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R&D Spillovers:
A Non-Spatial and a Spatial Examination

Daniela Gumprecht
Vienna University of Economics and Business Administration

Abstract: In recent years there were many debates and different opinions
whether R&D spillover effects exist or not. In 1995 Coe and Helpman pub-
lished a study about this phenomenon, based on a panel dataset, that sup-
ports the position that such R&D spillover effects are existent. However, this
survey was criticized and many different suggestions for improvement came
from the scientific community. Some of them were selected and analysed and
finally led to a new model. And even though this new model is well compat-
ible with the data, it leads to different conclusions, namely that there does
not exist an R&D spillover effect. These different results were the motivation
to run a spatial analysis, which can be done by considering the countries as
regions and using an adequate spatial link matrix. The used methods from
the field of spatial econometrics are described briefly and quite general, and
finally the results from the spatial models (the ones which correspond to the
non-spatial ones) are compared with the results from the non-spatial analysis.
The preferred model supports the position that R&D spillover effects exist.

Zusammenfassung: In den letzten Jahren gab es viele Diskussionen und
unterschiedliche Meinungen darüber, ob F&E Spillover Effekte existieren
oder nicht. Coe und Helpman veröffentlichten 1995 eine Studie über dieses
Phänomen, die für die Existenz solcher F&E Spillover Effekte spricht. Diese
Studie wurde viel diskutiert und kritisiert und viele Verbesserungsvorschläge
und Alternativen wurden vorgebracht. Einige dieser Vorschläge wurden aus-
gewählt und z.T. kombiniert und führten schließlich zu einem neuen Modell.
Obwohl dieser neue Ansatz sehr gut zu den Daten passt, ist die Schlussfol-
gerung eine andere, nämlich die, dass es keinen F&E Spillover Effekt gibt.
Diese unterschiedlichen Ergebnisse führten zur Überlegung, den Datensatz
mit Hilfe von Methoden aus der räumlichen Ökonometrie zu untersuchen, um
so den Effekt der F&E Spillovers zu klären. Die verwendeten Methoden wer-
den kurz beschrieben, und die Ergebnisse dieser räumlichen Analyse werden
vorgestellt und mit jenen der nicht-räumlichen verglichen. Das bevorzugte
räumliche Modell unterstützt die Hypothese der Existenz von F&E Spillover
Effekten.

Keywords: Fixed Effects, Random Coefficients, Panel Data Model, Spatial
Data, SAR Error Model.

1 R&D Spillover: A Non-Spatial Examination
Beside most studies about economic growth that attempt to explain the growth of an
economy predominately by the amount of labor and capital spent (according to a Cobb-
Douglas model) plus residual effects from some other economic and political factors,
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there are theories that treat commercially oriented innovation efforts as a major engine of
technological progress and productivity growth (Romer, 1990; Grossman and Helpman,
1991). Coe and Helpman (1995) defend this theory and claim that the productivity of a
global economy depends on its own stock of knowledge as well as the stock of knowledge
of its trade partners. This means, they believed in a spillover effect of the foreign stock of
knowledge on the productivity of a commercial partner country.

To study the extent to which a country’s productivity level depends on domestic and
foreign stock of knowledge, Coe and Helpman analyzed a panel dataset with 22 countries
(21 OECD countries plus Isreal) over a period of 20 years (from 1971 to 1990). The stock
of knowledge is quantified by the amount of money spent for R&D, i.e. the domestic
stock of knowledge is measured by the cumulated expenditures for R&D, and the foreign
stock of knowledge is measured by an import-weighted sum of the cumulated R&D ex-
penditures of the trade partners. This definition of the foreign R&D capital stock takes
the importance of the partner country into account, the higher the imports from a coun-
try, the more important are the R&D spending of this country. The variables total factor
productivity (TFP), domestic R&D spending (DRD) and foreign R&D spending (FRD)
are constructed as indices with basis 1985, because TFP is originally measured in country
specific currency and DRD and FRD are measured in U.S. dollars. The importance of the
R&D capital stock is finally quantified by the elasticity of total factor productivity with
respect to the corresponding R&D capital stock. All data are available on the webpage of
Helpman (2003), which is accessible via the internet address:

http://post.economics.harvard.edu/faculty/helpman/data.html

1.1 C&Hs Models and Results
In their paper Coe and Helpman (1995) used a variety of specifications to model the ef-
fects of DRD and FRD on TFP. To simplify the exposition only one of those is regarded
here. The following conclusions, however, are not limited to this particular case but rather
apply to all of the suggested models (for a more complete analysis see D. Gumprecht,
2003). The illustrative model contains TFP as regressand and DRD and FRD as regres-
sors. The equation with regional index i (cross-section dimension) and temporal index t
(time dimension) has the form

log Fit = α0
it + αd

it log Sd
it + αf

it log Sf
it + εit , (1)

where Fit denotes total factor productivity (TFP), Sd
it domestic R&D capital stock (DRD)

and Sf
it foreign R&D capital stock (FRD), FRD is defined as a bilateral import-share

weighted average of the domestic R&D capital stocks of trade partners

Sf
it =

∑

i6=j

bijtS
d
jt

with bijt being the bilateral import-shares of country i from country j in period t. Note
that bijt 6= bjit and

∑
j bijt = 1. And εit is an error term.

Coe and Helpman (1995) wanted to estimate the long-run relationship between TFP
and DRD and FRD. Therefore and because the series exhibit non-stationarity (as con-
firmed by respective tests), they estimated co-integrated equations. The OLS estimate of
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a co-integrated equation is said to be ”super-consistent”, that is, the estimate converges to
the true parameter value much faster than in the case where the variables are stationary
(Stock, 1987). Furthermore they assumed that the impact of domestic and foreign R&D
expenditures is the same for all countries, this means the regression coefficients, which
correspond to the elasticity of TFP with respect to DRD (= αd

it) and FRD (= αf
it), are

constrained to be the same for all countries, and only the intercepts (= α0
it) are allowed to

vary across the countries. These country specific intercepts are chosen to be considerate
of country specific effects on productivity that are not captured by the variables in the
model. According to standard practice in time series literature Coe and Helpman (1995)
used a panel data model with fixed effects and estimated it via OLS. This leads to the
following estimators of the model given in equation (1).

l̂og Fit = α0
it + 0.097︸ ︷︷ ︸

0.000

log Sd
it + 0.092︸ ︷︷ ︸

0.000

log Sf
it .

Coe and Helpman (1995) took these estimation results, with both positive regression co-
efficients as a confirmation of their hypothesis that TFP of a country depends on domestic
and foreign R&D capital stocks. They did not calculate t- or p-values for the parameter
estimators, because using the standard method leads to biased results, and the asymptotic
distribution of the t-values in the case of co-integrated panel data was not known at that
time. So, this model was estimated once again, using the Least Squares Dummy Vari-
able (LSDV) method, now including the tests for the parameters. The coefficients are the
same as the ones from Coe and Helpman, both coefficients are positive and significant,
the p-values are given below the coefficients. In the following, the p-values can always
be found below the estimates. The fit of the model is quite fine with pseudo R2 = 0.558,
which is calculated as the squared correlation between ŷit and yit.

1.2 Critics and a New Model for the R&D Spillovers
Suggestions for improvement of Coe and Helpman’s estimations came – among others –
from Kao, Chiang, and Chen (1999). They criticized (among other points) that in spite of
the super consistency of the time-series estimator, the bias of the estimation can be quite
substantial for small samples and there is no reason to assume that this bias becomes neg-
ligible by the inclusion of a cross section dimension in panel data. Kao et al. (1999) use
different estimation methods for Coe and Helpman’s international R&D spillovers regres-
sion. They claim that the dynamic OLS (DOLS) estimation is the best solution for this
problem because in the given setting the DOLS estimator exhibits no bias and is asymp-
totically normal. The DOLS estimator is based on a regression additionally including q1

time lags and q2 time leads of the regressors, therefore the number of time periods reduces
from t to (t− q1 − q2 − 1). For the R&D spillover model 2 lags and 1 lead were used.

As a second major issue, there are many debates in the panel data estimation literature,
whether to regard the region specific or other effects as random. This poses a valuable al-
ternative to the fixed effects model. In the present context Müller and Nettekoven (1999)
suggest a random coefficients model, there the parameters are assumed to vary randomly
around a common mean, see e.g. Greene (2003) to analyze the R&D spillovers model
given in equation (1). They conclude that, although this alternative specification is well
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compatible with the data, one astonishingly has to draw contradictory conclusions. Es-
timates for the random coefficients model differ decisively from the fixed effects model
and especially the estimator of the foreign R&D expenditures even changes sign, although
this is not statistically significant. Contrary to Coe and Helpman’s conclusions, this model
indicates that the foreign R&D effect is not significant. As random coefficients models
are more flexible compared to fixed effects models, the fit (measured by pseudo R2) im-
proved substantially. Note however, that flexibility does not enforce a higher model ability
to generalize.

After a detailed examination of the original model given in (1) and the various critics
of it, the following changes and modifications are suggested by D. Gumprecht, Gumprecht,
and Müller (2004). They used a random coefficients model estimated via DOLS. The
DOLS random coefficient estimation yields

l̂og Fit = α0
it + 0.353︸ ︷︷ ︸

0.000

log Sd
it − 0.085︸ ︷︷ ︸

0.118

log Sf
it .

The coefficient for DRD is significant, whereas the one for FRD is not. The fit of the
model is rather good with R2 = 0.974. For the calculations a special GAUSS programm
(implemented by N. Gumprecht, 2003) was used.

The results of the panel co-integration model with random coefficients and dynamic
regressors do not support Coe and Helpman’s hypothesis, that the TFP of a country de-
pends on domestic and foreign R&D stock of knowledge and the R&D expenditures re-
spectively. It seems as foreign R&D do rather not affect the TFP of a country. These de-
viating results in the non-spatial analysis are the motivation to look at this problem from
the point of view of spatial econometrics. The question to be answered is, whether the
impact of FRD can be clarified under this different aspect. The impact of DRD seems to
be already verified by the different non-spatial models and estimation techniques. Before
the spatial analysis of the R&D data, a short and general introduction to spatial methods,
especially in econometrics, is given.

2 A Short Introduction to Spatial Econometrics
One reason for using a spatial analysis is the exploitation of regional dependencies (so
called information spillover) to improve statistical conclusions. Data used in an empiri-
cal analysis are a collection of measurements with attached geographical coordinates, in
economics frequently called a spatial panel.

2.1 Spatial Data
In general, spatial data have the following characteristics: They contain attribute and loca-
tional information (so called georeferenced data). Spatial relationships are modelled with
spatial weight matrices, also called spatial link matrices. Such matrices measure the sim-
ilarities (e.g. contiguity or neighborhood matrices) or dissimilarities (distance matrices)
between spatial objects. Similarity and dissimilarity matrices are inversely related – the
higher the connectivity, the smaller the distance and vice versa. In general, a spatial link
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matrix W = [wij] is an n by n matrix (n is the number of observations) where wij = 0
if i and j are not spatially connected or if i = j (by definition), and wij 6= 0 if i and j
are spatially connected. The original symmetric spatial link matrices are often converted
by using coding schemes to cope with the heterogeneity which is induced by the different
linkage degrees of the spatial objects. Tiefelsdorf (2000) defines the linkage degree of a
spatial object i by the total sum of its interconnections with all other spatial objects, that
is di =

∑n
j=1 wij . There are different coding schemes used (see Tiefelsdorf, 2000, p.

29-30), the one used in this paper is the row-standardized W-coding scheme, here the sum
of each row is equal to one and the elements are simply calculated by wij/

∑n
j=1 wij .

Note that such spatial link matrices are not necessarily restricted to the geographic
space, one can also use some other kind of measures for the contiguity or distance between
observations, e.g. for the R&D spillovers analysis an economic contiguity measure was
defined and used for the spatial link matrix.

2.2 Spatial Dependency and Spatial Autocorrelation
Fotheringham, Brunsdon, and Charlton (2002) say about spatial dependency: ”It (spatial
dependency) is the extent to which the value of an attribute in one location depends on the
values of the attribute in nearby locations.” Griffith (2003) says about spatial autocorrela-
tion: ” It (spatial autocorrelation (...) is the correlation among values of a single variable
strictly attributable to the proximity of those values in geographic space (...).” However
spatial dependency is measured (by geographic distances or economic measures), posi-
tive spatial autocorrelation means that nearby values of a variable tend to be similar: high
values are near high values, medium values near medium values, and low values near low
values; negative spatial autocorrelation means that nearby values of a variable tend to be
dissimilar: high values tend to be near low values, medium values near medium values,
and low values near high values.

2.3 Moran’s =
One of the first questions that raises when analysts have to deal with georeferenced data
is, whether there is a spatial effect existent or not. If not, i.e. the observations are spatially
independent, there is no need for using special models or methods in the analysis. There
are many different possibilities to test spatial autocorrelation, the most commonly used
test is based on a statistic developed by Moran (1948, 1950a, 1950b). Spatial autocor-
relation can be quantified and tested with Moran’s = statistic, which is defined as scale
invariant ratio of quadratic forms in the normal distributed regression residuals

= =
ε̂′ 1

2
(W + W ′)ε̂

ε̂′ε̂
, (2)

where ε̂ are the normal distributed OLS residuals and W is a spatial link matrix. Expected
value and variance of Moran’s =, under the assumption of spatial independence, are

E[=] =
1

n− k
tr(MW )

var[=] =
tr(MWMW ′) + tr(MW )2 + {tr(MW )}2

(n− k)(n− k + 2)
− E2[=] ,
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where tr(·) denotes the trace operator, and M = In − X(X ′X)−1X ′ is the projection
matrix. Inference for Moran’s = is usually based on a normal approximation, using the
standardized z-value

z(=) =
=− E[=]√

var[=]
. (3)

The z-transformed Moran’s = is for normal distributed residuals and well-behaved spa-
tial link matrices under the assumption of spatial independence asymptotically standard
normally distributed, see e.g. Tiefelsdorf (2000). With this z-value, given in equation
(3), parametric hypotheses about the spatial autocorrelation level (often named ρ) can
be tested. The z-values are simply compared with the well known critical values of the
normal distribution.

One thing to remember, the Moran’s = is a measure or test for global spatial auto-
correlation. That is, if there are different spatial structures inherent in the data, e.g. some
regions have a positive spatial autocorrelation and some others have a negative spatial
autocorrelation, these effects can compensate each other, and the global Moran’s = in-
dicates spatial independence - although there is a local spatial autocorrelation included.
Local effects can be detected and tested via local Moran’s =, which can be calculated
for each region in the dataset. Therefore, a modified spatial link matrix is used, for each
region i the corresponding spatial link matrix is a star-shaped matrix Wi with the ith row
and ith column of the global spatial link matrix W (all other elements are zero). For the
local Moran’s = (e.g. for region i) the formula is nearly the same like the one given in
equation (2), only that the local spatial link matrix Wi is used instead of the global link
matrix W . The sum over all local Moran’s = gives the global Moran’s =.

2.4 Spatial Regression Models
Under the assumption of a spatial effect inherent in the data, there are different possibil-
ities to specify this spatial dependency in a linear regression model. It can be included
either as an additional regressor or in the error structure. The spatial error model e.g.
is appropriate when spatial data are used and the potential influence of the spatial auto-
correlation should be corrected. The spatial error model depends on the specification of
the spatial structure, which is expressed by the covariance matrix of the error term. A
popular specification of the spatial structure is the spatial autoregressive (SAR) process,
which is a functional relationship between a random variable at a given location and this
same random variable at other locations. Here a spatial lag operator Wy, which is sim-
ply a weighted average of random variables at neighboring locations (also called a spatial
smoother), is used, W is a n × n spatial link matrix and y a n × 1 vector of random
variables. If centered variables are considered (y = y∗ − µ1n, where µ is the common
mean of the random variables y∗i and 1n is the n × 1 vector of ones), the process can be
defined as a simultaneous SAR process

y = ρWy + ε = (In − ρW )−1ε ,

where In is the n × n identity matrix, ε are i.i.d. zero mean error terms with common
variance σ2, and ρ is the autoregressive parameter (in most cases |ρ| ≤ 1). The variance-
covariance matrix of y is a function of the noise variance σ2 and the spatial coefficient ρ,
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i.e.
Ω(ρ) = cov(y, y) = E[yy′] = σ2[(In − ρW )′(In − ρW )]−1 .

For further processes and more detailed explanations see e.g. Anselin (1999). The SAR
error model has the form

y = Xβ + u , u = ρWu + ε . (4)

The error variance covariance matrix is no longer σ2In like it is in the linear regression
model under standard assumptions, but

E[uu′] = Ω(ρ) = σ2[(In − ρW )′(In − ρW )]−1 . (5)

For further spatial model specification see e.g. Anselin (1999).

2.5 Spatial Estimation
One problem when analyzing spatial data with standard statistical methods is the follow-
ing: If the observations are spatially connected or spatially autocorrelated, the standard
assumptions of uncorrelated error terms and uncorrelated observations and errors are vi-
olated. This can lead to inconsistent, inefficient and biased estimators. Therefore special
estimation techniques, where the spatial dependency is adequately included in the estima-
tion, should be used. There are different estimation methods for spatial data, one can e.g.
use the Maximum Likelihood technique (first outlined by Ord, 1975), or a Spatial Two
Stage Least Squares method based on Instrumental Variable estimations (see e.g. Kelejian
and Robinson, 1993, or Kelejian and Prucha, 1998), or based on a Method of Moments
(Kelejian and Prucha, 1999), which is described in more detail below.

Kelejian and Prucha (1999) suggest to use the following procedure for the estimation
of a spatial autoregressive model, given in equation (4), with a covariance matrix, given
by equation (5). The auxiliary parameters ρ and σ2 are estimated via the generalized
method of moments technique, the generalized moments (GM) estimator of ρ and σ2 is a
non-linear least squares estimator

(ρ̃, σ̃2) = arg min
ρ,σ2

{[
(ρ, ρ2, σ2)Γ− γ

] [
(ρ, ρ2, σ2)Γ− γ

]}
, (6)

where ρ ∈ [−a, a] with a ≥ 1 and σ2 ∈ [0, b]. The matrix Γ and the vector γ are both
functions of the OLS residuals derived from the moment conditions, and ((ρ, ρ2, σ2)Γ−γ)
can be seen as a vector of residuals. For a detailed specification of the functions see Kele-
jian and Prucha (1999, p. 8). Estimates given in (6) converge in probability to the true
parameters ρ and σ2 under certain assumptions (see Kelejian and Prucha, 1999, p. 5), one
of these assumptions deals with the spatial weight matrix. For row-standardized spatial
weight matrices, which are used in the following R&D analysis, they expect these as-
sumptions to hold. The parameter β of the regression model is then a feasible generalized
least squares (FGLS) estimator

β̃ = [X ′Ω̃−1X]−1X ′Ω̃−1y , (7)

where Ω̃ = Ω(ρ̃, σ̃2).
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3 R&D Spillover: A Spatial Examination
Looking at the R&D dataset, for a spatial analysis the countries are regarded as regions.
The first question is: How to measure the distance or contiguity between the observations
at different locations in an adequate way? In a global economy not the geographic distance
but rather the trade intensity between two countries is relevant for R&D spillovers. To be
consistent with Coe and Helpman (1995), the bilateral import shares (of the year 1990),
also available on the webpage of Helpman (2003), are used as a row-standardized spatial
link matrix, denoted by V . This asymmetry in the spatial link matrix is a problem if we
want to define some kind of economic distances. Therefore a symmetric trade intensity
was specified and used to measure the contiguity and consequently the distance between
economies. In this context the symmetric trade intensity between two countries is defined
as the average of the bilateral import-shares of these countries, the elements are simply
calculated by

wij =
bij + bji

2
if i 6= j, and bij are the bilateral import-shares of country i from country j in period 1990,
and by definition wij = 0 for i = j. It was assumed that the trade intensity is the same
for all periods, this means the same spatial link matrix is used for all years. The distances
between two countries are simply the inverse connectivity

dij =
1

wij

and by definition dii = 0. These distances can be used to produce a ”trade-intensity” land-
scape by projecting the distances from the 21-dimensional space to the two-dimensional
space. For this projection a Multidimensional Scaling method is used: the squared sums
of the distances between the original and the projected points (the points represent the
countries) are minimized. This gives an approximation of all 231 distances between the
22 countries in the two-dimensional space, and provides a quite good survey of the re-
lationships in the data set (see Figure 1). Here the countries are quite evenly scattered,
nevertheless some clusters can be identified, e.g. Australia, New Zealand and Israel are
quite far apart from the rest of the countries, this means they have a small trade intensity
with other countries and a relative high trade intensity within their group. The U.S. are
settled in the center, it can be interpreted in the way that the U.S. are an important trade
partner for all countries. One thing to remember when looking at this landscape is, it is
only an approximation and it can never show the true and exact distances.

3.1 A Spatial Approach for the Analysis of R&D Spillover
The spatial link matrix for the spatial regression model is the original row-standardized
bilateral import-shares matrix V from Coe and Helpman’s dataset. The first steps in
the spatial analysis are the estimation of a fixed effects model without any foreign R&D
spending and without any spatial structure assumed

l̂og Fit = α0
it + 0.136︸ ︷︷ ︸

0.000

log Sd
it (8)
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Figure 1: Landscape based on trade-intensities between the countries.

and to calculate and test Moran’s = for the residuals of this model for each period sepa-
rately, see equations (2) and (3). Again, as spatial link matrix the bilateral import shares
(matrix V ) are used. Nearly all values are not significant (see Table 1), this means there
seems to be no global spatial effect in the error term. Nevertheless, some local spatial
effects can be detected. Moreover, as there are only 22 countries in the dataset one should
not put too much weight on the Moran’s test because z(=), given in equation (3) is only
approximately normally distributed. Tiefelsdorf (2000, p. 97) recommends to use this test
for datasets with at least 100 observations for exploratory statistical analysis and at least
200 observations for confirmatory statistical analysis. The assumption of some spatial
effect is legitimate because the effect of FRD, which measures some kind of spatial de-
pendency, is significant in the original model (1). Under the assumption of a spatial effect
included in the error term, one should use an adequate estimation technique for the SAR
error regression model, given in equation (4), e.g. the FGLS estimation from Kelejian and
Prucha (1998), see equations (6) and (7). This leads to similar results as the non-spatial
analysis, namely α̂d

it = 0.138 with p-value 0.000 and the auxiliary parameters, estimated
with the GM method, are ρ̂ = 0.137 and σ̂2 = 0.003.

A fixed effects SAR error model including the foreign R&D spending is estimated
to compare the results with the ones from Coe and Helpman (1995). This spatial model
yields

l̂og Fit = α0
it + 0.096︸ ︷︷ ︸

0.000

log Sd
it + 0.096︸ ︷︷ ︸

0.000

log Sf
it
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Table 1: Moran’s = for residuals of Fixed Effect model, independent variable log Sit.
Period Moran’s = z(=) Period Moran’s = z(=)
1990 0.0532 1.3818 1980 −0.0323 0.2101
1989 −0.1777 −1.7822 1979 −0.0860 −0.5263
1988 −0.1184 −0.9693 1978 −0.0426 −0.0694
1987 −0.0607 −0.1789 1977 0.0623 1.5064
1986 −0.0330 −0.1789 1976 −0.1337 −1.1788
1985 −0.0258 0.2993 1975 −0.0584 −0.1480
1984 −0.0702 −0.3088 1974 −0.0473 0.0042
1983 −0.0101 0.5144 1973 0.0198 0.9241
1982 0.0506 1.3451 1972 −0.0053 0.5795
1981 0.0910 1.8989 1971 −0.0328 0.2026

E(=) = −0.0476 and var(=) = 0.0053 for all periods

with the auxiliary parameters ρ̂ = 0.164 and σ̂2 = 0.002. The results are quite similar,
both parameter estimators are positive and significant, in the spatial analysis as well as
in the non-spatial one. The fit of the SAR error model is with R2 = 0.580 a bit better
than the non-spatial one with R2 = 0.558. The standardized Moran’s = of the residuals,
which indicates the magnitude of the spatial dependency not captured by the variables in
the model, is higher for the non-spatial model (z(=) = 0.361) than for the spatial model
(z(=) = 0.141), as expected.

Another alternative to analyze the R&D dataset spatially is the following: The for-
eign R&D spending can be regarded as spatially lagged domestic R&D spending, i.e.
Sf

ij =
∑

i6=j bijtS
d
jt. To avoid the logarithms of the independent variables and as all of

the values of Sd
it are around one, a Taylor Series approximation can be employed for

the logarithm, i.e. log S = log(1) + 1
1
(S − 1) + . . . . Therefore, log Sd

it can be substi-
tuted by the approximation log Sd

it ' Sd
it − 1, and log(

∑
i6=j bijtS

d
jt) can be substituted by∑

i6=j bijtS
d
jt − 1. This leads to the model

log Fit = α̃0
it + αd

itS
d
it + αf

it

∑

i 6=j

bijtS
d
jt + εit , (9)

where the fixed effects change to α̃0
it = α0

it−αd
it−αf

it. In a first approach the fixed effects
panel regression, given in equation (9) is estimated by LSDV, which gives positive and
significant parameter estimators for the effect of DRD as well as FRD.

l̂og Fit = α̃it
0 + 0.067︸ ︷︷ ︸

0.000

Sd
it + 0.179︸ ︷︷ ︸

0.000

∑

i 6=j

bijtS
d
jt . (10)

The fit of this model is with R2 = 0.624 a bit better than the one for the model (1) without
a spatial lag. The standardized Moran’s = of the residuals is z(=) = 0.255 which is
smaller than the one for the residuals of model (1) which is z(=) = 0.361.

Under the assumption of a SAR error model, where a spatial effect is included in the
error term, see equation (4), a FGLS estimation based on GM estimators of the autore-
gressive parameter ρ̂ = 0.228 and the noise variance σ̂2 = 0.002 (using equation (6) and
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(7)) leads to
l̂og Fit = α̃0

it + 0.141︸ ︷︷ ︸
0.000

Sd
it − 0.050︸ ︷︷ ︸

0.031

∑

i6=j

bijtS
d
jt .

The result diverges from the one of the non-spatial analysis, the effect of DRD on TFP
is again positive and significant but the effect of FRD on TFP is negative and significant.
On the other hand, the fit of this model yields a worse R2 = 0.269, and gives a negative
z(=) = −0.506, even though it is not significant. Nevertheless, these values indicate
an overcompensation of the spatial effect, due to the fact that the spatial dependency is
included twice, once as the spatially lagged variable DRD and once in the error term.

However, as all of the critics of the original, non-spatial R&D spillovers analysis are
also legitimate in the spatial context, all different more sophisticated models (namely
the dynamic fixed effects, the static random coefficients and finally the dynamic random
coefficients one) were estimated via OLS and FGLS and the results can be found in D.
Gumprecht (2005).

The method of choice should again be the DOLS estimation of the random coefficients
model. For the original variables DRD and FRD, the SAR error model should be used to
correct for a spatial effect. The FGLS estimation yields

l̂og Fit = α̃0
it + 0.252︸ ︷︷ ︸

0.000

log Sd
it − 0.016︸ ︷︷ ︸

0.393

log Sf
jt

with R2 = 0.956, and estimates of the auxiliary parameter ρ̂ = 0.375 and σ̂2 = 0.007;
z(=) of the residuals is −0.060. Concerning the parameters, we have the same result as
in the non-spatial case: A positive effect of DRD and no spillover effect of FRD.

Now, using the approximated variables instead of the original ones and running the
FGLS estimation yields ρ̂ = 0.720 and σ̂2 = 0.003. This leads to non-significant param-
eter estimates

l̂og Fit = α̃0
it + 0.081︸ ︷︷ ︸

0.076

Sd
it + 0.016︸ ︷︷ ︸

0.401

∑

i6=j

bijtS
d
jt

with R2 = 0.960 and z(=) = −0.184. Neither the effect of DRD nor the effect of FRD
is significant. The unusual high value of ρ̂ indicates overcompensation. This is caused by
the fact, that the spatial effect is already included as spatially lagged independent variable
and an additional spatial effect in the error term leads to an overcompensation (like in the
case of the fixed effects model).

Thus, the preferred method is the DOLS estimation of the random coefficients model
with approximated variables, which yields

l̂og Fit = α̃0
it + 0.125︸ ︷︷ ︸

0.011

Sd
it + 0.166︸ ︷︷ ︸

0.015

∑

i6=j

bijtS
d
jt

with R2 = 0.976 and z(=) = −0.191. This model has the best fit of all examined models
and the result is in consensus with the original conclusions from Coe and Helpman (1995).

4 Conclusions
In general, one of the advantages of using spatial models and methods is, that a spatial
dependency that might be inherent in empirical data, can be taken into account and treated
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correctly. And even if there is already a spatial dependency assumed, one can correct fur-
ther spatial relationships that might no be captured by the variables in the model, by using
a spatial error model. Especially when there is a spatial link matrix available, that de-
scribes the relationship between the observations, it is no problem to use adequate models
and estimation techniques. The price one pays for running a spatial analysis is much less
than the benefit one can earn by getting unbiased and consistent estimates.

The aim of the analysis of the R&D spillover data set was to answer the question,
whether domestic and foreign R&D spending have an effect on the total factor produc-
tivity of a country. Concerning domestic R&D spending the answer is quite obvious, all
different estimation techniques (static and dynamic fixed effects- and random coefficients
model) and both non-spatial and spatial approach lead to the conclusion that domestic
R&D spending have a positive effect on the total factor productivity of a country. Con-
cerning the foreign R&D spending the answer is not that clear, because different estima-
tion techniques lead to different conclusions. Some results support the conclusion in Coe
and Helpman (1995) of an R&D spillover effect, some do not. Nevertheless if one takes
the dynamic random coefficients model with a spatially lagged exogenous variable as the
superior specification, the effect of foreign R&D expenditures seems to be existent.
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