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Abstract:  
In the search for novel materials, quantum chemical modelling and simulation has taken an 
important role. Molecular properties are computed on the basis of first-principles methods and 
screened against pre-defined criteria. Alternatively, the results of these computations are used as 
source data to enhance the predictions of data-centric models. Whichever modelling strategy is 
being applied, data-intense steps are involved in the process. One key bottleneck in this regard is the 
lack of availability of machine-readable output for virtually all quantum chemistry codes. The 
results of computations need to be extracted manually or using scripts and parsers, instead of 
directly being written out in machine-readable format to be imported into a database for archival, 
analysis and exchange. We present two solutions implemented in two selected examples, the 
TURBOMOLE and PSI4 program packages. Next to the standard output, both codes generate 
Extensible Markup Language (XML) output files, but in two different ways. The generation of 
machine-readable output in a structured format can easily be implemented, and, as long as the data 
can be transformed, the choice of data format is secondary. The concept is illustrated for two 
different use cases from method benchmarking and drug design. A third illustration addresses the 
definition of a data processing and exchange protocol for screening libraries of light-harvesting 
compounds. 
 
Keywords: quantum chemistry, modeling and simulation, materials design, drug design, data 
processing 
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1. Introduction 
 

Quantum chemical modelling and simulation have played an important role in guiding the search 
(“discovery”) for novel materials. Typically, we explore how a successful material (“lead”) works, 
and based on the knowledge gained from this analysis, we propose new compounds (“prospects”) 
and score these against pre-defined criteria (“virtual screening”). More recently, machine learning 
and other data-centric methods were introduced to expedite the search process. Whichever strategy 
is applied, data-intense steps are involved in the discovery process. However, in computational 
quantum chemistry, the processing (storage, analysis, and exchange) of large amounts of data is an 
issue that has not been thoroughly addressed until very recently. 

 
Typically, the results of quantum chemical computations are analyzed and presented by means of 
visualization tools interfaced with a specific application code, and by collection of data which has 
either been extracted manually from the standard output (“cut-and-paste”) or by use of scripts and 
parsers. This manual or semi-automatic transcription of the data is labor-intensive, and error-prone 
at the same time. Sooner rather than later, the application codes will have to deliver their results in a 
machine-readable format. Ideally, these data will be well structured to be imported into a database. 

 
The choice of data structure and format presents a challenge. There are many choices, and 
numerous initiatives addressing the issue of machine-readable output formats for modelling in 
chemistry were observed. However, consensus has never been reached, and most examples of 
quantum chemical calculations delivering machine-readable output served a very narrow purpose 
such as the computation of the energies of conformers of large array of molecules. It is not until 
recently that more general data processing solutions were presented, which also showed some “new 
chemistry”. The most striking example is the Harvard Clean Energy Project (CEP, 
http://cleanenergy.molecularspace.org/ ). As part of the CEP, about three million organic molecules 
were screened based on their quantum chemically computed properties to find prospects for highly 
efficient light-harvesting compounds to be used in photovoltaic devices [1]. 

 
In an effort to optimize the non-linear optical properties of donor-acceptor functionalized linearly 
pi-conjugated polymers, some of the present authors (HPL, MPB) developed a “computing 
infrastructure”, which allowed the processing of the results of a few thousand compounds using 
statistical analysis to establish relationships between molecular properties [2]. The output of the 
quantum chemical code (Gaussian03, [3]) was transformed to Chemical Markup Language format 
(CML, [4]), an Extensible Markup Language “dialect” (XML, [5]), using a parser (JumboMarker, 
[6]). The CML output files were imported into a document database (Xindice, [7]). Later, the 
authors entered a developer agreement with the TURBOMOLE GmbH (http://turbomole.com) to 
extend their quantum chemistry code to generate XML output during execution time, obviating 
parsing of the standard output [8]. More recently, one of the authors (RAK) was also able to output 
the results of computations with the PSI4 code in an XML format during run-time (v.i). 

 
The goal of these authors is to develop an infrastructure for the analysis of the information obtained 
from quantum chemical computations to support the search for novel materials. The results of these 

http://cleanenergy.molecularspace.org/
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computations will be archived in databases, to enable fast and efficient queries of the data. The 
focus of this project named “InfoMol” is not necessarily on virtual screening, but much more on the 
establishment of relationships between the (molecular) properties of these compounds and their 
chemical activity. From this, we expect to find the chemical information contained in the molecule 
which is responsible for a particular property. These “descriptors” will also enter the scoring 
functions to screen an array of prospects against a set of target properties. At the same time, the 
information obtained from these quantum chemical computations can serve as input for machine 
learning and other data-centric modelling tools.  
 
The information archived needs to be general and easy to query. The queries should not only allow 
the rapid extraction of specific data, but should also support complex searches. Finding those 
molecules within a large array, which show maximal values for a certain target property, but also 
fulfill a number of other specifications, needs to be possible.  
 
The main features of the InfoMol infrastructure, along with three illustrations, two of which are use 
cases, are presented in this paper. The third illustration addresses the issue of finding efficient 
scoring functions for very large arrays of compounds such as those available from the Harvard CEP 
project. 

 
 

2. InfoMol Tools: TURBOMOLE / PSI4-XML-eXist 
 

 
TURBOMOLE is a commercially available quantum chemistry application package to solve the 
Schrödinger equation for molecules in gas phase or in a polarizable continuum using wave function 
and density functional methods (www.turbomole.com). The code, like many other electronic 
structure theory packages, consists of different programs performing specific tasks (“calculations”). 
The programs are interconnected by shell scripts (“driver”). 
 
To obtain machine-readable output, in principle, each single write statement could be replicated, the 
original one creating standard output and the new one creating the machine-readable output. In 
TURBOMOLE (Version 6.3), however, an output layer was constructed which collects and 
converts the relevant information to XML format to be archived in a database (see Figure 1). For 
this conversion we are using FoXLib (FORTRAN to XML library; see 
http://www1.gly.bris.ac.uk/~walker/FoX/ or https://github.com/andreww/fox). This version of the 
TURBOMOLE program package is still under development and not yet part of the official 
distribution. 
 
 

Figure 1: Workflow 
 
 
PSI4 is a widely used open-source quantum chemical program package (www.psicode.org). Though 
built upon earlier versions of PSI, version 4 introduced a top-level python driver. The major 

http://www1.gly.bris.ac.uk/%7Ewalker/FoX/
http://www.psicode.org/
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programs or modules in PSI4 are written in C++ and are called by the driver. The input file syntax 
is modified Python (dubbed “Psithon”), which allows the user to mingle standard Python with 
typical chemical parameters in the input file (see Figure 2). Most significant for the present paper, 
the underlying modules return key results back to the driver routine, resulting in several advantages. 
First, the driver can easily collect the desired information for subsequent, alternative output formats 
such as XML. Second, as new capabilities are added to the PSI4 program package, e.g., a new wave 
function type resulting in new energy values, no changes are necessary to the C++ source code to 
support its XML output. The data exported to XML can be a standard set of data, or specified 
explicitly by the user in the input file. Finally, the decision to include or exclude certain data in the 
XML output could even be made at runtime, if that were desirable. This version of PSI4 is still 
under development and there are no use cases available yet. 
 

Figure 2: Psithon 
 
In both cases, the machine-readable output is generated during execution of the programs. This does 
require interventions in the application program code (TURBOMOLE) or in the driver (PSI4), but 
comes with a number of advantages. (i) there is no parser required, (ii) there is no need to maintain 
the parser (response to changes in standard output format, and, most importantly, (iii) there is no 
dependence on standard output (availability of a particular data item and numerical precision of the 
information). 
 
The data to be stored for the longer term (i.e. duration of the project or beyond) are those one would 
typically find in the final output of a calculation. These data can be split into three groups, namely 
metadata, input data, and results (“output data”). Based on the metadata (provenance of the 
computation, i.e. information such as hardware and operating system; application program version 
and libraries at compile time) and the input data, a calculation can be fully reproduced. The results 
cover energies and properties (structural and electronic). The archived data thus are light-weight 
(scalars, vectors, tensors, small matrices); still measured in Kbytes or Mbytes per calculation. 
 

Table 1: XML-CML 
 

If necessary, larger data items, such as the wave function or the electron density, can either be 
stored or be re-computed on the fly. If stored, for reasons of efficiency, this should be in binary 
format. Often these data are needed for different programs to interoperate (multi-scale modelling, 
for example) rather than for the analysis of the computed data. C5/D5Cost [9], developed for code 
interoperability, allows reading/writing information in an HDF5 format (www.hdfgroup.org) at high 
throughput, and has been used to connect different ab initio codes or ab initio codes with post-
processing tools.  
 
The Extensible Markup Language (XML) has the advantage that it is both human- and machine-
readable, and that it is widely used as a data-exchange format supported by the World Wide Web 
consortium (http://www.w3.org/XML/). XML allows expressing content, structure and logic, and 
the schema can always be adapted to serve a particular application or purpose. The data model in 
XML databases is built on hierarchial documents archived in collections, different from relational 
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databases that are defined by tables. It offers a good balance between structure and flexibility. 
Flexibility is an issue, as not every single calculation will deliver the same set of data; the data to be 
archived will strongly depend on the kind of problem: the optimization of a molecular geometry or 
the response of this same molecule to an external field (electric or magnetic; static or time-
dependent) will create very different sets of outputs. This balance of structure and flexibility has 
been harnessed by the NoSQL community to develop powerful, yet flexible database platforms such 
as MongoDB (www.mongodb.org), which is now also being used by the Harvard CEP. Note that 
XML can be easily adapted to be fed directly into a MongoDB. 
 
XML also comes with a large number of tools for analysis, transformation and data archival. 
Chemical Markup Language (CML) is an established “XML dialect” for chemistry, and its schema 
covers most of the semantics needed, even for computational quantum chemistry [4]. More recently, 
some of those authors published CompChem, a CML-based convention for computational 
chemistry [10]. CompChem has a working CML and convention validator code. Unfortunately, as 
of 2015, CompChem has seen very limited adoption, has only tentative basis-set and array 
specifications, and a published extension of CML to the NWChem program [23] deviated from the 
original CompChem schema [11]. 
 
The TURBOMOLE XML output documents are validated against an extension of the Chemical 
Markup Language (CML) Schema, and imported into an eXist, an open source native XML 
database (www.exist-db.org). In the first release of the software (TURBOMOLE-XML-eXist 1.0), 
all XML files went through a full validation process against the extended CML schema (see also 
use case 1). In the most recent version of the software infrastructure (Version 1.1), the validation is 
on correct XML syntax only (use case 2), in response to the observation made, that all calculations 
which failed (aborted, incomplete) were identified already at this level.  
 
Within PSI4, as a computation is running the data are collected in a simple, custom Python class 
designed analogously to the data structures in the CompChem convention. Whilst this storage 
structure in no way restricts the possible ultimate output formats, we have found the CompChem 
convention to describe a reasonable, useful way to organize the information. At the end of the 
computation, the data is loaded into an object from the standard Python library ElementTree. Using 
the ElementTree library, the XML output is easily generated. Outputs from a variety of different 
types of computations have passed the test of the CML/CompChem validator. 
 
We use the eXist database to archive the XML results files in various collections, each one 
representing a series of (related) calculations. Queries are performed either using XQuery or XPath 
language. By default, both languages deliver XML output, which then can be transformed into the 
required final format (input for statistics or visualization packages, LaTeX tables, etc.). This is 
commonly done using XSLT (Extensible Stylesheet Language Transformation; see Figures 1 and 
2). XSLT as well as XQuery can both deliver text or graphical output (SVG format) directly. 
 

Figure 3: XQuery 
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The simplest way to query (a collection of) XML documents is with XPath. This language allows 
addressing a specific node of an XML document to retrieve the value of its elements and attributes. 
XPath also allows conditional searches along with simple arithmetic. XQuery, often referred to as 
the “SQL of XML”, on the other hand, is a more complex language. It is built on XPath, but allows 
one to perform FLWOR expression (For-Let-Where-Order-Return) based searches. The output of 
the query can be text or graphical (see Figure 3). In the use cases presented here, most of the 
searches were performed using XQuery (for an illustration of a query see. Figure 4). It should be 
noted that writing a complex XQuery search is more demanding, certainly if the programmer is new 
to the declarative programming paradigm. It should also be noted that the XML framework is ideal 
for building APIs, and hence can be considered to be language agnostic – allowing the user to 
choose a preferred query language if so desired.  
 

Figure 4: XQuery-Outputs 
 
The InfoMol infrastructure, installed on a virtual server accessible to all members of the project, is 
operated by the ETH Zurich IT services. 
 
3. InfoMol Illustrations and Use Cases 
 
The TURBOMOLE-XML-eXist infrastructure was applied to solve “real chemistry” problems, 
each of which is, or will be, published separately in the corresponding specialized literature. The 
first illustration or use case presented covers a typical and very straightforward method benchmark 
study. The second use case is about incorporating quantum chemically derived electronic structure 
information into drug design, an area where data-centric modelling is very established. Finally, the 
third illustration is about the complexity of establishing a protocol for screening libraries of light-
harvesting organic materials to be used in organic heterojunction photovoltaic devices. It also 
illustrated the increasingly close interaction between first-principles and data-centric modelling. 
 
Illustration 1: Quantum Chemical Method Benchmark 
 
In molecular modelling and simulation as well as in method and program development, method 
benchmarks represent a frequent and repetitive task that calls for automation. The RI-MP2-F12 
method implemented in TURBOMOLE is particularly suited for the calculation of the weak 
intermolecular interaction energies. The method, however, relies on four different basis sets, A 
(main basis), B, C, and D (auxiliary basis sets), each of which needs to be optimized. Also, the basis 
sets are interdependent, and both, the result and the stability of the method relative to a choice of 
quartet of basis sets needs to be monitored. For an array of weakly interacting compounds (twelve 
different dimers of ethylene; Figure 5), 100 quartets of basis sets ABCD were explored. The 
interaction energies of the twelve ethylene dimers are within a narrow window (5 kJ/mole), and the 
correct ordering (weakest to strongest interaction energy) therefore requires high accuracy in the 
calculation. For this numerical experiment, we started from a high quality main basis A (triple zeta), 
allowing the three auxiliary basis sets to be (nominally) equally good (also triple zeta) or better 
(quadruple and quintuple zeta). For all calculations, counterpoise corrections were performed in 
order to have an estimate for the basis set superposition error, i.e. the error observed for the dimer, 
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where each of the two ethylene molecules will profit from the presence of the basis set of its 
neighbor. This spurious stabilizing effect disappears, once the two ethylene molecules are separated 
(dissociated). The effect scales with the size of the basis, and will disappear with very large basis 
sets.  
 

Figure 5: Ethylene 
 
In this use case, the XML output data of more than 5,000 calculations were archived, and the 
analysis based on XQueries gave a clear picture on the basis set dependence of the target 
observable, the interaction energy of an ethylene dimer. In Figure 6, the relationship between the 
basis set quality, the compute time, and the quality of the computed interaction energy is shown as a 
2D plot. The main result is that the error in the computed energy strongly responds to the quality of 
auxiliary basis set D, whereas an improvement of the auxiliary bases B and C beyond the quality of 
the main basis (triple zeta T) has no impact, and only makes the computation more expensive. Also, 
the experiment shows that very large basis sets are required to achieve the accuracy targeted.  
 

Figure 6: Method-Performance 
 

From the technical perspective, this use case shows that with the database solution the human labor 
involved in the analysis of the data in method benchmarking is marginalized, and that it is no longer 
the time determining step in this task. At the same time, the frequency of errors is drastically 
reduced. For more detail about this project see [8]. 

 
 
 
Illustration 2: Exploring Electronic Structure-Activity Relationships in Biochemically Active 
Compounds (“drugs”) Using Quantum Chemical Data. 
 
In this use case, an array of 337 biochemically active compounds was explored quantum chemically 
in an attempt to relate their electronic structure with their activity using machine learning tools to 
expedite the screening process [12] [13]. The goal behind this study is to explore a particular 
representation of the electronic structure of these compounds as a descriptor for their interaction 
with different types of macromolecules (“targets”), similar to the approach used in [14]. Whereas in 
biomedical research, the in silico drug design has a longstanding tradition, it is not until recently 
that quantum chemically derived information is being used as a source for the definition of 
descriptors. 
 
The initial set of molecular structures for these compounds was extracted from the Protein Data 
Bank (PDB, [15]). A second set of structures was obtained using the 3D structure generator 
software CORINA (https://www.molecular-networks.com/products/corina) [16] frequently used in 
drug design to obtain the (Cartesian) atomic coordinates of a molecule directly from its constitution, 
i.e. from a one-dimensional representation of the chemical formula. Finally, departing from the 
PDB and CORINA geometries as an initial guess, the molecular structures were optimized using the 
quantum chemical model selected. The quantum chemically optimized structures for a given 
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molecule will not necessarily be identical as the method will search the minimum energy structure 
nearest to the initial (PDB, CORINA) geometry. 
 
The parameter space to be explored is determined by the size of the array (337 molecules), the 
number of quantum chemical models (2; BP86/6-31G* and BP86/TZVP), the number of atomic 
charge models (3; Mulliken, Löwdin, Natural Atomic Population Analysis (NPA)), and the number 
of types of molecular structures considered (6; PDB, CORINA, quantum chemically optimized 
molecular geometries starting from the PDB and from CORINA structures for both basis sets). 
About half of the 14,000 atoms present in the 337 compounds are hydrogens. Experimental 
information about their position in 3D space is rarely available. There are three options to treat the 
charges of these hydrogen atoms: they are (i) ignored, (ii) projected onto the atom the hydrogen is 
bound to, or (iii) considered explicitly. Therefore, in total, for this array we will have to perform 
and analyze the results of 337*2*3*3= 6,066 atomic charge evaluations for each of the six arrays of 
structures. 
 
To illustrate the usefulness of the TURBOMOLE-XML-eXist (Version 1.1) system, we focus on 
one particular aspect of the study, namely the analysis of the differences among the structures in the 
original PDB and CORINA arrays, and the two quantum chemically optimized structures, but for 
just one of the two models used (BP86/6-31G*)). In Figure 7 we see histograms of all interatomic 
distances between any two atoms (left) and all interatomic distances between carbon atoms, but 
now shown for two different sources (PDB and CORINA).  The interatomic distances are grouped 
into separate “bins” with a width of 1 Angström (Å). Whereas the first bin in the carbon-carbon 
distances histogram (right) is empty, there is a small population in the corresponding bin on the left 
hand side. These contain O-H and N-H distances, all smaller than 1.0 Å. 
 

Figure 7: Interatomic-distances 
 
The panel on the right hand side of Figure 7 also shows that there are differences in the carbon-
carbon distances between the CORINA and the PDB set. If we “zoom” into the range of covalent 
carbon-carbon bond lengths, i.e. the range between 1.1 and 1.7 Å (Figure 8), we see that there are 
no triple bonds (typically about 1.20 Å long) in this array, but that there is a small population of 
double bonds (about 1.33 Å). Most distances correspond to single bonds (about 1.50 Å) or aromatic 
(benzene-type) bonds (about 1.40 Å). We observe that the CORINA code uses a narrow spectrum 
of (parametrized) distances when representing a given type of bond. The spread of experimental 
bond lengths (PDB) is much larger. 
 

Figure 8: CC-distances 
 
Finally, the comparison between the initial (CORINA, PDB) and the respective quantum chemically 
optimized structures (Table 2) shows that one particular effect of the quantum chemical structure 
optimization is the formation of new intramolecular hydrogen bonds. In the original PDB set, a total 
of nine hydrogen bonds between oxygen atoms are observed. After quantum chemical optimization, 
another 30 hydrogen bonds are established. The same trend is observed for the CORINA structures. 
Obviously, the formation of additional intramolecular hydrogen bonds leads to stabilization of the 
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structure. The quantum chemical optimization was performed in vacuum (i.e. without interaction 
with any other molecules). 
 

Table 2: HydrogenBonds 
 
As in illustration 1, the human labor time for data analysis is drastically reduced. At the same time, 
the fact that all data are available in a structured format will allow to address other issues as they 
may come up during the study, thus providing better control, better (chemical) insight and depth of 
analysis.  
 
 
Illustration 3:  Searching libraries for light-harvesting organic materials for use in photovoltaic 
devices: about the difficulty of establishing a data processing protocol 
 
In a joint venture with the Harvard CEP, we started to explore the properties of thousands of 
organic compounds, extracted from a pool of more than 3 million compounds which were scored 
according to their quantum chemically determined light-absorption properties (Scharber descriptor 
model; [18]). The Scharber descriptor model is not very selective, and the goal of this joint research 
is the development of new and more elaborate scoring functions predicting the power conversion 
efficiency of a given prospect much more reliably. 
 
However, the process of generating an electric current from the absorption of solar light is a 
complex multi-step process, not yet fully understood in all detail. Even if it were understood, first-
principles based modelling of the creation of the exciton (“electron and hole pair”) by incident light, 
the dissociation of the exciton and the transport of the separated electric charges to the anode and 
cathode will be computationally extremely demanding and therefore prohibitively expensive. Thus, 
pure first-principle based screening is not realistic. To reduce the pool of “candidate compounds”, 
we will still need to enhance the descriptor model by improvement of the underlying physical 
model, but we will need to incorporate methods to convert between these calculated compound 
properties, and their experimentally observed analogs. This can be achieved robustly by utilizing 
techniques from the area of machine learning, and it the subject of an upcoming paper [19]. 
 
The original Scharber model predicts the power conversion efficiency of a photovoltaic cell based 
on the first (longest wavelengths) absorption frequency of the compound, which relates to the 
voltage of the electric current triggered. All other cell performance factors, including the electric 
current generated by the cell, are represented in terms of (tunable) parameters. In a recent study, 
some of the present authors developed a more elaborate Scharber-type descriptor model [20]. It 
takes into account the specific light-absorbing properties of every molecule, thus addressing a 
distinctive feature of each individual compound. This will further reduce the set of prospects. Still, 
additional screening steps will be required in order to identify the top candidates within the initial 
array [21]. 
 
Part of the problem is that despite the great interest in the topic of photovoltaic devices, there is no 
central collection of data to relate theoretical and experimental findings: the information is spread 
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over many research groups. For that matter, the Harvard Organic Photovoltaic Dataset (HOPV15), 
soon to be made available to the public, was created [22]. Based on this collection, the Harvard 
group noticed that there is a significant discrepancy between computed and experimental 
information, and that the theoretical data need to be calibrated. Calibration based on machine 
learning tools helped improve the predictions made by the Scharber model for the HOPV15 
compounds at least in view of the predicted voltage [19]. The prediction of the electric current 
generated remains difficult as it depends on numerous factors, including the morphology of the 
material and the ease of electron transport through the amorphous material. 
 

Figure 9: HOPV15 
 
This example clearly shows that brute-force virtual screening based on first-principle models is not 
an option here. In order to find the top prospects from millions of compounds, first-principles and 
data-centric prediction methods need to be combined (Figure 9). In order for this approach to be 
generally undertaken, it will be necessary for there to be a ‘low-barrier’ method for data-exchange 
between the computational and experimental collaborating teams – something which is not easily 
achievable with currently used methods. 
 
4. Conclusions 

 
In view of archival, analysis and exchange, but also in view of program interoperability, the 
computational quantum chemistry codes should provide output in machine-readable form. As long 
as the output document is structured, well defined (schema), and therefore transformable to other 
formats, the choice of actual data format is a secondary issue. Clearly, it would be nice to have at 
least a community de facto data standard, similar to the quantum chemical models. Recent history, 
however, has shown that it will be difficult to reach agreement across the entire discipline. The 
computational quantum chemistry community should start “learning by doing”, and give evolution 
a chance. 

 
We present one solution to the problem implemented in two different ways in two different program 
packages: TURBOMOLE and PSI4. The solution, XML using the semantics of CML and 
CompChem, is easily implemented: either the XML output is generated using the FORTRAN to 
XML conversion library and service (TURBOMOLE), or it is the code driver collecting the desired 
information for the machine-readable output (PSI4). In both cases, there is no need to parse the 
standard output and the interventions in the source code or the code driver are minimal. 

 
In view of data analysis, the early experience shows that both the efficiency as well as the depth of 
analysis are both positively affected. In routine applications, such as a method benchmarks or a 
method validation against a given reference, the bottleneck is clearly shifted from the time it takes 
to analyze the data to the time to run the calculations (execution time; see use case 1). Illustration 2 
shows that the possibility to look at your data from different angles at low effort provides more 
insight, also encourages to look at the data more closely. This way the depth of analysis will benefit, 
and ultimately support the “discovery process”. Illustration 3, on the other hand, illustrates the 
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difficulty of mapping a complex process such as the generation of an electrical signal from solar 
radiation mediated by a light-harvesting compound. As shown based on illustrations 2 and 3, in 
order to develop potent descriptors and selective scoring functions, first-principles based molecular 
design will have to adapt data-centric modelling tools and vice versa.  
From a technical perspective, working with a database using a declarative language such as XQuery 
marks a new challenge for this community. To address this challenge, APIs allowing the user to 
“speak” a procedural language such as Python when querying the database are one possible 
solution..  

 
Since modelling and simulation is becoming more data-intense, computational quantum chemistry, 
like many other fields of computational science, will have to address the data processing bottleneck 
more vigorously. The first and most urgent step in this direction is to have the application codes 
generate output in machine-readable format. 
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Figure Captions 
 
Figure 1 (Workflow): The flow of a typical TURBMOLE-XML-eXist computation. Each program 
module performs a specific task in the computation and generates, next to the standard output and 
the input for the next step, an XML output file which, after validation, is imported in the eXist 
database.  
 
Figure 2 (Psithon): Schematic of the user-customizable collection of job data and its export in 
CML format within PSI4 along with (symbolic) “psithon” input example. 
 
Figure 3 (XQuery): At the heart of InfoMol: the XQuery of the XML documents, created by 
TURBOMOLE and PSI4 (QC Programs) and imported into the eXist database, returns output in 
different formats (XML (default), plain text, Scalable Vector Graphics (SVG)). This return is either 
final, or can be transformed using tools such as Extensible Style Sheet Language Transformation 
(XSLT) to create input for post-processing and analysis applications (visualization, statistical 
analysis), or for presentation purposes (LaTeX tables, etc.). These documents may be uploaded to a 
file server for data exchange. 
 
Figure 4 (XQuery-Output): Searching for relationships between the molecular properties within 
an array of compounds: an example of a simple XQuery. The query contains a FLWOR expression 
(For-Let-Where-Order-Return). The for loop is over the collection of TURBOMOLE CML outputs 
binding the value of the dipole moment of each compound to a variable called “dipole” through a 
let statement. Results are returned only if the HOMO-LUMO gap falls below a given threshold, and 
if the molecule is uncharged (where statements). 
 
Figure 5 (Ethylene): Members K and L of the array of the twelve ethylene dimers. K marks the 
dimer with the strongest, and K the dimer with the weakest interaction energy (taken from the RI-
MP2-F12/aug-cc-pV5Z reference calculation and measured in kJ/mole; values in parenthesis are 
basis set superposition corrected) 
 
Figure 6 (Method-Performance):  Basis set error versus compute-time evaluated for all possible 
quadruples of basis sets ABCD. Each spike represents one calculation. Red spikes refer to triple 
zeta quality for the main basis set A; blue spikes refer to quadruple zeta quality for A. The reference 
is the all-quintuple zeta calculation (only one single calculation possible under the given rules for 
basis set combinations). Only the spikes below the horizontal bar (dotted line) point at calculations 
with acceptable accuracy for this purpose. Spikes with one particular auxiliary basis set varied (X = 
B,C, or D)), show that the choice of basis D (green line) has substantial influence of the result 
obtained, whereas using better quality for B and C only increases the computational cost without 
having much impact on the accuracy of the calculation. “Best price/performance is obtained with 
the TQT5 combination of basis sets (blue square). Technical note: the data for this graph were 
extracted from the database using XQuery. 
 
Figure 7 (Interatomic-distances): The number (“population”) of interatomic distances found in 
each bin (PDB structures). All bins are 1.0 Å wide, i.e. the first (leftmost) bin is covering all pairs of 
atoms separated by 1.0 Å maximally (left). On the right hand side, only carbon-carbon distances are 
shown (PDB and CORINA structures). Technical note: the data were extracted using XQuery; the 
histograms were made using the program package R [17]. 
 
Figure 6 (CC-distances):  Zooming into bin number 2, with a focus on all carbon-carbon distances 
found in the PDB and CORINA arrays in the range of 1.0 to 1.7 Å. Aromatic (benzene-like) and 
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single carbon-carbon bonds are most common in this range of interatomic distances. Technical note: 
the data were extracted using XQuery; the histograms were made using the program package R 
[17]. 
 
Figure 9 (HOPV15): Data-centric- and first-principle-based modeling interoperating in order to 
enrich (finding new lead prospects) and expedite (better descriptors) the screening process.  



Table 1: The data items collected from each TURBOMOLE calculation (overview; most important items only). 
Items marked with an asterisk were introduced with version 1.1 of the system and are not yet defined in CML 
dictionaries.  

 
Source and Type of 
Information 

Data Items 

From Input of Calculation 
Molecular System 
 
 
 
 
Basis Sets 
 
 
From Output of Calculation 
Meta-information 
 
 
 
Execution time 
 
Energies 
 
 
 
 
Molecular properties 
 

 
InChI code2 
AtomArray1: elementType1, Cartesian coordinates1, 
basRefs3 (link to basis sets for this atom), atom ID1 
symmetry1 

 
basisSet3: elementType3, basisSetName3, basisSetType3, 
contractionType3  
 
 
UUID calculation identifier2,3 
Program-name2,3, -version2,3, -mode2,3 (serial, parallel), 
OS2,3, host name2,3 
 
Start and end time of calculation (wall time) 2,3 
 
Total energies and components (potential, kinetic)3,4, 
RI-MP2-[R12/F12] pair energies (single point) 3,4, 
orbital energies and orbital occupation numbers4*, 
HOMO/LUMO energy difference4* 
 
charge3,4, dipole3,4, quadrupole3,4, quadrupole anisotropy3,4 
Mulliken4, Löwdin4 and NPA atomic charges4* 
 

1 CML element or attribute 
2 used in CML element metadata 
3 for details see [8] 
4 used in CML element property 
 



Table 2:  Exploring the computed information at greater detail: the result of a query on the number of 
hydrogen bonds formed as a result of the quantum chemical optimization process. Only OHO bonds were 
searched for in these two collections.  
 

Structure Array Number of Hydrogen Bonds 
PDB 9 

PDB OPT 39 
CORINA 1 

CORINA OPT 42 
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memory 500 mb

molecule h2o {

0 1

H

O 1 1.0

H 2 1.0 1 110.0

}

set { basis cc-pvdz }

from xml_psi import *

### Initialization

# Create jobList and job.

xml_psi_setup("optimization")

# Add parameters as desired.

xml_psi_init_add_string("psi:basis",

"cc-pvtz")

# Store geometry.

xml_psi_init_add_molecule( psi4 )

# Do calculation(s) and store results

#(### Finalization).

optimize(’scf’)

.

.

.

### Write out results

xml_psi_output()
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xquery version "3.0";

(:  Find the molecules from the collection biomed_pdb with the largest electrostatic dipole moments. 
    Restrict the search to neutral (uncharged) molecules with small HOMO-LUMO gap (0.2 au or less);

    print dipole moment (largest first), gap and InChi code of the molecule :)

declare default element namespace "http://www.xml-cml.org/schema";

for $i in collection("/db/biomed_pdb")/cml

let $code :=  xs:string($i/module/molecule/metadataList[@title="molecular system identifier" ]/metadata/@content) 

let $dipole := xs:float($i//propertyList[@title = "electrostatic moments"]/property[@title = "dipole value"]/scalar)
let $charge := xs:float($i//propertyList[@title = "electrostatic moments"]/property[@title = "total charge"]/scalar)

let $gap := xs:float($i//propertyList[@title = "homo lumo gap" ]/property[@title = "HOMO/LUMO_GAP"]/scalar)

where $gap < 0.20 and abs($charge) < 1.e-10

order by $dipole descending

return 

        <result> 
        {$dipole, $gap, $code} 

        </result>
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