockout allele
was detectable at the genomic level (Fig. 4c). Accordingly, mRNA
expression of Hsp60 was largely abolished at d1 (Supplementary
Fig. 6A,B). In the following, organoids were treated with 4-OHT
for 8 consecutive days (d8) or 4 days followed by 4 days of
recovery (d4þ 4) (Fig. 4d). Hsp60 mRNA and protein expression
were virtually absent at d8. Withdrawal of 4-OHT in the recovery
phase lead to moderately elevated Hsp60 mRNA levels compared
with 8 days of continuous 4-OHT exposure, an effect that was not
detectable on protein level (Fig. 4e). Levels of Citrate synthase,
mirroring changes in HSP60 expression confirmed the profound
reduction of mitochondrial matrix protein folding capacity, since
this enzyme is known to be folded with assistance of HSP60 after
import into the mitochondria39. qPCR analysis indicated the
induction of MT-UPR marker genes Hsp10, ClpP and Chop upon
Hsp60 knockout, reflecting the effects seen in vivo (Fig. 4f).

Again confirming changes observed in Hsp60 mice, mRNA
expression of mtCoxI and Otc were abolished. Concomitantly,
peroxisome proliferator-activated receptor coactivator 1 alpha
(Pgc1a), a master regulator of mitochondrial biosynthesis, showed
a significant decrease on mRNA level at d8 (Fig. 4g). Interestingly,
mRNA level of Pgc1a were elevated in the d4þ 4 approach,
suggesting enhanced mitogenesis as an attempted to restore
epithelial homeostasis. Demonstrating mitochondrial dysfunction
induced by epithelial HSP60 loss, cellular ATP content was
significantly reduced (Fig. 4h). Functionally most important, the
respiratory control ratio (RCR) was markedly diminished
indicating attenuated coupling of respiratory chain proton pump
activities and ATP synthesis (Fig. 4i). These findings support the
hypothesis of reduced mitochondrial function.

Loss of HSP60 impacts epithelial stemness. To determine
the cellular origin of HSP60-positive, hyperproliferative crypt
nodules, in situ hybridization was performed for the stem cell
marker Olfactomedin 4 (Olfm4). While expression of Olfm4
was not detectable in morphologically normal jejunal crypts of
Hsp60D/DIEC mice, hyperproliferative crypt nodules showed
enlarged regions of Olfm4-positive cells (Fig. 5a). Decreased
transcript levels of Olfm4 in total IEC were paralleled by strongly
reduced Lgr5 mRNA expression (Fig. 5b). To investigate early
events in the development of hyperproliferative crypt nodules,
Hsp60D/DIEC mice were analysed directly after the end of
tamoxifen administration (d0). At this time point, only few
escaper cells double-positive for HSP60 and OLFM4 were
detected in scattered crypts indicating that hyperproliferative
crypt nodules seen at d2 originated from HSP60- and
OLFM4-double-positive stem cells (Fig. 5c). Conversely,
HSP60-deficient, OLFM4-positive stem cells still visible at d0

disappeared until d2, resulting in hypoproliferative crypts lacking
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Figure 2 | Formation of hyperproliferative crypt nodules and MT-UPR activation is independent of CHOP-mediated signalling. (a) Schedule for oral

tamoxifen administration to induce HSP60 deficiency in IEC of adult Chop� /� Hsp60D/DIEC mice. Agarose gels showing the presence of the knockout

allele specifically in IEC isolates. (b) Representative H&E and corresponding HSP60 IHC stainings of Chop� /� Hsp60D/DIEC mice along the intestinal tract.

Images of HSP60 IHC in higher magnification show HSP60-deficient villus versus HSP60-positive crypt regions of the jejunum. HSP60-positive crypt

nodules in Chop� /� Hsp60D/DIEC mice were counted along the intestinal tract using HSP60 IHC stainings. The graph represents quantifications of

Hsp60D/DIEC mice (N¼ 6) with 4100 crypts counted per animal. Lines indicate mean numbers. One-way analysis of variance (ANOVA) followed by
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analysis was performed using unpaired t-tests. Asterisks indicate significant differences *Po0.05, **Po0.01, ***Po0.001; NS, not significant.
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stem as well as transit amplifying cells (Figs 5c and 3a).
Thus, HSP60 depletion in IEC not only seems to antagonize
proliferation but also stemness in the crypt compartment.
Contrarily, extensive growth of stem cells sporadically
escaping target gene deletion, suggested Hsp60 and mitochondrial
function also to be involved in the positive control of stem cell
proliferation. According to the previous results (Figs 1–3), both
loss and gain of stem cell proliferation were independent
of CHOP, as demonstrated by Chop� /� Hsp60D/DIEC mice
(Fig. 5d). Directly addressing the role of HSP60 and mitochon-
drial function on stem cell homeostasis, we bred Hsp60flox/flox

mice to Lgr5CreERT2-Tg mice, generating a stem cell-specific
HSP60-deficient mouse model (Hsp60D/DISC). Using the
Lgr5-EGFP-ires-CreERT2 knock-in mouse, in which expression of
green fluorescent protein (eGFP) is driven from the Lgr5 locus
allowed following the fate of Lgr5-positive stem cells after Hsp60
knockout. A time-dependent analysis of EGFP-positive cell
numbers revealed a transient drop in stem cell numbers reaching

a minimum 4 days (d4) after the end of tamoxifen administration.
A rapid regain of Lgr5-positive, EGFP expressing stem cells was
already detectable 2 days later (d6), resulting in a complete
regeneration and return to control cell numbers at d28 (Fig. 6).
Hyperproliferative crypt nodules were not observed at any time in
Hsp60D/DISC mice, suggesting HSP60 loss in stem cells not to be
sufficient to induce hyperproliferation, but to be dependent on
paracrine signals arising from HSP60-deficient IEC.

Stem cell hyperproliferation is dependent on WNT signalling.
WNT signalling is crucial for stemness and proliferation in the
intestinal crypt. In situ hybridization revealed loss of Axin2
expression, a target gene of WNT signalling, in jejunal crypts of
Hsp60D/DIEC mice, with the exception of hyperproliferative crypt
nodules where the expression zone was enlarged (Fig. 7a).
Quantitative Real-time PCR (qRT–PCR) analysis confirmed a
positive correlation of Axin2 and Hsp60 expression levels in
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negative organoids both receiving 4-OHT. Statistics were performed by unpaired t-test. Data from organoid experiments derive from at least 3 independent

experiments. Bars represent meanþ s.e.m. Asterisks indicate significant differences *Po0.05, **Po0.01, ***Po0.001; NS, not significant.
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Figure 5 | HSP60 loss antagonizes stemness while HSP60-positive escaper stem cells hyperproliferate. (a) Images showing representative in situ

hybridizations for Olfm4 mRNA on jejunal sections at d2 including detailed images in higher magnification and quantification of Olfm4-positive crypts

(N¼6); dotted lines indicate localization of cryptal epithelium; red arrows indicate zones of Olfm4 expression). The dot plot indicates number of Olfm4þ

crypts in Hsp60flox/flox and Hsp60D/DIEC mice at d2. (b) qRT–PCR analysis of stem cell markers Olfm4 and Lgr5 was performed on isolated crypt bottom IEC

of Hsp60flox/flox (N¼ 5) versus Hsp60D/DIEC mice (N¼6). Lines in the dot plots indicate mean numbers. All statistical analyses were performed via

unpaired t-tests comparing genotypes. (c) Schedule for oral tamoxifen administration to induce HSP60 deficiency in IEC. IF images show HSP60 and

OLFM4 expression at two different time points (d0 and d2) in jejunal sections of Hsp60D/DIEC and Hsp60flox/flox mice (DAPI stains nuclei in cyan).

Representative pictures of N¼ 5 per genotype. (d) Parallel analysis as in c for Chop� /� Hsp60D/DIEC mice and corresponding Chop� /� Hsp60flox/flox

controls. Asterisks indicate significant differences *Po0.05, **Po0.01, ***Po0.001; NS, not significant.
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Hsp60D/DIEC and Chop� /� Hsp60D/DIEC mice, supporting the
hypothesis that proliferative control is independent of CHOP
signalling (Fig. 7b). Expression analysis of growth factors related
to the WNT family in crypt IEC revealed significantly altered
mRNA levels for Wnt2b, Wnt9b, Wnt10a and R-spondin
1 (Rspo1; Fig. 7c). Increased expression levels of Wnt2b, Wnt10a
and the WNT-signalling enhancer Rspo1 highly correlated
with HSP60 deficiency (Fig. 7d, Supplementary Fig. 7A).
Immunofluorescence analysis of RSPO1 and WNT10A, showing
the most pronounced induction on mRNA level, confirmed
RSPO1 expression in HSP60-deficient crypt IEC (Fig. 8a,
Supplementary Fig. 7B,C) and indicated HSP60-negative Paneth
cells as source of WNT10A (Fig. 8b). Staining for aSMA clearly
demonstrated IEC but not tissue resident fibroblasts to be the
major source of enhanced R-spondin 1 expression (Fig. 8a). The
total number of WNT10A-positive IEC was significantly
increased in the jejunum of Hsp60D/DIEC mice (Fig. 8c). In
addition, mRNA analysis of HSP60-deficient villus IEC showed
induction of distinct Wnt-related growth factors, Wnt4 and
Wnt11 (Supplementary Fig. 7D, Supplementary Fig. 8) most
probably contributing to a pro-proliferative environment.

Reflecting the findings in Hsp60D/DIEC mice, expression of the
stem cell marker Lgr5 was abolished in small intestinal organoids
after Hsp60 knockout (d8; Fig. 8d, Supplementary Fig. 6C).
Allowing organoids to recover for 4 days in the absence of
4-OHT (d4þ 4) indicated a regain of Lgr5 expression,
clearly demonstrating the dynamic regulation of stemness.
Concomitantly, an induction of Wnt10a expression was observed,
most probably constituting an attempted to compensate the lack
of epithelial renewal caused by HSP60 deficiency (Fig. 8d).

WNT10A and RSPO1 rescue growth of Hsp60 KO organoids.
Since the intestinal organoid culture system depends on
R-spondin 1 supplementation in the medium to maintain growth
and survival of organoids40, we first tested the impact of
WNT10A beyond endogenous production on organoid growth

with RSPO1 included in the medium in optimal concentration
(1 mg ml� 1/100%). The organoid culture medium was
supplemented with WNT10A for 4 days after induction of
Hsp60 knockout by 4 days of treatment with 4-OHT. In
HSP60-deficient organoids, WNT10A was able to partly rescue
the proliferative stop/growth retardation induced by HSP60 loss,
most likely by promoting growth of escaper cells as indicated by
elevated Hsp60 mRNA level (Supplementary Fig. 9). This effect
was demonstrated by a significant increase in organoid area and
de novo crypt formation as well as in the number of living
cells measured by live-cell protease activity (Supplementary
Fig. 9A–C). Accompanying growth enhancement, WNT10A
treatment restored Lgr5 mRNA expression to control levels
(Supplementary Fig. 9C), indicating stem cell regain. In contrast,
WNT10A treatment of Hsp60flox/flox control organoids did not
lead to a detectable growth improvement even though slightly
elevated Lgr5 expression levels were measured (Supplementary
Fig. 9). This might be attributable to the organoid culture system,
in which the abundance of growth factors in the medium
probably exceeds the demand to maintain epithelial stemness,
therefore, not constituting the limiting factor of growth under
non-stressed conditions. To test the combined effect of the two
most prominently regulated WNT-associated factors, RSPO1 and
WNT10A, we decreased the concentration of RSPO1 in the
culture medium to 3% (30 ng ml� 1) of the optimal concentration
after induction of Hsp60 knockout. Addition of WNT10A under
these conditions induced a slight enhancement of organoid
growth measured by organoid area and de novo crypt formation.
Consistently, optimal RSPO1 concentration (100%) and
WNT10A supplementation for 4 days showed an additive effect
leading to increased organoid area, de novo crypt formation,
number of living cells, and restored Lgr5 mRNA expression
(Fig. 9a–c). Production of reactive oxygen species (ROS) is a
hallmark of mitochondrial dysfunction and at the same time,
ROS are thought to be important mediators of cellular stress
signalling. In Hsp60D/DIEC mice, immunohistochemical staining
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Figure 6 | HSP60 deficiency in Lgr5-positive cells induces intestinal stem cell loss. (a) Schedule for oral tamoxifen administration to induce HSP60
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of 8-OHdG, a critical biomarker of oxidative stress and
carcinogenesis41, did not provide evidence for increased
oxidative stress in HSP60-deficient IEC (Supplementary
Fig. 10A). Yet, mRNA expression analysis of genes involved in
antioxidative response, Hif1a, Ho1, Cat and Sod2 was not
conclusive (Supplementary Fig. 10B). Therefore, we tested the
properties of the ROS scavenger Euk-134 in the organoid culture
system. No differences in organoid growth, de novo crypt
formation, and Lgr5 expression levels, neither in Hsp60flox/flox

control organoids nor in HSP60-deficient Hsp60D/DIEC organoids,
were observed after addition of Euk-134 (Fig. 9d–f). Hence,
mitochondrial ROS production caused by HSP60 loss-associated

mitochondrial dysfunction seems to play a minor role in the
control of epithelial proliferation and stemness.

In conclusion, we demonstrate that HSP60 deficiency induces
mitochondrial dysfunction and MT-UPR activation in the
intestinal epithelium, independently of the transcription factor
CHOP. Mitochondrial dysfunction is associated with a loss
of proliferative capacity and stemness in IEC, concomitant
with a compensatory release of WNT-related signals. This
microenvironment leads to a hyperproliferative response of
residual stem cells that escaped Hsp60 deletion, leading to tissue
reconstitution and demonstrating mitochondrial function to
control stem cell homeostasis (Fig. 10).
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Discussion
In previous studies with IBD patients, we and others demon-
strated the presence and clinical relevance of activated ER UPR
pathways in IEC16–18. Moreover, we demonstrated the organelle-
specific induction of chaperones including GRP78 and HSP60
in the epithelium of IBD patients and mouse models of colitis30.
The aim of the present study was to investigate the role of the
mitochondrial chaperone HSP60 in the regulation of epithelial
cell homeostasis by the use of conditional knockout mice.

Epithelial-specific HSP60 deficiency-induced MT-UPR activa-
tion in the absence of inflammation-related tissue pathology.
Most importantly, HSP60 deficiency caused mitochondrial
dysfunction accompanied by impaired proliferation of the
intestinal epithelium and loss of stemness. We hypothesize that
an inadequate cellular energy supply due to mitochondrial
dysfunction and impaired ATP production might antagonize
proliferation of stem and progenitor cells in the crypt
compartment. Anti-proliferative effects of HSP60 deficiency have
been shown in the kidney cell line HEK293 (ref. 42), however, the
underlying mechanisms and relevance have not yet been resolved.
We expected the UPR-related transcription factor CHOP
to be involved, since CHOP has been shown to induce cell
cycle arrest43. Recently, we generated epithelial-specific Chop
transgenic mice and demonstrated that high levels of CHOP
attenuate cell cycle progression leading to delayed epithelial
proliferation and wound closure in response to colonic injuries34.
Nevertheless, using Chop� /� Hsp60D/DIEC mice in this study
did not indicate any impact of CHOP-mediated signals on

mitochondrial dysfunction-associated loss of proliferation
and stemness. Thus, CHOP-mediated target functions are most
likely cell-context dependent, including differences in the
phosphorylation status of the protein and/or the availability of
binding partners.

In this study, HSP60 deficiency reduced the numbers of
Olfm4- and Lgr5-positive stem cells. This is remarkable and might
point towards a fundamental role of organelle-specific stress
regulation, since the same phenomenon has been reported for the
stem-cell-specific deletion of the ER chaperone Grp78. However,
in the latter study chaperone deficiency caused a loss of stemness
involving the PERK-eIF2a-CHOP branch of the ER-UPR. The
authors concluded that UPR signalling plays an important role in
the regulation of intestinal epithelial stem cell differentiation19.
In another study, hypomorphic function of the ER-UPR
transcription factor Xbox binding protein 1 (XBP-1) led to an
expansion of the Olfm4- and Lrg5-positive stem cell zone,
suggesting that the IRE1a-XBP-1 branch of the ER-UPR
contributes to proliferative control44. In the context of
mitochondrial chaperone deficiency, organelle dysfunction and
loss of stemness seem independent of CHOP-mediated signals. In
line, the MT-UPR mediated regulation of hematopoietic stem cell
aging was dependent on the interplay of the histone deacetylase
sirtuin 7 (SIRT7) and the transcription factor Nuclear Respiratory
Factor 1 (NRF1)21.

HSP60 deficiency in the tamoxifen induced VillinCreERT2-Tg

driven model is not complete due to sporadic failure of
Cre-mediated Hsp60 deletion. The appearance of escaper cells
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in the crypt bottom is a feature of VillinCreERT2-Tg mice and
has been reported before45. HSP60-positive crypt foci are
characterized by an accumulation of Ki67- and OLFM4-positive
cells, suggesting that escaper stem cells in the crypt compartment
hyperproliferate in response to changes in the epithelial
microenvironment deficient in HSP60. In fact, stem and
progenitor cell homeostasis is a tightly regulated process
involving growth promoting factors released by Paneth cells as
well as the surrounding mesenchyme46. Paneth cell factors that
have been described to constitute a niche for stem cell
proliferation are WNT3, WNT6, WNT9B and RSPO1 (refs 47–49).
These mediators are complemented by mesenchymal factors like
WNT2B, WNT4 and WNT5A (refs 47,50). Yet, the significance
of epithelial versus mesenchymal contributions is still a matter
of debate40,51–53 and most probably, a tight interplay between
growth-regulating factors originating from different cell types of
the intestine occurs. In our setup, we cannot exclude the
possibility that IEC are not the sole source of enhanced
production of WNT-associated factors, in particular RSPO1.
Mesenchymal cells such as fibroblasts might contribute to the
hyperproliferative microenvironment induced by the loss of
HSP60, and subsequent mitochondrial dysfunction, in IEC.
However, our data indicate profound changes in the expression
of WNT-related factors including RSPO1 in functionally
impaired IEC and changes in the surrounding tissue are most
likely a consequence of IEC-derived signals.

Disturbed cryptal homeostasis and the appearance of stem cell
hyperproliferation have been reported in literature for two
distinct circumstances. First, aberrant growth signalling in the
stem cells themselves leads to uncontrolled proliferation as seen
in the APCmin (ref. 54) or the Rspo1 transgenic mouse model55.
Second, as demonstrated in irradiation-mediated epithelial
eradication, stem cell hyperproliferation occurs in response to
epithelial damage, aiming to reconstitute tissue morphology. Few
surviving stem cells build up new crypts by proliferative
expansion before differentiation limits stem cells back to the
crypt bottom56. The knockout of essential epithelial genes can be
considered as a comparable condition, since the escaper cells are
surrounded by compromised cells, which provide the escapers
with a proliferative advantage. Examples for this phenomenon are
the epithelial-specific deletion of the stem cell marker Ascl-2
(ref. 57), the transcriptional activator c-Myc (ref. 58) and the
b-Catenin binding partner TCF4 (ref. 59). In all cases, the
proliferative response of escaper cells aims to restore homeostasis.
Using the Hsp60D/DIEC mouse model, we suggest a paracrine
mechanism by which the compromised crypt epithelium sets up a
microenvironment that triggers hyperproliferation of escaper
stem cells. We identified WNT10A as a new relevant factor in the
control of the proliferative capacity of IEC that is highly induced
in HSP60-deficient Paneth cells and was able to promote
growth of intestinal organoids suffering from mitochondrial
dysfunction.

In conclusion, mitochondrial dysfunction induced by HSP60
loss antagonized intestinal stem cell homeostasis through
CHOP-independent signalling mechanisms. HSP60 deficiency
in IEC triggered the paracrine release of WNT-related signals
associated with hyperproliferation of residual stem cells that
escaped Hsp60 deletion, demonstrating a fundamental role of
mitochondrial function in the control of intestinal stem cell
homeostasis. In cases where this homeostasis is constantly
challenged, such as under conditions of chronic inflammation,
this mechanism might contribute to intestinal tumorigenesis.

Methods
Ethics statement. The maintenance and breeding of mouse lines and all
experiments were approved by the Committee on Animal Health and Care of the

local government body of the state of Upper Bavaria (Regierung von Oberbayern;
TVA 12-12 and TVA 214-13) and performed in strict compliance with the EEC
recommendations for the care and use of Lab. Anim. (European Communities
Council Directive of 24 November 1986 (86/609/EEC)).

Animals. Conditional Hsp60 knockout mice were generated by Taconic-Artemis
(Cologne, Germany) in close consultation with our lab as follows: Mouse genomic
fragments of the Hsp60 locus were subcloned using RPCIB-731 BAC library via ET
recombination and recloned into a basic targeting vector placing a F3-site flanked
Puromycin resistance cassette in intron 3 and a thymidine kinase cassette
downstream of the 30 UTR. LoxP sites flanked exons 4 to 8 (chaperone ATPase
domain). The targeting vector was sequenced to confirm correctness. The
linearized DNA vector was electroporated into C57BL/6N embryonic stem cells,
Puromycin selection (1 mg ml� 1) started on day 2 and counterselection with
Gancyclovir (2 mM) started on day 5 after electroporation. Embryonic stem cell
clones were isolated on day 8 and analysed by Southern blotting according to
standard procedures. Blastocysts were isolated from the uterus of Balb/c females at
day 3.5 post coitum and 10–15 targeted C57BL/6NTac embryonic stem cells were
injected into each blastocyst. After recovery, 8 injected blastocysts were transferred
to each uterine horn of 2.5 days post coitum, pseudopregnant NMRI females.
Chimerism of offspring was measured by coat colour contribution of embryonic
stem cells to the Balb/c host (black/white). Highly chimeric mice were bred to
strain C57BL/6 females transgenic for the Flp recombinase gene (Flp-Deleter)
to remove the Puromycin resistance cassette in mice carrying the conditional
knockout allele (Hsp60flox/WT). Germline transmission was identified by the
presence of black strain C57BL/6 offspring.

Hsp60flox/flox mice were crossed with various Cre transgenic mice to generate
cell-type-specific Hsp60 knockout mice. VillinCreTg and VillinCreERT2-Tg mice
(both C57Bl/6N) were provided by Klaus Peter Janssen35. Lgr5CreERT2-IRES-EgfpTg

mice (C57Bl/6J60) and Chop� /� mice (C57Bl/6J) mice were both purchased from
Jackson lab (Bar Harbor, ME). All mice were bred over several generations in our
animal facility to harmonize the intestinal microbiota.

Induction of postnatal recombination and monitoring of mice. Phytoestrogen
free pellets (ssniff, Soest, Germany) were fed for 2 weeks to male 8 weeks old
Hsp60flox/flox X VillinCreERT2-Tg or Hsp60flox/flox X Lgr5CreERT2 EgfpTg and their
appropriate control mice, respectively. Afterwards, they received 400 mg tamoxifen
citrate (Tam) per kg chow feed (LASvendi, Soest, Germany) in pellets ad libitum
for 7 days. Body weight was monitored before, during and after oral administration
of tamoxifen. Body weight, general condition, behaviour and intestinal symptoms
were assessed by a score between 0 and 10 each according to the approved
application for animal experiments. The animals were killed by CO2 inhalation at
the indicated time points or after reaching an affection index of 20, respectively.

Embryo preparation and genotyping. Hsp60flox/WT X VillinCreTg mice were
mated with Hsp60flox/flox mice. When females were plug positive, embryos were
assumed to be in developmental stage E 0.5 (0.5 days post coitum). At the indicated
stage (E12.5–13.5) dams were killed by cervical dislocation and the uterus was
removed. The embryos and the surrounding amniotic sac (visceral endoderm) were
prepared from the uterus, examined under the microscope, killed and tails were
taken for genotyping.

For genotyping, tail cuts or ear punches were lysed in a 10 mM Tris-HCl buffer
pH 8.0 buffer containing 50 mM KCl, 0.45% Nonidet P40, 0.45% Tween 20 and
0.5 mg ml� 1 Proteinase K overnight (O.N.) at 65 �C and inactivated at 95 �C
for 10 min. Two microlitre of the clear supernatant was used for Crimson-Taq PCR
(NEB, Ipswich, MA). For genotyping of jejunal villi and crypts of Hsp60D/DIEC mice
10 mm thick cryosections were H&E stained (Harris formulation), 50,000 mm2 cells
were cut using the laser-dissection microscope (Leica, Soest, Germany) and lysed in
RLT Plus buffer (Qiagen, Hilden, Germany). DNA was isolated using the Allprep
DNA/RNA Mini kit (Qiagen). Two microlitre of DNA were used for Crimson-Taq
PCR. Primers used for genotyping are given in Supplementary Table 1. All
uncropped agarose gels can be found in Supplementary Fig. 11.

Tissue processing and staining procedures. The intestine was removed
immediately after killing, trimmed free of adjacent tissue and cleaned of stool.
Parts of the gastrointestinal tract were cut open and prepared as a ‘swiss role’61,
fixed in 4% PBS buffered formaldehyde, dehydrated and embedded in paraffin.
5 mm sections were stained with hematoxylin (of Mayer) and 0.2% eosin (ethanolic
solution; both Medite, Burgdorf, Germany) in an automated staining machine
(Leica, Soest, Germany).

Immunohistochemical (IHC) and immunofluorescence (IF) staining was
performed on 5 mm sections of formalin-fixed and paraffin-embedded (FFPE)
tissue. Antigen unmasking was performed by cooking the sections in 10 mM
Citrate buffer pH 6.0 in a pressure cooker for 23 min. In case of IHC staining,
endogenous peroxidases were blocked by 10 min incubation with 3% H2O2

(Sigma-Aldrich, St Louis, MO). Specimens were blocked in blocking buffer
containing 5% serum gained from the host species of the respective secondary
antibody. Antibodies and dilutions are given in Supplementary Table 2. For
immunizing peptide blocking experiments, anti-RSPO1 was incubated with the
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appropriate blocking peptide (Sigma-Aldrich) in a ratio of 1:2 for 30 min at room
temperature prior application on specimens. For IF staining of OLFM4, the TSA
Fluorescence kit (Perkin Elmer) was used to amplify the fluorescence signal
according to the manufacturer’s instructions. In particular, tissue specimen were
incubated with 3% hydrogen peroxide for 10 min after antigen retrieval followed by
blocking using a Avidin/Biotin kit (Vector laboratories). Subsequently, after
applying the secondary antibody, a biotinylated antibody was added and tissue
specimen were incubated for 30 min with an ABC mix (Vectastatin ABC kit,
Vector laboratories). Finally, Cyanine 5 Tyramide was applied for 5 min before
sections were mounted with water based mounting medium.

In the case of IHC, antigen detection was performed using the DAB enhanced
liquid substrate system (Sigma-Aldrich). Slides were finally counterstained with
hematoxylin. Sections were viewed on a Zeiss Axioskop 40 (Zeiss, Jena, Germany)
microscope and imaged using a Zeiss Axiocam and the Axiovision software.
For IF, nuclei were stained with DAPI (Sigma-Aldrich) and stainings were
visualized using the Flouview FV10i microscope (Olympus, Shinjuku, Japan). For
detection of apoptosis in FFPE tissue sections the Apo-BrdU In Situ Fragmentation
Assay Kit (BioVision, Milpitas, CA) was used according to the manufacturer’s
instructions. For positive controls, 5 mm thick tissue sections were treated with
DNaseI (Macherey-Nagel, Düren, Germany) for 15 min immediately after
antigen retrieval.

For in situ hybridization, Digoxigenin (DIG)-labelled antisense and
appropriate sense control RNA probes were generated from cDNA-containing
vectors by in vitro transcription using T3, T7, or SP6 RNA polymerase (Promega,
Mannheim, Germany). The following probes were used: Olfm4 (GenBank
Accession number NM_001030294.1, 643–1458; kindly provided by Hans
Clevers, Utrecht) and Axin2 (NM_015732.4, nucleotides 3472–4256). In situ
hybridization was performed essentially as described previously60. Briefly,
paraffin-embedded tissue sections were treated with proteinase K, post-fixed and
hybridized overnight at 70 �C. After washing and blocking, sections were
incubated overnight at 4 �C with preabsorbed alkaline phosphatase-conjugated
anti-digoxigenin (1:2,000, Roche). Colour reaction was performed with BM
Purple AP substrate (Roche).

Electron microscopy. One centimetre long segments of the jejunum or distal
colon from Hsp60D/DIEC mice and according controls were fixed in 2.5%
glutaraldehyde (Electron Microscopy Sciences, Hatfield, PA). After washing in
buffered saccharose and osmication for 1 h, tissues were dehydrated in acetone and
then processed for Epon embedding. The tissues were then trimmed so that
ultrathin sections of gut rings could be cut and counterstained with uranyl acetate
and lead citrate. Electron micrographs from each gut specimen were obtained at
19,000-fold magnification from each animal. Of these, up to nine images for each
specimen and animal were randomly selected and mitochondrial abundance and
diameter were measured using the analySIS Dock System (Soft Imaging System
GmbH, Münster, Germany).

Isolation of total IEC and villus tip/crypt bottom IEC. Primary IEC were
purified as previously described62. Approximately 7 cm of intestine were inverted
on a needle, vortexed vigorously and incubated (37 �C, 15 min) in DMEM
containing 10% fetal calf serum (FCS superior, Biochrom, Berlin), 1.0% Glutamine,
0.8% antibiotics/antimycotics (all Sigma-Aldrich, St Louis, MO) supplemented
with 1 mM dithiothreitol (Roth, Karlsruhe, Germany). The IEC suspensions were
centrifuged (7 min, 300g, RT) and cell pellets were re-suspended in DMEM
containing fetal calf serum, L-glutamine and antibiotics. The remaining tissue
was incubated in 20 ml PBS (10 min, 37 �C) containing 1.5 mM EDTA (Roth).
Thereafter, the tissue was discarded and the cell suspension from this step
was centrifuged as mentioned above. Finally, primary IEC were purified by
centrifugation through a 20%/40% discontinuous Percoll gradient (GE Healthcare,
Uppsala, Sweden) at 600g for 30 min.

The isolation of primary jejunal villus tip IEC was adapted from a protocol
published by Ferraris et al.63 and Mariadason et al.64. The jejunum was cut in two
B5 cm pieces, inverted, cleaned of stool and beaded on a needle. Gut tissue was
incubated (15 min, 37 �C) in citrate buffer (96 mM NaCl, 1.5 mM KCl, 27 mM
NaCitrate, 8 mM KH2PO4, 5.6 mM Na2HPO4, pH 7.3) to vigorously remove mucus
and stool remnants. The gut tissues fixed on the needles were then transferred into
10 ml of isolation buffer (1.5 mM EDTA, 0.5 mM DTT, 1 mg ml� 1 BSA) and
incubated for 10 min at 37 �C while rocking (fraction 1). Gut tissues were
transferred into 10 ml fresh isolation buffer and incubated as above (fraction 2).
Fractions 1 and 2 of each jejunum were centrifuged (300g, 5 min, 4 �C),
re-suspended and combined in 1 ml cold PBS and re-centrifuged (300g, 5 min,
4 �C). To gain fractions 3–10, the isolation procedure was repeated for 6, 5, 5, 9,
10, 25 and 30 min always transferring the gut to a fresh tube with isolation buffer.
Fraction 10 refers to the crypt bottom IEC. IEC pellets of isolated primary IEC were
lysed in 350ml RA1 buffer (Macherey-Nagel, Düren, Germany) for subsequent
RNA and/or protein isolation. Cell purity was assessed by determining the absence
of CD3-positive T-cell contaminations and the presence of E-Cadherin as an
epithelial cell marker, respectively.

LC–MS/MS amino-acid analysis of plasma samples. EDTA blood was taken
during sampling from venacava. Quantitation of amino acids in EDTA plasma was

performed using LC–MS/MS with aTRAQ labelling (aTRAQ reagent kit 4442671,
AB SCIEX, Framingham, MA, USA). Quantitation was done according to the
manufacturer’s instructions using 40 ml of serum sample. The analysis was
performed on a triple quadrupole QTRAP3200 LC–MS/MS system (AB SCIEX)
coupled to an Agilent 1260 Infinity Quaternary LC Pump (Agilent, Santa Clara,
CA, USA).

Quantitative real-time PCR and western blotting. Reverse transcription was
performed using 1 mg total RNA and a MMLV reverse transcriptase with point
mutation (Promega, Mannheim, Germany). Quantitative Real-time PCR
(qRT–PCR) was performed using 1 ml cDNA in a Light Cycler 480 system (Roche
Diagnostics, Mannheim, Germany) applying the Universal Probe Library system
according to the manufacturer’s instructions. Primer sequences were according to
Probe Finder software (Roche, Mannheim, Germany). Relative induction of gene
mRNA expression was calculated using the Light Cycler 480 software using the
expression of Gapdh for normalization. Data were expressed as fold change
compared with Hsp60flox/flox mice. Primers used for qRT–PCR are given in
Supplementary Table 3.

For western blot analysis, purified protein pellets isolated from primary IEC or
organoids (Macherey-Nagel, Düren, Germany) were suspended in lysis buffer
containing 7 mol l� 1 urea, 2 mol l� 1 thiourea, 2% CHAPS, 1% DTT (all from
Roth, Karlsruhe, Germany) and protease inhibitor (Roche Diagnostics, Mannheim,
Germany) and homogenized by ultrasonication. Total protein concentrations were
determined using BioRad protein assay (Munich, Germany). Samples were diluted
with 5� SDS buffer and 25mg of protein were subjected to electrophoresis on 10%
SDS–PAGE gels. Proteins were transferred to PVDF membranes (Millipore,
Billerica, MA) using a semi dry blotting chamber (Peqlab, Erlangen, Germany).
Thereafter, membranes were incubated in TBST containing 5% skim milk powder
for blocking. Antibodies and dilutions are given in Supplementary Table 2.
Antibodies were applied for O.N. incubation at 4 �C. Appropriate HRP-conjugated
secondary antibodies goat anti-rabbit and rabbit anti-goat (both from Dianova,
Hamburg, Germany) were used to detect the respective immunoreactive protein
using an enhanced chemiluminescence light-detecting kit (GE, Arlington Heights,
IL).

Intestinal organoid culture. Small intestinal crypt organoids were isolated by
incubation of mucosal scratches in 2 mM EDTA buffer for 30 min at 4 �C. Serial
shaking steps resulted in fractions containing villi, crypts and mesenchymal cells.
Fractions enriched in crypts were identified via light microscopy and filtered
through a 70 mm nylon mesh. Crypt fractions were centrifuged (300g, 5 min) and
embedded in Matrigel BD Biosciences, Franklin Lakes, NJ) for cultivation as
previously described40,48. Organoids from Hsp60flox/flox X VillinCreERT2-Tg and
Hsp60flox/flox control mice were cultivated in an advanced DMEM/F12 medium
(Gibbco, Cincinnati, OH) containing 2 mM GlataMax (Gibbco), 10 mM HEPES,
penicillin, streptomycin and amphotericin (all Sigma-Aldrich, St Lois, MO)
supplemented with N2, B27 (both Gibbco), 1 mM N-acetylcystein (Sigma-Aldrich),
50 ng ml� 1 EGF (ImmunoTools, Friesoythe, Germany), 100 ng ml� 1 noggin and
1 ng ml� 1 R-spondin 1 (both PeproTec, Rocky Hill, NJ). Organoids were passaged
every 6–7 days and embedded in fresh Matrigel. Ex vivo induction of the Hsp60
knockout was achieved by adding 1.5 ml of 100mM (Z)-4-hydroxytamoxifen
(4-OHT; LKT, St Paul, MN) to 300ml culture medium per well of a 48 well plate.
When indicated, recombinant murine WNT10A (Cloud-Clone Corp., Houston,
TX) or EUK-134, a synthetic superoxide dismutase (SOD)/catalase mimetic
(Sigma-Aldrich), were added in a concentration of 100 ng ml� 1 (WNT10A) and
100 mM (Euk-134), respectively. Growth measurements were performed using a
Olympus CK X 41 microscope and Olympus cellSens Entry software.

Measurement of living cells and cellular ATP content. ATP content of
organoids was measured using the CellTiter-Glo Luminescent Cell Viability Assay
(Promega, Mannheim, Germany). The activity of life- and dead-cell proteases was
measured using the MultiTox-Fluor Cytotoxicity Assay (Promega, Mannheim,
Germany) according to the manufacturer’s instructions in a 96-well format. Life
and death cell protease activity as well as ATP were measured in the same wells.

Measurement of mitochondrial respiration. Oxygen consumption of organoids
was measured with high-resolution respirometry (Oxygraph-2k, Oroboros
Instruments, Austria). Organoids were pipetted into 2 ml MIR05 buffer (110 mM
sucrose, 60 mM potassium lactobionate, 0.5 mM EGTA, 3 mM MgCl2*6H2O,
20 mM taurine, 10 mM KH2PO4, 20 mM HEPES, 1 g l� 1 BSA-fatty acid free,
pH 7.1 at 37 �C, as described by Oroboros Instruments. The stirrer speed was set to
750 r.p.m. Digitonin (2 mM) was added to permeabilize plasma membranes. State 4
respiration was measured in the presence of succinate/rotenone (5 mM/2 mM). By
addition of ADP (5 mM) phosphorylating state 3 was induced. ATP synthase was
inhibited and proton leak respiration (state 4o) was determined by addition of
oligomycin (2 mg ml� 1). Non-mitochondrial oxygen consumption determined in
presence of the complex III inhibitor antimycin A (2.5 mM) and subtracted from
the other respiratory states. Respiratory Control Ratio (RCR) was calculated
dividing state 3 by state 4o respiration. All in-plate measurements with organoids
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were performed in 4–6 wells per treatment. Data represent one of three
independent experiments with N¼ 3 individual mice per genotype.

Statistics. Data of 3–6 animals per experimental group are indicated. Statistically
significant differences were determined by the parametric unpaired t-test or by
one-way analysis of variance followed by appropriate post hoc tests, respectively
(treatment versus control group(s)). If the data did not fulfil the prerequisites
of parametric statistics (not normally distributed), a Mann–Whitney rank sum
test or a Kruskal–Wallis test on ranks followed by Dunn’s test, respectively, was
performed. To determine differences in the distribution of de novo crypt formation
among experimental groups, a Kruskal–Wallis test on ranks followed by Dunnś test
was performed. Differences reached statistical significance with P valueso0.05 (*),
o0.01 (**) and Po0.001 (***). Correlation analysis was performed according to
Pearson test. A negative correlation coefficient (r) indicates inverse correlations.
Statistical computations were performed using Prism software (Graph Pad,
La Jolla, CA) and SigmaStat software (Systat).

Data availability. The authors declare that all data supporting the findings of this
study are available within the article and its Supplementary Information Files or
from the corresponding author on reasonable request.
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