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Breaking Free from the Limitations of Classical Test Theory: Developing and Measuring 

Information Systems Scales Using Item Response Theory 

ABSTRACT 

Information systems (IS) research frequently uses survey data to measure the interplay between 

technological systems and human beings. Researchers have developed sophisticated procedures to build 

and validate multi-item scales that measure latent constructs. The vast majority of IS studies uses classical 

test theory (CTT), but this approach suffers from three major theoretical shortcomings: (1) it assumes a 

linear relationship between the latent variable and observed scores, which rarely represents the empirical 

reality of behavioral constructs; (2) the true score can either not be estimated directly or only by making 

assumptions that are difficult to be met; and (3) parameters such as reliability, discrimination, location, or 

factor loadings depend on the sample being used. To address these issues, we present item response 

theory (IRT) as a collection of viable alternatives for measuring continuous latent variables by means of 

categorical indicators (i.e., measurement variables). IRT offers several advantages: (1) it assumes 

nonlinear relationships; (2) it allows more appropriate estimation of the true score; (3) it can estimate item 

parameters independently of the sample being used; (4) it allows the researcher to select items that are in 

accordance with a desired model; and (5) it applies and generalizes concepts such as reliability and 

internal consistency, and thus allows researchers to derive more information about the measurement 

process. We use a CTT approach as well as Rasch models (a special class of IRT models) to demonstrate 

how a scale for measuring hedonic aspects of websites is developed under both approaches. The results 

illustrate how IRT can be successfully applied in IS research and provide better scale results than CTT. 

We conclude by explaining the most appropriate circumstances for applying IRT, as well as the 

limitations of IRT. 

KEYWORDS 

Item Response Theory, Classical Test Theory, Scale Development, Rasch Model, Measurement, 

Measures, Hedonism, Reliability, Hedonic IS 



 

2 

 

1. INTRODUCTION 

Social science research and information systems (IS) research produce a wealth of empirical 

papers that use survey or experimental data either to create new measurement scales or to apply 

previously validated scales to measure constructs. In most cases, the authors rely on fundamental 

measurement principles that have been developed and refined in classical test theory (CTT) over decades. 

Although several shortcomings of this approach are increasingly understood, the underlying measurement 

paradigm of CTT remains largely unquestioned in IS. In line with a recent call in IS literature to improve 

the methodological foundation of our domain [13]—the measurement and validation procedures [50]—in 

this paper, we present an alternative to CTT that opens up new perspectives for empirical IS research. 

Psychometricians such as Spearman [81], [82], Thurstone [85], [86], Rasch [64], and Birnbaum 

[9] have formulated different statistical models to achieve the measurement of latent traits. Usually, latent 

traits pertain to any type of construct that cannot be directly observed. Two main approaches for 

measuring continuous latent traits emerged: CTT [e.g., 33, 45] and Factor Analysis (FA) [e.g., 95] on the 

one hand and Item Response Theory (IRT) [e.g., 44] on the other, with the former gaining widespread 

popularity. 

Today, most research papers utilizing IRT can be found in psychology and educational testing, 

and at the same time the IRT paradigm is slowly but steadily gaining traction in social science and 

marketing research [73]. Several publications have clearly shown the advantages of this measurement 

approach [e.g., 28, 29], and thus have sparked new interest in using IRT in behavioral research [22, 27, 

72, 75]. Despite these promising developments, so far, IS research has virtually ignored IRT, which might 

be due to the fact that IRT is frequently only associated with psychological testing. However, as Edelen 

and Reeve [20] have shown in their comprehensive study, “when used appropriately, IRT can be a 

powerful tool for questionnaire development, evaluation, and refinement, resulting in precise, valid, and 

relatively brief instruments that minimize response burden” (p. 5).  

A few key example studies show that IRT and Rasch Models, which are often perceived as being 
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restricted to specific kinds of psychological testing, are in fact very versatile measurement methods that 

are applicable in a wide variety of disciplines. Rasch Models are a special class of IRT models that focus 

on the requirements for fundamental measurement and are relatively easy to understand; whereas, IRT in 

general deals with fitting flexible models to observed data. 

 An example in IS research includes a paper published in Information System Research in which 

they strived to understand software development practices [17]. The authors conclude that “The Rasch 

model analysis describes the likelihood of a practice deployment for any level of evolution and provides 

precise and meaningful measures” (p. 95). A marketing paper proposed a ten-item instrument for 

measuring customer satisfaction, which is a construct also frequently used in IS research [67]. Related 

examples from Marketing include brand equity [98] or the presence of gender item bias [74]. A Finance 

study used IRT to measure corporate social responsibility [57].  

Moreover, Reise and Revicki [68] present several useful applications of IRT, including the 

assessment of data quality and the generation of item banks for hospital patients’ questionnaires, which 

bears important implications for researchers interested in the healthcare industry. Another interesting 

example from the healthcare sector is given by Melas et al. [54] who illustrate with the help of IRT that 

the previously assumed poor correlation between attitudes toward evidence-based practice and 

communication technology is a methodological artifact rather than a substantive fact. Additionally, the 

current PISA study (Programme for International Student Assessment), which is conducted in most 60 

OECD member countries (OECD, 2014), has successfully applied an extended version of the Rasch 

model [1]. Finally, Alvarez et al. [4] illustrate the versatily of the Rasch model in their publication on 

optimal road planning where they use it to obtain an objective measure of road conditions.  

In this paper, we therefore explain why IS researchers should consider adding IRT to their 

existing pool of methods. Typically, when researchers measure latent variable(s), they strive to find a 

“good” set of items that allows for reliable, highly informative, and possibly invariant measurement of the 

underlying construct. Such measurement cannot be sufficiently guaranteed by CTT and related 



 

4 

 

approaches. The many models of IRT were developed to overcome this problem; to meet different goals 

and to allow different insight into the measurement process. The models’ nature range from exploratory to 

confirmatory, from flexible to strict, from parametric to nonparametric (for an overview see [93]), and 

they try to meet different objectives in terms of what constitutes good measurement.  

Objective measurement means “the repetition of a unit amount that maintains its size, within an 

allowable range of error, no matter which instrument, intended to measure the variable of interest, is used 

and no matter who or what relevant person or thing is measured” [66]. In this paper, we adopt and 

demonstrate the unique perspective of objective measurement typical for a class of IRT models, the 

family of Rasch models. Although Rasch models are restrictive in terms of item selection and model fit, 

they can provide a number of properties that are advantageous for scale development and substantive 

research based on these scales.  

We argue that in the IS field certain conventions (such as treating measurement variables as 

metric) as well as the nature of CTT can be problematic in not meeting research goals because of the 

following limitations of CTT: (1) it assumes a linear relationship between the latent variable and observed 

scores; (2) the true score can either not be estimated directly or only by making strong assumptions; and 

(3) parameters such as reliability, discrimination, location, or factor loadings depend on the sample being 

used.  

These limitations have a number of implications when used with categorical measures in 

behavioral IS research. For example, by assuming linear relationships, CTT treats a scale that is discrete 

and restricted, to say 5 values, as if it was stretching continuously from minus infinity to plus infinity. But 

visualizations of data derived from categorical measures show a very different behavior, for example, 

accumulation at certain values, gaps between values or more than a single peak. For these scales, the 

continuous assumption may only serve as an approximation. Another implication is that the sample 

dependence of parameters makes it hard to generalize results to a population, particularly if non-

probabilistic sampling was used. Constant replication and revalidation of results derived from such 



 

5 

 

measures is needed to gauge their validity. Also, inference about the behavior of the units in question, 

about possible group differences, or the influence of a unit's characteristics can be associated with 

considerable bias. 

In contrast, IRT offers five benefits, in that it: (1) allows nonlinear relationships; (2) allows 

appropriate estimation of the true score; (3) can estimate item parameters independently of the sample 

being used; (4) allows the researcher to select items that are in accordance with a desired model; and (5) 

applies and generalizes concepts such as reliability and internal consistency, and thus allows researchers 

derive more information about the measurement process. 

As a demonstration of the applicability of Rasch models to IS research, we developed a scale for 

measuring hedonic IS, an area of IS research that has increasingly gained importance in recent years [18, 

43, 92, 97]. For the purpose of this research, we initially create an item base that is as broad as possible to 

reflect the hedonic attributes of websites. To demonstrate the advantages that IRT models can offer, we 

perform an empirical comparative analysis of the scale results from a CTT versus Rasch perspective. Our 

goal is to find those items that measure hedonism as a latent construct unidimensionally and objectively, 

and to investigate how the underlying construct is measured by the items. Before demonstrating the 

empirical advantages of IRT scales and our example hedonic measure, we first provide the requisite 

background on CTT and IRT. 

2. THE CONCEPTS AND ASSUMPTIONS OF CTT AND IRT 

Conceptually, CTT and IRT strive to achieve the same thing—namely, inference about a 

continuous latent trait based on a number of manifest indicators (i.e., measurement variables). Both 

approaches are concerned with how to approach reliability, internal consistency, and the construct validity 

of scales; how to infer estimates of the latent trait value for each subject; and how to gain information 

about and assert certain properties of the measurement process. They mainly differ in the response model 

that is used for conducting inference: CTT uses techniques based on correlation, linear models, and 

multivariate normally distributed variables; whereas IRT approaches employ models for categorical 
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responses, use categorical association, and are concerned with multivariate discrete distributions. Thus, 

IRT models can be thought of as types of categorical factor analysis [cf. 7]. 

Therefore, the arguments pertaining to their difference or appropriateness in a measurement 

context are inherently statistical. Beyond that, both approaches offer similar insights or suffer the similar 

problems, specifically with regards to forms of validity other than construct validity. Even though IRT 

models were developed for categorical items, they are conceptually largely equivalent to approaches 

prevalent in IS.  

In the remainder of this section, we first address the controversy of whether scales used in 

behavioral IS research (particularly Likert-type scales) are categorical or metric in nature. We then lay out 

the key differences between CTT and IRT for these measures, along with their strengths and weaknesses. 

2.1 Which Scales are Inherently Categorical or Metric? 

Before discussing CTT, it is critical that we address the issue as to what we believe constitutes 

categorical and metric measures. We base our arguments on a substantial base of theory and measurement 

articles, to which we refer the reader [3, 15, 19, 31, 40, 48, 49, 56, 83, 84, 90, 91]. Their key aspect is that 

categorical variables can have at least two different assigned values, that the same assigned values means 

things are the same, and that different assigned values means that things are different. How different and 

in what way may or may not be defined exactly. For example, it may be that three values stand at equal 

footing next to each other and we just know they are different (sometimes coined nominal), or it may be 

that there is some inherent ordering (coined ordinal) or that there is even transitivity (coined strictly 

ordinal). The more we know about what the differences between the assigned values mean, the more 

information we have.  

In the case of metric variables we know a lot about the differences between the assigned 

numerical values. They are the result of an act of physical measuring (e.g., time, counts, length) and the 

assigned values relate to a clearly defined physical relation in reality: one second is twice as short as two 

seconds, and a debt of 100 USD is more debt than a debt of 50 USD by exactly the amount a profit of 51 
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USD is more than a profit of 1 USD. The key aspect of a metric variable is that differences between 

assigned values are constant in their meaning with respect to the underlying real relation the variable tries 

to capture. In other words, the size of the difference between any two assigned values of a variable has a 

meaning and is itself metric, so any re-scaling of the values will in the same fashion re-scale the 

difference. For example, it makes no difference regarding the real relationship between lengths whether 

we measure length in meter or centimeter. As one centimeter is 1/100 meter, the difference between one 

and two meters is 100 times the difference between one and two centimeters. Moreover, a metric variable 

also subsumes strict ordering and categorical uniqueness/exclusiveness for the assigned values as laid out 

before, hence it has a natural ordering (is therefore ordinal) and is unique and exclusive in the meaning of 

its values (we know 61 is not the same as 60, but 60 is). In summary, we view metric variables as a 

special, highly informative case of categorical variables. This helps us in motivating the IRT approach 

later on because while every metric variable must be inherently categorical, not every categorical variable 

is also metric.  

When measuring attitudes or other latent variables in the social sciences, researchers often use 

measurement items or indicators which produce variables for which we simply do not know whether the 

differences between the assigned values fulfill the conditions laid out above. It is therefore a leap of faith 

to assume that a constant relation of the assigned numerals between two values of such an indicator 

corresponds to a constant relation in the real latent variable, or in other words, to assume they are metric.  

A popular type of such indicators that are widely abused are the so-called Likert-type items [40]. 

Following our definition above, these items are always categorical and may be metric, but they need not 

be. Clearly, this subtle issue is the subject of a long disagreement, as many social science researchers—

and virtually all IS researchers—treat Likert-type scales as metric scales for statistical convenience. This 

might work reasonably well but can also be completely wrong. It all boils down to whether it is safe to 

assume that the conditions for the indicator being metric hold.  

This concern appears even when going back to the foundation of Likert-type scales, at which time 
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Likert himself made it clear that a proper Likert-type scale emerges from collective responses to a set of 

items, not the format in which responses are scored along a range [42]. Importantly, for the scale to be 

proper, Likert scaling assumes equal distances between the assigned numerals, and “all items are assumed 

to be replications of each other or in other words items are considered to be parallel instruments" [19, 31, 

91, p. 197]. Whether this actually is the case cannot be inferred prior to data collection and is usually not 

checked afterwards. If it is, however, the results are often disheartening [for actual examples see, 15, 36, 

88]. The correspondence of equidistance of assigned numerals for such a measure to equidistance of the 

underlying phenomenon becomes increasingly unlikely when considering that the items of a Likert scale 

are typically assigned progressive, but completely arbitrary numbers, and stand for numerical integers in 

which the progression represents “better”. The fact that the distance between the integers is often chosen 

to be equal should not obscure the fact that this has nothing to do with whether the underlying relations 

are in reality also equidistant. If it were, then the latent continuum would have to be cut into regions of 

equal length by the indicator's values. Whether this applies cannot be asserted just by using a Likert-type 

scale.  

Given the preceding, an imperative claim that we repeat from statistical literature is that until it is 

established that a certain scale (e.g., a Likert or any other rating scale) indeed fulfills the requirements for 

being metric for every data set, we cannot be sure that it does and thus should treat that variable as 

inherently categorical [15, 19, 48, 49, 56]. Hence, by treating such indicators as categorical, we are taking 

a safer stance: In the worst case, we might give up some information if the variable was indeed metric, 

which results in a (usually small) loss of statistical efficiency or power. Conversely, the worst case for 

treating a non-metric indicator as if it were metric is to make completely invalid conclusions, which is a 

far riskier stance taken by most IS research. 

2.2 Classical Test Theory (CTT) 

 The common approach in scale construction is CTT [45] with its basic mathematical model being 

X = T + E (1) where X denotes the observed overall score, T denotes the true overall score or the latent 
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construct, and E denotes the measurement error. Hence, the observed score is assumed to be a linear 

function of the underlying true score. This is a restrictive assumption that cannot be tested [23]. The idea 

of a linear relationship between an individual item response and the latent variable can further be 

generalized to factor models for one or more latent variables with different loadings or regression slopes 

per item, as seen in a common factor model or confirmatory factor model [e.g., 7]. The key issue in CTT 

and its generalizations is that the observed scores are linearly regressed on the latent constructs. A major 

problem with the assumption of a linear relationship is that if the latent trait is assumed to be on an 

interval scale, researchers treat the observed scores or sum scores as if they were interval scaled as well. 

This is not necessarily the case if the questionnaire uses ordinal indicators such as Likert-type scales. 

2.3 A Critical Examination of Classical Test Theory (CTT) 

A major critique of CTT is that the right-hand side of equation (1) is completely unknown; thus, 

to meet the equation, T and E can be chosen arbitrarily. Consequently, this equation is a tautology rather 

than a statistical model [23]. Regardless, researchers typically use reliability coefficients based on this 

basic expression. Reliability is defined as ρ2(X , T) = σ2(T)/σ2(X) [33]. Because T is unknown, we 

cannot compute its variance σ2(T). Consequently, additional assumptions are needed in terms of the 

measurement equivalence of test splitting. More often, reliability is commonly estimated by means of 

Cronbach’s α [14], but this is actually an extremely limited reliability measure that is widely misused 

[78]. Notably, Cronbach’s α indirectly includes the correlations between the items, and therefore is 

inherently a measure of the linear relationship between items. In the case of α and other CTT correlation-

based reliability measures, the scores must be on an interval scale; otherwise, any correlation-based 

reliability will not be invariant.  

The linearity and interval scale assumption is central to CTT. For example, when constructing a 

questionnaire or test, the whole process of item selection is based on correlation coefficients or 

transformations thereof. The square root of the reliability is expressed as r(X, T) and the discriminatory 

power of item 𝑖 (i.e., whether item 𝑖 measures something nearly identical, such as the test composite 
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score) as r(Xi, X ). Items that are highly correlated are retained and items that are weakly correlated with 

other items are eliminated. If factor models are employed, their estimates are also related to correlations. 

Given this background, this section summarizes three main shortcomings of CTT for 

measurement variables, as addressed mainly in psychology [e.g., 10, 23, 35, 99] and marketing research 

[e.g., 71-73, 75]. First, the assumption of a linear relationship between the latent and observed scores is 

restrictive and is known not to necessarily represent empirical reality when it comes to psychological 

constructs [see, 24, 44]. Also, assuming such a linear function with different item locations implies that 

for certain values of the latent trait, no score is defined unless the item is metric and ranges from minus 

infinity to plus infinity. This is undesirable, because it restricts the span of the latent variable if categorical 

variables are used. If such a linear relationship is assumed, it is not congruent with the idea of the 

different locations of items. The same problem arises if different item discrimination (i.e., different slopes 

of the linear function) is allowed, as seen in FA. If one postulates a linear relationship, all items must have 

the same discrimination and location. This is called the assumption of τ-equivalent measures [45].  

Figure 1 illustrates these issues. The latent “true” score is shown on the abscissa and the observed 

score on the ordinate. The relationship of the latent trait and the expected observed score is shown for 

four people (P1, P2, P3, P4) and three items. The dotted lines represent a person’s latent true score, and 

the black dots the expected observed value of that person for a particular item. The τ-equivalent measure 

is depicted as the dash-dot line. Let us assume that we want to measure a latent score by means of a 4-

point Likert scale with values ranging from 0 to 3. Let us further assume this scale corresponds to a 

restricted area of the latent trait between values of 0 to 6. Additionally, let us assume that the mapping of 

the linear trait values onto the Likert scale happens in such a way that the expected score is somehow 

discretized to obtain the observed score. Figure 1 shows the linear relationship between the observed and 

latent values. The expected observed values (i.e., solid lines) are depicted as functions of the latent trait 

values of three items, which follows from the assumption of a linear relationship. Items 1 and 2 have the 

same discrimination, but different locations from that of item 3, indicating that a higher value of the latent 
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trait is needed to score 3 at item 2 than at item 1. Figure 1 clearly illustrates the problem with CTT’s  

  

Figure 1. Representation of a CTT Model 

 

assumption of a linear relationship. For example, P1, with a latent trait value of 2.8, has a positive 

expected observed score for all three items of the scale. This is not true for P2. For this person with a 

latent trait value of 1.5 we expect a negative observed score, which is impossible to achieve. This occurs 

because the item has a positive expected score in a different area on the latent trait. To apply a score to 

this latent value for item 2 means that one had to take zero, which leads to an error that will always be 

positive and, consequently, the expected observed score will not be the true score anymore. The same 

applies for person P3 with the lowest of the latent trait values, with respect to items 1 and 2. Item 3 is the 

only item that allows positive expected observed scores for all the people in the example, but at the same 

time has the lowest discrimination parameter and might therefore be considered the “worst” item in this 

scale. 

Additionally, item 3 also measures latent trait values beyond our restricted area, which means that 

if we stay restricted, it is not possible to achieve an expected observed score of 3, as the expected score of 

P4 (i.e., the person with the highest latent trait position) illustrates. This item maps the restricted latent 
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trait onto a 3-level Likert scale only. These problems will always appear if any two items have different 

slopes or locations, which is the assumption of congeneric measurement in CTT. The only plausible way 

to construct items that have a linear relationship with the restricted latent trait is to have items with equal 

slopes and locations, such as the item with the dashed-dotted line. This is the τ-equivalent measure. Only 

this item allows for every restricted latent value to be assessed with this 4-point Likert scale. 

Consequently, a scale with CTT assumptions must consist of items that are fully interchangeable. 

Although more items will then increase the reliability of the test, no additional information regarding the 

person’s latent value will be gained.  

Second, in CTT the true score or factor score cannot be estimated directly, but only via additional 

assumptions regarding the item-specific true scores. A scoring rule (e.g., simple or weighted sum) is 

implicitly assumed to be correct, but its adequateness cannot be tested. Furthermore, the simple sums of 

the observed scores are often taken as an estimate of the person’s latent trait value or the item’s location. 

This approach equates the expected true values with the sum of the observed scores. However, it is 

possible that a person with a lower score in a test will have a higher position on the latent trait. This could 

be the case if this person fakes an answer, whereas the person with the higher location answers truthfully. 

Therefore, using the sum of observed scores is not necessarily appropriate for measuring this empirical 

reality.  

Third in CTT, parameters such as reliability, discrimination, location, and factor loadings depend 

on the sample being used, which implies different reliabilities as well as different factor loadings of an 

item set for both homogeneous and heterogeneous samples. Hence, it is frequently the case that different 

numbers of factors for different samples emerge. They apply only to the sample at hand and are unbiased 

for the population of interest only if the sample is a true random sample and representative for the 

population of interest [e.g., 21, 23]. If we want to estimate the location of a person on a latent trait, that 

value depends on the sample of items used for measurement and on the other people who are being 

assessed. Depending on the reference population, a person will also have a different position on the latent 
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trait, even if the random sample is representative. Thus, such measurement can never be invariant, let 

alone objective. This poses a problem when different groups are compared by summary statistics that 

depend on the sample.  

These shortcomings are inherent in CTT and cannot be resolved without adopting a different 

measurement paradigm. However, CTT is not an incorrect approaches per se. Instead, it is the method of 

choice when working with metric scales; this choice is also true for structural equation modeling (SEM) 

and confirmatory factor analysis (CFA), which are models that often need additional distributional 

assumptions. In short, CTT provides a rich framework for conducting analyses if two key assumptions 

hold: (1) it is theoretically/empirically justifiable that the observed scores lie on a metric scale, and (2) the 

functional relationship is linear. Moreover, with Likert-type scales, the measurement is better treated as 

categorical than treated as interval, which contrasts with extant IS research practice. 

2.4 Item Response Theory (IRT) 

To illustrate the underlying rationale of IRT models, let us assume the simplest case of items with 

two categories (i.e., a dichotomous item), coded with “1” and “0.” Let βi, a parameter connected with an 

item (i.e., item parameter) denote the location of an item i (i=1,...,K) on the latent trait such that the higher 

its value the less the probability of scoring 1. More accurately, βi is the value on the latent trait where 

scoring 1 has a probability of 0.5 for this item. Let θv denote the position of person v (v=1,..,N) on the 

latent trait. If βi =  θv, the probability of scoring 1 is 0.5 for that person. We therefore get a (0,1) people 

× items data matrix Χ of dimension N ×  K. The item response patterns Χiand person response patterns 

Χv are indicators for βi and θv. Other than in CFA, no distributional assumptions of latent traits need to 

be imposed, but they can be. Given that the items are ordinal, the patterns Χi and Χv are still on an ordinal 

level, but βi and θv lie on a metric scale.  

More generally, let Β denote a matrix S x K of S different item parameters in columns (e.g., 

discrimination, location) and the respective values of these parameters for each of the K items in rows. 

Let Θ denote the matrix that gives the positions on the latent dimensions that underlie the behavior in a 
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certain situation. Each column refers to a specific latent dimension and its entries to the location of people 

on that latent dimension if presented with all the K items. The basic functional relationship is then 

P(Χ = x) =  ƒ(B, Θ) with f being the item response function (IRF) or item characteristic curve (ICC). 

Different IRT approaches exist in terms of the number of item-related parameters or person-related 

parameters as well as the functional relationship. For instance, in addition to the location parameters βi, 

the researcher might wish to allow for item-discrimination parameters αi or guessing/faking parameters 

γi, which in some situations might be more realistic. For both item- and person-related parameters, it is 

the case that if a multidimensional construct is used, every person could have a different latent trait value 

on all dimensions, and every item might measure each trait to a certain degree. The traits can also be 

correlated. The functional relationship between the probability of scoring in a certain category and the 

person’s position on the latent trait is usually allowed to be nonlinear and can be pre-specified (e.g., via a 

logistic function) but also estimated (e.g., via kernel smoothing).  

Depending on the degree of parameterization and the overall goal of the analysis, two 

conceptually different approaches in IRT exist: 

1. Item selection and confirmatory approach: In this approach, the aim is to find items for 

which a certain IRT appears to hold. These items may then exhibit various properties of these models, 

such as the “fairness” of comparing people, the sample independence of the estimates, different 

discrimination ability or heterogeneous locations. These models may allow for objective measurement 

[64].  

2. Modeling and exploratory approach: If researchers are not primarily interested in selecting 

items in a very restrictive manner, but instead wish to analyze a person’s response behavior and therefore 

the scale and its items, then they would take into account higher parameterized models like two-parameter 

logistic (2PL) or three-parameter logistic (3PL) models, multidimensional models, models with covariates 

[16], or nonparametric models [e.g., 63]. 

2.5 Advantages of IRT 
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As was noted earlier, when the goal is to measure a latent construct, CTT and related methods can 

lead to serious problems, particularly with range-restricted/categorical items. Borsboom [10] asserts that 

“in an alternative world, where CTT was never invented, the first thing a researcher, who has proposed a 

measure for a theoretical attribute, would do is to spell out the nature and the form of the relationship 

between the attribute and its putative measures” (p. 429). That is exactly what IRT does, and in doing so 

overcomes several limitations of CTT.  

First, the linear relationship between the indicators and a categorical response, which is assumed 

in CTT, is usually not appropriate. Clearly, using transformations such as polynomials in CTT would be 

possible, but they require methodological and domain specific knowledge and only cover a fraction of 

possible relationships. Instead, in IRT, directly nonlinear relationships are used. Such a nonlinear function 

is more general and can subsume a linear relationship. In IRT, the nonlinear function that relates the 

probability of observing a certain response to an individual item with the latent trait is called the item 

response function (IRF) or item characteristic curve (ICC). This function enables flexible specifications 

of the theoretical relationship between the underlying trait and the items, given the response format 

(dichotomous or polytomous), contexts, or theoretical assumptions about the response process (e.g., 

dimensionality). Additionally, from an empirical point of view, the higher flexibility of IRT models allows 

for a close fit to be achieved between a function and the data. For example, if the real relationship is linear 

in the interval (0,1), it is possible to fit a near linear function with a 2PL model [9], whereas the opposite 

is not true. Furthermore, IRT models allow assessment of the adequateness by means of statistical 

goodness-of-fit tests and fit indices.  

Second, IRT allows analyses to be carried out on a response-pattern level, where the researcher 

can use the full amount of available information, rather than on an aggregated correlation level. IRT 

models usually allow for an estimate of the underlying latent trait value that incorporates all the available 

information from the data. They also enable researchers to define an appropriate scoring rule to 

adequately represent empirical relationships. In particular cases, they even permit the use of the sum 
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scores as the scoring rule, such as in Rasch measurement. In CTT, the weighted sum of the scores cannot 

generally be the appropriate scoring rule for the true score if dichotomous or polytomous items are used 

[6].  

Third, if IRT models hold, they allow for consistent estimation of parameters irrespective of the 

sample composition used to estimate the parameters (item and person parameters alike). IRT allows 

researchers to assess whether a model can be assumed to hold and thus to derive the statistical properties 

that the model entails. For instance, if the model holds for the population, the parameters estimated from 

an infinite number of items have the same expected values in the population regardless of what items and 

sample has been used. Consequently, if an IRT model holds in a population, using only some (and 

possibly different) items to estimate people parameters is perfectly valid and leads, on average, to the 

same estimate as if other items were used. Any comparison of people will be asymptotically independent 

of the items being used and who else was in the sample.  

Fourth, when selecting items to construct a scale, IRT enables the researcher to select items that 

are in accordance with a desired model. Out of a pool of possible items for the scale, the ones that 

conform to a Rasch model might be selected to ensure that its measurement properties apply. This 

selection is guided by the usage of statistical tests as well as graphical procedures. In CTT, items are often 

chosen based on sample dependent measures. It is possible that both approaches lead to similar or 

equivalent scales, but this need not be the case.  

Fifth, concepts such as reliability and internal consistency are applicable to IRT models. The 

reliability and internal consistency of a set of items will be high if a one-dimensional IRT model holds, 

because all items measure the same trait; however, the reverse is not necessarily true. IRT models also 

allow researchers to gain more information regarding how an individual item measures and to investigate 

the suitability of an item over the distribution of the latent trait or for the respondents’ latent trait values. 

Specifically, IRT allows the researcher to assess the standard error of estimation for every single item as a 

measure of precision. Therefore, confidence intervals for an estimate of each specific latent trait value can 
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be calculated. The standard errors and the resulting confidence intervals will differ between latent trait 

values or respondent locations. This is in accordance with the empirical finding that measurement in 

middle regions of a latent trait is more precise than in extreme regions [34]. Other than CTT, IRT does not 

assume this precision to be constant.  

 In IRT, it is further possible to calculate an item’s information, which tells researchers how much 

knowledge about the areas on the latent trait they can derive from an individual item. This can be seen as 

a more general concept of precision as compared to reliability, because it really shows how much 

information a specific item carries for different latent trait values. For example, an easy item will not have 

much information about the latent trait area of a genius, but will have much information about people for 

whom solving easy items is challenging. It is thus known how well a scale can assess different peoples’ 

locations on the latent trait. Precision is not constant, but can be different for different values of the latent 

trait. Similarly, it is possible to include items that measure the entire latent trait area of interest with high 

precision. That is, items can be heterogeneous in terms of which latent values they will measure. 

Moreover, an item that measures the same area of the latent trait as another item might have less 

information, and could therefore be excluded if there are length or other restrictions that ask for item 

removal. One can even assess the information of a whole scale, and that information can be compared to 

another scale measuring the same construct.  

Sixth, with IRT it is possible to obtain detailed information on an item and person level 

simultaneously. Each item i and each person v is assigned one or more parameters (i.e., the location of 

item β_i and position on trait θ_v) that allow for a probabilistic analysis of the response behavior. Item 

and person parameters lie on a metric scale, which makes it possible to interpret the distances between 

items and people on Θ. This is especially noteworthy, since the observed responses are on an ordinal 

scale. Certain IRT models actually enhance the scale level. If the items and people are on the same scale, 

then statements about the response probability of person v on item i can be achieved. This means it is 

possible to predict the behavior of a person on a certain item.  
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2.6 Additional Properties of Rasch Models 

Rasch stated that the objectivity of comparisons is a basic requirement [65], and he formulated 

the epistemological theory of specific objectivity (SO): objective because any comparison of a pair of 

parameters (items/people) should be independent of any other parameters or comparisons; specifically 

objective because the comparison made is relative to some specified frame of reference [5]. That is, under 

SO, two people v and w with abilities θv and θw are comparable independently from the remaining 

people in the sample and independently from the item subset in which they were presented. In turn, two 

items i and j with βi and βj are comparable independently from the remaining items in the subset and 

independently from the people in the sample [51]. To achieve this, very strict requirements are applied to 

these IRT models, and these restrictions lead to scales that exhibit extraordinary measurement qualities.  

Rasch [64] presented a probabilistic model that can be used to study the response behavior of 

individuals on dichotomous items. It poses a logistic relationship between the ability θv of a person v and 

the probability of a correct response on item i. Each item gets a difficulty parameter β𝑖. The formal 

representation, which is known as the Rasch model, is 

exp(θ )
( =1| θ , )

1 exp(θ )

v i
vi v i vi

v i

P X p


  
 

 

where P(Xvi=1) is the probability that person v answers 1 on item i. For simplicity, we will drop the 

indices in the following sections.  

Figure 2 represents the basic ideas in terms of the ICC for two items. The probability of 

answering “1” is depicted on the ordinate: the abscissa displays the latent trait value. The probability of an 

observed score of 1 (solid line) and 0 (dotted line) for item i as a function of the latent trait, the ICC, is 

shown. For item j only the ICC for score 1 is depicted. The vertical solid lines represent the item location 

on the common scale of the item and latent trait (i.e., P(X=1)=0.5). For item j, a higher latent trait value is 

needed to achieve the same probability of observing score 1 than for item i. For item i with β=-0.3, both 

the probability of observing “0” (dotted line) and the probability of observing “1” (solid line) as a logistic 
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function of the underlying latent trait value is shown. These two lines intersect at P(X=1)=0.5, which is by 

definition the “location” β of item i. This value can also be interpreted as the threshold at which it 

becomes more likely to score 1 than 0. One can see that the higher the position of a person on the latent 

trait, the higher the probability of scoring 1 becomes, and vice versa. For item j, only the probability of 

scoring 1 is shown because P(X=0)=1-P(X=1). This item has a higher location (βj=1) than item i, which 

means the probability of scoring 1 is lower than for item i for any given latent trait value. It is noteworthy 

that in this case, both items have the same discrimination; that is, they share the same “slope” of the 

logistic curve. Hence, Rasch models do not allow the logistic curves to cross.  

Because of the functional relationship, no matter what the latent trait value is, a probability for a 

score is always defined. Additionally, we can assess the whole latent trait as long as we have enough 

items that are different in terms of their locations. Another interesting issue is that in the middle region—

around the item’s location—measurement is practically linear; but for the extreme regions, the item is not 

able to distinguish well between people. It can also be seen that people’s abilities and item difficulties lie 

on the same scale. Furthermore, the intersection point cuts the latent trait into a region that corresponds to 

score 0 and score 1, which means that the model also maps dichotomous responses onto a metric scale.  

Figure 2 also shows how restrictive the dichotomous Rasch model actually is. It requires that (a) 

there is only one underlying latent trait, (b) an equal discrimination parameter for different items exists, 

(c) the ICC is a logistic function, and (d) the probability of a certain score depends solely on item location 

and person location on the latent trait and, most important, (e) “local independence” which denotes the 

independence of each individual item response conditional on the person’s latent trait value. The 

interdependency and statistical relationship between the observations of the different items is solely due 

to the position of the person’s location on the latent trait. Therefore, concepts that are based on 

correlations between items, as in CTT, are seen as spurious. For example, a highly aggressive person will 

often agree to items that ask about violent behavior, whereas a pacifist will not. If the latent trait value is 

held constant, any relationship between the items disappears. As opposed to CTT, all of these restrictions 
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can be tested.  

 

Figure 2. Representation of a Dichotomous Rasch Model for Two Items 

 

Because of its restrictiveness, the Rasch model is not flexible enough for modeling purposes, but 

if all items conform to it, this model has some remarkable features, as previously described. To achieve 

model fit, one would eliminate items that contradict at least one of the Rasch model assumptions. Item 

selection can be conducted by different means, for example, by residual-based item fit statistics [80] or 

Wald tests [30]. Those items that remain in the final homogeneous item subset measure the latent 

construct in an objective manner.  

In many practical situations, dichotomous item responses are too restrictive. This is especially 

true in social science research, where Likert-type scales are commonly used for assessing individuals’ 

attributes. For such polytomous items, the model outlined above can be generalized. One popular 

extension is the partial credit model (PCM) [53], which we will focus on in the following sections.  

Using PCM, all of the properties and assumptions of the dichotomous Rasch model still apply. 

Every ordinal item i with mi as the number of categories is described by h-1 cumulative intersection 

parameters 𝛽𝑖ℎ, which map the categories onto the latent trait. Thus, the PCM can be regarded as an 

adjacent-categories logit model [89]. For each category, there is a probability of scoring in each category 
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as a function of the latent trait. Basically, it estimates log-odds for a certain category h with respect to 

category h-1. An important issue, therefore, is the interpretation of the item-category parameters 𝛽𝑖ℎ. 

These parameters are often transformed into category intersection parameters 𝛿𝑖𝑗 with 𝑗 = 0 … 𝑚𝑖. If we 

estimate the PCM, the item categories are converted into intersection parameters as 𝛿𝑖0 = −𝛽𝑖0;  𝛿𝑖1 =

𝛽𝑖0−𝛽𝑖1;  𝛿𝑖2 = 𝛽𝑖1−𝛽𝑖2, etc. The parameters 𝛿𝑖𝑗 refer to the points on the latent trait where the ICCs 

intersect. Based on these intersection parameters, we can compute item location parameters 𝑣𝑖 in terms of 

𝑣𝑖 = 𝑚𝑖
−1 ∑ 𝛿𝑖𝑗

𝑚𝑖

𝑗=0
. Within the context of item selection to construct a scale, the main focus is on the 

item (-category) parameters that we can estimate independently from the person parameters if Rasch 

models are applied. In this case, we are not primarily interested in the estimation of 𝜃. Our aim is to 

establish a homogeneous subset of items that allows for an objective measurement of a latent construct. 

To score people, a useful scale should have a wide range of items in terms of their locations. 

3. DEMONSTRATION OF SCALE DEVELOPMENT IN AN IS CONTEXT 

In this section, we demonstrate the applicability of the Rasch-type scale construction and 

measurement in IS by constructing a scale to measure hedonic IS. Hedonism, a powerful form of intrinsic 

motivation, has gained a lot of attention in the IS community, and several non-utilitarian constructs (i.e., 

non-extrinsic motivation) have been integrated into various theoretical models as its importance has 

become clearer. These constructs include perceived affective quality, cognitive absorption, perceived 

enjoyment, and perceived playfulness [2, 39, 46, 47, 77, 92, 94, 97, 101], and they frequently exhibit 

similar or identical items. Using a substantial number of multi-item scales leads to a vast amount of items 

with unclear measurement properties. Hedonism is therefore an ideal example to illustrate the strengths of 

IRT, which lie in the detection of the “measurement scope” and the suitability of the respective items. We 

therefore consider hedonism as the perfect context in which to illustrate the practical applicability of 

Rasch models. As Burton-Jones and Straub [11] suggest, we created our scale with a specific context in 

mind, which in our case is websites. 

 This scale is supposed to measure only one latent dimension. All of the scale items should be 
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able to assess it. To provide a more useful demonstration, we create two scales: one using a CTT 

approach, and one using PCM. The latter analysis will serve as a guideline for illustrating how scales can 

be constructed using an IRT approach.  

3.1 Data Description 

We used several steps to collect and clean the data. To ensure that the attributes represented all 

facets of the concept under investigation (i.e., content validity), we followed the instructions from Moore 

and Benbasat [55] and used a panel of seven experts to generate a list of properties that are important for 

customer portal websites. We designed this phase as a brainstorming session, with the major objective 

being to come up with as many attributes as possible without any evaluation or rating. Subsequently, we 

used the same panel of experts to group the items they chose and to filter out synonyms, which resulted in 

a total of 26 items.  

After performing 10 preliminary tests to ensure that the items were comprehensible, we 

conducted an online survey in which a convenience sample of 291 Internet users rated the importance of 

those attributes for measuring hedonic concepts. We used a 5-point scale with a range from zero (“not 

important”) to four (“very important”) to assess the significance of the single attributes. Therefore, the 

data matrix 𝚾, which we used for all subsequent analyses, consisted of 291 subjects and 26 items. 

3.2 Descriptive Analysis 

Table 1 shows the descriptive statistics of the 26 items for the 291 respondents of the sample. 

3.3 CTT Analysis  

We performed the computations in R [62], with the packages “psych” [69] for exploratory factor 

and reliability analysis, and “sem” [26] for confirmatory factor analysis. To calculate the polychoric 

correlations we used the package “polycor” [25]. In CTT, the first problem is to find out how many latent 

factors may be underlying our items. For our purpose, we aimed for one factor only. No clear-cut solution 

exists as there are various criteria to help choose the number of factors. To confirm the appropriateness of 

the data, we used the Kaiser-Meyer-Olkin Measure of Sampling Adequacy (0.88) and Bartlett’s test of  
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Table 1. Descriptive Statistics 

 

Name Number Mean SD Median SE 

Creative 1 2.68 1.21 3 0.07 

Surprising 2 1.52 1.36 1 0.08 

Intriguing 3 2.43 1.27 3 0.07 

Inspiring 4 2.45 1.31 3 0.08 

Playful 5 1.81 1.35 2 0.08 

Animated 6 1.85 1.42 2 0.08 

Multimedia based 7 2.45 1.28 3 0.07 

Funny 8 1.84 1.37 2 0.08 

Entertaining 9 2.45 1.37 3 0.08 

Provocative 10 0.97 1.22 1 0.07 

Motivating 11 2.75 1.23 3 0.07 

Beautiful 12 2.47 1.21 3 0.07 

Exciting 13 2.19 1.32 2 0.08 

Frisky 14 1.00 1.24 1 0.07 

Modern 15 2.75 1.26 3 0.07 

Emotional 16 1.58 1.30 1 0.08 

Colorful 17 1.82 1.30 2 0.08 

Full of action 18 1.50 1.29 1 0.08 

Humorous 19 2.08 1.43 2 0.08 

Challenging 20 1.88 1.40 2 0.08 

Interactive 21 2.53 1.18 3 0.07 

Customized 22 2.29 1.28 2 0.07 

Personalized 23 2.15 1.28 2 0.08 

Tasteful 24 2.86 1.12 3 0.07 

Plain 25 1.95 1.35 2 0.08 

Suitable for children 26 1.77 1.49 2 0.09 

SD ... Standard Deviation    SE ... Standard Error, n = 291 

 

sphericity (p <.001) [87]. We selected principal axis factoring of the polychoric correlation matrix and 

used the scree plot criterion as well as the very simple structure (VSS) criterion [70] to determine the 

number of factors. 

There was a dramatic drop in explained variance after the first factor is extracted. Thus, the scree 

plot as well as the VSS criterion supported extracting only one factor. To verify this, we conducted a CFA 
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with one common factor. All items were allowed to load freely on the common factor. Using a 

significance level of 5%, we found that the loading of one item, “plain,” was not significantly different 

from 0; thus, we deleted the item and refitted the CFA. The fit indices suggest that the model does not fit 

the data very well. The root mean square error of approximation (RMSEA) equals 0.111, which is above 

the recommended upper bound of .07 (some authors go as high as .1) and the comparative fit index (CFI) 

equals 0.725, which is well below the recommended lower threshold of 0.9 (some authors even 

recommend .95) [38]. Similarly, all other fit indices (e.g., Goodness-of-fit index, NFI, Tucker-Lewis 

NNFI, CFI, AIC) indicate a poor fit. 

We also tried a two-factor solution where all of the items were allowed to load freely on one of 

the factors without cross loadings. Additionally, the two factors were allowed to correlate freely. The fit 

was better than that of the one-factor CFA (RMSEA=0.102, CFI=0.768) but it was not good enough to 

confirm a two-dimensional structure. Because our aim was to derive a single scale for measuring hedonic 

websites, we proceeded with deleting items that had small loadings on the factor from the one-factor 

solution, until the fit became worse again. The best fit was achieved after the deletion of the items 

“multimedia based,” “beautiful,” “modern,” “interactive,” “customized,” “personal,” “tasteful,” and 

“plain” which left 18 items. Even this best FA model does not fit well to the data (RMSEA=0.106, 

CFI=0.835). Nevertheless, the selected items are suitable for the one-dimensional measurement of 

hedonic information systems within a CTT framework. Our scale has an impressive Cronbach’s α of 0.91 

and all loadings are significant. Appendix A shows the one-factor solution before and after item selection 

and the two-factor solution. 

3.4 IRT Analysis 

We performed all computations with the eRm package [51, 52] in R, which uses CML estimation. 

To achieve a final set of items, we used the following steps: 

1. Estimate PCM item and person parameters.  

2. Compute item-fit statistics based on residuals.  
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3. Eliminate the item with the least fit (i.e., highest item-fit statistic).  

4. Compute LR test for different person sub splits. If LR is significant, go back to step (1) and 

eliminate items. Otherwise, the procedure stops and the final model is obtained.  

When the data did not fit the PCM, we eliminated items successively and re-fitted the model. It is 

a peculiarity of the item selection approach that data are actually fitted to a model, not the other way 

round. Other IRT models allow for the conventional statistical approach of model fitting, but we decided 

to use a Rasch model, which is comparatively easy to understand and ideally suited for the task at hand. 

The result was a set of homogeneous items that comply with the restrictive Rasch criteria. This means that 

they all measure the same latent trait (i.e., one-dimensional), that the sum of the scores is the appropriate 

measure of the underlying latent trait (both for items and people) and that the estimated parameters are 

sample-independent (i.e., specific objectivity holds) if the model holds in the population. The reason for 

fitting the LR test after each step is that this statistic, which is a global model test, evaluates the model fit 

of the whole item set. Item-fit statistics are residual based and compare a theoretical probability with an 

observed integer value. Thus, this criterion is only suitable for indicating which items should be 

eliminated. It is not suitable for assessing model fit. 

We started our analysis with the same total set of 26 items that we used in the previous section. We 

eliminated, based on the procedure described above, the following items in this order: “plain,” “suitable 

for children,” “interactive,” “customized,” “personalized,” “multi-media based,” “modern,” “tasteful,” 

“beautiful,” “creative,” “provocative,” “inspiring,” “intriguing,” “colorful,” and “animated.” The 

remaining 11 items are appropriate for scaling the hedonic aspects of websites within a Rasch framework. 

Ranked from the smallest to the largest item fit statistics, they are “frisky,” “humorous,” “entertaining,” 

“full of action,” “exciting,” “surprising,” “emotional,” “playful,” “challenging,” “funny,” and 

“motivating.” For this set of items, we applied a small simulation of 40 LR tests by means of person-splits 

(2-group random-splits and 3-group random splits). Table 2 shows the item location parameters vi and the 

category intersection parameters 𝛿𝑖𝑗 for the final item subset. These parameter sets allow for a detailed 
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interpretation of each single item. For visual inspection of the common latent scale, the location and 

category threshold estimates are displayed in the lower part of Figure 3, together with the estimated 

person parameter distribution. 

Table 2. Location and Threshold Parameters of Items Selected in the Rasch Model Approach 
Item Lo

cat

ion 

Thres

hold1 

Thres

hold2 

Thres

hold3 

Thres

hold4 

Surprising 0.55017 −0.3765 0.8126 0.55318 1.21139 

Playful 0.31256 −0.6884 0.39266 0.20719 1.3388 

Funny 0.31414 −0.5191 0.23827 0.13385 1.40349 

Entertaining −0.3055 −1.1942 0.0799 −0.6724 0.56484 

Motivating −0.5825 −1.3400 −0.4936 −1.0895 0.5932 

Exciting −0.0518 −1.1906 0.08804 −0.2669 1.16215 

Frisky 1.15526 0.46667 1.40648 0.66995 2.07795 

Emotional 0.53599 −0.5029 0.41212 0.84531 1.38936 

Full of action 0.64045 −0.3493 0.48214 0.8303 1.5987 

Humorous 0.08177 −0.6286 0.3733 −0.4814 1.06374 

Challenging 0.25191 −0.5727 0.39598 −0.0284 1.21273 

 

 

Figure 3. Location of the Item Categories on the Common Latent Trait Scale 
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The final items are heterogeneous in their locations on the “importance for measuring hedonism” 

latent scale —ranging from “motivating” (νi=-0.582) on the left-hand side of the continuum up to “frisky” 

(νi=1.155) on the right-hand side. We note that when measuring hedonism, it is irrelevant which items 

from this pool are chosen because all of them comply with the Rasch model, and thus are appropriate for 

measuring hedonism. Also, since raw scores are the appropriate scores for a Rasch-type model, all 

items/people with the same raw score would get the same parameter, and thus lie on the same position 

on Θ, the latent trait.  

The higher the location of an estimated location parameter, the more important the item is 

considered to be for hedonism. Location parameters allow for the interpretation of differences in 

importance according to the construct hedonism. For instance, the difference in item location between 

“emotional” and “funny” (0.535-0.314=0.22) is approximately 2.4 times as much as between “full of 

action” and “surprising” (0.64-0.55=0.09). This means the latter are 2.4 times more similar in terms of the 

amount of the construct the items represent than the former.  

The category intersection parameters 𝛿𝑖𝑗 denote the points on the latent continuum Θ at which the 

category characteristic curves (CCC) intersect. Figure 4 shows several examples of the underlying CCCs. 

Each line visualizes the probability of observing a certain response as a function of the latent trait values. 

Examining the item “emotional,” in the upper left of Figure 4 the categories 0 and 1 intersect at a value of 

-0.502. This implies that as long as a website has an estimated hedonism score below -0.502, the 

probability of a zero score on this item will be higher than for any other category. As long as a person 

thinks that the importance of this item for measuring hedonism is between [-0.502;0.414], the person will 

most probably select a response of “1,” but need not do so. A person may choose “4,” but such a response 

is much less likely than “1.” Thus, unlike in CTT, the researcher can interpret the results in a probabilistic 

manner. 

The items “emotional” and “full of action” possess a “regular” behavior in terms of increasing 

intersection parameters as the category increases; that is, 𝛿𝑖0 <  𝛿𝑖1 <  𝛿𝑖2 <  𝛿𝑖3. This monotonicity  
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Figure 4. ICCs for the Five Categories 

 

property is not given for all the other items (see bottom of Figure 5). It is especially striking that 𝛿𝑖2 <

 𝛿𝑖1 for the item “playful.” This does not imply that there are not enough subjects with a score of 3, rather, 

it shows that conditional on the importance for hedonism score, the probability of a response in category 2 

is lower throughout, compared to the responses in the other categories. This is a behavior that can be 

observed for neutral or middle categories frequently. The PCM assigns intervals on the one-dimensional 

latent trait to a score. These intervals must also be ordered; if this is not the case, it means that, in contrast 

to the assumption made when developing the items, category 3 cannot be mapped in this way. No interval 

is assigned mainly to this category, which suggests that something about this category is not in 

accordance with the ordinal ordering of the categories. For scale development, this indicates that the  
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Figure 5. Information Curves for All Items (Top) and the Aggregated Information of the Scale 

(Bottom) as a Function of the Latent Trait Values 

 

categories of items that display this behavior are not ordinal, but that there are four categories that are 

ordered, and that the middle category is different. One now has three choices: (1) either change the Likert 

scale to a 4-point scale with no middle category, since it measures something else, such as “undecided”; 

(2) use an IRT model that assumes the scores to be only nominal scaled, or (3) use a model that estimates 

the four “regular” categories as ordinal and the middle category as “nominal” [7].  

To assess how well and where an item measures its latent trait values, IRT employs the concept of 

the information of items, which indicates how much information an individual item can give about certain 

latent trait values [76]. In doing so, we can see which region of the latent trait is measured well by which 

items, and which items are redundant. We can also add up these item information values into a joint 

information value if we want to compare different scales to measure hedonism. Figure 5 shows a plot of 

the item information (top) and scale information (bottom) as a function of the underlying latent trait 
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values. The attribute “exciting”, for example, measures the latent trait in an interval similar to the rest of 

the items, but has less information. Thus, if one wants to reduce the number of items further, this would 

be a potential candidate for removal. The attribute “motivating” is particularly important, because it has 

high information in the range on the latent trait, which stands for high importance in measuring hedonism. 

Conversely, the attribute “frisky” has the most information on the low values of the latent trait, which 

means it can be used to differentiate between low latent trait values. 

4. DISCUSSION AND CONCLUSION 

4.1 Theoretical Implications 

[100], who use IRT to analyze the reliability of the leadership practices inventory, pointedly 

emphasized that “an instrument’s measurement precision is crucial for the quality of the inferences and 

decisions based on that instrument, whether the purpose is leader assessment in organizations or academic 

theory building” (p. 180). They further elaborate that wrong measurement invariably leads to wrong 

conclusions with far-reaching consequences. A further prominent example in this context is the still 

ongoing discussion about reflective vs. formative measurement , which was triggered in the social 

sciences in 2003 by Jarvis et al. [41] and then reached the IS community in 2007 by Petter et al. [60]. 

Both publications found that a substantial number of scales in the existing literature were actually 

misspecified. According to Peter et al., the misspecification level of publications in leading IS journal 

equals 30%. This illustrates that from time to time, paradigm shifts and critical “outside” evaluations of 

method are necessary to be able to increase the accuracy and validity of IS research results and 

conclusions. We suggest that IRT constitutes such an alternative that has the potential to uncover the 

shortcomings of CTT, which might otherwise go unnoticed as long as the existing measurement paradigm 

is not carefully scrutinized. 

IS research frequently uses survey data to measure the interplay between technological systems 

and human beings and to create appropriate scales. However, most scales used in IS studies are based on a 

development process utilizing CTT, which suffers from major theoretical shortcomings. We advocate the 
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use of IRT as a viable alternative that overcomes the serious limitations of CTT models. Table 3 compares 

the applicability of CTT, FA, and IRT.  

Table 3. Comparison of CTT and IRT Properties extended from Hambleton and Jones [35] 
Point of Comparison CTT IRT 

Model Type Linear Nonlinear 

Scale Level of Item  Metric Categorical 

Level of Application Item set Individual item 

Assumptions Weak (easier to meet with 

data) 

Strong (more difficult to 

meet with data) 

Item-Ability 

Relationship 

Not specified (usually 

linear function) 

Item characteristic 

function 

Ability Indicator 

(Range) 

Test scores/estimated true 

score (restricted to range 

of raw scores) 

Person parameter (-

∞, +∞) 

Invariance of Item & 

Person Statistics 

No Yes (if model holds) 

Reliability/Internal 

Consistency 

Estimated reliability Model inherent 

Assumptions Testable? No Yes 

 

To address the advantages of IRT for IS research, we introduced the IRT paradigm of 

measurement in the IS context of hedonic websites and illustrated the practical applicability of a 

probabilistic framework in measuring latent constructs. We did so by means of polytomous Rasch models, 

in order to find attributes that are suitable for characterizing the hedonic aspects of websites. We derived 

and compared scales, with both the IRT and the CTT paradigms, and concluded that the scale derived 

with IRT not only had the same reliability and fewer items then the CTT scale, but also provided 

additional insights. Namely, IRT provides more information about the individual scale and its items, and 

embeds the scale construction process and the derived scholarly results into a strong theoretical and 

epistemological context of measurement. The IRT analysis not only allows for probabilistic statements 

about an individual’s answering behavior, but also indicates (a) how well the expression of the latent 

construct subjects can be assessed, (b) how well the overall latent construct can be assessed, and (c) how 

the individual items scale the individuals.  

Contrary to popular belief amongst many social researchers, IRT is fairly easy to perform with 

modern software packages. We used the open source software R to illustrate how to construct and test a 

scale that can be used to measure hedonic IS. This paper should help IS researchers to correctly interpret 
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the results. IRT is useful at virtually every stage of survey research. First, it can help with scale 

development and identify those items which do not carry much information. Second, it can help to better 

interpret the results and even to assess the suitability of different scale levels. As we have shown, it might 

even turn out a 4-point scale is preferable to a 5-point scale. This interpretation cannot be concluded with 

CTT. Third, IRT might help to overcome widespread misconceptions regarding the quality of scales. 

Cronbach’s α, for example, is a frequently used indicator to measure the reliability of a scale and, most 

likely, one of the most misunderstood tests in social science research. Apart from the fact that it measures 

internal consistency rather than reliability, researchers frequently refer to Nunnally [58] who indicated .7 

might be an acceptable coefficient. This does not mean, however, that better values necessarily indicate 

superior performance. In fact, previous literature recommends an upper value of .9 [32], with values 

above that level indicating redundant items. IRT can help to detect these items in the scale construction 

process. 

By correctly applying this method, new insights about the content domain of frequently used 

constructs can be gained. Additionally, it is a powerful methodology for developing and testing new 

constructs. Another promising approach for future IRT applications in IS lies in the development and 

implementation of multi-dimensional IRT models, which map items and people simultaneously onto 

multiple correlated dimensions [96] or allow for measuring change over time [37]. We are quick to 

emphasize, however, that IRT is not always preferable. Although IRT is generally regarded to be superior 

to CTT for measurement purposes in behavioral science, the combination of both approaches is 

particularly powerful [8]. To date, there exists a dearth of studies that compare results gained from IRT 

and CTT. Such studies might help to shed light on what the differences actually are and how those might 

influence theory development.  

Because IRT is a measurement paradigm, further research should account for the nomological 

context and the theoretical framework in which the respective constructs are being used; this is similar to 

suggestions from Burton-Jones and Straub [11] to operationalize constructs according to the specific 
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hypotheses or theory. We hope that our explanation and demonstration of the usefulness of IRT in an IS 

context further inspires such research. 

4.2 Implications to Practice 

Public and private organizations need reliable and effective tools to measure a wide variety of 

internal and external key indicators. Examples include work and financial performance, job and customer 

satisfaction, brand equity, and technology adoption. Furthermore, a wide variety of moderating and 

mediating variables, including extrinsic and intrinsic motivation, hedonic motives, usefulness and ease of 

use are frequently included in questionnaires. IRT not only bears the potential to make these surveys more 

efficient and less time-consuming, which is due to exclusion of redundant variables, but also allows for 

the application of new measurement paradigms that may offer considerable advantages as we have shown 

in previous sections. Often being seen as solely useful for psychological assessments (to date the majority 

of IRT studies are indeed published in Psychology journals), several studies from fields such as 

Marketing, Finance, Engineering and Business Administration in general are starting to demonstrate the 

usefulness of this approach. A famous example of IRT outside of academia includes its application for the 

Programme for International Student Assessment (PISA), which is the worldwide study of the 

Organization for Economic Co-operation and Development (OECD) to assess pupils’ school performance. 

The first PISA study was performed in 2000 and it was then repeated every three years with 510,000 

students from 65 nations and territories participating in 2012 [59]. IRT in this case allows for 

standardized, cross-national and accurate measurement and continues to be the method of choice for this 

study. 

In this manuscript, we present the technical details of IRT in a manner that should be more 

accessible to a general audience than those seen in Psychology publications. The source code, which can 

be found in the online Appendix B, shows how to perform an IRT study, which can be achieved 

comparatively easy with modern software packages. SAS, STATA, SPSS and EQSIRT, which are widely 

used within the industry and academia, all allow for the application of IRT. We used R [61], which is open 
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source software increasingly getting attention in both academia and amongst practitioners. In R, all 

packages needed to perform IRT can be installed on the fly and without extra cost. The theoretical 

background in combination with a step-by-step tutorial should make it easy for practitioners to 

successfully apply this powerful method. In Appendix C, we provide a basic example that allows readers 

to test an easy-to-understand IRT application. A detailed interpretation of the results can be found online 

in [12]. Finally, it was our goal to raise awareness amongst managers and practitioners that alternative 

measurement approaches exist and to illustrate how to interpret the findings from studies and reports 

applying IRT. 

4.3 Limitations of IRT  

IRT certainly has disadvantages and limitations, which we briefly discuss here to conclude this 

manuscript. It is important that IS researchers also consider the downsides of IRT so that they do not 

blindly rethink the measurement of categorical indicators without understanding the risks. 

First, IRT operates mainly on the item level. CTT offers the analysis of a scale on the set of item 

level, which IRT does not address. Consequently, if one wants to know the properties of the overall scale, 

CTT is a viable option. IRT can help in ensuring that CTT can actually be used for a set of items. For 

example, if a Rasch model holds, then the raw score of a set of items is sufficient. CTT concepts like 

validity and reliability can then be used for a set of items that has been constructed with IRT, and the test 

characteristic function (the sum of all item characteristics) connects the Θ from IRT to the true score of 

CTT. Importantly, IRT models are not ideal when the items are actually metric, such as with a true 

continuous response scale.  

Second, IRT models are more complex than CTT models. They are more difficult to fit, and thus 

their parameters may only be estimated insufficiently, or a higher number of observations are needed to 

achieve sufficient accuracy of the estimates. Likewise, IRT models can be more difficult to learn and 

interpret for practitioners, which particularly applies to non-Rasch models.  

Third, factor analysis methods can be combined with latent regression models to conduct 
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powerful analyses via SEM, which approach essentially correlates/regresses among the latent traits 

defined by the measurement models. Due to the considerably higher complexity of IRT models, all 

attempts at providing a similarly solid foundation for SEM with IRT measurement that we know of have 

fallen short, but there are promising developments [e.g., 56, 79].  

Fourth, IRT models are by no means free of assumptions. For example, most assume some form 

of independence of the items, conditional on the latent trait, or assume a one-dimensional latent trait. If 

the assumptions behind the IRT model are not met, then the properties expected from the model and the 

inferences based on the model are not accurate—just as we previously criticized CTT for. 

Fifth, choosing the right model is still a bit problematic. Due to the number of IRT models in 

existence, the sheer number of possibilities for modeling the data is huge.  

4.4 Conclusion and Further Research 

We have made the case that IS researchers have overwhelmingly favored CTT use for 

measurement development, even though there are downsides to this approach. CTT has a number of 

shortcomings when applied to categorical item scales, including the assumption of linearity, the difficulty 

of estimating the true score, and the sample dependence of the parameter estimates. To address these 

issues, we presented IRT as a collection of viable alternatives for measuring continuous latent variables 

by means of categorical indicators. IRT can overcome the serious limitations of CTT by offering: 

nonlinear relationships and appropriate estimation of the true score, possible sample independence of the 

parameters, and model-based procedures for selecting items that are in accordance with a desired model. 

IRT also generalizes concepts such as reliability or internal consistency, and allows a researcher to acquire 

a deep understanding of the measurement process. We conclude that a better (i.e., more precise) 

measurement increases the overall validity of the constructs being used in IS research and hence the 

explanatory power of both theory building and theory testing increases. We provided an empirical 

demonstration of creating a hedonic IS scale using the CTT approach and IRT approach. The results 

illustrate how IRT can be successfully applied in IS research with advantages over the traditional CTT 
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approach. Previous research has mostly favored one paradigm over the other. Hence, that further research 

is needed that actually compares the outcomes of CTT and IRT analyses and their implications for theory. 
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APPENDIX A. RESULTS OF THE CONFIRMATORY FACTOR ANALYSIS  

Item 

One factor solutions Two factor solution 

Factor 1 before 

selection 

Factor 1 after 

selection Factor1 Factor2 

Loading SE Loading SE Loading SE 

Loa

din

g  SE 

surprising 0.696 0.052 0.715 0.052 0.715 0.052 - - 

intriguing 0.563 0.055 0.557 0.056 0.553 0.056 - - 

inspiring 0.589 0.055 0.563 0.055 - - 0.656 0.056 

playful 0.694 0.052 0.702 0.052 0.703 0.052 - - 

animated 0.659 0.053 0.650 0.054 0.651 0.054 - - 

multimedia based 0.506 0.056 - - - - 0.585 0.057 

funny 0.687 0.053 0.697 0.052 0.707 0.052 - - 

entertaining 0.762 0.051 0.767 0.051 0.770 0.050 - - 

provocative 0.537 0.056 0.564 0.055 0.561 0.056 - - 

motivating 0.591 0.055 0.561 0.056 - - 0.696 0.055 

beautiful 0.504 0.056 - - - - 0.573 0.058 

exciting 0.723 0.052 0.717 0.052 0.715 0.052 - - 

coltish 0.767 0.050 0.785 0.050 0.795 0.050 - - 

modern 0.423 0.058 - - - - 0.496 0.059 

emotional 0.703 0.052 0.697 0.052 0.695 0.052 - - 

colorful 0.619 0.054 0.618 0.054 0.622 0.054 - - 

full of action 0.716 0.052 0.735 0.051 0.734 0.052 - - 

humorous 0.742 0.051 0.748 0.051 0.748 0.051 - - 

challenging 0.667 0.053 0.670 0.053 0.663 0.053 - - 

interactive 0.335 0.059 - - 0.316 0.059 - - 

customized 0.399 0.058 - - - - 0.433 0.061 

personalized 0.424 0.058 - - - - 0.513 0.059 

tasteful 0.370 0.059 - - - - 0.550 0.059 

suitable for 

children 0.478 0.057 0.475 0.057 0.474 0.057 - - 

creative 0.580 0.055 0.544 0.056 - - 0.698 0.055 

InterfactCorr     0.765    

Chi-Square (df) 1264.6 (275) 578.71 (135) 1106.8 (274)   

CFI 0.725  0.835  0.768    

RMSEA 0.111  0.106  0.102    

NFI 0.676  0.797  0.717    

NNFI 0.700  0.814  0.747    

SRMR 0.008  0.06  0.071    

Cronbach's alpha 0.91  0.91  0.78  0.90  
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ONLINE APPENDIX B. SOURCE CODE 

install.packages(c('eRm','psych','polycor','sem','foreign')) #install add on packages to base R;  

we used version 0.15-1 of eRm, 1.2.1 of psych and  0.8-49 of foreign. Should updates to the 

packages break the code below the packages can be installed by 

 

#packageurls <- c('http://cran.r-project.org/src/contrib/Archive/eRm/eRm_0.15-

1.tar.gz','http://cran.r-

project.org/src/contrib/Archive/psych/psych_1.2.1.tar.gz','http://cran.r-

project.org/src/contrib/Archive/psych/foreign_0.8-49.tar.gz') 

#install.packages(packageurls, repos=NULL, type='source') 

 

#load packages 

library('eRm')  

library('psych')  

library('foreign')  

source('entertainment/ipmap2.R')  #this is script file that we use to generate a nicer plot 

of the IP Map 

 

#####################IRT ANALYSIS 

# 

#open irt.RData 

#datana... raw data with NA 

#data ... matrix with raw data  

#X ... reduced entertainment matrix 

 

#-------read data---------- 

datana <- read.spss('entertainment/Entertainment_ordinal.sav', use.value.labels = FALSE, 

to.data.frame = TRUE) 

xna <- datana[,c(8,9,13,15,16,19,21,23,25,27,28,29,30,33,34,35,42,44,46,47,14,18,20,31,41,43)] 

xna[xna == -1] <- NA 

tfvec <- apply(xna, 1, function(x) any(is.na(x))) 

X <- xna[!tfvec,]                                    #NA's eliminated 

#------end read data------ 

 

 

#---------------------------- Fit Assessment and Scale Development --------------------- 

 

XS <- X 

res <- PCM(X) #fit the PCM 

summary(res)  #summary of the fit   

 

pres <- person.parameter(res) #get the person parameters 

lrres <- LRtest(res) #get the LR test of item fit 

lrres   #fit is bad 

 

#Why is the fit bad?   

ifres <- itemfit(pres) #inspect items 

ifres 

 

 

plotGOF(lrres) #plot the problem in fit; we see that some items deviate from the 45degree line 

 

#We have a bunch of items but the PCM does not fit them well as a whole; we therefore proceed by 

a successive item elimination strategy of deleting a _single_ candidate item, refitting the 

model, assessing fit, removing another item, refitting the model, assessing fit again, and so on 

until the fit is acceptable.  

 

X <- X[,-25]         #eliminate SCHLICHT 

restmp <- PCM(X) #fit the PCM 

prestmp <- person.parameter(restmp) #get the person parameters 

lrrestmp <- LRtest(restmp) #get the LR test of item fit 

lrrestmp   #fit is still bad 

 

# We would now do this for each of the X listed subsequently. For brevity we do not list the 

intermediate steps of  

## restmp <- PCM(X)  

## prestmp <- person.parameter(restmp)  

## lrrestmp <- LRtest(restmp)  

## lrrestmp 
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# after each item elimination. But since the item elimination is conditional, we do not delete 

all the columns in one go in the procedural reproduciblity script (of course after the successive 

elimination we know the items that should be deleted and could remove all of them in one go by 

writing 

## dropcols <- c("SCHLICHT","KINDERGE",...) 

## X <- XS[,-dropcols] 

 

 

X <- X[,-25]         #eliminate KINDERGE 

X <- X[,-21]         #eliminate INTERAKT 

X <- X[,-21]         #eliminate INDIVIDU 

X <- X[,-21]         #eliminate PERSONAL 

X <- X[,-7]          #eliminate MULTIMED 

X <- X[,-14]         #eliminate MODERN 

X <- X[,-19]         #eliminate GESCHMAC 

 

#lrres <- LRtest(res) 

#p-value:  0.002  

 

X <- X[,-11]         #eliminate SCHOEN 

X <- X[,-1]          #eliminate KREATIV 

X <- X[,-8]          #eliminate PROVOZIE 

 

 

#lrres <- LRtest(res) 

#p-value:  0.179  

 

X <- X[,-3]          #eliminate INSPIRIE 

X <- X[,-2]          #eliminate FESSELND 

X <- X[,-10]         #eliminate BUNT        

X <- X[,-3]          #eliminate ANIMIERT 

   

 

#The final results 

 

resfinal <- PCM(X) 

lrfinal <- LRtest(resfinal) 

lrfinal 

plotGOF(lrfinal) #plot the GOF test 

trfinal <- thresholds(resfinal) #getting the thresholds 

trfinal 

presfinal <- person.parameter(resfinal) 

fitfinal <- itemfit(presfinal) 

 

 

#Simulating 20 random splits (of 2 and 3) of the data to obtain the posterior of the test 

statistics for the final result   

testsim <- matrix(ncol = 2, nrow = 20) 

for(i in 1:20) 

  { 

  g2 <- sample(c(0,1), 291, replace = TRUE) 

  g3 <- sample(c(0,1,2), 291, replace = TRUE) 

  tes2 <- LRtest(resfinal, splitcr = g2) 

  tes3 <- LRtest(resfinal, splitcr = g3) 

  testsim[i,1] <- tes2$pvalue 

  testsim[i,2] <- tes3$pvalue 

  cat(i,'\n') 

} 

 

testsim #the result of the simulations 

 

 

###Plotting  

#we give corresponding English labels to the German labels 

colstring <-

c('surprising','playful','funny','entertaining','motivating','exciting','frisky','emotional','ful

l of action','humorous','challenging')  

colnames(resfinal$X) <- colstring 

 

#Plotting the (customized) Item Person Map 
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rawscore <-rowSums(resfinal$X)  #raw score 

tr <- as.matrix(trfinal$threshtable[[1]]) #category thresholds in matrix 

rownames(tr) <- colstring  

theta <- presfinal$pred.list[[1]]$y[rawscore+1] #estimated theta values 

 

#Plotting the Item Person Map 

ipmap2(tr, theta) 

 

 

#Plotting the ICCs interactively 

plotICC(resfinal, item.subset = c(8,9,2,7), col = 1, lty = 1:5, ylab = 'Probability of response', 

cex = 0.5) 

 

#plotting  ICC of item 9 

plotICC(resfinal, item.subset = 9, col = 1, lty = 1:5, ylab = 'Probability of response', ask = 

FALSE, cex = 0.5) 

 

#plotting  ICC of item 10 

plotICC(resfinal, item.subset = 10, col = 1, lty = 1:5, ylab = 'Probability of response', ask = 

FALSE) 

 

##plotting ICC of item 2 

plotICC(resfinal, item.subset = 2, col = 1, lty = 1:5, ylab = 'Probability of response', ask = 

FALSE) 

 

##plotting ICC of item 8 

plotICC(resfinal, item.subset = 8, col = 1, lty = 1:5, ylab = 'Probability of response', ask = 

FALSE) 
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ONLINE APPENDIX C. DEMONSTRATION SOURCE CODE 

Note: this code is taken from Joel Cadwell (2012) and modified slightly 

(http://joelcadwell.blogspot.co.at/2012/09/item-response-theory-developing-your.html) 

 

In order to run in R the GenOrd and the ltm packages have to be installed: 

 

install.packages('GenOrd') 

install.packages('ltm') 

 

 

#use GenOrd package to generate random data  

library(GenOrd) 

library('psych')  

 

 

#probabilities for each brand test (location)  

prob <- list(  

  c(0.25),  

  c(0.35),  

  c(0.45),  

  c(0.55),  

  c(0.65)  

  )  

 

 

#slope for each logistic curve  

loadings<-matrix(c(  

  .6,  

  .6,  

  .6,  

  .6,  

  .6),  

5, 1, byrow=TRUE)  

 

#creates correlation matrix as input  

cor_matrix<-loadings %*% t(loadings)  

diag(cor_matrix)<-1  

 

#generates 200 random ordinal observations  

ord<-ordsample(n = 200, marginal = prob, Sigma = cor_matrix)  

 

#calculates first principal component  

library(psych)  

principal(ord,nfactors=1)$value  

 

library(ltm)  

ord<-ord-1  

descript(ord)  

 

#likelihood ratio test  

anova(rasch(ord), ltm(ord ~ z1))  

 

#two-parameter logistic model  

fit<-ltm(ord ~ z1)  

summary(fit)  

 

#item characteristic curves  

plot(fit)  

 

#calculates latent trait scores  

pattern<-factor.scores(fit)  

#constrains slopes to be equal  

fit2<-rasch(ord)  

plot(fit2)  

summary(fit2)  

scores2<-factor.scores(fit2)  
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