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Abstract

Objective

A silencer region (I-allele) within intron 16 of the gene for the regulator of vascular perfusion,

angiotensin-converting enzyme (ACE), is implicated in phenotypic variation of aerobic fit-

ness and the development of type II diabetes. We hypothesised that the reportedly lower

aerobic performance in non-carriers compared to carriers of the ACE I-allele, i.e. ACE-DD

vs. ACE-ID/ACE-II genotype, is associated with alterations in activity-induced glucose

metabolism and capillarisation in exercise muscle.

Methods

Fifty-three, not-specifically trained Caucasian men carried out a one-legged bout of cycling

exercise to exhaustion and/or participated in a marathon, the aim being to identify and vali-

date genotype effects on exercise metabolism. Respiratory exchange ratio (RER), serum

glucose and lipid concentration, glycogen, and metabolite content in vastus lateralismuscle

based on ultra-performance lipid chromatography-mass spectrometry (UPLC-MS), were

assessed before and after the cycling exercise in thirty-three participants. Serum metabo-

lites were measured in forty subjects that completed the marathon. Genotype effects were

assessed post-hoc.

Results

Cycling exercise reduced muscle glycogen concentration and this tended to be affected by

the ACE I-allele (p = 0.09). The ACE-DD genotype showed a lower maximal RER and a

selective increase in serum glucose concentration after exercise compared to ACE-ID and

ACE-II genotypes (+24% vs. +2% and –3%, respectively). Major metabolites of mitochon-

drial metabolism (i.e. phosphoenol pyruvate, nicotinamide adenine dinucleotide phosphate,
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L-Aspartic acid, glutathione) were selectively affected in vastus lateralismuscle by exercise

in the ACE-DD genotype. Capillary-to-fibre ratio was 24%-lower in the ACE-DD genotype.

Individuals with the ACE-DD genotype demonstrated an abnormal increase in serum glu-

cose to 7.7 mM after the marathon.

Conclusion

The observations imply a genetically modulated role for ACE in control of glucose import

and oxidation in working skeletal muscle. ACE-DD genotypes thereby transit into a pre-dia-

betic state with exhaustive exercise, which relates to a lowered muscle capillarisation, and

deregulation of mitochondria-associated metabolism.

Introduction
Oxidation of blood-derived substrates in contracting muscle provides the larger portion of
energy required during endurance work [1,2,3]. This relies on a series of steps between the
hepatic release of glucose and lipid into the blood stream and the metabolization of these sub-
strates, along with amino acids, in working muscle [4]. Perfusion of contracting muscle fibres
is the necessary prerequisite for the delivery of substrates to working skeletal muscle [5,6]. Per-
fusion capacity in exercising muscle is largely set by the number and density of capillaries asso-
ciated with muscle fibres [7] and the regulation of microcirculation through effects of
endothelial shear stress and hormones on vascular tone [5,8].

In this regard an overriding of the vasoconstriction in resting muscle can permit the early
increase in muscle perfusion with the onset of contractions [5,9]. In this respect the inhibition
of the vasoconstrictive action of angiotensin 2 possibly exerts a quantitatively important contri-
bution to the degree of muscle perfusion [10,11,12]. Intriguingly, a distinct gene polymor-
phism, i.e. ACE-I/D, for the upstream regulator of angiotensin 2, angiotensin converting
enzyme (ACE), is associated with endurance performance through the regulation of ACE activ-
ity [13,14]. The ACE-I/D polymorphism is characterised by either the presence (I-allele) or the
absence (D-allele) of a silencer sequence in intron 16 of the ACE gene [15]. Presence of the I-
allele thus results in lower ACE activity in blood serum and in reduced expression of the ACE
gene transcript and of the ACE protein in skeletal muscle, potentially reducing the capacity for
angiotensin 2 production [14,16]. Both alleles of the ACE-I/D polymorphism are frequent in
Caucasian populations [17]. The phenotypic differences regarding exercise performance
between genotypes of the ACE-I/D polymorphism involve a central cardiopulmonary effect
[18] and an altered response of left-ventricular mass in response to physical training [19].
Peripheral components possibly also contribute to the superior endurance performance in sub-
jects with the ACE I-allele. This is indicated by our recent observation of elevated capillarisa-
tion in subjects with the ACE I-allele and superior increases in the local components of aerobic
substrate metabolism with endurance training, i.e. the volume density of subsarcolemmal mito-
chondria and intramyocellular lipids [16]. These findings relate to the increase in serum angio-
tensin 2 levels after intense exercise [10,20] and an increased glucose uptake in contracting
muscle after angiotensin 2 infusion [21]. Collectively, the findings highlight an important role
of the ACE system in the regulation of glucose metabolism in muscle with exercise. This view
is in accordance with the higher risk of ACE-DD genotypes to develop type II diabetes, being
characterised by high serum glucose levels [19,22].

ACE-I/D Genotype Related Variability of Exercise Metabolism
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The significance of phenotypic variation due to the ACE I-allele on the acute angiotensin
2-related response of muscle metabolism to endurance exercise is yet to be established. We rea-
soned that differences in metabolic reactions in working muscle should exist between carriers
and non-carriers of the ACE I-allele and would relate to a modulated muscle capillarisation
and exercise response of angiotensin 2 levels in serum. Specifically, we hypothesised that mus-
cle capillarisation would be diminished in participants with ACE-DD genotype and result in a
reduced glucose import and metabolism in muscle with exercise; therefore partially explaining
the reported lower endurance performance in this genotype [13,14]. In order to expose the
influence of the ACE-I/D polymorphism on exercise-induced metabolism we chose to chal-
lenge metabolic control with a one-legged, rather than a two-legged, bout of exhaustive cycling
exercise in the fasted state and validate the identified metabolic effect with an exhaustive type
of running exercise (i.e. a marathon run).

Materials and Methods

Experimental design
Fifty-three male participants were recruited fromWhite British men of the Greater Manchester
Area via local newspapers and contacts with sports clubs and the organiser of the Chester Mar-
athon. Exclusion criteria were smoking, long-term ill-health and an age under 18 years or over

40 years, and a relative _VO2max below 40 ml O2/min/kg or above 60 ml O2/min/kg (as deter-
mined post-hoc). Participants were asked to carry out lab-based tests on the metabolic
response to one-legged exercise and/or to participate in a field test consisting of the Chester
Marathon. Lab-based test were carried out during two visits, to estimate aerobic capacity and
test the metabolic response to one-legged exercise. Thirty-one subjects (group 1) volunteered
for the lab-based tests. Forty subjects (group 2) undertook the field test of the Chester Mara-
thon (S1 Fig). Eighteen subjects participated in the lab-based tests and the marathon (intersec-
tion group). The ACE-I/D polymorphism was determined in a double blind manner and
assessed post-hoc for its influence only after the physiological and biochemical measurements
had been performed. The Ethics committee of Manchester Metropolitan University specifically
approved this study. The investigation was conducted according to the principles expressed in
the Declaration of Helsinki and according to published guidelines [23,24]. Informed consent,
written and oral, was obtained from the participants.

Lab-based tests
Subjects reported to the laboratory during two visits. During the first visit subjects received an
explanation of the study intent and gave their agreement to participate. Subsequently anthro-
pometry was assessed, an ergospirometry test was carried out on a stationary cycle ergometer
and a mucosal swaps was collected with a cotton ear bud. During the second visit subjects car-
ried out an exhaustive bout of one-legged endurance exercise on the stationary cycle ergometer
at a performance-matched intensity to assess metabolic reactions in serum at the cessation of
exercise and in skeletal muscle 30 min after the exercise.

Anthropometry. Age, body weight and height were measured and the BMI was calculated
during an initial visit. Then subjects completed a lifestyle questionnaire composed of 31 ques-
tions as modified from a previous short-form 36 [25].

Ergospirometry

Measurements of aerobic performance (i.e. _VO2max and maximum aerobic power output, Pmax)
were performed during an incremental endurance test with both legs on a cycle ergometer
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(Ergometrics Ergoline 800, Jaeger, Bitz, Germany) in an air-conditioned room at 23°C. The
measurements were carried out through a mouth-piece with a breath-by-breath technique
using a stationary cardiopulmonary exercise testing device (MetaLyser1 3B, Cortex, Leipzig,
Germany). The saddle length was adjusted to a position where the knee was extended at an
approximately 175° angle when subjects were seated with the shoe heel placed on the pedal.
The test started with 2 min of baseline recording followed by 3 min warm-up at 80 W and 80
rpm. Intensity was increased by 25 W every minute until exhaustion. An intensity level was
considered achieved when 80 rpm were held for at least 50 s. Respiration was followed into a
cool-down phase of 3 min at 80 W and 80 rpm followed by 2 min of rest. Test results were
recorded at 3 seconds interval with the MetaSoft1 software (Cortex, Leipzig, Germany) and
analysed offline with the method ‘maximal oxygen uptake’ for absolute and specific, i.e. body

mass related, _VO2max and RER following the exercise. _VO2max was identified based on the crite-

ria that _VO2 reached a plateau of a steady maximal value under the imposed high workload,

when RER was above 1.05, and before _VO2 fell off because the pedal rate fell consistently

below 70 rpm despite verbal encouragement (for a review see [26]). The _VO2 values at the pla-
teau varied within 1% of the average values and the plateau was maintained on average over 26

seconds. _VO2max was determined as the highest mean of _VO2 values averaged over a period of

30 seconds in the plateau phase. In the case a _VO2 plateau did not manifest during the test, the
ergospirometry was repeated on a subsequent day.

One-legged endurance exercise
Subjects reported after an overnight fast and 2 days of reduced physical activity to the labora-
tory. A resting biopsy was collected under anaesthesia from the vastus lateralismuscle of the
non-dominant leg. A 5-ml blood sample was drawn from the Cephalic vein into a tube sprayed
with dry EDTA (K2E BD Vacutainer1, Belliver Industrial Estate, Phymouth, UK) and placed
on ice. A 2-mL aliquot was rapidly processed as described below under the paragraph ‘quantifi-
cation of serum angiotensin 2 concentration’. The residual blood serum was subjected to the
measure of metabolites as described under the respective paragraph ‘serum metabolites’.

Subsequently, subjects completed a one-legged exercise test with the dominant leg at a set
cadence of 80 rpm on the stationary cycle ergometer (Ergometrics Ergoline 800, Jaeger, Bitz,
Germany) where the pedal for the non-dominant leg was taken off. Saddle length was set to the
value used for the two-legged exercise. The shoe of the dominant leg was attached to the pedal
with duct tape. The other leg rested on the frame in the middle of the ergometer. Subjects ini-
tially performed a warm-up at 15% of the predicted 2-legged Pmax which was followed by 25
min of exercise at 30% of the 2-legged Pmax before the set intensity was ramped up in 10 W
increments per minute until exhaustion. A 3-min cool-down phase at 15% of the calculated

2-legged Pmax was allowed at the end of exercise. _VO2, _VCO2 and ventilation were monitored

with the MetaLyser1 3B system (Cortex, Leipzig, Germany) and _VO2max and maximal RER
was determined.

Field test
Participants registered for the Chester Marathon in Northwest England, which took place on
9th October 2011. The race time was monitored with a chip-based system at the start, mid and
finish line of the race. Capillary blood was collected from each finisher within 5–10 min after
completing the marathon: First the fingertip was cleaned and sterilised with an ethanol wipe
and a small superficial incision was made with the help of a 2.25 mm depth sterile blood lancet
(Safety Lancet; HemoCue1; Ängelholm; Sweden). After a blood droplet was formed, about
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30 μL of blood were collected with heparinized capillary plastic tubes and subjected to the anal-
ysis of glucose and triglyceride concentration as described in the section ‘serum metabolites’. A
mucosal swab was collected to assess the ACE-I/D genotype. The name, race time and number
was written down and verified later with the race director.

Genotyping
The collected mucosal swab was frozen at –20°C in a sealed 15 ml tube (Sarstedt; Nümbrecht;
Germany). DNA was extracted after thawing with 800 μL of methanol. The solution was air
dried, frozen over-night at –80°C and resuspended in 100 μL of sterile water under heating to
65°C. DNA was recovered in the supernatant after a centrifugation step (5000 g, 2 min, room
temperature) and stored at –20°C. Genotyping for the ACE-I/D polymorphism was carried out
in a double blind manner. Towards this end, sample codes were blinded by a second investiga-
tor by sticking a label with random, but unique, four letter code on top. The code was handed
to a third investigator unrelated to the study. Subsequently the DNA samples were subjected
together with mock and camouflage samples to a polymerase chain reaction to type the ACE-I/
D polymorphism according to the protocol as described in [16]. The genotyping results were
decoded through the involvement of the third investigator once the functional test and meta-
bolic measures had been completed.

Biopsy
An experienced physician collected the muscle biopsies during the second lab-based visit; one
at rest from the non-exercising leg, and one 30 min after one-legged exercise from the domi-
nant leg, which performed to exercise. The samples were taken from the vastus lateralis muscle,
at the point of maximal thickness. The overlying skin was shaved and sterilised (Videne Anti-
septic Solution, Ecolab, Saint Paul, MN USA). A sterile drape from a wound care pack (Pre-
mier, Shermond Bunzel Retail & HealthCare Supplies Limited, Enfiled, Middlesex, UK)
ensured sterile conditions. For local anaesthesia, 1 ml 2% Lidocaine was injected subcutane-
ously. Within 5 min a 0.5-mm incision was made with a scalpel and muscle sample was
extracted using a biopsy needle (TSK Acecut 11G, Emergo Europe, The Hague, The Nether-
lands) and immediately processes by an investigator. Firm pressure was applied to the biopsy
site until the bleeding stopped. The wound was then closed (Steri-Strip, 3M Health Care, Ger-
many) and dressed (Mepore Ultra, Molnlycke Healthcare, Sweden). Subjects were discharged
with a pressure bandage for the first 4 h after the biopsy sample to reduce any further bleeding.

Biopsy samples were rapidly frozen in liquid nitrogen while shaking the sample. Pre-exer-
cise samples were cut into two pieces before being frozen; one being mounted with Tissue-
Tek1 O.C.T. TM Compound (Weckert Labortechnik, Kitzingen, Germany) on cork for histo-
logical analysis before freezing. Samples were stored airtight in a 2-mL tube (Eppendorf) until
further processing.

Measurements of capillarisation
Capillaries were detected and analysed essentially as described [27]. In brief, pre-exercise biop-
sies were mounted, and cryosections prepared at 14-μm thickness under a cutting angle being
perpendicular to the major axis of muscle fibres. Capillaries were detected based on a lectin
antibody and the section recorded at a 10x magnification with an Axiocam MRc camera being
operated by a Axioskop 2 mot plus stage (Carl Zeiss, Oberkochen, Germany). Areas of the sec-
tion corresponding to 0.15 mm2 where fibres were cut perpendicular and where no holes or
other irregularities were present were selected. The areas were processed with the Image J
1.6.0_33 J software (http://imagej.nih.gov/ij) according to the published settings [27] to
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determine the number of capillaries per square millimetre (capillary density) and the capillary-
to-fibre ratio. The values of at least 24 representative fibres per subject were analysed.

Muscle fibre cross sectional area
Mean cross sectional area was determined from cryosections after immunohistochmical stain-
ing with fast type myosin heavy chain antibody (M4276, Sigma Chemicals, Buchs, Switzerland)
and quantifying the area of stained (fast type) and non-stained (slow type) muscle fibres in a
given microscopic field was quantified using image J 1.6.0_33 J (http://imagej.nih.gov/ij) as
described [28]. On average 133 fibres were measured per cross-section.

Quantification of serum angiotensin 2 concentration
Angiotensin 2 levels were quantified with a validated commercial angiotensin II enzyme-linked
immunoabsorbent assay (SPIBio Bertin Pharma, Montigny le Bretonneux, France) essentially
as described [10].

Serummetabolites
30 μL of capillary blood was used to measure the main metabolic substrates (glucose, triglycer-
ides, cholesterol, high-density lipoprotein (HDL) cholesterol and/or ketones) using a portable
whole blood test system (CardioCheck1, Polymer Technology Systems; Indianapolis, IN,
USA). Glucose concentration was measured in the first minute after collection. The serum con-
centration of low-density lipoprotein (LDL) and very low-density lipoprotein cholesterol
(VLDL-C) was calculated as described [29]. The coefficient of variation for repeated measure-
ments was 2.6% for glucose and 3.9% for triglycerides, respectively.

Muscle metabolites
Metabolite profiles of biopsy samples, collected before and 30-min after one leg exercise based
on established protocols [30,31], were analysed using ultrahigh performance liquid chromatog-
raphy–tandem mass spectrometry (UPLC–MS). In brief, 5 mg muscle tissue was extracted in
cold MetOH: MTBE: H20 = 360: 1200: 348 using a full glass Potter type homogeniser. 10 μL of
a 50-μM solution of each LysoPC (17:0) (Avanti Polar Lipids) and 13C-Sorbitol (Sigma) was
added as internal standards. The upper (non-polar) phase with lipids and the bottom (polar
phase) with metabolites were separated by a centrifugation step (5min at 1000g, at 4°C), sepa-
rately collected and stored at –30°C. Prior to analysis the metabolite extracts were dried down
under a steam of nitrogen and reconstituted in 100 μL of 50mM ammoniumacetate in acetoni-
trile–water 9:1 (v/v). Metabolites were separated on nanoAquity UPLC (Waters) equipped
with a BEH-Amide capillary column (200 μm x 150 mm, 1.7 μm particle size, Waters), apply-
ing a gradient of 0.5 μM ammoniumacetate in acetonitril (A) and 0.5 μM ammoniumacetate in
water (B) from 90% A to 50% A. The injection volume was 1 μL. The UPLC was coupled to Q
Exactive™Hybrid Quadrupole-Orbitrap Mass Spectrometer (Thermo Fisher Scientific, Rei-
nach, Switzerland) by a nanoESI source. MS data was acquired using negative polarization and
all ion fragmentation (AIF) over a mass range of 80 to 1200 m/z at a resolution of 70’000 (MS)
and 25’000 (MSMS). All extractions steps were carried out in dichlormethane-washed Duran
glassware. All solvents used were of quality HPLC grade (Chromasolv, Sigma-Aldrich, Buchs,
Switzerland). Metabolite data sets were evaluated with Progenesis QI software (Nonlinear
Dynamics), which aligns the ion intensity maps based on a reference data set, followed by a
peaks picking on an aggregated ion intensity map. Detected ions were identified based on accu-
rate mass, detected adduct patterns and isotope patterns by comparing with entries in the
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Human Metabolome Data Base (HMDB). A mass accuracy tolerance of 5 mDa was set for the
searches. Fragmentation patterns were not considered for the identifications of metabolites. All
biological samples were analysed in triplicate and quality controls were run on individual and
mixed samples to determine technical accuracy. This analysis was carried out for 20 selected
compounds (amino acids, nucleotides, and metabolic intermediates) in mixed samples using
Quan Browser (Xcalibur, Thermo Fisher Scientific) and 61 further abundant ions using Pro-
genesis QI software (Nonlinear Dynamics). The coefficients of variation for biological and
technical replicas of the 20 compounds in mixing experiments demonstrated values near or
below 20%. The average coefficient of variation for the repeated measure of ion intensities for
the abundant ions was 19.6% for technical replicas and 23.2% for biological replicas. The corre-
lation coefficient (r) between signal intensities from biological replicas was 0.72.

Glycogen was measured relative to the total amount of muscle protein. In brief, cryosections
(25 μm) were prepared from muscle biopsies and the section volume estimated from micro-
scopic measures of the cross-sectional area and the height of the sectioned tissue. An approxi-
mate of 1 mm3 tissue was homogenised in 100 μl of a PBS/inhibitor-cocktail [1 ml PBS + 9 ml
dH2O + 1 complete Mini, EDTA-free tablet (Sigma Aldrich, Buchs, Switzerland) in a 1.5 ml
Eppendorf tube by using a steel pistil (Behrens-Labortechnik, Germany). Total protein content
was assessed in 3 μl homogenate against a BSA standard using the Pierce BCA Protein Assay
Kit (Thermo SCIENTIFIC, Town, USA) and quantified at 562 nm on a 96-well plate with a
Synergy HT spectrometer (BioTek Instruments Inc., Vermont USA). Glycogen was measured
on 20 μl muscle homogenate against a glycogen standard with the Assay Kit (abcam, Cam-
bridge, UK) according to the instructions. The reaction was developed at room temperature in
the dark in a 96-well plate in the dark. Signal was detected at 564 nm using a Synergy HT spec-
trometer (BioTek, Lucerne, Switzerland). The coefficient of variation for repeated measure-
ments of the standard curve on different days was 3.1% for BSA-based measures of protein
content and 0.1% for glycogen, respectively.

Statistics
Genotype differences prior to exercise for non-repeated factors (age, body mass, height, BMI,

body mass-specific _VO2max, _VO2max, Pmax) were assessed with a one-way ANOVA for the factor
genotype (ACE-DD, ACE-ID, ACE-II) using Statistica software (Statistica, StatSoft, Tulsa,
USA). Statistical significance of post vs. pre exercise alterations for the assessed parameters
(RER, serum metabolites, muscle glycogen concentration) was assessed with a repeated
ANOVA for the repeated factor time (pre exercise, post exercise) and the factor genotype
(ACE-DD, ACE-ID, ACE-II) using Statistica software (Statistica, StatSoft, Tulsa, USA). Post-
hoc tests of Fisher were used to localise the statistical significance of differences between geno-
types (Statistica). Significance was accepted at p-value< 0.05; trends were declared at p< 0.10.
Results are presented as median ± standard error (SE). Hardy-Weinberg equilibrium was
assessed by submitting the numbers to the online tool: http://www.had2know.com/academics/
hardy-weinberg-equilibrium-calculator-2-alleles.html. Linear relationships were assessed
based on Pearson correlations and considered to be significant if p< 0.05 (Statistica, StatSoft,
Tulsa, USA).

For the assessment of ion abundance, the metabolite data set was limited to compounds
being detected in all analysed samples. For each sample, raw signals of each compound were
normalised to the total signal of detected compounds for that sample; revealing the relative
fraction of ion abundance for the respective compound. Changes in compounds were assessed
based on permutations of t-tests using statistical analysis of microarrays (SAM) [32]. A paired
class design was applied to identify post vs. pre changes in metabolites for each genotype (i.e.
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ACE-DD, ACE-ID and ACE-II). Genotype differences in fold changes with exercise were
assessed with a SAM based on an unpaired design. A false discovery rate (FDR) of 5% was
deemed significant. Output was exported into Microsoft-Excel (Microsoft Office for Windows,
Kildare, Ireland) for table assembly and the functional significance of the altered metabolites
was assessed based on HMBD entries (http://www.hmdb.ca/metabolites/).

Results

Baseline values
Table 1 visualises the characteristics of the 31 subjects, which completed the lab-based tests.

Anthropometric variables and parameters of endurance exercise capacity (i.e. _VO2max and
Pmax) did not differ between ACE-I/D genotypes. The observed genotype frequencies were in
agreement with Hardy-Weinberg equilibrium (Chi2 = 1.807, p = 0.412).

Genotype effects of exhaustive exercise on metabolism
One-legged cycling exercise to exhaustion did increase RER (p = 0.011). The maximal values of
RER at the end of the exercise were lower in subjects of the ACE-DD genotype, compared to
subjects carrying the I-allele (p = 0.040), i.e. ACE-ID or ACE-II genotypes (Fig 1B). The serum
concentration of glucose, but not triglyceride, lipoprotein and ketone concentration was
increased in ACE-DD genotypes after the exercise and this differed to the response of subjects
with the ACE I-allele (S1 Table, Fig 1A).

Serum concentration of the ACE product, angiotensin 2, was higher in ACE-DD genotypes
than in ACE-II and ID genotypes before (29.0 ± 3.1 vs. 6.5 ± 2.2 pg/ml, p = 0.01), but not after
(24.2 ± 3.1 vs. 28.2 ± 18.8 pg/ml, p = 0.45), the one-legged cycling exercise.

Table 1. Subject characteristics—Median and SE of anthropometric and performance measures and p-values of the subjects of group 1 which
completed the lab-based tests, and the intersection group which performed lab-based tests and the Marathon. ANOVA with post-hoc test of Fisher.

genotype n Age Weight Height BMI mass-specific _VO2max Pmax _VO2max

[years] [kg] [cm] [kg/m2] [mlO2/min/kg] [Watt] [mlO2/min]

group 1:

ACE-DD 11 25.0 ± 1.6 72.0 ± 2.9 182.0 ± 2.4 22.1 ± 0.6 55.6 ± 2.2 302.5 ± 14.9 3960.4 ± 203.6

ACE-ID 13 31.0 ± 1.4 77.9 ± 2.9 179.0 ± 1.4 23.6 ± 0.9 49.0 ± 2.2 305.0 ± 14.3 3974.4 ± 185.6

ACE-II 7 23.0 ± 2.9 77.5 ± 6.0 184.0 ± 4.1 23.5 ± 1.4 50.1 ± 3.3 365.0 ± 34.4 4435.0 ± 396.5

ALL 31 27.1 ± 1.8 75.9 ± 3.6 181.7 ± 2.4 23.1 ± 0.9 51.5 ± 2.4 323.5 ± 19.1 4142.9 ± 239.6

p-values

DD vs. ID/II 0.06 0.26 0.96 0.16 0.27 0.5 0.89

DD vs. II 0.90 0.47 0.98 0.36 0.69 0.27 0.67

Intersection
group:

ACE-DD 3 27.6 ± 3.8 71.3 ± 3.9 179.0 ± 0.7 21.1 ± 1.1 56.0 ± 3.5 305.0 ± 25.0 3930.8 ± 40.6

ACE-ID 11 35.6 ± 2.1 74.0 ± 0.7 178.5 ± 1.3 23.5 ± 0.3 55.0 ± 2.7 318.0 ± 17.5 3900.0 ± 125.6

ACE-II 4 33.9 ± 2.1 71.1 ± 0.7 169.0 ± 1.7 24.5 ± 0.6 55.0 ± 2.3 317.5 ± 2.5 3701.0 ± 111.4

ALL 18 33.4 ± 1.6 73.3 ± 1.5 178.5 ± 2.1 23.5 ± 0.5 55.0 ± 1.5 317.5 ± 12.0 3775.1 ± 81.1

p-values
DD vs. ID/II 0.07 0.26 0.55 0.13 0.43 0.6 0.77

DD vs. II 0.23 0.79 0.04 0.03 0.31 0.67 0.19

1st vs. intersection
group:

0.02 0.07 0.18 0.45 0.12 0.64 0.78

doi:10.1371/journal.pone.0149046.t001
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Genotype effects on muscle metabolism during early recovery from
exercise
We assessed the contribution of muscle metabolism to the suggested difference in glucose con-
sumption with exhaustive endurance exercise. Glycogen content in vastus lateralismuscle was
reduced 30 min after the one-legged exercise in all subjects (p = 4.5E-5). After the exercise, sub-
jects with the ACE-ID genotype had a lower glycogen concentration than those with the
ACE-DD genotype (Fig 2B).

UPLC–MS based methodology detected 924 metabolites in vastus lateralismuscle; 18 of
which showed altered levels 30 min after exercise. Five of those were mapped to existing data
base entries; the major theme being an increase in compounds associated with amino acid
metabolism (S2 Table). Conversely, 2059 lipidic compounds were detected and 79 compounds
altered their level 30-min after the one-legged exercise. 13 of these were identified based on
HMDB entries (S2 Table).

39 compounds demonstrated ACE-I/D genotype dependent alterations after exercise; 19 of
which could be mapped to HMDB entries (Fig 3; S3 Table). This comprised important metabo-
lites such as phosphoenol pyruvate (PEP), aspartic acid, glutathione, saccharopine and nicotin-
amide adenine dinucleotide phosphate (NADP+), all of which were reduced 30 min after the
one-legged exercise (Fig 4). Furthermore, ACE-I/D genotype specific alterations of 12 metabo-
lites related to chemical foods and pharmaceuticals were noted (S3 Table). The mainly affected
pathways concerned pyruvate metabolism, amino acid metabolism, glutathione redox reac-
tions and glycolysis and gluconeogenesis.

Fig 1. Genotype effects on exercise inducedmetabolism.Whisker box plots visualizing the median + standard error (box and central line) and minima/
maxima (whisker) of serum glucose (A) and RER (B) pre and post the exhaustive one leg exercise for group 1. *, p < 0.05 vs. pre; **, p < 0.001 vs. pre; $,
p < 0.05 vs. ACE-DD post exercise (repeated ANOVA with post-hoc test of Fisher). Swung bracket indicates effect for combined ACE-II and ACE-ID
genotypes.

doi:10.1371/journal.pone.0149046.g001
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Genotype dependent muscle substrate pathways
We assessed the extent to which altered metabolites relate to capillarisation in the recruited
skeletal muscle. Capillary-to–fibre ratio in vastus lateralismuscle of ACE-II and ID genotypes
was elevated compared to ACE-DD genotypes (Fig 5). Fast and slow type muscle fibres demon-
strated 39% and 12%, respectively, larger cross-sectional area in ACE-II and ID than ACE-DD
genotypes (Fig 5).

Genotype effect of an exhaustive type of running exercise
Forty subjects of group 2 were followed during the Chester Marathon to test whether ACE-I/D
genotype dependent alterations in glucose metabolism with cycling exercise can be confirmed.
Serum glucose, but not triglyceride, concentration was 80% higher after the marathon in the

Fig 2. ACE I/D genotype effects onmuscle metabolism post exercise.Whisker box plots visualizing the median + standard error (boxes) and minima/
maxima (Whiskers) of muscle glycogen concentration pre and post the exhaustive one leg exercise for group 1. *, p < 0.05 vs. pre; **, p < 0.001 vs. pre; $,
p < 0.05 vs. ACE-DD post exercise (repeated ANOVA with post-hoc test of Fisher).

doi:10.1371/journal.pone.0149046.g002
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ACE-DD genotypes than the ACE-II and ID genotypes (Fig 6). No difference was noted for the
mean race time between ACE-DD genotypes and ACE-II and ID genotypes (214 vs. 213 min,
p = 0.96, unpaired t-Test). Five participants with ACE-II or ID genotype, but no subject with
the ACE-DD genotype, completed the marathon in less than 3 h.

Relationships between metabolic parameters
A number of linear relationships were identified between the metabolic parameters and perfor-
mance in the field and lab test. For the 31 subjects of group 1, which completed the lab-test
(Table 1), this concerned the trend for a correlation between average RER and the changes in
serum glucose with the one-legged endurance exercise (r = 0.70; p = 0.08) and the correlation
between the changes in RER after the exercise and muscle capillary density (r = 0.65).

For the 18 subjects of the intersection group 1, which completed the marathon and attended
the lab-based tests (Table 1), this concerned correlations between the time to complete the

Fig 3. Profiling the ACE I/D genotype dependent changes of the muscle metabolome with exercise. (A) Base peak intensity chromatogram of MS and
MSMS data (top two panels) and the corresponding averaged mass spectra over the retention time range 8.37 min to 8.42 min (peak with apex at 8.40 min);
likely under the peak at 8.40 min there are 4 major co-eluting compounds with m/z 225.0989 ([M-H]-), 259.0223 ([M-H]-), m/z 451.2067 and 473.1886 (likely 2
adducts of the same compound, i.e. [M-H]- & ([M+Na-H]-) and 426.0231 ([M-H]-). In the MSMS spectra fragments with m/z 110.0713, 154.0612 and
328.0463 and someminor fragments are visible. (B) Heatmap visualising the average fold changes of the 39 compounds demonstrating genotype specific
level alterations after the exhaustive bout of one-legged exercise. Post vs. pre-exercise changes are provided in colour coding: red; up; blue, down. Names of
the compounds are listed to the right, either by the description corresponding to the respective HMDB entry, or the composite identifier based on UPLC
retention times and the m/z-value of the separation by mass spectrometry.

doi:10.1371/journal.pone.0149046.g003
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Fig 4. Muscle metabolites after exercise in relation to the ACE I/D genotype. (A-G) Whisker box plots of muscle metabolite levels being associated with
pyruvate metabolism (A,B), glutathione metabolism (C,D) and amino acid metabolism (E,F), pre and post exercise per ACE-I/D genotype for group 1. Levels
reflect the relative fraction of ion abundance for the respective compound (i.e. metabolite). Respective HMDB entries are provided in brackets. The main
function/ ontology of each metabolite is provided in the heading. *, p < 0.05 vs. pre; $, p < 0.05 for fold changes vs. ACE-DD (SAM).

doi:10.1371/journal.pone.0149046.g004
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marathon and capillary density (r = –0.61), _VO2max (r = –0.78), BMI (r = 0.69), and glucose
concentration prior to the marathon (r = –0.66).

Discussion
The ACE-I/D polymorphism is a genuine example for genetical effects on endurance perfor-
mance [33,34]. It has been pointed out before that Caucasian subjects carrying the ACE-I allele
show better trainability of endurance performance [35]. Our recent investigation with Cauca-
sian subjects suggested that this has a muscle element [16]. Specifically this involved a higher
capillary volume density and an accentuated increase in the volume density of myocellular

Fig 5. Muscle composition in relation to the ACE I/D genotype.Whisker plots of capillary density (A), capillary-to-fibre ratio (B), and mean cross-sectional
area of slow (C) and fast fibre types (D) in vastus lateralismuscle in relation to ACE-I/D genotypes for group 1. $, p < 0.05 vs. ACE-DD (ANOVA with post-hoc
test of Fisher). Swung bracket indicates effect for combined ACE-II and ACE-ID genotypes.

doi:10.1371/journal.pone.0149046.g005
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structures (i.e. subsarcolemmal mitochondria and intramyocellular lipids) that set fatigue resis-
tance with cycling-type endurance training in subjects with the ACE-I-allele [16]. The compar-
ison of the response to exhaustive cycling exercise identified that ACE-DD genotypes showed
compared to ACE-ID and ACE-II genotypes a pronounced perturbation in serum glucose con-
centration, concomitantly with a reduced RER and modified abundance of critical muscle
metabolites in knee extensor muscles.

Model considerations and limitation
Forward to testing the hypothesis on a capillary-related reduction in glucose metabolism dur-
ing exercise in ACE-DD genotypes we assessed the metabolic response to a bout of one-legged
cycling exercise and verified selected markers of metabolism after the exhaustive physical effort
of a marathon race. Our rationale for assessing the response to a bout of one-legged cycling
exercise was based on the reported central limitations for substrate supply to peripheral muscle,
when working at maximal aerobic performance [36] and the central cardiopulmonary effect of
the ACE-I/D polymorphism [18]. The intention was to limit ACE-I/D polymorphism related
central effects.

Our investigation into the metabolic response was carried out with two partially overlapping
groups of participants. Potentially this may have confounded the identification of genotype dif-
ferences although, except for age, no significant difference existed for the measured anthropo-
metric and physiological variables between group 1 and the intersection group (Table 1). In
order to identify muscle metabolites that demonstrate ACE-I/D genotype dependent alter-
ations with exhaustive endurance exercise we opted to use an explorative UPLC-MS approach.
This allowed to characterize compounds over a large mass range but had the shortcoming of a
reduced precision. The observed coefficients of variation were however within the accepted
range for the selected application [37], and we find that a majority of identified compounds
passed the threshold for statistical significance at a false discovery rate adjusted q-value below

Fig 6. ACE I/D-related alterations in serum after the marathon.Whisker box plots of glucose (A) and triglyceride concentration (B) before and after the
Chester Marathon for each ACE-I/D genotype for group 2. *, p < 0.05 vs. pre; $ $ $, p < 0.0001 vs. ACE-DD post exercise (repeated ANOVA with post-hoc
test of Fisher).

doi:10.1371/journal.pone.0149046.g006
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0.1% (S2 Table and S3 Table). The relevance and robustness of our approach is further sup-
ported by the observation that the identified genotype difference in serum alterations of glucose
after one-legged exercise was confirmed after the exhaustive type of running exercise as pre-
sented by the completion of a marathon.

A number of factors potentially explain the suggested difference in glucose handling
between carriers and non-carriers of the ACE I-allele. In this regard the identified changes in
muscle metabolites during the early recovery from exercise (Fig 4, S3 Table) provide a signpost
of the underlying metabolic processes. The identified ACE-I/D genotype dependent metabo-
lites 30 min post exercises were associated with the metabolism of pyruvate (PEP, NADP), glu-
cose and amino acids (saccharopine, L-aspartic acid, methylhyppuric acid) as well as of
glutathione (glutathione, 2-bromacetaldehyde; Fig 4; S3 Table). These metabolic processes are
central to metabolic functioning thus possibly suggesting their contribution to differences in
substrate utilization between ACE-ID genotypes. In this regard, the lowered abundance of the
reduction equivalent NADP and the glycolytic intermediate PEP would be in line with a
reduced glycolytic energy production; leading to an attenuated decrease in glycogen content in
ACE-DD genotypes (Fig 2A). Support for the ACE I/D polymorphism-dependent modification

Fig 7. Composite panel of the metabolic features in knee extensor muscle, which demonstrate ACE I/D dependent regulation. Arrows indicate the
direction of changes of metabolites in ACE-DD genotype during recovery from exhaustive exercise and associated structural adjustments. Colour font
signifies the direction of change in the ACE-DD genotypes (red: down; green up).

doi:10.1371/journal.pone.0149046.g007
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of glucose metabolism in working muscle was presented by a reduced RER during the exhaus-
tive exercise in ACE-DD genotypes (Figs 1 and 2). In this regard the concomitant reduction of
methylhippuric acid is of interest as this is a marker of a deregulated ß-oxidation of fatty acids.
Notably, the lowered abundance of L-Aspartic acid and the concomitant increase in saccharo-
pine (a degradation product of lysine) are suggestive for an elevation of amino-acid degrada-
tion in the exercised muscle of ACE-DD genotypes after the exhaustive one-legged exercise.

In our experiments we identified that negative linear relationships existed for three metabo-
lism-related parameters and the time to complete the marathon race, i.e. glucose concentration

prior to the race, capillary density and _VO2max. None of these factors demonstrated a significant
effect of the ACE I/D genotype. We interpret this observation as to reflect the role of the aero-
bic oxidation of glucose for performance in the exhaustive type of exercise [38]. Psychological
factors aside, these findings suggest that exercise-induced changes in aerobic metabolism and
metabolic stores, rather than ACE-modulated parameters did relate to race performance in the
subjects under investigation.

Overall the results from the snapshot of metabolism post-exercise emphasize that com-
pounds of anaplerotic reactions that replenish TCA cycle intermediates (i.e. aspartate and PEP
[39]), were selectively reduced in ACE-DD genotypes after exercise (Fig 7). Concomitantly,
compounds related to the removal of metabolic intermediates from the TCA cycle (cataplero-
sis) were less increased during recovery from exercise in ACE-DD genotypes (i.e. saccharopine,
glutathione and PEP, S2 Table). TCA cycle intermediates were not detected with our
UPLC-MS based measured. However they are known to be relatively stable and are unaffected
during high-energy consumption with exercise, despite large alterations in carbon flux through
the TCA cycle [40]. These findings, together with the observed indication for reduced aerobic
energy metabolism in ACE-DD genotypes, are compatible with the idea that under the studied
conditions the lack of the ACE I-allele is associated with a reduced oxidative carbon flux in
exercised muscle resulting from an imbalance between anaplerosis and cataplerosis.

The identified differences in serum glucose concentration between ACE genotypes after the lab
test were remarkably well confirmed by the pronounced rise in serum glucose after the field test.
Conversely exercise-induced changes in serum levels of triglyceride were not affected by the
ACE-I/D polymorphism (i.e. S1 Table). RER is an indicator of physical fitness [23]. Higher RER
values are indicative of an increased glucose oxidation. Thus, our findings are indicative of a reduc-
tion in glucose oxidation in non-carriers of the ACE I-allele with one-legged exercise [21]. Because
skeletal muscle is a main contributor to energy utilisation with exercise [41], our finding suggests
that the elevated serum concentration of glucose in non-carriers of the ACE I-allele reflects a rela-
tively reduced oxidation of glucose in contracting muscle. This is supported by a correlation
between the changes in serum glucose and the average RER during the one-legged exercise. To our
understanding, the connected changes identified here are the first to indicate that a modified mus-
cle metabolism and glucose handling underlies the effect of the ACE-I/D polymorphism on the
activity-induced metabolic phenotype in men [16,34]. Overall the present novel findings lead us to
the interpretation that the lack of an ACE I-allele, in the studied subjects, is a disadvantageous con-
dition for aerobic energy metabolism during and after endurance work which is compensated by a
shift in energy production to metabolic alternatives of glucose oxidation.

Intriguingly, serum values of glucose in ACE-DD genotypes were high enough (mean of 7.9
mM) to technically meet the criteria of hyperglycaemia [42]. Serum glucose levels are tightly
regulated in an interval between 4 and 7 mM through the regulation of the rate of glucose
appearance and the rate of glucose disappearance. Elevations in serum glucose occur with the
increase in hepatic glucose output such as after a meal. This can be excluded as explanation for
our observation since subjects were fasted and angiotensin 2 does not regulate hepatic glucose
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[43]. By contrast the rate of glucose disappearance is affected by angiotensin 2/ACE through
effects on insulin [19,22]. Given that hepatic glucose output is also increased with exercise [44]
our findings of an ACE-I/D modulated response of pathways related to glucose handling with
exercise (Fig 7) suggest a deficiency in the rate of glucose uptake in the largest organ of insulin
action, skeletal muscle, which contributes up to 80% to whole body glucose disposal.

It has been pointed out before that the uptake of liver-derived glucose in contracting muscle
is importantly increased within minutes after the onset of exercise [43] and depends on
enhanced perfusion of contracting skeletal muscle [3,5]. Capillaries are a main effector for the
vasodilatative action of insulin [45] and the degree of glucose tolerance is positively correlated
with capillary density in skeletal muscle [46]. Therefore the rise in serum glucose with insulin
resistance with type 2 diabetes appears to be mainly due to an incapacity for glucose uptake
through the capillary endothelium [44]. The identified reduction in capillary-to-fibre ratio in
m. vastus lateralis of ACE-DD genotypes; indicates that capillarisation is a possible limiting
factor for glucose supply during endurance exercise in this genotype. A relationship between
muscle metabolism and capillarisation is suggested from the correlations between capillary
density and the changes in RER after the one-legged endurance exercise (r = 0.65). The investi-
gation highlights that the suggested deficit in glucose metabolism with exhaustive exercise in
the studied ACE-DD genotypes, as reflected by the accumulation of blood glucose, is related to
a reduced capillarisation in the largest organ system of insulin action, skeletal muscle.

Our findings are of interest given the association of ACE-DD genotypes with a larger risk of
developing type II diabetes [18,19]. Our findings indicate that this risk can be exposed in other-
wise healthy subjects by assessing markers of glucose metabolism after an exhaustive test of
exercise (especially the out-of norm elevation of glucose levels after exhaustive exercise). Our
findings also build a connection between glucose handling and serum angiotensin 2 levels. For
instance we identified a correlation between the fold changes in angiotensin 2 and muscle cap-
illary density (r = 0. 65) and changes in glucose (r = –0.846; p = 0.008) after one-legged exercise.
These latter observations are of interest given that the enzyme activity of ACE is regulated by
shear stress acting on the endothelial lumen such a during exercise induced hyperemia [47]
and because angiotensin 2 which increases in function of exercise intensity [10] affects arterio-
venous glucose extraction and glucose utilisation in contracting muscle [21,48]. In our study
serum angiotensin 2 concentrations were higher in ACE-DD genotypes at rest as predicted
based on the effect of the presence of the ACE I-allele on the expression of ACE and the down-
stream processing of angiotensin 2 [10]. However, serum angiotensin 2 concentrations were
not increased in ACE-DD genotypes after endurance exercise. We have recently identified that
variability in the rise in serum angiotensin 2 after intense exercise and capillary perfusion is
related to the ACE I/D polymorphism [10]. In this regard the overshoot of serum glucose post
exercise in ACE-DD genotypes is of interest as these subjects may miss a vasodilatatory
response post-exercise. Together, these relationships suggest that variability in serum glucose
concentration with exhaustive muscle work is related to the capillary lumen that is serving the
contracting musculature. Our findings imply that genetic effects of the ACE I-allele on serum
angiotensin 2 levels modulate the former association. We thus interpret our findings in
ACE-DD genotypes to reflect a reduced uptake of substrates for mitochondrial oxidation from
the vascular compartment due to reduced capillarisation and elevated potential for
vasoconstriction.

Conclusions
Genetical influence of the upstream regulator of vasoconstrictor, ACE, in non-carriers of the
ACE I-allele reduces endurance performance via a capillarisation-mediated reduction of
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glucose uptake or oxidation in working muscle. A number of major muscle metabolites are sug-
gested as targets for future investigation apprehending the implicated myocellular processes.
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pared statistically.
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