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Abstract

The use of a finite mixture of normal distributions in model-based clustering allows to
capture non-Gaussian data clusters. However, identifying the clusters from the normal com-
ponents is challenging and in general either achieved by imposing constraints on the model or
by using post-processing procedures.

Within the Bayesian framework we propose a different approach based on sparse finite
mixtures to achieve identifiability. We specify a hierarchical prior where the hyperparameters
are carefully selected such that they are reflective of the cluster structure aimed at. In addition,
this prior allows to estimate the model using standard MCMC sampling methods. In combi-
nation with a post-processing approach which resolves the label switching issue and results in
an identified model, our approach allows to simultaneously (1) determine the number of clus-
ters, (2) flexibly approximate the cluster distributions in a semi-parametric way using finite
mixtures of normals and (3) identify cluster-specific parameters and classify observations. The
proposed approach is illustrated in two simulation studies and on benchmark data sets.

Keywords:Dirichlet prior; Finite mixture model; Model-based clustering; Bayesian nonparametric
mixture model; Normal gamma prior; Number of components.
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1 Introduction

In many areas of applied statistics like economics, finance or public health it is often desirable to

find groups of similar objects in a data set through the use of clustering techniques. A flexible

approach to clustering data is based on mixture models, whereby the data in each mixture compo-

nent are assumed to follow a parametric distribution with component-specific parameters varying

over the components. This so-called model-based clustering approach (Fraley and Raftery, 2002)

is based on the notion that the component densities can be regarded as the “prototype shape of

clusters to look for” (Hennig, 2010) and each mixture component may be interpreted as a distinct

data cluster.

Most commonly, a finite mixture model with Gaussian component densities is fitted to the data

to identify homogeneous data clusters within a heterogeneous population. However, assuming such

a simple parametric form for the component densities implies a strong assumption about the shape

of the clusters and may lead to overfitting the number of clusters as well as a poor classification, if

not supported by the data. Hence, a major limitation of Gaussian mixtures in the context of model-

based clustering results from the presence of non-Gaussian data clusters, as typically encountered

in practical applications.

Recent research demonstrates the usefulness of mixtures of parametric non-Gaussian compo-

nent densities such as the skew normal or skew-t distribution to capture non-Gaussian data clusters,

see Fr̈uhwirth-Schnatter and Pyne (2010), Lee and McLachlan (2014) and Vrbik and McNicholas

(2014), among others. However, as stated in Li (2005), for many applications it is difficult to de-

cide which parametric distribution is appropriate to characterize a data cluster, especially in higher

dimensions. In addition, the shape of the cluster densities can be of a form which is not eas-

ily captured by a parametric distribution. To better accommodate such data, recent advances in

model-based clustering focused on designing mixture models with more flexible, not necessarily

parametric cluster densities.

A rather appealing approach, known as mixture of mixtures, models the non-Gaussian cluster

distributions themselves by Gaussian mixtures, exploiting the ability of normal mixtures to accu-

rately approximate a wide class of probability distributions. Compared to a mixture with Gaussian

components, mixture of mixtures models impose a two-level hierarchical structure which is par-
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ticularly appealing in a clustering context. On the higher level, Gaussian components are grouped

together to form non-Gaussian cluster distributions which are used for clustering the data. The

individual Gaussian component densities appearing on the lower level of the model influence the

clustering procedure only indirectly by accommodating possibly non-Gaussian, but otherwise ho-

mogeneous cluster distributions in a semi-parametric way. This powerful and very flexible ap-

proach has been employed in various ways, both within the framework of finite and infinite mix-

tures.

Statistical inference for finite mixtures is generally not easy due to problems such as label

switching, spurious modes and unboundedness of the mixture likelihood (see e.g. Frühwirth-

Schnatter, 2006, Chapter 2), but estimation of a mixture of mixtures model is particularly chal-

lenging due to additional identifiability issues. Since exchanging subcomponents between clusters

on the lower level leads to different cluster distributions, while the density of the higher level mix-

ture distribution remains the same, a mixture of mixtures model is not identifiable from the mixture

likelihood in the absence of additional information. For example, strong identifiability constraints

on the locations and the covariance matrices of the Gaussian components were imposed by Bar-

tolucci (2005) for univariate data and by Di Zio et al. (2007) for multivariate data to estimate finite

mixtures of Gaussian mixtures.

A different strand of literature pursues the idea of creating meaningful clusters after having

fitted a standard Gaussian mixture model to the data. The clusters are determined by successively

merging components according to some criterion, e.g. the closeness of the means (Li, 2005), the

modality of the obtained mixture density (Chan et al., 2008; Hennig, 2010), the degree of overlap-

ping measured by misclassification probabilities (Melnykov, 2016) or the entropy of the resulting

partition (Baudry et al., 2010). However, such two-step approaches might miss the general cluster

structure, see Appendix E for an example.

In the present paper, we identify the mixture of mixtures model within a Bayesian framework

through a hierarchical prior construction and propose a method to simultaneously select a suitable

number of clusters. In our approach both the identification of the model and the estimation of the

number of clusters is achieved by employing a selectively informative prior parameter setting on

the model parameters.
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Our choice of prior parameters is driven by assumptions on the cluster shapes assumed to be

present in the data, thus being in line with Hennig (2010) who emphasizes that,“it rather has

to be decided by the statistician under which conditions different Gaussian mixture components

should be regarded as a common cluster”. This prior specification introduces dependence among

the subcomponent densities within each cluster, by pulling the subcomponent means on the lower

level toward the cluster center, making the cluster distributions themselves dense and connected.

On the higher level, the prior is based on the notion that the cluster centers are quite distinct from

each other compared to the spread of the clusters. The choice of the hyperparameters of this

hierarchical prior turns out to be crucial in achieving identification and is guided by a variance

decomposition of the data.

Regarding the estimation of the number of clusters, a sparse hierarchical mixture of mixtures

model is derived as an extension of the sparse finite mixture model introduced in Malsiner-Walli

et al. (2016). There, based on theoretical results derived by Rousseau and Mengersen (2011), an

overfitting Gaussian mixture withK components is specified where a sparse prior on the mixture

weights has the effect of assigning the observations to fewer thanK components. Thus, the number

of clusters can be estimated by the most frequent number of non-empty components encountered

during Markov chain Monte Carlo (MCMC) sampling. In this paper, rather than using a single

multivariate Gaussian distribution, we model the component densities in a semi-parametric way

through a Gaussian mixture distribution, and again use a sparse prior on the cluster weights to

automatically select a suitable number of clusters on the upper level.

Specifying a sparse prior on the weights is closely related to Bayesian nonparametric (BNP)

Gaussian mixture models such as Dirichlet process mixtures (DPMs; Ferguson, 1983; Escobar

and West, 1995). The sparse prior on the cluster weights induces clustering of the observations,

similar as for DPMs which have been applied in a clustering context by Quintana and Iglesias

(2003), Medvedovic et al. (2004) and Dahl (2006), among others. The hierarchical mixture of

mixtures model we introduce is similar to hierarchical BNP approaches such as the hierarchical

DPM (Teh et al., 2006). Very closely related BNP approaches are infinite mixtures of infinite

Gaussian densities such as the nested DPM (Rodriguez et al., 2008), the infinite mixture of infinite

Gaussian mixtures (Yerebakan et al., 2014), and species mixture models (Argiento et al., 2014)
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which directly work on the partition of the data. We discuss in Sections 2.4 and 3.1 similarities as

well as differences between our approach and BNP models.

We finally note that the implementation effort to estimate our model is moderate and standard

MCMC methods based on data augmentation and Gibbs sampling (see Frühwirth-Schnatter, 2006)

can be used. Several approaches proposed in the literature can be used to post-process the MCMC

draws in order to obtain a clustering of the data and also to allow for cluster-specific inference. For

our simulation studies and applications we adapt and extend the method suggested by Frühwirth-

Schnatter (2006, 2011) which determines a unique labeling for the MCMC draws by clustering the

draws in the point process representation.

The rest of the article is organized as follows. Section 2 describes the proposed strategy, in-

cluding detailed prior specifications, and relates our method to the two-layer BNP approaches in

Rodriguez et al. (2008) and Yerebakan et al. (2014). Clustering and model estimation issues are

discussed in Section 3. The performance of the proposed strategy is evaluated in Section 4 for

various benchmark data sets. Section 5 concludes.

2 Sparse hierarchical mixture of mixtures model

2.1 Model definition

Following previous work on hierarchical mixtures of mixtures, we assume thatN observationsyi,

i = 1, . . . ,N of dimension dim(yi) = r are drawn independently from a finite mixture distribution

with K components,

p(yi |Θ, η) =
K∑

k=1

ηkpk(yi |θk), Θ = (θ1, . . . , θK), (1)

with each component distributionpk(yi |θk) being a mixture ofL normal subcomponents:

pk(yi |θk) =
L∑

l=1

wkl fN (yi |μkl,Σkl). (2)

In order to distinguish the component distributions on the upper level from the Gaussian compo-

nents on the lower level, we will refer to the former ones as “cluster distributions”. For clustering
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the observations based on Bayes’ rule, the cluster weightsη = (η1, . . . , ηK) and the cluster densities

pk(yi |θk) on the upper level (1) are relevant.

Since the number of data clusters is unknown and needs to be inferred from the data, we

assume that (1) is an overfitting mixture, i.e. the specified number of clustersK exceeds the number

of clusters present in the data. Following the concept of sparse finite mixtures (Malsiner-Walli

et al., 2016), we choose a symmetric Dirichlet distribution as prior for the weight distribution,

i.e. η|e0 ∼ Dir K(e0), and base our choice ofe0 on the results of Rousseau and Mengersen (2011)

concerning the asymptotic behavior of the posterior distribution of an overfitting mixture model.

They show that this behavior is determined by the hyperparametere0 of the Dirichlet prior on the

weights. In particular, they prove that, ife0 < d/2, whered is the dimension of the cluster-specific

parametersθk, then the posterior expectation of the weights associated with superfluous clusters

asymptotically converges to zero.

Hence, we specify a sparse prior on the cluster weightsη by choosinge0 � d/2 so that super-

fluous clusters are emptied during MCMC sampling and the number of non-empty clusters on the

cluster level is an estimator for the unknown number of data clusters. In this way, the specification

of a sparse cluster weight prior in an overfitting mixture of mixtures model provides an “automatic

tool” to select the number of clusters, avoiding the expensive computation of marginal likelihoods

as, e.g., in Fr̈uhwirth-Schnatter (2004). Empirical results in Malsiner-Walli et al. (2016) indicate

thate0 needs to be chosen very small, e.g.e0 = 0.001, to actually empty all superfluous clusters in

the finite sample case.

On the lower level (2), in each clusterk, a semi-parametric approximation of the cluster dis-

tributions is achieved by mixingL multivariate Gaussian subcomponent densitiesfN (yi |μkl,Σkl),

l = 1, . . . , L, according to the subcomponent weight vectorwk = (wk1, . . . ,wkL). The cluster-

specific parameter vector

θk = (wk,μk1, . . . ,μkL,Σk1, . . . ,ΣkL) (3)

consists ofwk as well as the meansμkl and covariance matricesΣkl of all Gaussian subcomponent

densities.L is typically unknown, but as we are not interested in estimating the “true” number of

subcomponentsL forming the cluster, we only ensure thatL is chosen sufficiently large to obtain an
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accurate approximation of the cluster distributions. While the choice ofL is not crucial to ensure

a good model fit as long asL is sufficiently large, a too generous choice ofL should be avoided

for computational reasons as the computational complexity of the estimation increases with the

number of subcomponentsL.

By choosing the priorwk ∼ Dir L(d0) with d0 = d/2+2, the approximation of the cluster density

is obtained by filling allL subcomponents, thus avoiding empty subcomponents. This choice is

motivated again by the results of Rousseau and Mengersen (2011) who show that, ifd0 > d/2, the

posterior density asymptotically handles an overfitting mixture by splitting “true” components into

two or more identical components.

2.2 Identification through hierarchical priors

When fitting the finite mixture model (1) with semi-parametric cluster densities given by (2), we

face a special identifiability problem, since the likelihood is entirely agnostic about which subcom-

ponents form a cluster. Indeed, the likelihood is completely ignorant concerning the issue which

of theK∙L components belong together, since (1) can be written as an expanded Gaussian mixture

with K∙L components with weights ˜wkl = ηkwkl,

p(yi |Θ, η) =
K∑

k=1

L∑

l=1

w̃kl fN (yi |μkl,Σkl). (4)

TheseK∙L components can be permuted in (K∙L)! different ways and the resulting ordering can

be used to group them intoK different cluster densities, without changing the mixture likelihood

(4). Hence, the identification of (1), up to label switching on the upper level, hinges entirely on the

prior distribution.

Subsequently, we suggest a hierarchical prior that addresses these issues explicitly. Conditional

on a set of fixed hyperparametersφ0 = (e0,d0, c0,g0,G0,B0,m0,M0, ν), the weight distribution

η|e0 ∼ Dir K(e0) and theK cluster-specific parameter vectorsθk|φ0
iid∼ p(θk|φ0) are independent

a priori, i.e.:

p(η, θ1, . . . , θK |φ0) = p(η|e0)
K∏

k=1

p(θk|φ0). (5)
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This prior formulation ensures that theK non-Gaussian cluster distributions of the upper level

mixture (1) are invariant to permutations. Within each clusterk, the prior distributionp(θk|φ0)

admits the following block independence structure:

p(θk|φ0) = p(wk|d0)p(μk1, . . . ,μkL|B0,m0,M0, ν)p(Σk1, . . . ,ΣkL|c0,g0,G0), (6)

wherewk|d0
iid∼ Dir L(d0). Conditional onφ0, the subcomponent meansμk1, . . . ,μkL are dependent

a priori as are the subcomponent covariance matricesΣk1, . . . ,ΣkL. However, they are assumed to

be exchangeable to guarantee that within each clusterk, theL Gaussian subcomponents in (2) can

be permuted without changing the prior.

To create this dependence, a hierarchical “random effects” prior is formulated, where, on the

upper level, conditional on the fixed upper level hyperparameters (g0,G0,m0,M0, ν), cluster spe-

cific random hyperparameters (C0k, b0k), andΛk = diag(λk1, . . . , λkr), are drawn independently for

eachk = 1, . . . ,K from a set of three independent base distributions:

C0k|g0,G0
iid∼ Wr(g0,G0), b0k|m0,M0

iid∼ Nr(m0,M0), (λk1, . . . , λkr)|ν
iid∼ G(ν, ν), (7)

whereNr() andWr() denote ther-multivariate normal and Wishart distribution, respectively, and

G() the gamma distribution, parametrized such thatE(λkl|ν) = 1.

On the lower level, conditional on the cluster specific random hyperparameters (C0k,b0k, Λk)

and the fixed lower level hyperparameters (B0, c0), theL subcomponent meansμkl and covariance

matricesΣkl are drawn independently for alll = 1, . . . , L:

μkl|B0,b0k,Λk
iid∼ Nr(b0k,

√
ΛkB0

√
Λk), Σ−1

kl |c0,C0k
iid∼ Wr(c0,C0k). (8)

2.3 Tuning the hyperparameters

To identify the mixture of mixtures model given in (1) and (2) through the prior defined in Sec-

tion 2.2, the fixed hyperparametersφ0 have to be chosen carefully. In addition, we select them in

a way to take the data scaling into account, avoiding the need to standardize the data prior to data

analysis.

First, it is essential to clarify what kind of shapes and forms are aimed at as cluster distributions.
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We give the following (vague) characterization of a data cluster: A data cluster is a very “dense”

region of data points, with possibly no “gaps” within the cluster distribution, whereas different

clusters should be located well-separated from each other, i.e. here large “gaps” between the cluster

distributions are desired. We confine ourselves to the investigation of clusters with approximately

convex cluster shapes, where the cluster center can be seen as a suitable representative for the

entire cluster. Regarding volume, orientation or asymmetry of the data clusters we are looking for,

no constraints on the cluster shapes and forms are imposed.

Based on this cluster concept, our aim is to model a dense and connected cluster distribution

by a mixture of normal subcomponents. Various strategies regarding the modeling of the subcom-

ponent means and covariance matrices could be employed. We decided to allow for flexible shapes

for the single subcomponents, ensuring that they strongly overlap at the same time. An alternative

approach would be to use constrained simple shaped subcomponents, e.g., subcomponents with

isotropic covariance matrices. However, in this case a large number of subcomponents might be

needed to cover the whole cluster region and shrinkage of the subcomponent means toward the

common cluster center may not be possible. Since then some of the subcomponents have to be

located far away from the cluster center in order to fit also boundary points, considerable distances

have to be allowed between subcomponent means. This induces the risk of gaps within the cluster

distribution and a connected cluster distribution may not result. Therefore, in our approach the

cluster distributions are estimated as mixtures of only a few but unconstrained, highly dispersed

and heavily overlapping subcomponents where the means are strongly pulled toward the cluster

center. In this way, a connected cluster distribution is ensured.

In a Bayesian framework, we need to translate these modeling purposes into appropriate choices

of hyperparameters. On the upper level, the covariance matrixM0 controls the amount of prior

shrinkage of the cluster centersb0k toward the overall data centerm0, which we specify as the mid-

point of the data. To obtain a prior, where the cluster centersb0k are allowed to be widely spread

apart and almost no shrinkage towardm0 takes place, we chooseM0 � Sy, whereSy is the sample

covariance matrix of all data, e.g.M0 = 10Sy.

Our strategy for appropriately specifying the hyperparametersG0 andB0 is based on the vari-

ance decomposition of the mixture of mixtures model, which splitsCov(Y) into the different
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sources of variation. For a finite mixture model withK clusters, as given in (1), the total het-

erogeneityCov(Y) can be decomposed in the following way (Frühwirth-Schnatter, 2006, p. 170):

Cov(Y) =
K∑

k=1

ηkΣk +

K∑

k=1

ηkμkμ
′
k − μμ

′ = (1− φB)Cov(Y) + φBCov(Y), (9)

where the cluster meansμk and the cluster covariance matricesΣk are the first and second moments

of the cluster distributionpk(yi |θk) andμ =
∑

k ηkμk is the mixture mean. In this decomposition

φB is the proportion of the total heterogeneity explained by the variability of the cluster meansμk

and (1− φB) is the proportion explained by the average variability within the clusters. The larger

φB, the more the clusters are separated, as illustrated in Figure 1 for a three-component standard

Gaussian mixture with varying values ofφB.

For a mixture of mixtures model, the heterogeneity (1− φB)Cov(Y) explained within a cluster

can be split further into two sources of variability, namely the proportionφW explained by the

variability of the subcomponent meansμkl around the cluster centerμk, and the proportion (1−φW)

explained by the average variability within the subcomponents:

Cov(Y) =
K∑

k=1

ηkΣk +

K∑

k=1

ηkμkμ
′
k − μμ

′

=

K∑

k=1

ηk

L∑

l=1

wklΣkl +

K∑

k=1

ηk




L∑

l=1

wklμklμ
′
kl − μkμ

′
k


 +

K∑

k=1

ηkμkμ
′
k − μμ

′ (10)

= (1− φW)(1− φB)Cov(Y) + φW(1− φB)Cov(Y) + φBCov(Y).

Based on this variance decomposition we select the proportionsφB andφW and incorporate them

into the specification of the hyperparameters of our hierarchical prior.

φB defines the proportion of variability explained by the different cluster means. We suggest to

specifyφB not too large, e.g., to useφB = 0.5. This specification may seem to be counterintuitive

as in order to model well-separated clusters it would seem appropriate to selectφB large. However,

if φB is large, the major part of the total heterogeneity of the data is already explained by the

variation (and separation) of the cluster means, and, as a consequence, only a small amount of

heterogeneity is left for the within-cluster variability. This within-cluster variability in turn will

get even more diminished by the variability explained by the subcomponent means leading to a

small amount of variability left for the subcomponents. Thus for large values ofφB, estimation of
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tight subcomponent densities would result, undermining our modeling aims.

φW defines the proportion of within-cluster variability explained by the subcomponent means.

φW also controls how strongly the subcomponent means are pulled together and influences the

overlap of the subcomponent densities. To achieve strong shrinkage of the subcomponent means

toward the cluster center, we select small values ofφW, e.g.φW = 0.1. Larger values ofφW may

introduce gaps within a cluster, which we want to avoid.

Given φB andφW, we specify the scale matrixG0 of the prior onC0k such that the a priori

expectation of the first term in the variance decomposition (10), given by

E




K∑

k=1

ηk

L∑

l=1

wklΣkl


 =

K∑

k=1

E(ηk)
L∑

l=1

E(wkl)E(E(Σkl|C0k)) = g0/(c0 − (r + 1)/2)G−1
0 ,

matches the desired amount of heterogeneity explained by a subcomponent:

g0/(c0 − (r + 1)/2)G−1
0 = (1− φW)(1− φB)Cov(Y). (11)

We replaceCov(Y) in (11) with the main diagonal of the sample covarianceSy to take only the

scaling of the data into account (see e.g. Frühwirth-Schnatter, 2006). This gives the following

specification forG0:

G−1
0 = (1− φW)(1− φB)(c0 − (r + 1)/2)/g0 ∙ diag(Sy). (12)

Specification of the prior of the subcomponent covariance matricesΣk1, . . . ,ΣkL is completed by

defining the scalar prior hyperparametersc0 and g0. Frühwirth-Schnatter (2006, Section 6.3.2,

p. 192) suggests to setc0 > 2+ (r − 1)/2. In this way the eigenvalues ofΣklΣ
−1
km are bounded away

from 0 avoiding singular matrices. We setc0 = 2.5+ (r −1)/2 to allow for a large variability ofΣkl.

The Wishart density is regular ifg0 > (r − 1)/2 and in the following we setg0 = 0.5+ (r − 1)/2.

Regarding the prior specification of the subcomponent meansμk1, . . . ,μkL, we select the scale

matrix B0 in order to concentrate a lot of mass near the cluster centerb0k, pulling μkl towardb0k.

Matching the a priori expectation of the second term in the variance decomposition (10), given by

E




K∑

k=1

ηk




L∑

l=1

wklμklμ
′
kl − μkμ

′
k





 =

K∑

k=1

E(ηk)
L∑

l=1

E(wkl)E(μklμ
′
kl − μkμ

′
k) = B0,

to the desired proportion of explained heterogeneity and, using once more only the main diagonal
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of Sy we obtainB0 = φW(1− φB)diag(Sy), which incorporates our idea that only a small proportion

φW of the within-cluster variability should be explained by the variability of the subcomponent

means.

After having chosenφB andφW, basically the cluster structure and shape is a priori determined.

However, in order to allow for more flexibility in capturing the unknown cluster shapes in the

sense that within each cluster the amount of shrinkage of the subcomponent meansμkl toward the

cluster centerb0k need not to be the same for all dimensions, for each clusterk and each dimension

j additionally a random adaptation factorλk j is introduced in (8) which adjustsB0. The gamma

prior for λk j in (7) implies that the prior expectation of the covariance matrix ofμkl equalsB0.

However,λk j acts as a local adjustment factor for clusterk which allows to shrink (or inflate) the

variance of subcomponent meansμkl j in dimension j in order to adapt to a more (or less) dense

cluster distribution as specified byB0. In order to allow only for small adjustments of the specified

B0, we chooseν = 10, in this way almost 90% of the a priori values ofλk j are between 0.5 and

1.5. This hierarchical prior specification forμkl corresponds to the normal gamma prior (Griffin

and Brown, 2010) which has been applied by Frühwirth-Schnatter (2011) and Malsiner-Walli et al.

(2016) in the context of finite mixture models for variable selection.

2.4 Relation to BNP mixtures

Our approach bears resemblance to various approaches in BNP modeling. First of all, the concept

of sparse finite mixtures as used in Malsiner-Walli et al. (2016) is related to Dirichlet process (DP)

mixtures (M̈uller and Mitra, 2013) where the discrete mixing distribution in the finite mixture (1)

is substituted by a random distributionG ∼ DP(α,H), drawn from a DP prior with precision pa-

rameterα and base measureH. As a drawG from a DP is almost surely discrete, the corresponding

model has a representation as an infinite mixture:

p(y) =
∞∑

k=1

ηkpk(y|θk), (13)

with i.i.d. atomsθk
iid∼ H drawn from the base measureH and weightsηk = vk

∏k−1
j=1(1− vj) obeying

the stick breaking representation withvk
iid∼ B (1, α) (Sethuraman, 1994).
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If the hyperparameter in the weight distributionη of a sparse finite mixture is chosen as

e0 = α/K, i.e. η ∼ Dir K(α/K), and the component parametersθk
iid∼ H are i.i.d. draws from

H, then asK increases, the sparse finite mixture in Equation (1) converges to a DP mixture with

mixing distributionG ∼ DP(α,H), see Green and Richardson (2001). For example, the sparse

finite Gaussian mixture introduced in Malsiner-Walli et al. (2016) converges to a Dirichlet process

Gaussian mixture asK increases, with (μk,Σk) being i.i.d. draws from the appropriate base measure

H.

The more general sparse finite mixture of mixtures model introduced in this paper also con-

verges to a Dirichlet process mixture where the atoms are finite mixtures indexed by the parameter

θk defined in (3). The parametersθk are i.i.d. draws from the base measure (6), with strong de-

pendence among the meansμk1, . . . ,μkL and covariancesΣk1, . . . ,ΣkL within each clusterk. This

dependence is achieved through the two-layer hierarchical prior described in (7) and (8) and is

essential to create well-connected clusters from the subcomponents, as outlined in Section 2.3.

Also in the BNP framework models have been introduced that create dependence, either in the

atoms and/or in the weights attached to the atoms. For instance, the nested DP process of Rodriguez

et al. (2008) allows to cluster distributions acrossN units. Within each uniti, i = 1, . . . ,N, repeated

(univariate) measurementsyit , t = 1, . . . ,Ni arise as independent realizations of a DP Gaussian

mixture with random mixing distributionGi. TheGis are i.i.d. draws from a DP, in which the base

measure is itself a Dirichlet processDP(β,H), i.e.Gi
iid∼ DP(α,DP(β,H)). Hence, two distributions

Gi andGj either share the same weights and atoms sampled fromH, or the weights and atoms are

entirely different. If only a single observationyi is available in each unit, i.e.Ni = 1, then the

nested DP is related to our model. In particular, it has a two-layer representation as in (1) and

(2), however with bothK andL being infinite. The nested DP can, in principal, be extended to

multivariate observationsyi. In this case,p(yi) takes the same form as in (13), with the same

stick breaking representation for the cluster weightsη1, η2, . . .. On the lower level, each cluster

distributionpk(yi |θk) is a DP Gaussian mixture:

pk(yi |θk) =
∞∑

l=1

wkl fN (yi |μkl,Σkl), (14)

where the component weightswkl are derived from the stick breaking representationwkl = ukl
∏l−1

j=1(1−
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uk j), l = 1,2, . . . whereukl
iid∼ B (1, β). For the nested DP, dependence is introduced only on the

level of the weights and sticks, as the component parametersμkl,Σkl
iid∼ H are i.i.d. draws from

the base measureH. This lack of prior dependence among the atoms (μkl,Σkl) is likely to be an

obstacle in a clustering context.

The BNP approach most closely related to our model is the infinite mixture of infinite Gaussian

mixtures (I2GMM) model of Yerebakan et al. (2014) which also deals with clustering multivariate

observations from non-Gaussian component densities.1 The I2GMM model has a two-layer hier-

archical representation like the nested DP. On the top level, i.i.d. cluster specific locationsb0k and

covariancesΣk are drawn from a random distributionG ∼ DP(α,H) arising from a DP prior with

base measureH being equal to the conjugate normal-inverse-Wishart distribution. A cluster spe-

cific DP is introduced on the lower level as for the nested DP; however, the I2GMM model is more

flexible, as prior dependence is also introduced among the atoms belonging to the same cluster.

More precisely,yi ∼ Nr(μi ,Σk), with μi
iid∼ Gk, whereGk ∼ DP(β,Hk) is a draw from a DP with

cluster specific base measureHk = Nr(b0k,Σk/κ1).

It is easy to show that the I2GMM model has an infinite two-layer representation as in (13)

and (14), with exactly the same stick breaking representation.2 However, the I2GMM model has

a constrained form on the lower level, with homoscedastic covariancesΣkl ≡ Σk, whereas the

locationsμkl scatter around the cluster centersb0k as in our model:

(b0k,Σk)
iid∼ H, μkl|b0k,Σk

iid∼ Hk. (15)

In our sparse mixture of mixtures model, we found it useful to base the density estimator on

heteroscedastic covariancesΣkl, to better accommodate the non-Gaussianity of the cluster densities

with a fairly small numberL of subcomponents. It should be noted that our semi-parametric density

estimator is allowed to display non-convex shapes, as illustrated in Figure C.2 in the Appendix.

Nevertheless, we could have considered a mixture in (2) whereΣkl ≡ Σk, with the same base

measure for the atoms (μk1, . . . ,μkL,Σk) as in (15). In this case, the relationship between our sparse

finite mixture and the I2GMM model would become even more apparent: by choosinge0 = α/K

1We would like to thank a reviewer for pointing us to this paper.
2Note that the notation in Yerebakan et al. (2014) is slightly different, withγ andα corresponding toα andβ

introduced above.
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andd0 = β/L and lettingK andL go to infinity, our model would converge to the I2GMM model.

3 Clustering and posterior inference

3.1 Clustering and selecting the number of clusters

For posterior inference, two sequences of allocation variables are introduced, namely the cluster

assignment indicatorsS= (S1, . . . ,SN) and the within-cluster allocation variablesI = (I1, . . . , IN).

More specifically,Si ∈ {1, . . . ,K} assigns each observationyi to clusterSi on the upper level of the

mixture of mixtures model. On the lower level,Ii ∈ {1, . . . , L} assigns observationyi to subcom-

ponentIi. Hence, the pair (Si , Ii) carries all the information needed to assign each observation to a

unique component in the expanded mixture (4).

Note that for all observationsyi andy j belonging to the same cluster, the upper level indicators

Si = Sj will be the same, while the lower level indicatorsIi , I j might be different, meaning

that they belong to different subcomponents within the same cluster. It should be noted that the

Dirichlet prior wk ∼ Dir L(d0), with d0 > d/2, on the weight distribution ensures overlapping

densities within each cluster, in particular ifL is overfitting. Hence the indicatorsIi will typically

cover all possible values{1, . . . , L} within each cluster.

For clustering, only the upper level indicatorsS are explored, integrating implicitly over the

uncertainty of assignment to the subcomponents on the lower level. A clusterCk = {i|Si = k} is

thus a subset of the data indices{1, . . . ,N}, containing all observations with identical upper level

indicators. Hence, the indicatorsSdefine a random partitionP = {C1, . . . ,CK0} of theN data points

in the sense of Lau and Green (2007), asyi andy j belong to the same cluster, if and only ifSi = Sj.

The partitionP containsK0 = |P| clusters, where|P| is the cardinality ofP. Due to the Dirichlet

prior η ∼ Dir K(e0), with e0 close to 0 to obtain a sparse finite mixture,K0 is a random number

being a priori much smaller thanK.

For a sparse finite mixture model withK clusters, the prior distribution over all random par-

titions P of N observations is derived from the joint (marginal) priorp(S) =
∫ ∏N

i=1 p(Si |η)dη
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which is given, e.g., in Fr̈uhwirth-Schnatter (2006, p. 66):

p(S) =
Γ(Ke0)

Γ(N + Ke0)Γ(e0)K0

∏

k:Nk>0

Γ(Nk + e0), (16)

whereNk = #{Si = k}. For a given partitionP with K0 data clusters, there areK!/(K − K0)!

assignment vectorsS that belong to the equivalence class defined byP. The prior distribution over

all random partitionsP is then obtained by summing over all assignment vectorsS that belong to

the equivalence class defined byP:

p(P|K0) =
K!

(K − K0)!
Γ(Ke0)

Γ(N + Ke0)Γ(e0)K0

∏

k:Nk>0

Γ(Nk + e0), (17)

which takes the form of a product partition model and therefore is invariant to permuting the cluster

labels. Hence, it is possible to derive the prior predictive distributionp(Si |S−i), whereS−i denote

all indicators, excludingSi. Let K−i
0 be the number of non-empty clusters implied byS−i and let

N−i
k be the corresponding cluster sizes. From (16), we obtain the following probability thatSi is

assigned to an existing clusterk:

Pr{Si = k|S−i ,N
−i
k > 0} =

N−i
k + e0

N − 1+ e0K
. (18)

The prior probability thatSi creates a new cluster withSi ∈ I = {k|N−i
k = 0} is equal to

Pr{Si ∈ I |S−i} = (K − K−i
0 )Pr{Si = k∗|S−i , k

∗ ∈ I } =
e0(K − K−i

0 )

N − 1+ e0K
. (19)

It is illuminating to investigate the prior probability to create new clusters in detail. First of all,

for e0 independent ofK, this probability not only depends one0, but also increases withK. Hence

a sparse finite mixture model based on the priorη ∼ DK (e0) can be regarded as a two-parameter

model, where bothe0 and K influence the a priori expected number of data clustersK0 which

is determined for a DP mixture solely byα. A BNP two-parameter mixture is obtained from

the Pitman-Yor process (PYP) priorPY(β, α) with β ∈ [0,1), α > −β (Pitman and Yor, 1997), with

stickbreaking representationvk
iid∼ B (1− β, α + kβ). The DP prior results as that special case where

β = 0.

Second, the prior probability (19) to create new clusters in a sparse finite mixture model de-

creases, as the numberK−i
0 of non-empty clusters increases. This is in sharp contrast to DP mixtures
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where this probability is constant and PYP mixtures where this probability increases, see e.g., Fall

and Barat (2014).

Finally, what distinguishes a sparse finite mixture model, both from a DP as well as a PYP

mixture, is the a priori expected number of data clustersK0, as the numberN of observations

increases. ForK ande0 independent ofN, the probability to create new clusters decreases, asN

increases, and converges to 0, asN goes to infinity. Therefore,K0 is asymptotically independent

of N for sparse finite mixtures, whereas for the DP processK0 ∼ α log(N) (Korwar and Hollander,

1973) andK0 ∼ Nβ obeys a power law for PYP mixtures (Fall and Barat, 2014). This leads to quite

different clustering behavior for these three types of mixtures.

A well-known limitation of DP priors is that a priori the cluster sizes are expected to be geomet-

rically ordered, with one big cluster, geometrically smaller clusters, and many singleton clusters

(Müller and Mitra, 2013). PYP mixtures are known to be more useful than the DP mixture for data

with many significant, but small clusters. A common criticism concerning finite mixtures is that

the number of clusters needs to be known a priori. Since this is not the case for sparse finite mix-

tures, they are useful in the context of clustering, in particular in cases where the data arise from a

moderate number of clusters, that does not increase as the number of data pointsN increases.

3.2 MCMC estimation and posterior inference

Bayesian estimation of the sparse hierarchical mixture of mixtures model is performed using

MCMC methods based on data augmentation and Gibbs sampling. We only need standard Gibbs

sampling steps, see the detailed MCMC sampling scheme in Appendix A.

In order to perform inference based on the MCMC draws, i.e. to cluster the data, to estimate the

number of clusters, to solve the label switching problem on the higher level and to estimate cluster-

specific parameters, several existing procedures can be easily adapted and applied to post-process

the posterior draws of a mixture of mixtures model, e.g., those which are, for instance, imple-

mented in theR packagesPReMiuM (Liverani et al., 2015) andlabel.switching (Papastamoulis,

2015).

For instance, the approach inPReMiuM is based on the posterior probabilities of co-clustering,

expressed through the similarity matrix Pr{Si = Sj |y} which can be estimated from theM poste-
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rior drawsS(m),m = 1, . . . ,M, see Appendix B for details. The methods implemented inla-

bel.switching aim at resolving the label switching problem when fitting a finite mixture model

using Bayesian estimation. Note that in the case of the mixture of mixtures model label switching

occurs on two levels. On the cluster level, the label switching problem is caused by invariance

of the mixture likelihood given in Equation (1) with respect to reordering of the clusters. On this

level, label switching has to be resolved, since the single cluster distributions need to be identified.

On the subcomponent level, label switching happens due to the invariance of Equation (2) with

respect to reordering of the subcomponents. As we are only interested in estimating the entire

cluster distributions, it is not necessary to identify the single subcomponents. Therefore, the label

switching problem can be ignored on this level.

In this paper, the post-processing approach employed first performs a model selection step.

The posterior draws of the indicatorsS(m),m= 1, . . . ,M are used to infer the number of non-empty

clustersK(m)
0 on the upper level of the mixture of mixtures model and the number of data clusters

is then estimated as the mode. Conditional on the selected model, an identified model is obtained

based on the point process representation of the estimated mixture. This method was introduced

in Frühwirth-Schnatter (2006, p. 96) and successfully applied to model-based clustering in various

applied research, see e.g. Frühwirth-Schnatter (2011) for some review. This procedure has been

adapted to sparse finite mixtures in Frühwirth-Schnatter (2011) and Malsiner-Walli et al. (2016)

and is easily extended to deal with sparse mixture of mixtures models, see Appendix B for more

details. We will use this post-processing approach in our simulation studies and the applications in

Section 4 and Appendices C, D and F to determine a partition of the data based on the maximum

a posteriori (MAP) estimates of the relabeled cluster assignments.

4 Simulation studies and applications

The performance of the proposed strategy for selecting the unknown number of clusters and iden-

tifying the cluster distributions is illustrated in two simulation studies. In the first simulation study

we investigate whether we are able to capture dense non-Gaussian data clusters and estimate the

true number of data clusters. Furthermore, the influence of the specified maximum number of clus-
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tersK and subcomponentsL on the clustering results is studied. In the second simulation study

the sensitivity of the a priori defined proportionsφB andφW on the clustering result is investigated.

For a detailed description of the simulation design and results see Appendix C. Overall, the results

indicated that our approach performed well and yielded promising results.

To further evaluate our approach, we fit the sparse hierarchical mixture of mixtures model on

benchmark data sets and real data. First, we consider five data sets which were previously used to

benchmark algorithms in cluster analysis. For these data sets we additionally apply the “merging

strategy” proposed by Baudry et al. (2010) in order to compare the results to those of our ap-

proach. For these benchmark data sets class labels are available and we assess the performance by

comparing how well our approach is able to predict the class labels using the cluster assignments,

measured by the misclassification rate as well as the adjusted Rand index.

To assess how the algorithm scales to larger data sets we investigate the application to two flow

cytometry data sets. The three-dimensional DLBCL data set (Lee and McLachlan, 2013) consists

of around 8000 observations and comes with manual class labels which can be used as benchmark.

The GvHD data set (Brinkman et al., 2007) consists of 12441 observations, but no class labels are

available. We compare the clusters detected for this data set qualitatively to solutions previously

reported in the literature.

The detailed description of all investigated data sets as well as of the derivation of the perfor-

mance measures are given in Appendix D. For the benchmark data sets, the number of estimated

clustersK̂0, the adjusted Rand index (adj), and misclassification rate (er) are reported in Table 1

for all estimated models. In the first columns of Table 1, the name of the data set, the number

of observationsN, the number of variablesr and the number of true classesKtrue (if known) are

reported. To compare our approach to the merging approach proposed by Baudry et al. (2010),

we use the functionMclust of the R packagemclust (Fraley et al., 2012) to first fit a standard

normal mixture distribution with the maximum number of componentsK = 10. The number of

estimated normal components based on the BIC is reported in the columnMclust. Then the se-

lected components are combined hierarchically to clusters by calling functionclustCombi from

the same package (columnclustCombi). The number of clusters is chosen by visual detection

of the change point in the plot of the rescaled differences between successive entropy values, as
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suggested by Baudry et al. (2010). Furthermore, to compare our results to those obtained if a

cluster distribution is modeled by a single normal distribution only, a sparse finite mixture model

with K = 10 (Malsiner-Walli et al., 2016) is fitted to the data sets (columnSparseMix). The re-

sults of fitting a sparse hierarchical mixture of mixtures model withK = 10 are given in column

SparseMixMix, whereL = 5 is compared to our default choice ofL = 4 to investigate robustness

with respect to the choice ofL. For each estimation, MCMC sampling is run for 4000 iterations

after a burn-in of 4000 iterations.

As can be seen in Table 1, for all data sets the sparse hierarchical mixture of mixtures model is

able to capture the data clusters quite well both in terms of the estimated number of clusters and

the clustering quality measured by the misclassification rate as well as the adjusted Rand index. In

general, our approach is not only outperforming the standard model-based clustering model using

mixtures of Gaussians regarding both measures, but also the approach proposed by Baudry et al.

(2010). In addition, it can be noted that for all data sets the estimation results remain quite stable,

if the number of subcomponentsL is increased to 5, see the last column in Table 1. The results for

the Yeast data set are of particular interest as they indicate thatclustCombi completely fails. Al-

though the misclassification rate of 25% implies that only a quarter of the observations is assigned

to “wrong” clusters, inspection of the clustering obtained reveals that almost all observations are

lumped together in a single, very large cluster, whereas the few remaining observations are split

into five very small clusters. This bad clustering quality is better reflected by the adjusted Rand

index which takes a negative value (adj = −0.02), i.e. is “worse than would be expected by guess-

ing” (Franczak et al., 2012). For the flower data set, more results are given in Appendix D where

the obtained clustering and cluster distributions are illustrated.

In order to investigate the performance of our approach on larger data sets with a slightly

different cluster structure, we fit the sparse hierarchical mixture of mixtures model to two flow

cytometry data sets. These applications also allow us to indicate how the prior settings need to be

adapted if a different cluster structure is assumed to be present in the data. As generally known,

flow cytometry data exhibit non-Gaussian characteristics such as skewness, multimodality and a

large number of outliers, as can be seen in the scatter plot of two variables of the GvHD data set

in Figure 3. Thus, we specified a sparse hierarchical mixture of mixtures model withK = 30
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clusters and increased the number of subcomponents forming a cluster toL = 15 in order to handle

more complex shapes of the cluster distributions given the large amount of data. Since the flow

cytometry data clusters have a lot of outliers similar to the clusters generated by shifted asymmetric

Laplace (SAL) distributions (see Appendix F), we substitute the hyperpriorC0k ∼ Wr(g0,G0)

by the fixed valueC0k = g0G−1
0 and setλk j ≡ 1, j = 1, . . . , r to prevent that within a cluster

the subcomponent covariance matrices are overly shrunken and become too similar. In this way,

subcomponent covariance matrices are allowed to vary considerably within a cluster and capture

both a dense cluster region around the cluster center and scattered regions at the boundary of the

cluster.

We fit this sparse hierarchical mixture of mixtures model to the DLBCL data after removing

251 dead cells. For most MCMC runs after a few hundred iterations all but four clusters become

empty during MCMC sampling. The estimated four cluster solution coincides almost exactly with

the cluster solution obtained with manual gating; the adjusted Rand index is 0.95 and the error rate

equals 0.03. This error rate outperforms the error rate of 0.056 reported by Lee and McLachlan

(2013). In Figure 2 the estimated four cluster solution is visualized.

When fitting a sparse hierarchical mixture of mixtures model to the GvHD data, the classi-

fications resulting from different runs of the MCMC algorithm seemed to be rather stable. The

obtained solutions differ mainly in the size of the two large clusters with low expressions. These,

however, are supposed to not contain any information regarding the development of the disease.

On the right hand side of Figure 3, the results of one specific run are shown in a heatmap. In this

run, we found eight clusters which are similar to those reported by Frühwirth-Schnatter and Pyne

(2010) when fitting a skew-t mixture model to these data. In the heatmap each row represents the

location of a six-dimensional cluster, and each column represents a particular marker (variable).

The red, white and blue colors denote high, medium and low expressions.

As in Frühwirth-Schnatter and Pyne (2010), we identified two larger clusters (43% and 20.4%,

first two rows in the heatmap) with rather low expressions in the last four variables. We also

identified a smaller cluster (3.8%, forth row from the bottom) representing live cells (high values

in the first two variables) with a unique signature in the other four variables (high values in all four

variables). Also two other small clusters can be identified (second and third row from the bottom)
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which have a signature very similar to the clusters found by Frühwirth-Schnatter and Pyne (2010),

and thus our results confirm their findings.

5 Discussion

We propose suitable priors for fitting an identified mixture of normal mixtures model within the

Bayesian framework of model-based clustering. This approach allows for (1) automatic determi-

nation of the number of clusters and (2) semi-parametric approximation of non-Gaussian cluster

distributions by mixtures of normals. We only require the assumption that the cluster distribu-

tions are dense and connected. Our approach consists in the specification of structured informative

priors on all model parameters. This imposes a rigid hierarchical structure on the normal subcom-

ponents and allows for simultaneous estimation of the number of clusters and their approximating

distributions. This is in contrast to the two-step merging approaches, where in the first step the data

distribution is approximated by a suitable normal mixture model. However, because this approx-

imation is made without taking the data clusters into account which are reconstructed only in the

second step of the procedure, the general cluster structure might be missed by these approaches.

As we noted in our simulation studies, the way in which the cluster mixture distributions are

modeled by the subcomponent densities is crucial for the clustering result. Enforcing overlap-

ping subcomponent densities is essential in order to avoid that a single subcomponent becomes too

narrow thus leading to a small a posteriori cluster probability for observations from this subcompo-

nent. Also, enforcing that observations are assigned toall subcomponents during MCMC sampling

is important as the estimation of empty subcomponents would bias the resulting cluster distribution

because of the “prior” subcomponents. For modeling large, overlapping subcomponent densities,

crucial model parameters are the a priori specified covariance matrix of the subcomponent means

and the scale matrix of the inverse Wishart prior for the subcomponent covariance matrices. We

select both crucial hyperparameters based on the variance decomposition of a mixture of mixtures

model.

We found a prior setting which is able to capture dense and connected data clusters in a range

of benchmark data sets. However, if interest lies in detection of different cluster shapes, a different
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tuning of the prior parameters may be required. Therefore, it would be interesting to investigate in

more detail how we can use certain prior settings to estimate certain kinds of data clusters. Then

it would be possible to give recommendations which prior settings have to be used in order to

capture certain types of data clusters. For instance, mixtures of shifted asymmetric Laplace (SAL)

distributions, introduced by Franczak et al. (2012), have cluster distributions which are non-dense

and have a strongly asymmetric shape with comet-like tails. In this case, the prior specifications

given in Section 2 are not able to capture the clusters and need to be tuned to capture also this

special kind of data clusters, see the example given in Appendix F.

Although our approach to estimate the number of clusters worked well for many data sets, we

encountered mixing problems with the blocked conditional Gibbs sampler outlined in Appendix A,

in particular in high dimensional spaces with large data sets. To alleviate this problem, a collapsed

sampler similar to Fall and Barat (2014) could be derived for finite mixtures. However, we leave

this for future research.

SUPPLEMENTARY MATERIAL

Appendix containing (A) the MCMC scheme to estimate a mixture of mixtures model, (B) a de-

tailed description of the post-processing strategy based on the point process representation, (C)

the simulation studies described in Section 4, (D) a description of the data sets studied in Sec-

tion 4, (E) issues with the merging approach, and (F) estimation of data clusters generated by a

S AL-distribution (Franczak et al., 2012). (Appendix.pdf)

R code implementing the sparse hierarchical mixture of mixtures model (Code.zip).
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Frühwirth-Schnatter, S. (2011). Panel data analysis – a survey on model-based clustering of time

series.Advances in Data Analysis and Classification 5, 251–280.
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Figure 1:Variance decomposition of a mixture distribution. Scatter plots of samples from a standard normal mixture
distribution with three components and equal weights, with a varying amount of heterogeneityφB explained by the
variation of the component means,φB = 0.1, φB = 0.5 andφB = 0.9 (from left to right).

28
ACCEPTED MANUSCRIPT



ACCEPTED MANUSCRIPT

Figure 2:Flow cytometry data set DLBCL. Scatterplot of the clustering results.
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Figure 3:Flow cytometry data set GvHD. Scatter plot of two variables (“FSC”, “CD8”) (left-hand side), and heatmap
of the clustering results by fitting a sparse hierarchical mixture of mixtures model (right-hand side). In the heatmap,
each row represents the location of a six-dimensional cluster, and each column represents a particular marker. The red,
white and blue colors denote high, medium and low expression, respectively.

30
ACCEPTED MANUSCRIPT



ACCEPTED MANUSCRIPT

Table 1:Results for the estimated number of data clustersK̂0 for various benchmark data sets, using the functions
Mclust to fit a standard mixture model withK = 10 andclustCombi to estimate a mixture with combined compo-
nents (columnMclust), using a sparse finite mixture model withK = 10 (columnSparseMix), and estimating a sparse
hierarchical mixture of mixtures model withK = 10,φB = 0.5 andφW = 0.1, andL = 4,5 (columnSparseMixMix).
Priors and hyperparameter specifications are selected as described in Section 2. In parentheses, the adjusted Rand
index (“1” corresponds to perfect classification) and the proportion of misclassified observations (“0” corresponds to
perfect classification) arereported.

Mclust SparseMix SparseMixMix
K = 10 K = 10 K = 10

Data set N r Ktrue Mclust clustCombi L = 1 L = 4 L = 5
Yeast 626 3 2 8 (.50, .20) 6 (-.02,0.25) 6 (.48,.23) 2 (.68, .08) 2 (.71, .07)
Flea beetles 74 6 3 5 (.77, .18) 4 (.97,.03) 3 (1.00,.00) 3 (1.00, .00) 3 (1, .00)
AIS 202 3 2 3 (.73, .13) 2 (.66,.09) 3 (.76,.11) 2 (.81, .05) 2 (.76, .06)
Wisconsin 569 3 2 4 (.55, .30) 4 (.55, .30) 4 (.62,.21) 2 (.82, .05) 2 (.82, .05)
Flower 400 2 4 6 (.52, .35) 4 (.99,.01) 5 (.67,.20) 4 (.97, .01) 4 (.97,.02)
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