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Abstract Despite important advances in the treatment of

multiple sclerosis (MS) over recent years, the introduction

of several disease-modifying therapies (DMTs), the burden

of progressive disability and premature mortality associ-

ated with the condition remains substantial. This burden,

together with the high healthcare and societal costs asso-

ciated with MS, creates a compelling case for early treat-

ment optimization with highly efficacious therapies. Often,

patients receive several first-line therapies, while more

recent and in part more effective treatments are still being

introduced only after these have failed. However, with the

availability of highly efficacious therapies, a novel treat-

ment strategy has emerged, where the aim is to achieve no

evidence of disease activity (NEDA). Achieving NEDA

necessitates regular monitoring of relapses, disability and

functionality. However, there is only a poor correlation

between conventional magnetic resonance imaging mea-

sures like T2 hyperintense lesion burden and the level of

clinical disability. Hence, MRI-based measures of brain

atrophy have emerged in recent years potentially reflecting

the magnitude of MS-related neuroaxonal damage. Cur-

rently available DMTs differ markedly in their effects on

brain atrophy: some, such as fingolimod, have been shown

to significantly slow brain volume loss, compared to pla-

cebo, whereas others have shown either no, inconsistent, or

delayed effects. In addition to regular monitoring, treat-

ment optimization also requires early intervention with

efficacious therapies, because accumulating evidence

shows that effective intervention during a limited period

early in the course of MS is critical for maintaining neu-

rological function and preventing subsequent disability.

Together, the advent of new MS therapies and evolving

management strategies offer exciting new opportunities to

optimize treatment outcomes.

Keywords Brain atrophy � Disability evaluation �
Drug therapy � Multiple sclerosis

Introduction

Although recent years have seen great advances in the

treatment of multiple sclerosis (MS), with an increasing

number of disease-modifying therapies (DMTs) becoming

available, it remains a potentially serious and debilitating

condition as none of the current treatments halts or cures

the disease. A broad range of neurological functions may

be affected, including vision, gait and motor function,

cognition, coordination, and balance, as well as bladder,
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bowel and sexual function [1]. Cognitive impairment, for

example, is present in up to 82 % of patients with MS [2–

5]: it can be detected in the earliest stages of the disease

[5], and adversely affects employment, activities of daily

living, and social function [3, 6, 7]. Furthermore, in most

cases, MS causes progressive disability, which can involve

both motor and cognitive function and has a detrimental

impact on patients’ quality of life [8]. Indeed, there is

evidence that the impact of MS-related fatigue, unem-

ployment and limited mobility on quality of life is greater

than that associated with other causes of disability [9, 10].

MS-related disability is a major driver of the substantial

healthcare and social costs associated with the condition

[7]: European [11] and US [9, 12] data suggest that

approximately 40–44 % of total MS-related costs result

from lost productivity.

In addition to the physical and cognitive impairment

associated with MS, life expectancy in people with MS is

on average 8–12 years shorter than in the general popula-

tion [13–16]. Up to approximately 78 % of people with MS

die of disease-related complications such as respiratory

tract infections or accidents [16–19]. This burden of dis-

ability and premature mortality, and the substantial eco-

nomic costs associated with the condition, create a

compelling case for early intervention and early treatment

optimization with the more efficacious treatments that are

now becoming available. At present, it is common practice

in many countries for patients to receive several first-line

therapies, such as interferon (IFN)-b, glatiramer acetate,

teriflunomide or dimethyl fumarate (DMF), before thera-

pies with greater efficacy, such as fingolimod, natalizumab

or alemtuzumab, are tried following failure of these first-

line agents [20]. However, there is increasing evidence that

both early intervention after diagnosis, and early treatment

optimization in the event of insufficient response to initial

treatment (Fig. 1), are critical to achieving a favourable

outcome and reducing the progressive burden imposed by

MS on the patients, their families, and society as a whole

[21].

The question of how best to intervene early in MS in

order to achieve an optimal outcome was discussed at a

round-table meeting in Barcelona, Spain, in June 2013. The

key outcomes from this meeting are summarized in this

paper.

Monitoring disease activity in multiple sclerosis

Monitoring MS disease activity is key to achieving opti-

mal outcomes. However, the heterogeneity of the disease,

and the complexity of the underlying biological mecha-

nisms, can render this challenging. MS pathology is

characterized by two major hallmarks: inflammation and

progressive neuroaxonal damage [23–27]. From a clinical

perspective, inflammation is infrequently associated with

the subacute onset of clinical signs and symptoms and

focal lesions on magnetic resonance imaging (MRI) that

usually show temporary permeability of the blood–brain

barrier, reflected by contrast enhancement at sites of acute

inflammation. By contrast, axonal degeneration and loss of

neurons are associated with sustained disability and evi-

dence of brain or spinal cord atrophy on MRI over time

(Fig. 2) [28]. Axonal transection is a consistent patholog-

ical feature of acute MS lesions, and the incidence of

neuronal damage correlates with the extent of inflamma-

tion within the lesion [25]. Importantly, such damage may

be present in the early stages of MS [27]. It can, however,

be masked by mechanisms such as recruitment of other

neuronal pathways or cortical remodelling, that compen-

sate for functional loss; hence, progressive damage may go

unrecognized until it is too late for an intervention to be
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Fig. 1 The ‘windows of opportunity’ for treatment optimization in

MS. Early initiation of treatment, and prompt intervention if disease

activity persists despite initial treatment, are both critical to optimiz-

ing treatment outcomes. In both cases, there is only a limited period

during which intervention will be effective. Adapted with permission

from Tintoré [22]
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Fig. 2 Associations between inflammatory and degenerative pro-

cesses in MS and the clinical and MRI features of the disease
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beneficial [29, 30]. As the disease progresses, the balance

between degenerative and reparative processes shifts,

resulting in progressive neuroaxonal degeneration and

increasing disability (Fig. 3). Hence, clinical disease

monitoring in MS should have three elements: disease

activity as manifested in relapses (reflecting inflamma-

tion), disability (reflecting neuroaxonal loss) and func-

tionality (reflecting the degree of compensation or cerebral

reserve) (Fig. 4).

Monitoring MS by clinical parameters: relapses

versus disability

In the majority of MS patients, the disease initially takes a

relapsing–remitting course (RRMS), characterized by acute

symptomatic relapses followed by periods of variable

recovery. In the absence of treatment, more than 50 % of

patients with RRMS will develop progressive disability

after approximately 15 years [31].

Natural history studies have provided important insights

into the determinants of disability progression in early MS.

One such study showed a significant association between

relapses occurring in the early stages of MS and long-term

disability, which was primarily driven by an increasing risk

of SPMS and, to a lesser extent, by an effect of frequent

relapses on the rate of progression [32]. A further study [33]

found that age at onset of MS, residual deficits after a first

relapse, and the number of relapses during the first 2 years

were predictive of the time to a Disability Status Score (DSS)

of 3 (moderate disability), but not of the time from DSS 3 to

DSS 6 (requiring assistance to walk). The authors suggested

that these findings would be consistent with a two-phase

process of progressive disability, in which the first stage is

related to focal inflammation that is amenable to treatment,

whereas the second stage is independent of current inflam-

mation and may be related to diffuse neurodegeneration [33].

Monitoring MS by MRI: inflammatory activity

versus destructive markers

Conventional MRI techniques, such as T2-weighted

imaging and gadolinium (Gd)-enhanced T1-weighted

imaging (Table 1) offer good sensitivity in assessing the

location and temporal evolution of demyelinating plaques

in the brain and spinal cord of MS patients; indeed, these

techniques are considered to represent the ‘gold standard’

for diagnosing MS and monitoring the response to treat-

ment [31, 34]. However, due to the limited pathological

specificity of these techniques, they provide little infor-

mation about the underlying inflammatory process in MS,

and show only weak correlations with clinical measures of

disability [31, 34].

Alternatively, this apparent lack of correlation between

conventional MRI measures and clinical disability could

also be due to the low sensitivity of clinical measures of

disability applied in routine clinical practice. For example,

the widely used Expanded Disability Status Scale (EDSS)

reflects the level of damage that has already occurred, and

Functional brain activation

“Brain reserve”
with compensation

Disease duration

Disability
Relapses

Inflammatory
lesions

Brain 
volume

loss

Fig. 3 The relationship between relapses, inflammation and disabil-

ity in MS. The disease process in MS is characterized by both

inflammation and progressive neuroaxonal damage. Importantly, such

damage may be present in the early stages of MS, but may be masked

by compensatory mechanisms; hence, progressive damage may go

unrecognized until it is too late for intervention to be beneficial. As

the disease progresses, the balance between degenerative and

reparative processes shifts, resulting in progressive neuroaxonal

degeneration and increasing disability

Fig. 4 Potential treatment strategies in MS. In patients with little

evidence of disease activity at baseline, treatment can be started with

conventional first-line therapies such as IFN-b, glatiramer acetate,

DMF or teriflunomide. Treatment should be monitored every 6–12-

months. For patients with highly active disease at baseline or rapidly

evolving severe disease (C2 disabling relapses in 1 year, with at least

one Gd? lesion on T1-weighted MRI or a significant increase in

lesion load on T2-weighted MRI), newer agents can be used as first-

line therapy. The main differences between these two strategies are

the higher responder rate and the earlier onset of action with the latter,

which has to be evaluated for each individual patient
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provides no information about the underlying neurode-

generative and reparative processes. Other MRI techniques,

such as magnetization transfer (MTR), diffusion-tensor

imaging (DTI) and proton magnetic resonance spec-

troscopy (MRS) (Table 1), appear to provide better and

more quantitative measures of higher pathological speci-

ficity for hallmarks of the disease such as demyelination

and remyelination (MTR, DTI) or axonal degeneration

(MRS, DTI). Moreover, they show better correlations with

standard measures of clinical disability [31, 34].

In addition to focal MRI lesions, MRI measurements of

more diffuse brain atrophy have emerged in recent years as a

promising measure of MS-related neuroaxonal damage, that

could in principle be used to measure treatment effects [35–

37]. Brain atrophy is a characteristic feature of MS, occur-

ring in the earliest stages and progressing throughout the

course of the disease [38]. In people with MS, brain atrophy

progresses at a rate of approximately 0.5–1.0 % per year,

compared with 0.2–0.4 % in healthy individuals [35, 39],

although it should be noted that it is unclear whether atrophy

progresses in a linear fashion in individual patients. Of note,

changes in brain volume in MS can reflect diverse patho-

physiological mechanisms, including changes in inflamma-

tory oedema, neuronal or axonal loss, de- and remyelination,

and changes in glial cell number and volume [35, 39].

Several studies have shown that, at a group level, brain

atrophy in MS patients appears to be predictive of subse-

quent disability [40, 41]. Indeed, it has been suggested that

measurement of brain atrophy may be the best predictor of

subsequent disability in MS patients [37, 42, 43]. Although

atrophy affects both grey and white matter regions of the

brain [37, 42], there is evidence that grey matter (cortical

and deep grey matter) atrophy is more closely related to

long-term disability than white matter atrophy. In one

study, for example, grey matter atrophy showed significant

correlations with disability measured either by the EDSS or

the MS functional composite (MSFC), whereas no such

correlations were seen with white matter atrophy; further-

more, changes in the grey matter fraction accounted for a

greater proportion of the variability in clinical findings than

changes in white matter [44]. Importantly, a recent patho-

logical study has shown that plaque-like primary

demyelinating cortical lesions are specific to MS, and are

not seen in other neuroinflammatory disorders such as

tuberculous meningitis or chronic purulent meningitis [45].

Recent studies have shown that the combination of brain

atrophy measures and MRI lesion load is a strong predictor

of long-term disability. In a study of 261 MS patients in

whom EDSS assessments were available at baseline and

after 10 years’ follow-up, and in whom MRI investigations

Table 1 Conventional and

emerging techniques used in the

assessment of MS [34]

Technique Role in MS

Gd-enhanced T1-weighted imaging Identification of demyelinated lesions (hypointense 

loci)

T2-weighted imaging Identification of demyelinated lesions (hyperintense 

loci)

2- and 3-dimensional fluid-attenuated 

inversion recovery (FLAIR) 

sequences

Identification of cortical, periventricular and 

infratentorial lesions

Double inversion recovery sequences

Ultra-high field strength MRI Detection of subpial cortical and deep grey matter 

lesions

Unenhanced T1-weighted imaging Detection of hypointense black holes, a measure of 

chronic neurodegeneration

Magnetization transfer imaging 

(MTI)

Characterization of the evolution of MS lesions and 

normal-appearing brain tissue

Diffusion-weighted imaging Provides information on orientation, size and 

geometry of white and grey matter damage

Magnetic resonance spectroscopy Provides information on tissue biochemistry, 

metabolism and function; detection of 

neuroprotective processes
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were performed over 1–2 years after baseline, the combi-

nation of these MRI measures was strongly predictive of

EDSS scores after 10 years (R2 = 0.74); furthermore,

central atrophy was predictive of long-term disability in

patients with minimal impairment (EDSS 0–3.5) at base-

line, whereas T2 lesion volume was predictive in patients

with moderate impairment (EDSS 4–6) at baseline [46].

A recent meta-analysis, including data from more than

13,500 patients enrolled in 13 randomized controlled trials,

has investigated the relationship between changes in brain

atrophy and disease progression during treatment of RRMS

[47]. Treatment effects on both brain atrophy and active

MRI lesions (defined as new or enlarging T2 lesions) were

significantly and independently correlated with effects on

disability progression at group level, and the correlation

was strongest when both MRI endpoints were included in a

multivariate model.

The available DMTs appear to differ in their effects on

brain atrophy (Table 2) [36, 50–70], although it should be

noted that direct comparisons are difficult between trials

because of the heterogeneity of patient populations and

methods applied to measure brain volume used in dif-

ferent studies. During treatment with many DMTs, an

apparent decrease in brain volume (pseudoatrophy) occurs

during the first 6–9 months, but a significant decrease in

atrophy rate, compared with placebo, occurs during the

second year of treatment with some agents [56, 61, 63,

71–77].

At present, brain atrophy is not measured routinely in

MS centres and is not used to monitor treatment. Hence,

the use of brain atrophy as an outcome measure in MS will

require standardization of MRI acquisition and post-pro-

cessing procedures to allow comparisons of scans obtained

at different times during the course of MS and at different

centres. In clinical trials, brain volume should be measured

at 3–6 month intervals to identify pseudoatrophy [78, 79],

while in routine clinical practice scans should be taken

6 months after starting DMTs to establish a baseline for

assessments of brain atrophy that is less likely confounded

by pseudoatrophy effects. SIENA (Structural Image Eval-

uation, using Normalization, of Atrophy), usually used to

measure brain volume loss in clinical trials, could

Table 2 Immediate and delayed treatment effects on brain volume changes in the double-blind phases of trials of disease-modifying therapies in

RRMS [48–70]

Drug Numbers of patients Global effect on brain

volume

Immediate effect on brain

volume

Delayed effect on brain

volume

Placebo-controlled studies

Interferon b-1a [48–51] 172, 382 No No Yes

Glatiramer acetate [52–55] 27 (subcohort), 207,

980

No Noa NAb

Fingolimod [56–58] 1033, 1153 Yes Yes Yes

Dimethyl fumarate [59, 60] 540, 681 Yesc Nod Yesd

Teriflunamide [63] 1074 No No No

Laquinimod [64, 65] 1106, 1331 Yes NA NA

Natalizumab [61, 62] 942, 1003 No No Yes

Active comparator studies

Interferon versus glatiramer acetate

[66–68]

460, 1008, 2096 Yes (GA)e Yes (GA)e Yes (GA)e

Fingolimod versus im IFN b-1a
[57]

1153 Yes (FTY) Yes (FTY) NAf

Alemtuzumab versus sc IFN b-1a
[69, 70]

334, 581, 840 Yes (AL) NAg NAg

Adapted from Vidal-Jordana et al. [48]

AL alemtuzumab, IFN interferon, im intramuscular, GA glatiramer acetate, NA not applicable, sc subcutaneous
a Baseline to 9 months
b Open-label data: a significant effect of glatiramer acetate was observed in months 9–18 in the early treatment arm
c Only for twice-daily dosing in the DEFINE trial; brain volume was assessed during the 6–24 month period
d Only for twice-daily dosing in the CONFIRM trial: no data available for the DEFINE trial
e Data only from the REGARD trial, no P values reported; no significant differences were observed in the BEYOND AND COMBIRx trials
f No data available beyond 12 months
g The two CARE-MS trials only assessed brain volume changes from baseline to 24 months
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potentially be incorporated into MS management but

would still necessitate a technology and staff infrastructure

not necessarily available in MS centers. However, other

simpler techniques such as measurement of third ventric-

ular width, lateral ventricle volume and corpus callosum

index might provide alternative options once validated in

clinical routine [37, 42, 80, 81].

Monitoring MS by patient-reported outcomes

From a patient’s perspective, a treatment may be consid-

ered to be a failure if it produces adverse events that affect

everyday quality of life. This would suggest that worsening

in patient-reported outcomes related to fatigue, depression,

cognitive dysfunction, mobility, sexual function or bowel/

bladder function should also be included in definitions of

treatment failure [1]. Similarly, in view of the significant

impact of MS-related disability on quality of life [8],

changes in quality of life should be considered an impor-

tant outcome in MS treatment (Fig. 4).

It may be anticipated that patient-reported outcomes will

become increasingly important in MS management as the

focus of treatment moves to the prevention or delay of

disability, rather than clinical relapses or MRI measures of

disease activity [82]. It will therefore be necessary to val-

idate such outcome measures in clinical trials and routine

practice [83]. A recent study has found that two widely

used outcome measures, the MS Impact Scale (MSIS-29)

and the Hamburg Quality of Life Questionnaire in MS

(HAQUAMS), are able to differentiate between MS

patients with different degrees of functional impairment,

with moderate correlations between these instruments and

conventional disability measures such as the EDSS and the

MSFC [84].

Combining monitoring strategies in MS treatment:

the NEDA concept

As noted above, current practice in MS is to start with first-

line therapies and then introduce more efficacious agents if

the response is inadequate or if first-line therapy is poorly

tolerated [19]. This approach is enshrined in current MS

management guidelines from a number of European

countries [85, 86]. In recent years, however, a new strategy

has emerged, ‘treating to target,’ where the aim is to

achieve no evidence of disease activity (NEDA). This may

be defined as absence of relapses, disability progression

and MRI measures of disease activity including new

Gadolinium enhancing and new or newly enlarging T2

lesions [87]. There is evidence that MS patients treated to

target of NEDA have better outcomes than those with

clinical or subclinical breakthrough disease, and hence it

has been recommended by some that this approach should

be incorporated into routine clinical practice [88]. A recent

long-term (up to 7 years) study found that NEDA status at

2 years had optimal prognostic value, although NEDA was

difficult to sustain over the longer term, even with treat-

ment [89]. In this study, NEDA was defined as a composite

of absence of relapses, no EDSS progression and no new or

enlarging T2 or T1 Gd-enhancing lesions on annual MRI.

However, it has been argued that such a focus on clinical

and MRI measures does not adequately reflect patients’

needs in routine clinical practice [90].

In view of such considerations, it is anticipated that the

definition of NEDA is likely to evolve as evidence accu-

mulates to support the incorporation of additional outcome

measures [88]. For example, there is increasing evidence

that the absence of brain atrophy, as measured by MRI,

may also be a valid criterion for NEDA. This view is based

on the evidence, discussed above, that measures of brain

atrophy, despite methodological limitations, appear to be a

clinically useful marker of neuroaxonal damage in MS;

indeed, early brain atrophy has recently been shown to be

predictive of response to IFN-b treatment [91]. The com-

bination of relapses, disability progression and conven-

tional MRI measures with assessment of brain volume loss

has been termed NEDA-4 [92]. In an analysis of two piv-

otal trials with fingolimod, the addition of brain volume

loss increased the stringency of the NEDA measure without

affecting the sensitivity of the measurement to treatment

effects [92]. However, regular MRI monitoring of brain

volume may not be currently feasible in routine clinical

practice due to limited availability of the technological

infrastructure and trained staff as indicated above.

The increasing focus on NEDA as an aim of MS therapy

implies that regular, systematic, monitoring should be a

central aspect of the management of the condition, and this

is reflected in recent Canadian guidelines that recommend

the implementation of MRI monitoring, ultimately advo-

cating implementation of NEDA-4 as an aspirational goal

[93]. These guidelines recommend regular MRI follow-up,

beginning at 3–6 months after initiation of treatment, at

6–12 months after the reference scan and annually there-

after [93].

The importance of early diagnosis and early
treatment in MS

Evidence is accumulating to support the assumption that

there is a period early in the course of MS during which

treatment is most efficacious, and that effective treatment

during this period appears to be critical for maintaining

long-term neurological function and preventing subsequent

disability and premature mortality over the lifetime of the

patient.
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Several clinical trials have provided proof of concept for

an early window of first treatment intervention in clinically

isolated syndrome (CIS). Results from the 2-year blinded

phase of the BENEFIT study [94] in patients with a first

event suggestive of MS showed that the time to confirmed

progression on the EDSS was significantly longer in those

receiving early treatment than in those who were on pla-

cebo, and so had a delayed start of treatment, and the risk

of progression was reduced by 40 % [hazard ratio (HR)

0.60, 95 % confidence interval (CI) 0.39–0.92, P = 0.022].

The authors noted that, although the delay in treatment was

equivalent to just a single clinical event, this was never-

theless sufficient to influence the subsequent accumulation

of disability, and that the delay in progression associated

with early treatment could be considered to be clinically

relevant [94]. A subsequent analysis after 5 years of fol-

low-up showed that the rate of progression to clinically

definite MS was significantly lower with early treatment

than with delayed treatment, although the risk of confirmed

progression of disability did not differ between the groups

and mean EDSS scores were low [73]. Other IFN-b studies

[95–99] showed that, compared with placebo, early inter-

vention significantly reduced the risk of progression to

clinically definite MS in patients with a first clinical event

suggestive of MS, and similar results have been obtained

with glatiramer acetate [100] and teriflunomide [101].

Further evidence for a critical period for early inter-

vention in MS comes from a study with alemtuzumab,

which involved both an SPMS and an RRMS cohort [102].

The mean (±SD) disease duration at the start of alem-

tuzumab treatment was 11.2 ± 6.1 years in the secondary

progression cohort, of which an average of 3.6 ± 2.6 years

had been spent in the progressive phase, whereas in the

RRMS group the mean duration of disease prior to treat-

ment was 2.7 ± 2.9 years. In the RRMS cohort, treatment

with alemtuzumab significantly reduced relapse rates,

prevented the accumulation of disability, and allowed some

patients to recover function as measured by the EDSS; by

contrast, in patients with SPMS alemtuzumab suppressed

inflammation and slowed (but did not prevent) progressive

disability, and there was little recovery of function. These

findings were attributed by the authors to the beneficial

effects of early rescue of neurons from an inflammatory

environment [102]. Additional evidence comes from the

results of an extension phase to the FREEDOMS study, in

which patients who received placebo during the double-

blind phase were switched to fingolimod. Although these

patients showed significant clinical improvements, includ-

ing reductions in relapse rates, disability progression and

brain atrophy, following initiation of fingolimod, these

benefits were less marked than in patients who received

fingolimod treatment from the start of the study [103].

Early treatment optimization

MRI lesions and clinical endpoints

A recent 15-year follow-up study of RRMS patients who

received IFN-b-1a during a pivotal clinical trial has shown

that the presence of at least two Gd-enhancing lesions over

the 2-years of treatment in the IFN arm of the study was

strongly predictive of EDSS worsening [104]. In a further

study, the presence of two or three measures of disease

activity (new MRI lesions, relapses or confirmed 1-point

EDSS progression) during the first year of IFN-b treatment

was predictive of a subsequent poor response to therapy

[105].

A scoring system for MS disease activity was described

by Rı́o et al. [106], who analysed data from 222 patients

with RRMS who had received IFN-b1a for at least 1 year.

This system was based on measurements of clinical

relapses, disability progression (increase of 1 EDSS point

confirmed at 6 months) and active MRI lesions (C2 new

T2 or Gd-enhancing lesions) 1 year after the start of

treatment. Patients who met at least two of these criteria

were more likely to experience progressive disability or

relapses during the subsequent 2 years than those who did

not. However, relapses or MRI criteria alone were not

predictive of new disease activity or disease progression.

By contrast, Prosperini et al. [107] found that the 4-year

outcomes of patients with isolated MRI activity after the

first year of IFN-b therapy did not differ from those ful-

filling the European Medicines Agency (EMA) criteria for

second-line treatment escalation. This would suggest that

MRI alone might be a good predictor of outcome.

A modified version of the Rı́o scoring system has

recently been published, based on relapses and focal MRI

activity only [108, 109]. Validation of this system in the

dataset used to develop the original Rı́o system resulted in

a 24 % probability of disease progression in patients con-

sidered to be at low risk of progression, a 33 % probability

in medium-risk patients, and a 65 % probability in high-

risk patients; a subsequent study showed that more efficient

classification of medium-risk patients could be achieved by

further MRI and clinical evaluation 6 months after the first

year of therapy [110].

In a long-term (16 years) retrospective follow-up of a

pivotal IFN-b trial, baseline EDSS scores correlated with

both physical and cognitive outcome (R2 = 0.22 and 0.12,

respectively, P\ 0.0001 for both), while accumulation of

disability during the course of the study correlated signif-

icantly with physical outcome (R2 = 0.11, P\ 0.0001),

but not with cognition [111]. By contrast, baseline MRI

measures of atrophy and lesion burden correlated with

cognitive outcome (R2 = 0.21, P\ 0.0001), but not with
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physical outcome. These findings offer support for the

hypothesis that long-term outcome in MS is influenced at

least in part by disease activity during the initial years of

the disease.

The growing evidence, discussed above, that there is

only a limited window of opportunity for effective inter-

vention in MS with currently available drugs would suggest

that regular monitoring during treatment with DMTs, and

prompt intervention in cases of suboptimal response or

treatment failure, are essential to prevent long-term dis-

ability. (Although it should be noted that the impact of

early treatment switching has, to date, been studied only in

patients receiving IFN-b.) As described previously, at

present it is common for a patient to receive several first-

line therapies, with escalating doses or treatment switches

if the responses are inadequate, before more efficacious

therapies are tried [20]. The available evidence suggests

that switching to a different class of DMT (either as

another first-line therapy or as second-line treatment) is

more effective than dose escalation or switching to another

member of the same class [83, 84, 112–117]. For example,

in the CARE-MS II study, treatment with alemtuzumab

reduced relapse rates and disability in RRMS patients who

had previously experienced at least one relapse during first-

line treatment with IFN b-1a or glatiramer acetate [117].

However, there is also evidence that initiating treatment

with newer agents may be more effective than introducing

these agents as second-line treatment. For example, in a

randomized extension to the TRANSFORMS study,

patients who received fingolimod from the start of the trial

showed better clinical and MRI outcomes than those

originally randomized to IFN-b-1a and subsequently

switched to fingolimod during the extension phase [118].

Currently, highly effective DMTs such as fingolimod,

natalizumab and alemtuzumab are mainly licensed for the

first-line treatment of patients with highly active MS; fur-

ther clinical data, including cost-effectiveness data, will be

needed to support the early use of such therapies [119].

Based on the evidence currently available, a number of

potential strategies for the management of MS can be

defined, depending on the level of disease activity (Fig. 5).

In patients with little evidence of disease activity at base-

line, treatment can be started with conventional first-line

therapies such as IFN-b, glatiramer acetate, DMF or teri-

flunomide. Treatment should be monitored at 6–12-month

intervals, and highly effective agents such as fingolimod,

natalizumab, or alemtuzumab substituted (subject to their

licensing conditions) if signs of disease activity such as

frequent relapses, increasing disability, or worsening MRI

lesion burden (and possibly brain atrophy) are observed.

For patients with highly active disease at baseline or

rapidly evolving severe disease (C2 disabling relapses in

1 year, with at least one Gd? lesion on T1-weighted MRI

or a significant increase in lesion load on T2-weighted

MRI), newer agents can be used as first-line therapy, and

treatment monitored to ensure that NEDA is achieved.

ability to work

mobility partnership,
sexuality

cognition

pain

bladder & 
bowel

functionvision & 
speech

Fatigue

Standardized semiquantitative MRI benchmarking PRO

Fig. 5 Assessment of patients at risk of disease progression or

treatment failure will require attention to both traditional outcome

measures, such as relapses and disability, and to newer measures such

as MRI assessments of brain atrophy and patient-reported outcomes

(PROs). This in turn will require benchmarking to establish baseline

levels of disability, allowing longitudinal assessments of disability

over time, and standardized MRI protocols to monitor treatment

effects on brain atrophy
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While these strategies focus on clinical and MRI measures

of disease activity, it should be noted that patient-reported

progression of symptoms, adverse effects of treatment, and

an inability to tolerate injections may also constitute

grounds for switching treatments. There are currently no

data to suggest that the early use of effective treatments

presents a risk of ‘therapeutic burn-out.’ Rather, the clear

evidence for a limited therapeutic window militates in

favour of early intervention and treatment optimization.

The increasing number of highly active treatments

becoming available raises the possibility of sequential

treatment where necessary.

Conclusions

The introduction of highly effective treatments, such as

fingolimod, natalizumab and alemtuzumab, has consider-

ably expanded treatment options in MS. At the same time,

the choice of treatment has assumed a new importance for a

number of reasons. In particular, there is strong evidence

that there is a limited time window to intervene effectively

in patients with early MS, and that intervention during this

period appears to be critical for achieving favourable long-

term outcomes. Furthermore, a new therapeutic strategy,

treating to target to achieve no evidence of disease activity,

has emerged, and this may entail preservation of brain

tissue in addition to the traditional endpoints of clinical

relapses and MRI measures of inflammation. Importantly,

treating to target necessitates regular monitoring of disease

activity to allow prompt switches in cases of treatment

failure.

Effective intervention during the window of opportunity

requires identification of, and prompt response to, subop-

timal response or treatment failure. However, it is difficult

to define treatment failure adequately because much dis-

ease activity in MS (particularly during the early stages) is

subclinical, and hence it is not usually possible to be sure

that no disease activity is present and long-term conse-

quences are—at least in part—unknown. It is therefore

necessary to look for the best outcomes in groups of

patients included in clinical trials in order to identify the

most effective therapies. As emphasized above, it will also

be necessary to monitor treatment with DMTs systemati-

cally and consistently in order to identify suboptimal

response or treatment failure promptly. This will necessi-

tate attention both to traditional clinical endpoints such as

relapses and disability (with benchmarking of baseline

levels of disability), and to newer outcome measures such

as brain atrophy (measured using standardized MRI pro-

tocols, cognition and patient-reported outcomes (Fig. 5).

The regular assessment of the patient can be supported by a

computerized patient management system including PRO

assessment, such as the MSDS 3D system [120], partici-

pation in registries which provide bench marking function,

and standardized semi-quantitative MRI.

The evolving MS landscape, in which a number of new

treatments are appearing—each with their own benefits and

risks—will require a change in the nature of interactions

between patients and their physicians, with a shared

approach to clinical decision making that emphasizes

patient-related goals. Together, these innovations in MS

management offer exciting new opportunities to optimize

treatment outcomes.
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22. Tintoré M (2007) Early MS treatment. Int MS J 14:5–10
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