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Abstract

The use of a finite mixture of normal distributions in model-based clustering allows to

capture non-Gaussian data clusters. However, identifying the clusters from the normal com-
ponents is challenging and in general either achieved by imposing constraints on the model or

by using post-processing procedures.
Within the Bayesian framework we propose #&welient approach based on sparse finite

mixtures to achieve identifiability. We specify a hierarchical prior where the hyperparameters
are carefully selected such that they are reflective of the cluster structure aimed at. In addition,
this prior allows to estimate the model using standard MCMC sampling methods. In combi-
nation with a post-processing approach which resolves the label switching issue and results in
an identified model, our approach allows to simultaneously (1) determine the number of clus-
ters, (2) flexibly approximate the cluster distributions in a semi-parametric way using finite
mixtures of normals and (3) identify cluster-specific parameters and classify observations. The

proposed approach is illustrated in two simulation studies and on benchmark data sets.

Keywords:Dirichlet prior; Finite mixture model; Model-based clustering; Bayesian nonparametric

mixture model; Normal gamma prior; Number of components.
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1 Introduction

In many areas of applied statistics like economics, finance or public health it is often desirable to
find groups of similar objects in a data set through the use of clustering techniques. A flexible
approach to clustering data is based on mixture models, whereby the data in each mixture compo-
nent are assumed to follow a parametric distribution with component-specific parameters varying
over the components. This so-called model-based clustering approach (Fraley and Raftery, 2002)
is based on the notion that the component densities can be regarded as the “prototype shape of
clusters to look for” (Hennig, 2010) and each mixture component may be interpreted as a distinct
data cluster.

Most commonly, a finite mixture model with Gaussian component densities is fitted to the data
to identify homogeneous data clusters within a heterogeneous population. However, assuming such
a simple parametric form for the component densities implies a strong assumption about the shape
of the clusters and may lead to overfitting the number of clusters as well as a poor classification, if
not supported by the data. Hence, a major limitation of Gaussian mixtures in the context of model-
based clustering results from the presence of non-Gaussian data clusters, as typically encountered
in practical applications.

Recent research demonstrates the usefulness of mixtures of parametric non-Gaussian compo-
nent densities such as the skew normal or skeigtribution to capture non-Gaussian data clusters,
see Fithwirth-Schnatter and Pyne (2010), Lee and McLachlan (2014) and Vrbik and McNicholas
(2014), among others. However, as stated in Li (2005), for many applications fliculdito de-
cide which parametric distribution is appropriate to characterize a data cluster, especially in higher
dimensions. In addition, the shape of the cluster densities can be of a form which is not eas-
ily captured by a parametric distribution. To better accommodate such data, recent advances in
model-based clustering focused on designing mixture models with more flexible, not necessarily
parametric cluster densities.

A rather appealing approach, known as mixture of mixtures, models the non-Gaussian cluster
distributions themselves by Gaussian mixtures, exploiting the ability of normal mixtures to accu-
rately approximate a wide class of probability distributions. Compared to a mixture with Gaussian

components, mixture of mixtures models impose a two-level hierarchical structure which is par-
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ticularly appealing in a clustering context. On the higher level, Gaussian components are grouped
together to form non-Gaussian cluster distributions which are used for clustering the data. The
individual Gaussian component densities appearing on the lower level of the model influence the
clustering procedure only indirectly by accommodating possibly non-Gaussian, but otherwise ho-
mogeneous cluster distributions in a semi-parametric way. This powerful and very flexible ap-
proach has been employed in various ways, both within the framework of finite and infinite mix-
tures.

Statistical inference for finite mixtures is generally not easy due to problems such as label
switching, spurious modes and unboundedness of the mixture likelihood (see ighguirEr-
Schnatter, 2006, Chapter 2), but estimation of a mixture of mixtures model is particularly chal-
lenging due to additional identifiability issues. Since exchanging subcomponents between clusters
on the lower level leads to fllerent cluster distributions, while the density of the higher level mix-
ture distribution remains the same, a mixture of mixtures model is not identifiable from the mixture
likelihood in the absence of additional information. For example, strong identifiability constraints
on the locations and the covariance matrices of the Gaussian components were imposed by Bar-
tolucci (2005) for univariate data and by Di Zio et al. (2007) for multivariate data to estimate finite
mixtures of Gaussian mixtures.

A different strand of literature pursues the idea of creating meaningful clusters after having
fitted a standard Gaussian mixture model to the data. The clusters are determined by successively
merging components according to some criterion, e.g. the closeness of the means (Li, 2005), the
modality of the obtained mixture density (Chan et al., 2008; Hennig, 2010), the degree of overlap-
ping measured by misclassification probabilities (Melnykov, 2016) or the entropy of the resulting
partition (Baudry et al., 2010). However, such two-step approaches might miss the general cluster
structure, see Appendix E for an example.

In the present paper, we identify the mixture of mixtures model within a Bayesian framework
through a hierarchical prior construction and propose a method to simultaneously select a suitable
number of clusters. In our approach both the identification of the model and the estimation of the
number of clusters is achieved by employing a selectively informative prior parameter setting on

the model parameters.
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Our choice of prior parameters is driven by assumptions on the cluster shapes assumed to be
present in the data, thus being in line with Hennig (2010) who emphasizesithather has
to be decided by the statistician under which conditionfiedint Gaussian mixture components
should be regarded as a common clusterhis prior specification introduces dependence among
the subcomponent densities within each cluster, by pulling the subcomponent means on the lower
level toward the cluster center, making the cluster distributions themselves dense and connected.
On the higher level, the prior is based on the notion that the cluster centers are quite distinct from
each other compared to the spread of the clusters. The choice of the hyperparameters of this
hierarchical prior turns out to be crucial in achieving identification and is guided by a variance
decomposition of the data.

Regarding the estimation of the number of clusters, a sparse hierarchical mixture of mixtures
model is derived as an extension of the sparse finite mixture model introduced in Malsiner-Walli
et al. (2016). There, based on theoretical results derived by Rousseau and Mengersen (2011), an
overfitting Gaussian mixture witK components is specified where a sparse prior on the mixture
weights has thefect of assigning the observations to fewer tkacomponents. Thus, the number
of clusters can be estimated by the most frequent number of non-empty components encountered
during Markov chain Monte Carlo (MCMC) sampling. In this paper, rather than using a single
multivariate Gaussian distribution, we model the component densities in a semi-parametric way
through a Gaussian mixture distribution, and again use a sparse prior on the cluster weights to
automatically select a suitable number of clusters on the upper level.

Specifying a sparse prior on the weights is closely related to Bayesian nonparametric (BNP)
Gaussian mixture models such as Dirichlet process mixtures (DPMs; Ferguson, 1983; Escobar
and West, 1995). The sparse prior on the cluster weights induces clustering of the observations,
similar as for DPMs which have been applied in a clustering context by Quintana and Iglesias
(2003), Medvedovic et al. (2004) and Dahl (2006), among others. The hierarchical mixture of
mixtures model we introduce is similar to hierarchical BNP approaches such as the hierarchical
DPM (Teh et al., 2006). Very closely related BNP approaches are infinite mixtures of infinite
Gaussian densities such as the nested DPM (Rodriguez et al., 2008), the infinite mixture of infinite

Gaussian mixtures (Yerebakan et al., 2014), and species mixture models (Argiento et al., 2014)
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which directly work on the partition of the data. We discuss in Sections 2.4 and 3.1 similarities as
well as diferences between our approach and BNP models.

We finally note that the implementatioffert to estimate our model is moderate and standard
MCMC methods based on data augmentation and Gibbs sampling (gegifh-Schnatter, 2006)
can be used. Several approaches proposed in the literature can be used to post-process the MCMC
draws in order to obtain a clustering of the data and also to allow for cluster-specific inference. For
our simulation studies and applications we adapt and extend the method suggestélviayt i
Schnatter (2006, 2011) which determines a unique labeling for the MCMC draws by clustering the
draws in the point process representation.

The rest of the article is organized as follows. Section 2 describes the proposed strategy, in-
cluding detailed prior specifications, and relates our method to the two-layer BNP approaches in
Rodriguez et al. (2008) and Yerebakan et al. (2014). Clustering and model estimation issues are
discussed in Section 3. The performance of the proposed strategy is evaluated in Section 4 for

various benchmark data sets. Section 5 concludes.

2 Sparse hierarchical mixture of mixtures model

2.1 Model definition

Following previous work on hierarchical mixtures of mixtures, we assumeNlaiservationy;,
i =1,...,N of dimension dimy;) = r are drawn independently from a finite mixture distribution

with K components,

K
PYIIO. 7) = > mpYilb). © = (1.....6), (1)
k=1
with each component distributignk(yil6x) being a mixture ot normal subcomponents:
L
Pe(Yilfk) = ZWkI Ea(Yilpras Zia)- (2)
I=1

In order to distinguish the component distributions on the upper level from the Gaussian compo-

nents on the lower level, we will refer to the former ones as “cluster distributions”. For clustering
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the observations based on Bayes'’ rule, the cluster weight§;, . . ., k) and the cluster densities
px(Yil6k) on the upper level (1) are relevant.

Since the number of data clusters is unknown and needs to be inferred from the data, we
assume that (1) is an overfitting mixture, i.e. the specified number of clisttseeds the number
of clusters present in the data. Following the concept of sparse finite mixtures (Malsiner-Walli
et al., 2016), we choose a symmetric Dirichlet distribution as prior for the weight distribution,
i.e. nlep ~ Dirg(ep), and base our choice ef on the results of Rousseau and Mengersen (2011)
concerning the asymptotic behavior of the posterior distribution of an overfitting mixture model.
They show that this behavior is determined by the hyperpararegtéithe Dirichlet prior on the
weights. In particular, they prove that,gf < d/2, whered is the dimension of the cluster-specific
parameter®, then the posterior expectation of the weights associated with superfluous clusters
asymptotically converges to zero.

Hence, we specify a sparse prior on the cluster weigltg choosinge, < d/2 so that super-
fluous clusters are emptied during MCMC sampling and the number of non-empty clusters on the
cluster level is an estimator for the unknown number of data clusters. In this way, the specification
of a sparse cluster weight prior in an overfitting mixture of mixtures model provides an “automatic
tool” to select the number of clusters, avoiding the expensive computation of marginal likelihoods
as, e.g., in Rihwirth-Schnatter (2004). Empirical results in Malsiner-Walli et al. (2016) indicate
thatey needs to be chosen very small, eeg= 0.001, to actually empty all superfluous clusters in
the finite sample case.

On the lower level (2), in each clustky a semi-parametric approximation of the cluster dis-
tributions is achieved by mixing multivariate Gaussian subcomponent densifie§/; |, X«),
| = 1,...,L, according to the subcomponent weight veatQr = (Wi, ..., Wk ). The cluster-

specific parameter vector

O = (Wi, g - -+ > By > Dt -+ - 5 kL) (3)

consists ofvy as well as the meansg, and covariance matricg; of all Gaussian subcomponent
densities.L is typically unknown, but as we are not interested in estimating the “true” number of

subcomponents forming the cluster, we only ensure thais chosen sfiiciently large to obtain an
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accurate approximation of the cluster distributions. While the choideisiot crucial to ensure
a good model fit as long dsis suficiently large, a too generous choiceloshould be avoided
for computational reasons as the computational complexity of the estimation increases with the
number of subcomponenis

By choosing the priowy ~ Dir (do) with dy = d/2+2, the approximation of the cluster density
is obtained by filling allL subcomponents, thus avoiding empty subcomponents. This choice is
motivated again by the results of Rousseau and Mengersen (2011) who showdhatgif2, the
posterior density asymptotically handles an overfitting mixture by splitting “true” components into

two or more identical components.

2.2 Identification through hierarchical priors

When fitting the finite mixture model (1) with semi-parametric cluster densities given by (2), we
face a special identifiability problem, since the likelihood is entirely agnostic about which subcom-
ponents form a cluster. Indeed, the likelihood is completely ignorant concerning the issue which
of theK-L components belong together, since (1) can be written as an expanded Gaussian mixture

with K-L components with weightsi = nWi,

K

L
p(yil®,n) = Whet Fa(Yilet Xua)- (4)
k=1 I=1

TheseK-L components can be permuted K-)! different ways and the resulting ordering can
be used to group them ink different cluster densities, without changing the mixture likelihood
(4). Hence, the identification of (1), up to label switching on the upper level, hinges entirely on the
prior distribution.

Subsequently, we suggest a hierarchical prior that addresses these issues explicitly. Conditional
on a set of fixed hyperparametets = (e, do, Co, Jo, Go, Bo, Mg, Mo, v), the weight distribution
nle; ~ Dirk(ey) and theK cluster-specific parameter vectdgapo "d p(6kldo) are independent

a priori, i.e.:

K
P(7. 61, ... Oxlro) = P(ien) | | p(Bieo). (5)
k=1
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This prior formulation ensures that thé non-Gaussian cluster distributions of the upper level
mixture (1) are invariant to permutations. Within each clugtethe prior distributionp(6x|¢o)

admits the following block independence structure:

P(Oxlpo) = P(Wkldo) P(keas, - - - » M 1Bo, Mo, Mo, v) P(Zia, - - -, 2kt |Co, Go, Go), (6)

wherewy|dy "¢ Dir L(do). Conditional ongg, the subcomponent meaas, ..., u,, are dependent
a priori as are the subcomponent covariance matdiges. ., Xy . However, they are assumed to
be exchangeable to guarantee that within each cliéstee L Gaussian subcomponents in (2) can
be permuted without changing the prior.

To create this dependence, a hierarchical “rand@ectes” prior is formulated, where, on the
upper level, conditional on the fixed upper level hyperparametgr&§, mo, Mo, v), cluster spe-
cific random hyperparameterSd;, bok), andAy = diag@s, . . . , A), are drawn independently for

eachk = 1,...,K from a set of three independent base distributions:
Colo. Go ™ Wi(00.Go).  bodmo. Mo ™ Ne(Mo. M), (-, A)lv = G(nv),  (7)

whereN; () andW,() denote the-multivariate normal and Wishart distribution, respectively, and
G() the gamma distribution, parametrized such t@tg|v) = 1.

On the lower level, conditional on the cluster specific random hyperparam€grddg, Ax)
and the fixed lower level hyperparameteBs, (Co), theL subcomponent meapg, and covariance

matricesX, are drawn independently for dlk 1,.. ., L:

141Bo, Bo A S N (Boks VABo VA, ZitCo, Cox © Wi (Co, Cor)- ©)

2.3 Tuning the hyperparameters

To identify the mixture of mixtures model given in (1) and (2) through the prior defined in Sec-
tion 2.2, the fixed hyperparametefig have to be chosen carefully. In addition, we select them in

a way to take the data scaling into account, avoiding the need to standardize the data prior to data
analysis.

First, itis essential to clarify what kind of shapes and forms are aimed at as cluster distributions.
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We give the following (vague) characterization of a data cluster: A data cluster is a very “dense”
region of data points, with possibly no “gaps” within the cluster distribution, wheregerelt

clusters should be located well-separated from each other, i.e. here large “gaps” between the cluster
distributions are desired. We confine ourselves to the investigation of clusters with approximately
convex cluster shapes, where the cluster center can be seen as a suitable representative for the
entire cluster. Regarding volume, orientation or asymmetry of the data clusters we are looking for,
no constraints on the cluster shapes and forms are imposed.

Based on this cluster concept, our aim is to model a dense and connected cluster distribution
by a mixture of normal subcomponents. Various strategies regarding the modeling of the subcom-
ponent means and covariance matrices could be employed. We decided to allow for flexible shapes
for the single subcomponents, ensuring that they strongly overlap at the same time. An alternative
approach would be to use constrained simple shaped subcomponents, e.g., subcomponents with
isotropic covariance matrices. However, in this case a large number of subcomponents might be
needed to cover the whole cluster region and shrinkage of the subcomponent means toward the
common cluster center may not be possible. Since then some of the subcomponents have to be
located far away from the cluster center in order to fit also boundary points, considerable distances
have to be allowed between subcomponent means. This induces the risk of gaps within the cluster
distribution and a connected cluster distribution may not result. Therefore, in our approach the
cluster distributions are estimated as mixtures of only a few but unconstrained, highly dispersed
and heavily overlapping subcomponents where the means are strongly pulled toward the cluster
center. In this way, a connected cluster distribution is ensured.

In a Bayesian framework, we need to translate these modeling purposes into appropriate choices
of hyperparameters. On the upper level, the covariance midigixontrols the amount of prior
shrinkage of the cluster centdrg toward the overall data centery, which we specify as the mid-
point of the data. To obtain a prior, where the cluster ceriigrare allowed to be widely spread
apart and almost no shrinkage towangd takes place, we choosé, > S, whereS; is the sample
covariance matrix of all data, e.§lo = 10S,.

Our strategy for appropriately specifying the hyperparaméigrandB, is based on the vari-

ance decomposition of the mixture of mixtures model, which s@ies(Y) into the diferent
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sources of variation. For a finite mixture model wikhclusters, as given in (1), the total het-
erogeneityCoY) can be decomposed in the following way ijRwirth-Schnatter, 2006, p. 170):

K K
CouY) = Y m&k+ ) itudti — ' = (1= 9e)COUY) +¢uCoMY), (9)
k=1 k=1

where the cluster meapg and the cluster covariance matriégsare the first and second moments
of the cluster distributiorpy(yilék) andu = X, . IS the mixture mean. In this decomposition
¢g is the proportion of the total heterogeneity explained by the variability of the cluster mgans
and (1- ¢g) is the proportion explained by the average variability within the clusters. The larger
¢g, the more the clusters are separated, as illustrated in Figure 1 for a three-component standard
Gaussian mixture with varying values ¢f.

For a mixture of mixtures model, the heterogeneity-(#s)CoWY) explained within a cluster
can be split further into two sources of variability, namely the proporéignexplained by the
variability of the subcomponent meaas around the cluster centgg, and the proportion (2 ¢w)

explained by the average variability within the subcomponents:

K K

CouY) = Z MkEk + Z Mkt — 1
P ko1
K L K

L K
= Z s Z Wig X + Z MK (Z Wiyt — ﬂkﬂ'k) + Z Mt — 1 (10)
k= 1=1 k=1 =1 k=1

=1

= (1 - ow)(1 - ¢8)CoMY) + dpw(1 — ¢s)CoUY) + pgCoVY).

Based on this variance decomposition we select the propodigasd ¢, and incorporate them
into the specification of the hyperparameters of our hierarchical prior.

¢p defines the proportion of variability explained by thé&elient cluster means. We suggest to
specifygg not too large, e.g., to usks = 0.5. This specification may seem to be counterintuitive
as in order to model well-separated clusters it would seem appropriate togelaae. However,
if ¢g is large, the major part of the total heterogeneity of the data is already explained by the
variation (and separation) of the cluster means, and, as a consequence, only a small amount of
heterogeneity is left for the within-cluster variability. This within-cluster variability in turn will
get even more diminished by the variability explained by the subcomponent means leading to a

small amount of variability left for the subcomponents. Thus for large valueg,astimation of
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tight subcomponent densities would result, undermining our modeling aims.

¢w defines the proportion of within-cluster variability explained by the subcomponent means.
¢w also controls how strongly the subcomponent means are pulled together and influences the
overlap of the subcomponent densities. To achieve strong shrinkage of the subcomponent means
toward the cluster center, we select small valueg\@fe.g.¢w = 0.1. Larger values o may
introduce gaps within a cluster, which we want to avoid.

Given ¢g and ¢y, we specify the scale matri, of the prior onCqy such that the a priori

expectation of the first term in the variance decomposition (10), given by

K L K L
E [Z my wkmk.) = > E@) Y. EWa)E(EEuICad) = 0o/(Co - (r + 1)/2)G5",
=1 k=1 =1

k=1 =

matches the desired amount of heterogeneity explained by a subcomponent:
Go/(Co — (r +1)/2)Gg" = (1~ ¢w)(1 ~ #8)CoVY). (11)

We replaceCo\(Y) in (11) with the main diagonal of the sample covarias;e¢o take only the
scaling of the data into account (see e.giHwirth-Schnatter, 2006). This gives the following

specification foiGy:

Go' = (1 - ¢w)(L — ¢8)(Co — (r + 1)/2)/go - diag)). (12)

Specification of the prior of the subcomponent covariance mathggs. ., Xy, is completed by
defining the scalar prior hyperparametegsand go. Frihwirth-Schnatter (2006, Section 6.3.2,
p. 192) suggests to sef > 2+ (r — 1)/2. In this way the eigenvalues Bf, X, are bounded away
from 0 avoiding singular matrices. We sgt= 2.5+ (r — 1)/2 to allow for a large variability oEy.
The Wishart density is regulargp > (r — 1)/2 and in the following we sedy = 0.5+ (r — 1)/2.
Regarding the prior specification of the subcomponent mgans. ., i, , we select the scale
matrix By in order to concentrate a lot of mass near the cluster cégtepulling y,, towardbg.

Matching the a priori expectation of the second term in the variance decomposition (10), given by

K L K L
E [Z K (Z Wity bty uku'k)) = D VE(m) ), EW)Euykiy - mat) = Bo,
k=1

k=1 =1 =1

to the desired proportion of explained heterogeneity and, using once more only the main diagonal
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of S, we obtainBy = ¢w(1 - ¢s)diag(S,), which incorporates our idea that only a small proportion
¢w of the within-cluster variability should be explained by the variability of the subcomponent
means.

After having chosewg andgyy, basically the cluster structure and shape is a priori determined.
However, in order to allow for more flexibility in capturing the unknown cluster shapes in the
sense that within each cluster the amount of shrinkage of the subcomponentuyeawsard the
cluster centebg, need not to be the same for all dimensions, for each clisted each dimension
j additionally a random adaptation factdy; is introduced in (8) which adjus,. The gamma
prior for Ay; in (7) implies that the prior expectation of the covariance matriygfequalsBy.
However,1; acts as a local adjustment factor for clukevhich allows to shrink (or inflate) the
variance of subcomponent meagng in dimensionj in order to adapt to a more (or less) dense
cluster distribution as specified IBg. In order to allow only for small adjustments of the specified
Bo, we chooser = 10, in this way almost 90% of the a priori valuesqf are between .6 and
1.5. This hierarchical prior specification fgg, corresponds to the normal gamma prior (&
and Brown, 2010) which has been applied bytrwirth-Schnatter (2011) and Malsiner-Walli et al.

(2016) in the context of finite mixture models for variable selection.

2.4 Relation to BNP mixtures

Our approach bears resemblance to various approaches in BNP modeling. First of all, the concept
of sparse finite mixtures as used in Malsiner-Walli et al. (2016) is related to Dirichlet process (DP)
mixtures (Miller and Mitra, 2013) where the discrete mixing distribution in the finite mixture (1)

is substituted by a random distributi@ ~ DP(a, H), drawn from a DP prior with precision pa-
rameter and base measuke As a drawG from a DP is almost surely discrete, the corresponding

model has a representation as an infinite mixture:
pY) = > mkplyl6i). (13)
k=1

with i.i.d. atomsfy "8 H drawn from the base measu#feand weightsy, = vk H'j‘j(l—vj) obeying

the stick breaking representation wit;h"«cll B (1, ) (Sethuraman, 1994).
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If the hyperparameter in the weight distributignof a sparse finite mixture is chosen as
e = a/K, i.e.n ~ Dirg(a/K), and the component paramet(is?((siE H are i.i.d. draws from
H, then aK increases, the sparse finite mixture in Equation (1) converges to a DP mixture with
mixing distributionG ~ DP(a, H), see Green and Richardson (2001). For example, the sparse
finite Gaussian mixture introduced in Malsiner-Walli et al. (2016) converges to a Dirichlet process
Gaussian mixture as increases, withy(,, Xx) being i.i.d. draws from the appropriate base measure
H.

The more general sparse finite mixture of mixtures model introduced in this paper also con-
verges to a Dirichlet process mixture where the atoms are finite mixtures indexed by the parameter
0, defined in (3). The paramete#ls are i.i.d. draws from the base measure (6), with strong de-
pendence among the megys, . ..,y and covariancely, . .., Xy within each clustek. This
dependence is achieved through the two-layer hierarchical prior described in (7) and (8) and is
essential to create well-connected clusters from the subcomponents, as outlined in Section 2.3.

Also in the BNP framework models have been introduced that create dependence, either in the
atoms angbr in the weights attached to the atoms. For instance, the nested DP process of Rodriguez
et al. (2008) allows to cluster distributions acrdsanits. Within each unit, i = 1,..., N, repeated
(univariate) measuremenyg,t = 1,...,N; arise as independent realizations of a DP Gaussian
mixture with random mixing distributio®;. TheG;s are i.i.d. draws from a DP, in which the base
measure is itself a Dirichlet proceB$ (B, H), i.e.G; " DP(a, DP(B, H)). Hence, two distributions
G; andG; either share the same weights and atoms sampledHrpaon the weights and atoms are
entirely diferent. If only a single observation is available in each unit, i.d\; = 1, then the
nested DP is related to our model. In particular, it has a two-layer representation as in (1) and
(2), however with bothK andL being infinite. The nested DP can, in principal, be extended to
multivariate observationg;. In this case,p(y;) takes the same form as in (13), with the same
stick breaking representation for the cluster weightsy,,.... On the lower level, each cluster

distribution p(yil€k) is a DP Gaussian mixture:
Pr(Yilk) = Z Wid fa Vil Zia)s (14)
=1

where the component weightg are derived from the stick breaking representatign= uy H'j;ll(l—
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ugj),l = 1,2,... whereuy " B(1,B). For the nested DP, dependence is introduced only on the
level of the weights and sticks, as the component paramgfeisy " H are i.i.d. draws from

the base measutd. This lack of prior dependence among the atomg Ey) is likely to be an
obstacle in a clustering context.

The BNP approach most closely related to our model is the infinite mixture of infinite Gaussian
mixtures (FGMM) model of Yerebakan et al. (2014) which also deals with clustering multivariate
observations from non-Gaussian component dengitielse PFGMM model has a two-layer hier-
archical representation like the nested DP. On the top level, i.i.d. cluster specific lodziamsl
covariance&y are drawn from a random distributi@ ~ DP(«, H) arising from a DP prior with
base measurde being equal to the conjugate normal-inverse-Wishart distribution. A cluster spe-
cific DP is introduced on the lower level as for the nested DP; howeverr&dM model is more
flexible, as prior dependence is also introduced among the atoms belonging to the same cluster.
More preciselyy; ~ N; (g, Xk), with g, " Gy, whereGy ~ DP(B, Hy) is a draw from a DP with
cluster specific base measue = N, (bok, Xk/k1).

It is easy to show that th¢ MM model has an infinite two-layer representation as in (13)
and (14), with exactly the same stick breaking representatidowever, the i\GMM model has
a constrained form on the lower level, with homoscedastic covarianges X, whereas the

locationsy,, scatter around the cluster centbgg as in our model:

i i
(bow, Zi) ~ H, Hilbok, i ~ Hy. (15)
In our sparse mixture of mixtures model, we found it useful to base the density estimator on
heteroscedastic covarian@ag, to better accommodate the non-Gaussianity of the cluster densities
with a fairly small numbeL of subcomponents. It should be noted that our semi-parametric density
estimator is allowed to display non-convex shapes, as illustrated in Figure C.2 in the Appendix.
Nevertheless, we could have considered a mixture in (2) whgre= Xy, with the same base
measure for the atomgy, . . ., it ,» Zx) as in (15). In this case, the relationship between our sparse

finite mixture and the2GMM model would become even more apparent: by choosing a/K

1We would like to thank a reviewer for pointing us to this paper.
2Note that the notation in Yerebakan et al. (2014) is slightijedent, withy anda corresponding ter andg
introduced above.
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andd, = /L and lettingK andL go to infinity, our model would converge to th&3MM model.

3 Clustering and posterior inference

3.1 Clustering and selecting the number of clusters

For posterior inference, two sequences of allocation variables are introduced, namely the cluster
assignment indicatoiS = (S, ..., Sy) and the within-cluster allocation variables: (14, ..., Iy).
More specificallyS; € {1, ..., K} assigns each observatigito clusterS; on the upper level of the
mixture of mixtures model. On the lower levél,e {1,..., L} assigns observatioy) to subcom-
ponentl;. Hence, the pairg;, I;) carries all the information needed to assign each observation to a
unique component in the expanded mixture (4).

Note that for all observationg andy; belonging to the same cluster, the upper level indicators
Si = S; will be the same, while the lower level indicatais# |; might be diferent, meaning
that they belong to dierent subcomponents within the same cluster. It should be noted that the
Dirichlet prior wy ~ Dir(dy), with dy > d/2, on the weight distribution ensures overlapping
densities within each cluster, in particulalifs overfitting. Hence the indicatotswill typically
cover all possible valued, . .., L} within each cluster.

For clustering, only the upper level indicatdsare explored, integrating implicitly over the
uncertainty of assignment to the subcomponents on the lower level. A cllister{i|S; = K} is
thus a subset of the data indidés. .., N}, containing all observations with identical upper level
indicators. Hence, the indicatdgslefine a random partitioR = {C,, ..., Ck,} of theN data points
in the sense of Lau and Green (2007)y@aandy; belong to the same cluster, if and onl\&if= S;.
The partition® containsKy = |P| clusters, wher¢?| is the cardinality ofP. Due to the Dirichlet
prior n ~ Dirg(ep), with e close to 0 to obtain a sparse finite mixtukg, is a random number
being a priori much smaller thag.

For a sparse finite mixture model wit clusters, the prior distribution over all random par-

titions # of N observations is derived from the joint (marginal) prig(S) = in'\il p(Siln)dn
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which is given, e.g., in krhwirth-Schnatter (2006, p. 66):

I'(Keo)

PO = FNT Ker(ee

[] TN+ &), (16)

‘Ng>0

whereN, = #{S; = k}. For a given partitior® with Ky data clusters, there ate! /(K — Kp)!
assignment vectoiSthat belong to the equivalence class define@byrhe prior distribution over
all random partitions” is then obtained by summing over all assignment vecidtsat belong to
the equivalence class defined By

K! I'(Key)

PIPIKO) = K=Kyl TN + Kep)[ (&)

[T TN+ ), (17)

k:Nk>0

which takes the form of a product partition model and therefore is invariant to permuting the cluster
labels. Hence, it is possible to derive the prior predictive distribugit®)|S_;), whereS_; denote

all indicators, excluding;. LetK;' be the number of non-empty clusters implied®y and let

N.' be the corresponding cluster sizes. From (16), we obtain the following probabilititieat

assigned to an existing cluster

PHS; = KIS, N > 0} = N+ & 18
r{|—|—|,k>}—m- (18)
The prior probability thas; creates a new cluster wiy) € | = {kIN.' = 0} is equal to
PHS; € 1|S.} = (K = K;)PHS = K|S,k e 1} = &K~ Kg) (19)
i —j 0 i —i» N—_1+ eoK'

It is illuminating to investigate the prior probability to create new clusters in detail. First of all,
for gy independent oK, this probability not only depends @, but also increases witk. Hence
a sparse finite mixture model based on the pgior Dy (e) can be regarded as a two-parameter
model, where botle, and K influence the a priori expected number of data cluskgysvhich
is determined for a DP mixture solely ky. A BNP two-parameter mixture is obtained from
the Pitman-Yor process (PYP) priB¥(8, @) with 8 € [0, 1), @ > —B (Pitman and Yor, 1997), with
stickbreaking representatimgliE B(1-B,a+ kB). The DP prior results as that special case where
B=0.

Second, the prior probability (19) to create new clusters in a sparse finite mixture model de-

creases, as the numljégi of non-empty clusters increases. This is in sharp contrast to DP mixtures
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where this probability is constant and PYP mixtures where this probability increases, see e.g., Fall
and Barat (2014).

Finally, what distinguishes a sparse finite mixture model, both from a DP as well as a PYP
mixture, is the a priori expected number of data clustégysas the numbeN of observations
increases. FoOK ande, independent ofN, the probability to create new clusters decrease$| as
increases, and converges to ONagoes to infinity. Thereforek, is asymptotically independent
of N for sparse finite mixtures, whereas for the DP pro¢&ss a log(N) (Korwar and Hollander,

1973) andKy ~ NP obeys a power law for PYP mixtures (Fall and Barat, 2014). This leads to quite
different clustering behavior for these three types of mixtures.

A well-known limitation of DP priors is that a priori the cluster sizes are expected to be geomet-
rically ordered, with one big cluster, geometrically smaller clusters, and many singleton clusters
(Muller and Mitra, 2013). PYP mixtures are known to be more useful than the DP mixture for data
with many significant, but small clusters. A common criticism concerning finite mixtures is that
the number of clusters needs to be known a priori. Since this is not the case for sparse finite mix-
tures, they are useful in the context of clustering, in particular in cases where the data arise from a

moderate number of clusters, that does not increase as the number of dat&pooreases.

3.2 MCMC estimation and posterior inference

Bayesian estimation of the sparse hierarchical mixture of mixtures model is performed using
MCMC methods based on data augmentation and Gibbs sampling. We only need standard Gibbs
sampling steps, see the detailed MCMC sampling scheme in Appendix A.

In order to perform inference based on the MCMC draws, i.e. to cluster the data, to estimate the
number of clusters, to solve the label switching problem on the higher level and to estimate cluster-
specific parameters, several existing procedures can be easily adapted and applied to post-process
the posterior draws of a mixture of mixtures model, e.g., those which are, for instance, imple-
mented in theR package$ReMiuM (Liverani et al., 2015) anthibel.switching (Papastamoulis,

2015).
For instance, the approachRiReMiuM is based on the posterior probabilities of co-clustering,

expressed through the similarity matrix{8r = S;ly} which can be estimated from thé@ poste-
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rior drawsS™ m = 1,..., M, see Appendix B for details. The methods implementethin
bel.switching aim at resolving the label switching problem when fitting a finite mixture model
using Bayesian estimation. Note that in the case of the mixture of mixtures model label switching
occurs on two levels. On the cluster level, the label switching problem is caused by invariance
of the mixture likelihood given in Equation (1) with respect to reordering of the clusters. On this
level, label switching has to be resolved, since the single cluster distributions need to be identified.
On the subcomponent level, label switching happens due to the invariance of Equation (2) with
respect to reordering of the subcomponents. As we are only interested in estimating the entire
cluster distributions, it is not necessary to identify the single subcomponents. Therefore, the label
switching problem can be ignored on this level.

In this paper, the post-processing approach employed first performs a model selection step.
The posterior draws of the indicatd®$”, m = 1,..., M are used to infer the number of non-empty
cIustersKém) on the upper level of the mixture of mixtures model and the number of data clusters
is then estimated as the mode. Conditional on the selected model, an identified model is obtained
based on the point process representation of the estimated mixture. This method was introduced
in Fruhwirth-Schnatter (2006, p. 96) and successfully applied to model-based clustering in various
applied research, see e.giiRwirth-Schnatter (2011) for some review. This procedure has been
adapted to sparse finite mixtures iniRwirth-Schnatter (2011) and Malsiner-Walli et al. (2016)
and is easily extended to deal with sparse mixture of mixtures models, see Appendix B for more
details. We will use this post-processing approach in our simulation studies and the applications in
Section 4 and Appendices C, D and F to determine a partition of the data based on the maximum

a posteriori (MAP) estimates of the relabeled cluster assignments.

4 Simulation studies and applications

The performance of the proposed strategy for selecting the unknown number of clusters and iden-
tifying the cluster distributions is illustrated in two simulation studies. In the first simulation study
we investigate whether we are able to capture dense non-Gaussian data clusters and estimate the

true number of data clusters. Furthermore, the influence of the specified maximum number of clus-
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tersK and subcomponents on the clustering results is studied. In the second simulation study
the sensitivity of the a priori defined proportioggandgy on the clustering result is investigated.

For a detailed description of the simulation design and results see Appendix C. Overall, the results
indicated that our approach performed well and yielded promising results.

To further evaluate our approach, we fit the sparse hierarchical mixture of mixtures model on
benchmark data sets and real data. First, we consider five data sets which were previously used to
benchmark algorithms in cluster analysis. For these data sets we additionally apply the “merging
strategy” proposed by Baudry et al. (2010) in order to compare the results to those of our ap-
proach. For these benchmark data sets class labels are available and we assess the performance by
comparing how well our approach is able to predict the class labels using the cluster assignments,
measured by the misclassification rate as well as the adjusted Rand index.

To assess how the algorithm scales to larger data sets we investigate the application to two flow
cytometry data sets. The three-dimensional DLBCL data set (Lee and McLachlan, 2013) consists
of around 8000 observations and comes with manual class labels which can be used as benchmark.
The GvHD data set (Brinkman et al., 2007) consists of 12441 observations, but no class labels are
available. We compare the clusters detected for this data set qualitatively to solutions previously
reported in the literature.

The detailed description of all investigated data sets as well as of the derivation of the perfor-
mance measures are given in Appendix D. For the benchmark data sets, the number of estimated
clustersKo, the adjusted Rand indeadj), and misclassification rater) are reported in Table 1
for all estimated models. In the first columns of Table 1, the name of the data set, the number
of observationsN, the number of variablesand the number of true classk§"® (if known) are
reported. To compare our approach to the merging approach proposed by Baudry et al. (2010),
we use the functiolclust of the R packagemclust (Fraley et al., 2012) to first fit a standard
normal mixture distribution with the maximum number of compondfts 10. The number of
estimated normal components based on the BIC is reported in the céiclnst. Then the se-
lected components are combined hierarchically to clusters by calling functigstCombi from
the same package (columiiustCombi). The number of clusters is chosen by visual detection

of the change point in the plot of the rescaleffetiences between successive entropy values, as
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suggested by Baudry et al. (2010). Furthermore, to compare our results to those obtained if a
cluster distribution is modeled by a single normal distribution only, a sparse finite mixture model
with K = 10 (Malsiner-Walli et al., 2016) is fitted to the data sets (coluBparseMi). The re-

sults of fitting a sparse hierarchical mixture of mixtures model Witk 10 are given in column
SparseMixMixwhereL = 5 is compared to our default choice lof= 4 to investigate robustness

with respect to the choice d&f. For each estimation, MCMC sampling is run for 4000 iterations
after a burn-in of 4000 iterations.

As can be seen in Table 1, for all data sets the sparse hierarchical mixture of mixtures model is
able to capture the data clusters quite well both in terms of the estimated number of clusters and
the clustering quality measured by the misclassification rate as well as the adjusted Rand index. In
general, our approach is not only outperforming the standard model-based clustering model using
mixtures of Gaussians regarding both measures, but also the approach proposed by Baudry et al.
(2010). In addition, it can be noted that for all data sets the estimation results remain quite stable,
if the number of subcomponernitss increased to 5, see the last column in Table 1. The results for
the Yeast data set are of particular interest as they indicatelhatCombi completely fails. Al-
though the misclassification rate of 25% implies that only a quarter of the observations is assigned
to “wrong” clusters, inspection of the clustering obtained reveals that almost all observations are
lumped together in a single, very large cluster, whereas the few remaining observations are split
into five very small clusters. This bad clustering quality is better reflected by the adjusted Rand
index which takes a negative valued{ = —0.02), i.e. is “worse than would be expected by guess-
ing” (Franczak et al., 2012). For the flower data set, more results are given in Appendix D where
the obtained clustering and cluster distributions are illustrated.

In order to investigate the performance of our approach on larger data sets with a slightly
different cluster structure, we fit the sparse hierarchical mixture of mixtures model to two flow
cytometry data sets. These applications also allow us to indicate how the prior settings need to be
adapted if a dferent cluster structure is assumed to be present in the data. As generally known,
flow cytometry data exhibit non-Gaussian characteristics such as skewness, multimodality and a
large number of outliers, as can be seen in the scatter plot of two variables of the GvHD data set

in Figure 3. Thus, we specified a sparse hierarchical mixture of mixtures modeKwith30
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clusters and increased the number of subcomponents forming a cluister1s in order to handle

more complex shapes of the cluster distributions given the large amount of data. Since the flow
cytometry data clusters have a lot of outliers similar to the clusters generated by shifted asymmetric
Laplace GAL distributions (see Appendix F), we substitute the hyperpder ~ W; (9o, Go)

by the fixed valueCy = goGg1 and setl; = 1, j = 1,...,r to prevent that within a cluster

the subcomponent covariance matrices are overly shrunken and become too similar. In this way,
subcomponent covariance matrices are allowed to vary considerably within a cluster and capture
both a dense cluster region around the cluster center and scattered regions at the boundary of the
cluster.

We fit this sparse hierarchical mixture of mixtures model to the DLBCL data after removing
251 dead cells. For most MCMC runs after a few hundred iterations all but four clusters become
empty during MCMC sampling. The estimated four cluster solution coincides almost exactly with
the cluster solution obtained with manual gating; the adjusted Rand index is 0.95 and the error rate
equals 0.03. This error rate outperforms the error rate of 0.056 reported by Lee and McLachlan
(2013). In Figure 2 the estimated four cluster solution is visualized.

When fitting a sparse hierarchical mixture of mixtures model to the GvHD data, the classi-
fications resulting from dierent runs of the MCMC algorithm seemed to be rather stable. The
obtained solutions flier mainly in the size of the two large clusters with low expressions. These,
however, are supposed to not contain any information regarding the development of the disease.
On the right hand side of Figure 3, the results of one specific run are shown in a heatmap. In this
run, we found eight clusters which are similar to those reported blgArth-Schnatter and Pyne
(2010) when fitting a skew:mixture model to these data. In the heatmap each row represents the
location of a six-dimensional cluster, and each column represents a particular marker (variable).
The red, white and blue colors denote high, medium and low expressions.

As in Fruhwirth-Schnatter and Pyne (2010), we identified two larger clusters (43% and 20.4%,
first two rows in the heatmap) with rather low expressions in the last four variables. We also
identified a smaller cluster (3.8%, forth row from the bottom) representing live cells (high values
in the first two variables) with a unique signature in the other four variables (high values in all four

variables). Also two other small clusters can be identified (second and third row from the bottom)
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which have a signature very similar to the clusters found lijyh#rth-Schnatter and Pyne (2010),

and thus our results confirm their findings.

5 Discussion

We propose suitable priors for fitting an identified mixture of normal mixtures model within the
Bayesian framework of model-based clustering. This approach allows for (1) automatic determi-
nation of the number of clusters and (2) semi-parametric approximation of non-Gaussian cluster
distributions by mixtures of normals. We only require the assumption that the cluster distribu-
tions are dense and connected. Our approach consists in the specification of structured informative
priors on all model parameters. This imposes a rigid hierarchical structure on the normal subcom-
ponents and allows for simultaneous estimation of the number of clusters and their approximating
distributions. This is in contrast to the two-step merging approaches, where in the first step the data
distribution is approximated by a suitable normal mixture model. However, because this approx-
imation is made without taking the data clusters into account which are reconstructed only in the
second step of the procedure, the general cluster structure might be missed by these approaches.

As we noted in our simulation studies, the way in which the cluster mixture distributions are
modeled by the subcomponent densities is crucial for the clustering result. Enforcing overlap-
ping subcomponent densities is essential in order to avoid that a single subcomponent becomes too
narrow thus leading to a small a posteriori cluster probability for observations from this subcompo-
nent. Also, enforcing that observations are assignedl subcomponents during MCMC sampling
is important as the estimation of empty subcomponents would bias the resulting cluster distribution
because of the “prior” subcomponents. For modeling large, overlapping subcomponent densities,
crucial model parameters are the a priori specified covariance matrix of the subcomponent means
and the scale matrix of the inverse Wishart prior for the subcomponent covariance matrices. We
select both crucial hyperparameters based on the variance decomposition of a mixture of mixtures
model.

We found a prior setting which is able to capture dense and connected data clusters in a range

of benchmark data sets. However, if interest lies in detectionftdreéint cluster shapes, dldirent
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tuning of the prior parameters may be required. Therefore, it would be interesting to investigate in
more detail how we can use certain prior settings to estimate certain kinds of data clusters. Then
it would be possible to give recommendations which prior settings have to be used in order to
capture certain types of data clusters. For instance, mixtures of shifted asymmetric L&glgce (
distributions, introduced by Franczak et al. (2012), have cluster distributions which are non-dense
and have a strongly asymmetric shape with comet-like tails. In this case, the prior specifications
given in Section 2 are not able to capture the clusters and need to be tuned to capture also this
special kind of data clusters, see the example given in Appendix F.

Although our approach to estimate the number of clusters worked well for many data sets, we
encountered mixing problems with the blocked conditional Gibbs sampler outlined in Appendix A,
in particular in high dimensional spaces with large data sets. To alleviate this problem, a collapsed
sampler similar to Fall and Barat (2014) could be derived for finite mixtures. However, we leave

this for future research.

SUPPLEMENTARY MATERIAL

ArpENDIX containing (A) the MCMC scheme to estimate a mixture of mixtures model, (B) a de-
tailed description of the post-processing strategy based on the point process representation, (C)
the simulation studies described in Section 4, (D) a description of the data sets studied in Sec-
tion 4, (E) issues with the merging approach, and (F) estimation of data clusters generated by a
S Al-distribution (Franczak et al., 2012). (Appendix.pdf)

R cope implementing the sparse hierarchical mixture of mixtures model (Code.zip).
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Figure 1:Vvariance decomposition of a mixture distribution. Scatter plots of samples from a standard normal mixture
distribution with three components and equal weights, with a varying amount of heteroganeitplained by the
variation of the component meanig = 0.1, ¢g = 0.5 andgg = 0.9 (from left to right).
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Figure 2:Flow cytometry data set DLBCL. Scatterplot of the clustering results.
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Figure 3:Flow cytometry data set GVHD. Scatter plot of two variables (“FSC”, “CD8") (left-hand side), and heatmap
of the clustering results by fitting a sparse hierarchical mixture of mixtures model (right-hand side). In the heatmap,
each row represents the location of a six-dimensional cluster, and each column represents a particular marker. The red,

white and blue colors denote high, medium and low expression, respectively.
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Table 1:Results for the estimated number of data cluskey$or various benchmark data sets, using the functions
Mclust to fit a standard mixture model with = 10 andclustCombi to estimate a mixture with combined compo-

nents (colummclusi), using a sparse finite mixture model wkh= 10 (columnSparseMi¥, and estimating a sparse
hierarchical mixture of mixtures model witk = 10, g = 0.5 and¢y = 0.1, andL = 4,5 (columnSparseMixMix

Priors and hyperparameter specifications are selected as described in Section 2. In parentheses, the adjusted Rand
index (“1” corresponds to perfect classification) and the proportion of misclassified observations (“0” corresponds to
perfect classification) aneported.

Mclust SpaseMix SpaseMixMix

K=10 K =10 K=10
Data set N r KUe[ Mclust clustCombi | L=1 L=4 L=5
Yeast 626 3 2 8(.50, .20) 6(-.02,0.25) | 6(.48,.23) | 2(.68,.08) 2(.71,.07)
Fleabeetles 74 6 3 5(.77,.18) 4(.97,.03) 3(1.00,.00) | 3(1.00,.00) 3(1,.00)
AIS 202 3 2 3(.73,.13) 2(.66,.09) 3(.76,.11) | 2(.81,.05 2(.76,.06)
Wisconsin 569 3 2 4(.55,.30) 4(.55,.30 4 (.62,.21) | 2(.82,.05) 2(.82,.05)
Flower 400 2 4 6(.52,.35) 4(.99,.01) 5 (.67,.20) | 4(.97,.01) 4 (.97,.02)
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