
Monika Malinova

A Language for Designing Process
Maps
Abstract Syntax, Semantics and Concrete Syntax

– Doctoral thesis –

June 10, 2016

Vienna University of Economics and Business, Vienna,
Austria

To Michi and to my family

Abstract

Business Process Management (BPM) is often adopted by organizations as a
method to increase awareness and knowledge of their business processes. Busi-
ness process modeling is used as a method to represent business processes in
form of business process models. Within a single organization the number of
business process models often ranges from hundreds to even thousands. In
order to handle such large amount of business process models, organizations
structure them by the help of a process architecture. It includes a process map,
which is considered as the top-most view of the process architecture where
the organization’s business processes and the relations between them are vi-
sually and abstractly depicted. The purpose of a process map is to provide
an overview of how an organization operates as a whole without necessarily
going into the process details. Therefore, the design of a process map is vital
not only for the understanding of the company’s processes, but also for the
subsequent detailed process modeling. Despite their importance, the design
of process maps is still more art than science, essentially because there is no
standardized modeling language available for process map design. This has
accordingly been our main motivation for pursuing the research presented in
this thesis.

In this thesis, we document the development of a language for designing
process maps. In particular, we provide the following contributions. First, we
provide a method for assessing cognitive effectiveness of process maps used
in practice. In addition, we employ the cognitive fit theory to check whether
the design of process maps has an effect on the BPM success in the respec-
tive organization. Second, we conduct a systematic literature review on the
quality of modeling languages and models. We use the quality requirements
we found as basis for developing the language for designing process maps.
Third, we define the abstract syntax, semantics, and concrete syntax of the
language for process maps. We follow an explorative method, hence we rely
on empirical data for the language development. We follow this approach in
order to ensure the language will consist of elements already familiar to orga-
nizations. We evaluate the language by means of an experiment, in which we

VIII

assess the effectiveness and efficiency of process maps designed using elements
from our language against process maps that have not been designed using
our language. Last, this thesis provides a method for testing the suitability of
existing languages for specific purposes.

Zusammenfassung

Prozessmanagement wird oft von Organisationen als Methode zur Erhöhung
des Bewusstseins und Wissens über die eigenen Prozesse herangezogen. Prozesse
werden mittels Prozessmodellierung als Prozessmodelle dargestellt. Eine einzelne
Organisation kann hunderte bis tausende Prozessmodelle haben. Um eine de-
rartig hohe Anzahl an Prozessmodellen zu handhaben, behelfen sich Organ-
isationen der Prozessarchitektur. Diese beinhaltet eine Prozesslandkarte, die
die abstrakteste Sicht der Prozessarchitektur ist. Darin werden die Prozesse
und ihre Relationen zueinander visuell und abstrakt dargestellt. Der Zweck
einer Prozesslandkarte ist es, einen Überblick zu bieten wie die Organisation
als Ganzes funktioniert, ohne dabei auf Prozessdetails einzugehen. Das Design
einer Prozesslandkarte ist nicht nur wichtig für das Verständnis der Prozesse
der Organisation, sondern auch für die nachgelagerte Prozessmodellierung.
Ungeachtet dieser Wichtigkeit basiert das Design von Prozesslandkarten bis
dato eher auf Erfahrung als auf wissenschaftlich fundierten Erkenntnissen;
insbesondere auch deshalb, weil es keine standardisierte Sprache zur Model-
lierung von Prozesslandkarten gibt. Dies stellt die wesentliche Motivation für
die in dieser Doktorarbeit präsentierte Forschung dar.

In dieser Doktorarbeit dokumentieren wir die Entwicklung einer Sprache
zur Modellierung von Prozesslandkarten. Im Speziellen bieten wir folgende
Beiträge. Zuerst präsentieren wir eine Methode zur Bewertung der kognitiver
Effektivität von Prozesslandkarten, die in der Praxis genutzt werden. Des
Weiteren beschäftigen wir uns mit der Cognitive-Fit-Theorie. Mithilfe dieser
überprüfen wir, ob das Design einer Prozesslandkarte einen Effekt auf den Er-
folg im Prozessmanagement einer Organisation hat. Zweitens haben wir eine
systematische Literaturanalyse zur Qualität von Modellierungssprachen und
Modellen durchgeführt. Wir haben die gefundenen Qualitätskriterien als Ba-
sis zur Entwicklung einer Sprache für die Modellierung einer Prozesslandkarte
genutzt. Drittens haben wir die abstrakte Syntax, Semantik und konkrete Syn-
tax der Sprache für die Modellierung einer Prozesslandkarte definiert. Wir
haben eine explorative Methode angewandt, die sich auf empirische Daten
für die Entwicklung der Sprache stützt. Wir haben dieses Vorgehen gewählt,

X

um sicherzustellen, dass die Elemente bereits in den Organisationen bekannt
sind. Wir evaluieren die Sprache mithilfe eines Experiments. In diesem Ex-
periment überprüfen wir die Effektivität und Effizienz von Prozesslandkarten,
welche mit Elementen aus unserer entwickelten Sprache erstellt wurden im
Vergleich zu Prozesslandkarten, welche nicht mit unserer Sprache erstellt wur-
den. Zuletzt entwickelt diese Doktorarbeit eine Methode zur Überprüfung der
Tauglichkeit von bestehenden Sprachen für spezielle Zwecke.

Acknowledgments

I would not have come to this moment of writing this section without the many
wonderful people that have accompanied me through my journey which led to
the completion of this doctoral thesis. I have developed a (visual) language,
which I present in this thesis. Ironically, there are neither words nor symbols
that can capture the gratitude I feel for all people I met during the last
(almost) four years and have somehow contributed to me becoming what I
am today. Nevertheless, I will at least try to mention everybody, and for all
those that are not on this page, I will try to personally give my thanks.

First of all, my deepest gratitude goes to my supervisor Prof. Dr. Jan
Mendling. Jan, if I hadn’t moved to Berlin, started my Master studies four
years later than planned, and taken all those BPM courses you offered, I would
not have had the chance to come to this moment I am in now. I thank you
for taking me with you to Vienna, for teaching me how to do research and for
giving me the countless opportunities to travel and learn more about research
and BPM. I thank you for being so patient, believing in me, guiding me and
letting me find my own way. I could not have asked for a better, friendlier and
more dedicated supervisor. I honestly hope we will still work together for the
many years to come. Second, I thank Prof. Dr. Hajo A. Reijers. Hajo, I am
honored to have you as a second official supervisor. I thank you for believing in
my research, and for all the feedback you’ve provided me with, which helped
shape the final work. I am confident our journey does not end here. I was also
lucky to have Prof. Dr. Edward W.N. Bernroider and Prof. Dr. Alfred Taudes
in my doctoral committee. Thank you for providing me with feedback for my
research proposal, and challenging me during my defense.

Ever since I started this journey, I’ve become passionate about research.
I believe my passion has always been in me, however it woke up and became
alive only after I’ve met all these incredible people I’ve had the pleasure to
work with, or simply talked to about research and life. Here, I want to express
my particular gratitute to Henrik Leopold. Henrik, thanks for the many hours
of fruitful discussions. I am really grateful I had the chance to work with you.
Also, I am thankful for having had the pleasure to work with Dr. Remco

XII

Dijkman. Thank you for being such a big proponent of process architectures.
I am happy to have had the opportunity to stay at the Stevens Institute of
Technology in Hoboken, New Jersey, USA. For this I thank Dr. Michael zur
Muehlen for hosting me and letting me conduct experiments which nicely
completed this thesis.

It was definitely not only work that led to completing this thesis. A very
big part of my PhD journey hold all my friends and colleagues with whom I
either worked with or still do, I had lunches with during work days, and many
dinners and drinks after work hours. There is no particular order of mentioning
all of you. Claudio, Johannes, Jonas, Cristina, Saimir, Andreas, Giray, Han,
Fabian, Roman, Stefanie, Lidija, Laura I am so happy to call you all friends
now. Thank you for being so incredibly great and unique (I cannot find any
better words than these). I especially want to mention Claudio, Andreas, Jonas
and Saimir for helping me with Latex (which caused me the only stress I had
during the thesis writing), for giving me feedback on my defense slides, and
also for giving me feedback on my research. In particular, I want to express
my deep gratitude to Laura. Laura, you are my statistical goddess and were
my confidante during the entire journey. Thank you so much for being who
you are, for understanding all my worries, providing me with advice when I
needed it the most, and most importantly being happy with me when good
things were happening. I am honored to call you a friend.

I would not have been here if it weren’t for my family. My parents and my
two brothers, thank you for making me who I am today. If it wasn’t for your
hard work and sacrafices I would not have lived my dream now. I especially
thank my father, who somehow engraved this idea of becoming a Doctor of
Science in my subconscious. Thank you for believing in me.

Last, but definitely not least, Michi, to whom I dedicate this thesis, I am
grateful beyond words for all you’ve done for me. Maybe I came to Vienna
to do my PhD, but I believe the biggest reason of all was to finally meet
you. You are my heart and the person that absolutely completes me, makes
me be the better version of myself. I am so sorry you had to read this thesis
twice before I finally got it ready for submission, but also so thankful for
doing that, because without you it would not have been possible. I thank you
for appreciating me, loving me, being so supportive during almost the entire
journey. I am so much looking forward to spending the rest of my life with
you, which I am sure will be wondeful.

Contents

1 Introduction . 1
1.1 Motivation . 1
1.2 Summary of Contributions . 2
1.3 Research Framework . 6
1.4 Publications from my Research . 9
1.5 Thesis Outline . 10

2 Business Process Management . 13
2.1 Business Process Management Adoption . 13
2.2 Business Process Management Reference Framework 15

2.2.1 Activities of Business Process Management 17
2.2.2 Business Process Management Lifecycle 21
2.2.3 Business Process Management Infrastructure 22
2.2.4 Business Process Management Context Factors 22

2.3 Chapter Summary . 24

3 Organizing Business Process Models . 25
3.1 Process Model Collections . 25
3.2 Process Architecture . 28
3.3 Process Maps . 34
3.4 Process Map Elements . 38
3.5 Chapter Summary . 42

4 Process Maps from Practice and their Effect on BPM
Success . 43
4.1 Cognitive Effectiveness of Process Maps . 43

4.1.1 Research Design . 44
4.1.2 Findings . 46
4.1.3 Evaluation of the Cognitive Effectiveness of Process

Map Design . 49
4.2 Process Map Design and its Effect on BPM Success 54

XIV Contents

4.3 Chapter Summary . 57

5 Modeling Languages . 59
5.1 Language Types . 59
5.2 Main Aspects of Modeling Languages . 63

5.2.1 Abstract Syntax . 64
5.2.2 Semantics . 65
5.2.3 Concrete Syntax . 65
5.2.4 Domain . 66
5.2.5 Roles . 67
5.2.6 Tasks . 68

5.3 Chapter Summary . 68

6 Modeling Language Quality . 71
6.1 Overview of Modeling Language Quality . 71
6.2 Literature Review on Quality Requirements for Modeling

Languages and Models . 74
6.2.1 Review Protocol . 74
6.2.2 Paper Selection and Data Extraction 77
6.2.3 Guidelines, Principles and Quality Criteria for

Modeling Languages and Models . 81
6.3 Process Map Quality . 121
6.4 Chapter Summary . 126

7 Abstract Syntax and Semantics of the Language for
Designing Process Maps . 127
7.1 An Explorative Study for Defining the Abstract Syntax and

Semantics . 128
7.1.1 Method for Generating a Process Map Meta-Model 129
7.1.2 Method for Identifying Usage Patterns of Process Map

Concepts . 132
7.1.3 Process Map Collection for Abstract Syntax 132

7.2 Abstract Syntax of Language for Designing Process Maps 136
7.2.1 Process Map Meta-Model . 136
7.2.2 Use of Process Map Concepts . 144

7.3 Chapter Summary . 148

8 Concrete Syntax of the Language for Designing Process
Maps . 151
8.1 An Explorative Study for Defining the Concrete Syntax 151

8.1.1 Method for Generating Concrete Syntax 152
8.1.2 Process Map Collection for Concrete Syntax 155

8.2 Visual Representation of Process Map Concepts and Concept
Relations . 155
8.2.1 Current Concept Representation . 155

Contents XV

8.3 Final Selection of Concrete Syntax of the Language for
Designing Process Maps . 171

8.4 Chapter Summary . 175

9 Suitability of BPMN for Designing Process Maps 177
9.1 Methods . 177

9.1.1 Data Collection . 177
9.1.2 Semantic Mapping . 178
9.1.3 Representation Analysis . 179

9.2 Findings . 180
9.2.1 BPMN - Process Map Concepts Semantic Mapping 180
9.2.2 Suitability of BPMN for Designing Process Maps 183
9.2.3 Discussion of Results . 184

9.3 Chapter Summary . 185

10 Evaluation of the Language for Designing Process Maps . . . 187
10.1 Theoretical Considerations . 188
10.2 Hypotheses Development . 189
10.3 Experiment Design . 191

10.3.1 Experiment Treatments . 192
10.3.2 Experiment Material . 193
10.3.3 Participants . 196

10.4 Experiment Results . 196
10.4.1 Demographics . 196
10.4.2 Hypotheses Testing . 199

10.5 Discussion . 201
10.5.1 Discussion of Results . 201
10.5.2 Threats to Validity . 203

10.6 Chapter Summary . 205

11 Conclusion . 207
11.1 Summary of Results . 207
11.2 Implications of Results . 209
11.3 Future Research Outlook . 212

References . 215

Appendices . 231

Interview Guideline . 231

Experiment Material . 235

List of Tables

1.1 Chapter contributions . 3

3.1 Reference frameworks for storing business processes 30

4.1 Industries . 45
4.2 Symbol description . 47

6.1 Search expressions . 76
6.2 Papers found from literature search . 78
6.3 ID’s for domains, levels and types . 79
6.4 Cluster themes . 80
6.5 Quality requirements for concrete syntax . 84
6.6 Quality requirements for semantics . 94
6.7 Quality requirements for abstract syntax . 99
6.8 Quality requirements for roles . 105
6.9 Quality requirements for domain . 110
6.10 Quality requirements for tasks . 118
6.11 Principles for intra-language quality of process map language . . 124
6.12 Principles for extra-language quality of process map language . . 125

7.1 Process map collection (meta-model) . 133
7.2 Interviews . 135
7.3 Process map collection (usage patterns) . 136

9.1 Semantic mapping: BPMN elements - process map concepts . . . 180

10.1 Experimental design: groups and treatments 195
10.2 Demographics . 197
10.3 Process modeling experience . 198
10.4 Process map experience . 198
10.5 Domain experience . 199
10.6 Two-sample T-test results . 200

XVIII List of Tables

10.7 Paired T-test results . 201

List of Figures

1.1 DSRM framework, adapted from Peffers et al. [21] 7

2.1 BPM lifecycle [2, p.21] . 15
2.2 Reference BPM framework . 17
2.3 Operationalized reference BPM framework 18
2.4 BPM lifecycle activities . 19

3.1 Architectural domains, adapted from Lankhorst [88, p.45] 29
3.2 Process architecture levels, adapted from [2] 34
3.3 Example process map adapted from [7, 107] 38
3.4 Example process maps from practice [118] 41

4.1 Process maps - concrete syntax . 48
4.2 Semiotic clarity . 49
4.3 Cognitive effectiveness of process maps . 53
4.4 Effects from BPM . 55

5.1 Textual vs. visual representation . 61
5.2 Modeling language aspects . 64

7.1 Process map meta-model . 137
7.2 Occurrence Frequency of Process Map Concepts 145
7.3 Hierarchical Clusters of Process Map Concepts 147
7.4 Detailed hierarchical Clusters of Process Map Concepts 148

8.1 Visual variables from Moody [13] . 152
8.2 Example process map from practice [223] . 153
8.3 Symbols used in Figure 4.1 . 154
8.4 Symbols used . 156
8.5 Representation of process . 157
8.6 Representation of category . 158
8.7 Representation of phase . 159

XX List of Figures

8.8 Representation of input . 160
8.9 Example of input types . 161
8.10 Representation of output . 162
8.11 Example of input - process category - output 162
8.12 Example of output types . 163
8.13 Representation of object . 164
8.14 Representation of resource . 164
8.15 Representation of actor . 165
8.16 Representation of sequence relation . 166
8.17 Example of sequentially related processes . 166
8.18 Representation of decomposition relation . 167
8.19 Representation of specialization relation . 168
8.20 Representation of data flow relation . 169
8.21 Representation of manage relation . 170
8.22 Representation of support relation . 171
8.23 Concrete syntax of the language for designing process maps 172

9.1 Representation theory - criteria of completeness and clarity 179
9.2 Suitability of BPMN for representing process maps 184

10.1 Norman’s theory of action, adapted from [32, 138] 188
10.2 Base process map . 193

Acronyms

AS Abstract Syntax
AIS Association for Information Systems
ARIS Architecture of Integrated Information Systems
BPM Business Process Management
BPMN Business Process Modeling and Notation
BWW Bunge-Wand-Weber
c Quality Criterion
CM Conceptual Modeling
CS Concrete Syntax
D Domain
Di Diagram
DM Data Modeling
DoDAF Department of Defense Architecture Framework
DSL Domain-Specific Language
DSRM Design Science Research Methodology
EJIS European Journal of Information Systems
EM Enterprise Modeling
eTOM enhanced Telecom Operations Map
EPC Event Process Chain
ERP Enterprise Resource Planning
GUI Graphical User Interface
g Guideline
HOBE House of Business Engineering
IM Information modeling
IS Information Systems
ISJ Information Systems Journal
ISR Information Systems Research
IT Information Technology
IV Information Visualization
JSIS Journal of Strategic Information Systems
MIS Management Information Systems

XXII List of Figures

MISQ Management Information Systems Quarterly
MM Meta Modeling
PM Process Modeling
p Principle
R Roles
SCOR Supply Chain Operations Reference
S Semantics
SRS Software Requirements Specification
T Tasks
UML Unified Modeling Language
VL Visual Language
VPL Visual Programming Language

1

Introduction

This chapter is the introduction of this doctoral thesis. Here we present the
motivation behind the research conducted for this thesis. The chapter also
summarizes our main contributions and presents the research framework we
use as foundation. Moreover, we list the publications that came out as result
of the research we conducted and present the thesis structure.

Accordingly, the chapter is structured as follows. Section 1.1 states the mo-
tivation for our research. Section 1.2 summarizes the main contributions as
result of the research we present in the subsequent chapters, while Section 1.3
shows the framework we use as foundation for conducting this research. Sec-
tion 1.4 lists the papers that were published as result of the work presented
here, while Section 1.5 outlines the thesis structure.

1.1 Motivation

Organizations are complex entities that consist of units and people that work
together in order to satisfy the needs of customers. Many organizations are in-
clined towards vertical-thinking i.e. placing the focus on functional and hierar-
chical structures. However, as organizations today require flexibility and abil-
ity to address emerging business challenges, they often transition to process
orientation. In other words, they shift towards horizontal-thinking through
better understanding of their business processes [1]. Business Process Man-
agement (BPM) is widely used by organizations as a method to increase such
awareness and knowledge of business processes. In this context, business pro-
cess modeling is used to graphically represent business processes in form of
business process models. It has been recognized that having a business process
described visually instead of textually aids in easier and faster understand-
ing, performance and control of processes [2]. Thus, BPM has proven to bring
many benefits, such as a direct effect on customer satisfaction [3], business
performance, cross-functional thinking and interaction among employees [4].

2 1 Introduction

The number of organizations adopting BPM is quickly increasing. By this
means, so is the number of business process models as result of a BPM ini-
tiative. Within a single organization this number often ranges from hundreds
to even thousands of process models. In this context, companies structure
their process models in terms of a process architecture. A process architec-
ture defines how the set of business process models of one company can be
systematically organized [5]. It includes a process map as the top view of
the process architecture where the organization’s processes and the relations
between them are abstractly depicted. The details of each business process
shown on the process map are stored in the lower levels of the corresponding
process architecture.

The purpose of a process map is to show a holistic view of all processes
of one organization and the relations between them. It aims to provide an
overview of how the company operates as a whole, without necessarily going
into process details [6]. Therefore, the way a process map is designed is impor-
tant not only for enabling easier understanding of the company’s processes,
but also for the subsequent steps of the BPM implementation. This is be-
cause a process map is typically designed at the beginning of BPM initiatives
and is thus used as a foundation for the detailed process modeling. Hence, all
processes shown in the process map are those that are potentially considered
for the stages of the BPM lifecycle (process identification, process discovery,
process analysis, process redesign, process implementation, and process mon-
itoring & controlling) [2]. Moreover, the relations shown on a process map
level should also be reflected in the detailed process modeling [7].

Whereas managing process model collections has recently been a focal
point for research [8], aligning the process models in terms of a process archi-
tecture is still an ongoing research effort [5, 9–11]. Furthermore, while there
exist well-defined standardized languages for modeling singular business pro-
cesses (e.g. Business Process Modeling and Notation (BPMN), Event Process
Chain (EPC), Unified Modeling Language (UML), etc.), to the best of our
knowledge there is no such language for extensively supporting the design of
process maps. This has accordingly been our main motivation for commencing
the research presented in this thesis. The research question for this thesis is
the following: How to effectively model processes on an abstract level?

1.2 Summary of Contributions

The focus of this doctoral thesis is on the development of a language for
supporting the design of process maps. Table 1.1 presents the contributions
according to each chapter of this thesis. The key contributions of this thesis
are presented in Chapters 4, 6, 7, 8 and 9. These are:

• A method for assessing cognitive effectiveness of process maps
used in practice: It has been reported that the appeal of a model has an

1.2 Summary of Contributions 3

Chapter Contribution

Chapter 1: Introduction Introduction and motivation for the research con-
ducted in this doctoral thesis

Chapter 2: Business Process
Management

Overview of background on BPM

Reference BPM framework

Chapter 3: Organizing
Business Process Models

Approaches for organizing business process models

Overview of state of the art of process maps in liter-
ature

Chapter 4: Process Maps from
Practice and their Effect on
BPM Success

State of the art of process maps in practice

A method for assessing the cognitive effectiveness of
process maps

A method for assessing the effect of a process map
design on the BPM success in organizations

Chapter 5: Modeling
Languages

Overview of the main aspects of modeling languages

Chapter 6: Modeling Language
Quality

Results of a systematic literature review on quality
requirements for modeling languages

Quality requirements for developing a language for
designing process maps

Chapter 7: Abstract Syntax
and Semantics of the Language
for Designing Process Maps

A method for defining the abstract syntax and seman-
tics of the language for designing process maps

A method for identifying usage patterns of process
map concepts

Abstract syntax and semantics of the language for
designing process maps

Chapter 8: Concrete Syntax of
the Language for Designing
Process Maps

A method for defining the concrete syntax of the lan-
guage for designing process maps

Concrete syntax of the language for designing process
maps

Chapter 9: Suitability of
BPMN for Designing Process
Maps

A method for assessing the suitability of BPMN for
designing process maps

Chapter 10: Evaluation of the
Language for Designing Process
Maps

An experimental evaluation of the effectiveness and
efficiency of the language for designing process maps

Chapter 11: Conclusion Summary of thesis results

Implications for research and practice

Directions for future research

Table 1.1: Chapter contributions

effect on the user using the model [12]. Thus, it is important for models
to be designed appropriately. We found that although process maps are
owned by most organizations today, their design has hardly been subject
to research. Practitioners seem to approach this challenge rather as an
art where they rely on their own creativity. As a result, a diversity of
process map designs is used in practice, despite that most aim towards
the same goal. Many of them are evident cases of craftsmanship, where

4 1 Introduction

the concepts used for their design are not based on generally accepted
engineering principles for designing visual notations [13].
In Chapter 4 we present a method where we use the nine principles for de-
signing cognitively effective visual notations (semiotic clarity, perceptual
discriminability, semantic transparency, complexity management, cogni-
tive integration, visual effectiveness, dual coding, graphic economy, cog-
nitive fit) introduced by Moody [13] as means for evaluating the degree
of cognitive effectiveness of process maps from practice. Additionally, we
employ the cognitive fit theory, where we argue that a process map that
does not comply with the conditions stated by the principles is difficult to
interpret, and thereby yields unwanted, unanticipated or no beneficial ef-
fects. Applying this method we are able to assess the cognitive effectiveness
of process maps used in practice and how their design could potentially
have an effect on the underlying BPM success in the respective organiza-
tion. This method could be followed by all who wish to assess cognitive
effectiveness of models and their subsequent effect.

• Quality requirements for modeling languages and models: Model-
ing languages are typically used by both individuals and organizations, all
having diverse backgrounds and stemming from various industries. When
developing a language, this diversity needs to be taken into consideration.
Therefore, languages should serve relevant users in the most effective and
efficient way. One way of ensuring this is to develop the language for de-
signing process maps according to well-established quality requirements
for modeling languages. These are used to guide the development of the
language.
A large amount of prior studies introduce quality requirements, however
most of them refer to guidelines for creating singular models, rather than
for developing an entire modeling language. Similarly, numerous quality
criteria used to evaluate already existing modeling languages and models
have been proposed. Therefore, one main contribution of this thesis is a
consolidated list of quality requirements for developing modeling languages
and models, and for evaluating already existing modeling languages and
models. The list is presented in Chapter 6 and can be used as guidance
for all who wish to develop modeling languages, create models, or evaluate
both. We derive this list by means of a systematic literature review on
quality requirements for modeling languages and models. For the system-
atic literature review we follow the guidelines as proposed by Kitchenham
et al. [14]. As a result, we present a total of 314 quality requirements
coming from 79 papers published between 1980 and 2015.

• Definition of abstract syntax, semantics and concrete syntax of
the language for designing process maps: All languages consist of
syntax and semantics [15, 16]. In contrast to sentential languages, modeling
languages consist of abstract syntax, semantics and concrete syntax [16].
We refer to these as the intra-language parts of a modeling language.
Abstract syntax includes all concepts a language offers and rules that are

1.2 Summary of Contributions 5

used to combine concepts together in order to form valid expressions [16].
Typically, the abstract syntax concepts are represented in a form of a
meta-model, which is a model that defines the concepts that comprise the
language [17]. Every concept from the meta-model is assigned a unique
meaning. The meaning of each meta-model concept and the relations used
between the concepts comprise the language semantics [15, 16]. Concrete
syntax refers to the visual representation of concepts from the abstract
syntax. Thus, besides assigning semantics to meta-model concepts, each
concept is also assigned a designated symbol by means of which the concept
is being recognized [16].
Therefore, as a third major contribution of this thesis, in Chapters 7 and
8 we present methods on how to appropriately define the intra-language
parts of the language for designing process maps, that is both grounded on
well-established quality requirements from literature as well as on actual
empirical usage. Compliant to Kuehne et al. [17], we present the concepts
that comprise the language’s abstract syntax in form of a meta-model and
assign appropriate semantics to each meta-model concept. Furthermore,
for each meta-model concept we appoint a fitting visual representation by
means of which the concept can be recognized. The set of symbols com-
prise the language’s concrete syntax. Both meta-model concepts, concept
meanings and symbols are established from actual process map usage in
organizations today. The abstract syntax, semantics and concrete syntax
of the language also satisfy the quality requirements necessary to follow
when developing modeling languages.

• Method for checking language suitability for a particular pur-
pose: BPMN has become the leading standard for business process mod-
eling, due to its large list of elements supporting practitioners in modeling
all aspects of their business processes [18]. Despite its wide user accep-
tance, even organizations that use BPMN for modeling the details of their
business processes do not use this language for designing their process
maps. Thus, one contribution of this thesis is a method to check the suit-
ability of existing languages for a particular purpose which we present in
Chapter 9. We use this method to assess the suitability of BPMN for de-
signing process maps, since the purpose of a process map is different than
the one of a business process model. For instance, while a process map is
used to show an abstract overview of all company’s processes and relations
between them, a BPMN model is used to depict the details of a business
process shown on a process map, however excluding its details.
The method includes using the four semantic mapping relationships of
equivalence, intersection, subsumption and disjointness as defined by Ri-
zopoulos et al. [19] to match BPMN elements with process map concepts.
We use the results of the semantic mapping to assess BPMN’s expre-
siveness for designing process maps. We follow the representation theory
introduced by Wand et al. [20] and its two criteria of completeness and
clarity to evaluate the degree of expresiveness. Accordingly, we are able

6 1 Introduction

to argue the suitability of BPMN for depicting an abstract overview of all
company’s business processes and the relations between them.

1.3 Research Framework

The research we present in this thesis has been motivated by a real-world
problem, namely the lack of a dedicated modeling language that will support
organizations with the design of their process maps. Therefore, to develop the
language for desiging process maps we decided on following the stages of the
Design Science Research Methodology (DSRM) as proposed by Peffers et al.
[21] and comply to the design science guidelines introduced by Hevner et al.
[22]. The DSRM is a paradigm in which designers identify real-world prob-
lems and find solutions for them via the creation of artifacts, consequently
contributing to the body of scientific knowledge [23]. This methodology has
gained an eminent position in Information Systems (IS) research, as it com-
bines a focus on the Information Technology (IT) artifact with a high priority
on relevance in an application domain [23]. We consider this methodology
suitable for our purpose primarily because of the high heterogeneity of pro-
cess map designs we observe in practice. This heterogeneity exists due to the
lack of expressiveness existing process modeling languages offer for modeling
business processes on an abstract level. Therefore, since the DSRM is known
to be driven by problem-centered entry points [21–23], it is a fitting framework
to use and position our research in.

This thesis is structured along the six stages of the DSRM framework
introduced by Peffers et al. [21]. The DSRM framework with its according
stages are illustrated in Figure 1.1. On the right-hand side of the figure are
the generic DSRM stages as proposed by Peffers et al. [21], whereas the left-
hand side of the figure shows each of the stages elaborated in terms of the
process map language and the phases its development will go through. In the
following paragraphs we elaborate on each of the DSRM stages depicted in
Figure 1.1.

Problem identification and motivation

The first stage of the DSRM framework is dedicated to the identification of
a relevant real-world problem. After a problem has been identified, we need
to motivate and argue the value of addressing this problem and propose a
solution for it [21]. Problem relevance is namely one of the guidelines suggested
by Hevner et al. [23] as crucial for the definition of the artifact objectives
prior to its development. In line with this DSRM stage, we observed a high
heterogeneity of process map designs in practice. Chapters 2, 3 and 4 serve as
motivation for this thesis, which triggers the development of a language for
designing process maps.

1.3 Research Framework 7

Fig. 1.1: DSRM framework, adapted from Peffers et al. [21]

Definition of solution objectives

The second stage of the DSRM framework stands for the objectives of the
solution for the problem identified during the first stage. Here, it is advised to
consider the feasible solutions and how they could be addressed [21]. Our main
objective for addressing the issue of process map heterogeneity in practice
is to offer organizations support when they undertake the task of designing
their process maps. This support is in a form of a dedicated language for
designing process maps. The language should offer organizations all elements
they require in order to be able to create process maps which are both complete
and correct. A process map is complete if it includes all requirements the
organization desires to include in their process map, while a process map is
correct if it precisely illustrates how the organization operates as a whole
without the need to go into the process details. Chapter 5 elaborates on the
main aspects we consider when developing the language for designing process
maps.

8 1 Introduction

Design and development

The third stage of the DSRM framework is where the design and development
of an artifact takes place [21]. The artifact is the language for designing pro-
cess maps, which is the solution of the problem identified during stage one.
According to Hevner et al. [23], an artifact must be completely and precisely
described, such that it can be utilized in the real-world domain from where
the problem originates [23]. As languages are used by people to be able to
communicate with each other, they should consist of all concepts people re-
quire to be able to express thoughts, feelings and knowledge [24]. Similarly,
the language for process maps should provide organizations all concepts they
require such that they would be able to depict how the organization operates
without necessarily going into the process details.

First of all, we conduct a systematic literature review on quality require-
ments for developing modeling languages. We do this to ensure the language
we develop is according to well-established scientific principles. Next, for the
language development we rely mainly on empirical data. Hence, we follow an
explorative approach for defining the concepts and rules for combining con-
cepts together that will comprise the language for designing process maps.
Additionally, we use hierarchical clustering in order to identify usage patters
in process maps from practice. This enables us to get empirical insights on
how concepts are typically used in process maps. Similarly, we reuse symbols
practitioners use for visually depicting the concepts they include in their pro-
cess maps. As a result, we offer organizations a language which consists of
already familiar elements.

Demonstration

During the demonstration stage of the DSRM framework, the usability of
the developed artifact is demonstrated in the domain where the problem orig-
inated intially [21]. Namely, we use the language we have developed to redesign
an existing process map from practice. Accordingly, we can evaluate the ef-
fectiveness and efficiency of the redesigned process map as opposed to the
existing process map. The utility of an artifact must be demonstrated with
the use of evaluation methods [23].

Evaluation

In the evaluation stage, the artifact that has been demonstrated needs to
be observed and measured in order to determine if it is able to solve the
problem that has been identified in stage one of the DSRM framework as
shown in Figure 1.1 [21]. We evaluate the redesigned process map, which uses
concepts from the language we have developed, by means of an experiment.
First of all, we take Norman’s theory of action [25] as basis for the language
evaluation. According to this theory, a process map has been designed to

1.4 Publications from my Research 9

represent a certain domain, thus the modeler who creates the process map
communicates a domain through the design of the process map. The theory
is used to ensure that the process map reader has interpreted the correct
domain that the modeler of the process map has communicated. Therefore,
we conduct an experiment where participants solve tasks on basis of an old
process map of one organization (not created using the language for designing
process maps) and a redesigned process map (created using the language for
designing process maps). As a result, we are able to compare the effectiveness
and efficiency of both process maps. The results of the evaluation stage coud
initiate the design and development stage again, in case they indicate that an
improvement of the artifact is necessary.

Communication

The last stage of the DSRM framework is communication. This stage is where
we ensure to communicate the results we derived via scholarly publications
[21]. Communicating our findings will enable practitioners to take advantage
of the benefits of the language we have developed [23]. Similarly, by presenting
our findings via scholary publications we contribute to the current body of
knowledge by developing an artifact that can furthermore be evaluated for its
use on which basis potential theories could be developed [22].

1.4 Publications from my Research

Parts of the research conducted for this thesis have resulted in publications.
The following list provides an overview of these.

Publications concerned with BPM adoption:

• Malinova, Monika, and Jan Mendling. ”A qualitative research perspective
on BPM adoption and the pitfalls of business process modeling.” Business
Process Management Workshops. Springer Berlin Heidelberg. (2012) [26].

• Malinova, Monika, Brina Hribar, and Jan Mendling. “A framework for
assessing BPM success.” ECIS. (2014) [27].

Publication concerned with process architecture:

• Malinova, Monika, Henrik Leopold, and Jan Mendling. “An Empirical In-
vestigation on the Design of Process Architectures.” Wirtschaftsinformatik
75. (2013) [5].

10 1 Introduction

Publications concerned with process maps:

• Malinova, Monika, and Jan Mendling. “The Effect Of Process Map Design
Quality On Process Management Success.” ECIS. (2013) [6].

• Malinova, Monika, Henrik Leopold, and Jan Mendling. “An Explorative
Study for Process Map Design.” Information Systems Engineering in Com-
plex Environments. Springer International Publishing. (2014). 36-51 [28].

• Malinova, Monika, Henrik Leopold, and Jan Mendling. “A Meta-Model for
Process Map Design.” CAiSE (Forum/Doctoral Consortium). (2014) [7].

• Malinova, Monika. “A Language for Process Map Design.” Business Pro-
cess Management Workshops. Springer International Publishing. (2014)
[29].

• Malinova, Monika, and Jan Mendling. “Leveraging innovation based on
effective process map design: Insights from the case of a European in-
surance company.” BPM-Driving Innovation in a Digital World. Springer
International Publishing. (2015). 215-227 [30].

• Malinova, Monika, and Jan Mendling. “Why is BPMN not appropriate for
Process Maps?.” ICIS. (2015) [31].

1.5 Thesis Outline

This thesis consists of eleven chapters. The first part of this thesis is dedicated
to the state of the art of process maps in both literature and practice, as well
as to modeling language quality. Specifically, in the following three chapters we
provide an overview of the background on business process management and
we present the state of the art of process maps in literature and in practice.
The two chapters after are dedicated to modeling languages. In particular,
we discuss the main parts that comprise a modeling language and present a
list of quality requirements for developing and evaluating modeling languages
and models created by languages. The second part of this thesis is dedicated
to the definition of the language parts used for designing process maps. In
addition, we also present how we evaluate the language and provide reasoning
behind why the standard process modeling language most often used today by
organizations is not appropriate for designing process maps. The last chapter
concludes this thesis. Following, we provide brief explanation of the contents
presented in each chapter.

• Chapter 1: Introduction In this chapter, we provide the motivation
for undertaking the research that is presented in this doctoral thesis. In
addition, we list our main contributions, introduce the framework used as
foundation for positioning the research we conducted and list the publica-
tions which resulted from this thesis.

1.5 Thesis Outline 11

• Chapter 2: Business Process Management This chapter sets the
scene of this thesis. In particular, we give an overview of business pro-
cess management and define the terms we refer to throughout this thesis.
We do this by presenting a reference framework for BPM adoption. The
framework comprise eleven BPM elements, each holding an exhaustive list
of activities organizations should consider when adopting BPM. Using the
reference BPM framework we are able to highlight the value of a process
map used as foundation for the detailed process modeling.

• Chapter 3: Organizing Business Process Models In this chapter,
we present the multitude of techniques used to manage process model col-
lections that come as result of organizations adopting BPM. The chapter
focuses on process maps, as one technique being used for abstracting from
large collections of business process models. Accordingly, we present the
state of the art of process maps in literature. We also state the most com-
mon elements included in process maps as stated by prior studies.

• Chapter 4: Process Maps from Practice and Their Effect on BPM
Success Whereas Chapter 3 presents the state of the art of process maps
from literature, this chapter reports on the state of the art of process maps
from practice. Accordingly, we present a study we conducted to assess the
cognitive effectiveness of process maps owned by organizations. In addi-
tion, we show how the extent of cognitive effectiveness of process maps
could affect the company’s underlying BPM success.

• Chapter 5: Modeling Languages This chapter is concerned with mod-
eling languages and aspects concerned with modeling languages. Here we
define the intra-language parts of modeling languages, namely abstract
syntax, semantics and concrete syntax. In addition, we discuss the usage of
modeling languages, which is primarily concerned with the extra-language
parts, namely domain, roles and tasks.

• Chapter 6: Modeling Language Quality In this chapter, we discuss
the importance of quality of modeling languages. The chapter provides re-
sults of a systematic literature review we conduct on quality of modeling
languages and models created by modeling languages. We present a list
of quality requirements concerned with the intra-language parts (abstract
syntax, semantics, concrete syntax) and the extra language parts (domain,
roles, tasks) of modeling languages. In addition, we introduce the quality
requirements we use as guidance when developing the language for process
maps.

• Chapter 7: Abstract Syntax and Semantics of the Language for
Designing Process Maps This chapter elaborates on the methods we
use to define the abstract syntax and semantics that comprise the language

12 1 Introduction

for designing process maps. We show how we define the abstract syntax
and semantics on basis of empirical data. Accordingly, we introduce the
language’s abstract syntax which consists of concepts, concept relations
and rules used to combine concepts together. The chapter also introduces
the semantics for each process map concept.

• Chapter 8: Concrete Syntax of the Language for Designing Pro-
cess Maps The chapter reports on the techniques we follow to define the
concrete syntax of the language for designing process maps. We report on
the method we employ to assign a visual representation to each process
map concept we introduced in Chapter 7. Here we also show how the con-
crete syntax of the process map language has been defined according to
the quality requirements we derived and presented in Chapter 6.

• Chapter 9: Why is BPMN not Appropriate for Process Maps
This chapter explains the reason why the standard process modeling lan-
guage (BPMN) most used by organizations today is indeed not suitable
for designing process maps. We use semantic mapping to map BPMN con-
cepts with process map concepts. As result of the mapping we are able to
use the representation theory introduced by Wand et al. [20] and its two
criteria of completeness and clarity to argue the appropriateness of BPMN
for designing process maps.

• Chapter 10: Evaluation of the Language for Designing Process
Maps In this chapter, we show how we evaluate the language for design-
ing process maps by means of an experiment. We start by introducing
Norman’s theory of action [32] which we use as theoretical lens on basis
of which we formulate our hypotheses. The chapter describes the experi-
mental design, where we present the material we use and the participants
that take part in the experiment. We test the language’s effectiveness and
efficiency by using two treatments. One treatment is a process map de-
signed using the language we have developed, while the second treatment
is a process map not using the full scope of elements our language offers.
We tested our hypotheses on basis of which we are able to confirm the
superiority of our language.

• Chapter 11: Conclusion The last chapter concludes this doctoral thesis.
Here we summarize the results of this thesis, discuss the implications of
the findings and state an outlook of potential future research regarding
process maps.

2

Business Process Management

This chapter positions process maps in the area of business process man-
agement. The chapter provides an introduction to BPM, introduces the key
concept of BPM and business process modeling, discusses BPM adoption,
and presents a reference framework for BPM adoption. The framework com-
prises of eleven elements and is a consolidated work of eight BPM frameworks
introduced by prominent researchers in the BPM field. It can be used by
organizations that adopt the BPM approach.

The chapter is structured as follows. Section 2.1 gives an overview of BPM,
business process modeling and business process models. In Section 2.2 we
present a holistic reference framework for BPM adoption. Furthermore, in this
section we describe the elements that comprise the framework and present all
activities included in each. Section 2.3 summarizes this chapter.

2.1 Business Process Management Adoption

Business Process Management is an approach for analyzing and constantly
improving business processes in organizations [33]. It uses methods, techniques
and software in order to identify, describe and control all company’s business
processes. BPM has been adopted by many organizations for improving their
business processes in order to serve their customers more efficiently and ef-
fectively. A business process is defined as a collection of activities performed
in a pre-defined order with the aim to satisfy the needs of customers [34, 35].
Typically, during the execution of a business process a number of actors and
objects are involved in order to produce an outcome that is of value to a
customer.

BPM has developed from ideas of Business Process Reengineering (BPR)
towards a permanent practice to improve processes in both incremental and
radical ways [36]. BPM adoption takes place when an organization starts
managing their business processes. The benefits mentioned for BPM range
from process transparency and standardization, to process improvement and

14 2 Business Process Management

automation. Organizations typically adopt the BPM approach for all or a set
of these reasons [37].

The study conducted by Reijers et al. [38] categorizes the objectives of
BPM into two groups. The authors distinguish between business objectives,
such as improving business performance, and technical objectives, such as an
Enterprise Resource Planning (ERP) implementation. However, regardless of
which group of goals an organization pursues, both need to be aligned with
the organization’s strategy [39–41]. Accordingly, depending on the strategic
direction, the actions undertaken for the consequent BPM implementation
ought to lead to accomplishing the initially set goals. For example, organiza-
tions that follow the strategy of operational excellence might have goals like
increasing control over the company’s business operations, reducing time or
cutting costs. However, those who strive for customer engagement set their
BPM goals to meeting demands of the customers, or product leadership will
most likely include improving process quality and the ability to respond to
emerging opportunities. Therefore, organizations need to tailor their BPM
projects for achieving their goals. It is also important that BPM is not con-
sidered as a project with a limited time-span. Rather, a BPM project is an
ongoing task organizations conduct for continuously managing and monitoring
their business processes.

A BPM project typically entails the deployment of BPM concepts [38],
such as BPM methods, tools and techniques that enable organizations to
achieve a better understanding, performance and control of their business
processes. The key method that supports the steps towards reaping these
benefits is business process modeling. Business process modeling is the method
used to represent business processes in form of business process models, so that
the current state of the processes may be analyzed and accordingly improved.
Standardized notations such as BPMN, EPC or UML are typically used for
representing business processes in form of models. A business process model
is a graphical representation of a business process. A business process model
represents an understanding of the current state of a business process [2] and
is known to be more intuitive than, for instance, a textual description of the
same, as it eliminates the ambiguity of natural language.

2.2 Business Process Management Reference Framework 15

Fig. 2.1: BPM lifecycle [2, p.21]

The operational business process management activities can be organized
according to the different phases of the BPM lifecycle as shown in Figure 2.1.
The BPM lifecycle is used to manage processes in organizations in an ide-
alized and circular way [2]. The activities of the BPM lifecycle comprise
of, for instance, modeling, analysis, redesign, execution and monitoring of
business processes. However, as organizations have diverging objectives for
adopting BPM, such as improving process performance which can be achieved
through the phases of the BPM lifecycle, many organizations also aim at more
strategically-related objectives, such as aligning processes to the company’s
strategy. Accordingly, organizations might need to consider factors which go
beyond the activities performed during the BPM lifecycle phases. In order to
understand the different facets of BPM adoption, we first need to establish a
reference framework that summarizes the important aspects an organization
needs to consider for their BPM project regardless of their objective.

2.2 Business Process Management Reference Framework

For the definition of a framework for BPM we identify works on conceptual
frameworks that discuss the major components of BPM adoption [2, 36, 39,
42–46].

16 2 Business Process Management

Each of these works is acknowledged in the BPM research field; their frame-
works are well-established in research (e.g. [44]) as well as often used in prac-
tice (e.g. [45]). All frameworks are comprehensive and distinguish between
several stages a BPM project can go through. They partially serve the same
purpose for guiding the implementation of a BPM project in an organization,
and therefore cover complementary perspectives. For instance, some of the
models have been developed inductively from practice (e.g. [36, 45]), while
others stem from deductively working with literature (e.g. [2]). Also, some
models highlight the importance of people and culture for a BPM project
(e.g. [36, 39, 44]), while others focus more on the application side of BPM
(e.g. [2, 43, 46]). The models also partially differ in terms of detail. While
some models include more specific activities (e.g. [45]), others tend to stay
on a more abstract level (e.g. [36]). Despite the slight differences, all of these
models serve fundamentally the same purpose, which is business process man-
agement in organizations.

The result from our integration of BPM activities proposed by literature
is a conceptual BPM framework that includes a wide range of elements. Each
element is concerned with an organizational aspect that is important for the
success of BPM adoption. We identified eleven such elements, which are shown
in the framework in Figure 2.2. The framework aims to be holistic in the sense
that it is not restricted to operational aspects of BPM. It also incorporates
contextual factors such as Strategic Alignment, Governance, People and Cul-
ture. The contextual elements do not directly influence the way how business
processes are managed, but serve as mediators for the success. We organize
the eleven elements in three categories: BPM context factors, BPM infras-
tructure and BPM lifecycle. Each element contains activities an organization
should consider during their BPM project.

The first category includes the BPM context factors, which are factors
that are not directly influencing the business processes, but act as mediators
for their successful management. The elements in this category are Strategy
Alignment, Governance, People and Culture [39]. The activities these elements
contain are mainly concerned with the strategic side of BPM where certain
matters must be addressed and defined before the operationalization of BPM
begins. Among others, these are typically concerned with setting up goals
and objectives that are meant to be accomplished through BPM, aligning the
BPM initiative with the company’s strategy and ensuring the process skills of
involved people.

The second category involves the BPM infrastructure which relates to
setting-up the infrastructure where the process management will take place,
such as selecting the tools with which business processes will be modeled and
managed, and defining modeling guidelines.

2.2 Business Process Management Reference Framework 17

Fig. 2.2: Reference BPM framework

The third category comprises the phases of the BPM lifecycle [2]. Here the
focus is placed on the processes and it is where process improvement occurs.

2.2.1 Activities of Business Process Management

The literature mentions various activities that should be executed at the differ-
ent stages of a business process management project. We use the framework
as a map upon which we project the different activities that are explicitly
mentioned in the studies [2, 36, 39, 42–46].

18 2 Business Process Management

Fig. 2.3: Operationalized reference BPM framework

As a starting point, we take the six phases as defined by Dumas et al.
[2], because it is one of the most recent and consolidated work on the BPM
lifecycle phases and the activities each phase comprises. The activities that
relate to the BPM infrastructure are also found in Dumas et al. [2].

2.2 Business Process Management Reference Framework 19

Fig. 2.4: BPM lifecycle activities

As basis for the activities of the BPM context factors, we take the respec-
tive four elements proposed by Rosemann et al. [39]. Only the four out of the
six elements are included as BPM context factors in the reference BPM frame-
work, because the activities relating to methods and information technology
are operationally-oriented and already included in the phases of the BPM life-
cycle [2]. To assure a complete list of activities for each of the eleven elements
of the reference BPM framework, activities from all eight sources are added in
a stepwise fashion. Thus, the activities shown for the BPM context factors and
the BPM infrastructure from Figure 2.3 are all strategically-oriented activities
the eight studies propose for organizations to consider conducting during their
BPM projects. Same applies for the activities for each of the six phases of the

20 2 Business Process Management

BPM lifecycle. Hence, Figure 2.4 illustrates all operationally-related activities
organizations need to conduct during the course of their BPM project.

The resulting reference BPM framework can be seen in Figure 2.3. For the
sake of readability, the activities of the BPM lifecycle phases are shown in
Figure 2.4. The numbers next to each activity refer to the source where the
activity is identified as numbered at the bottom of both figures. As stated by
the eight studies [2, 36, 39, 42–46], there are three main relations between the
eleven elements, which can be seen depicted as arrows between the elements
in Figures 2.2 and 2.3. The first relation exists between the BPM context
factors and the BPM infrastructure. This relation means that all or a subset
of activities from the four BPM context factors should be conducted and
defined before the BPM infrastructure can be set-up. The second relation
exists between the BPM infrastructure and the BPM lifecycle and is of the
same nature as the first relation. Thus, the phases of the BPM lifecycle can
be operationalized only after the BPM infrastructure has been set-up. The
third relation exists between the four context BPM factors and the BPM
lifecycle. This relation designates that all that is done during the six phases of
the BPM lifecycle should be according to what has been defined by the four
context BPM factors. For instance, when a process undergoes redesign, the
newly implemented process should contribute to the accomplishment of the
company’s strategy, which is an activity defined by the contextual element
Strategy Alignment.

Concerning the activities that need to be conducted for all eleven elements,
besides each unique activity, four of the lifecycle phases (process identifica-
tion, process discovery, process implementation, and process monitoring &
controlling) also include refined activities. These activities are refined because
they are already done by the BPM context elements. However, for the purpose
of the particular phase, only a portion of what has already been defined is
needed. For example, the refined activity “design process map” from the pro-
cess identification phase is a partial activity from the BPM element Strategy
Alignment, namely the action “enterprise process architecture”. It is partial
because, in this context, the enterprise process architecture is designed to pro-
vide an overview of all processes of an organization and the relations between
them [39]. Whereas the process map includes only those processes that have
been identified in the first phase of the BPM lifecycle and will be the focus
in all subsequent phases of the lifecycle [2]. Interestingly, we also observed
that the conceptual lifecycle phases process analysis and process redesign are
phases that do not include any refined activities from any of the BPM con-
text elements. While the remaining four phases where it is important to make
decisions based on external factors, such as those defined by the four context
elements, are the phases that include refined activities (process identification,
process discovery, process implementation, process monitoring & controlling).
The subsequent part of this chapter elaborates on the elements of the reference
BPM framework.

2.2 Business Process Management Reference Framework 21

2.2.2 Business Process Management Lifecycle

The BPM lifecycle consists of six phases. Each of the phases produce an
outcome that could be of use to stakeholders immediately, and is the input
that triggers the next phase of the lifecycle [2]. Figure 2.1 illustrates the BPM
lifecycle as proposed by Dumas et al. [2] and Figure 2.4 depicts the activities
an organization needs to conduct for each lifecycle phase. The six phases
of the BPM lifecycle are: process identification, process discovery, process
analysis, process redesign, process implementation, and process monitoring &
controlling. Following, each phase is briefly explained.

Process identification

Process identification is the first phase of the BPM lifecycle and is concerned
with the identification of goals to be reached through process management.
Accordingly, the aim of this phase is to identify the processes and relations
between the processes that will facilitate the goal achievement. The major
outcome of the process identification phase is a process map depicting the key
business processes and any means by which they are related to each other.
The process map acts as a process portfolio and is further used as foundation
for the subsequent phases of the BPM lifecycle. Entering the cycle shifts the
focus from the overall portfolio of processes towards a singular process.

Process discovery

The process discovery phase is concerned with the analysis of the identified
processes shown on the process map. This phase also deals with the precise
description of the current state of the business processes from the process map.
Accordingly, the current state of these processes is discovered and captured in
form of business process models. These process models are commonly referred
to as As-Is process models. If applicable, some quick process fixes are also
done during this phase, otherwise performance goals are set which will be
addressed in the subsequent phase of process analysis.

Process analysis

In the process analysis phase analytical techniques are applied in order to
determine weaknesses of the As-Is processes and their potential impact. The
issues which are identified during this phase are prioritized. This is done in
order for the next phase to recognize what are the most immediate issues that
need to be resolved first.

Process redesign

The process redesign phase of the BPM lifecycle addresses the weaknesses
that have been identified during the process analysis phase and comes up
with a reworked blueprint of the process. As result, the reworked processes are

22 2 Business Process Management

modeled in their To-Be states, which are processes with eliminated weaknesses.
During this phase it should be assured that no other processes are affected by
the redesign of the one particular process. This is usually done by consulting
the process map and identifying all those processes that are related to the
process being redesigned. In addition, a preliminary implementation plan is
prepared which together with the redesigned process models are the input to
the subsequent process implementation phase.

Process implementation

The To-Be processes from the process redesign phase are considered for pro-
cess implementation. Therefore, due to the change of some business processes,
the newly redesigned processes should be implemented through the entire or-
ganization. This is done such that the employees, especially those involved
with the redesigned process, to get familiarized and start following the steps
of the redesigned process. However, the outcome of this phase might also result
in an implementation of an information system as much as the introduction
of certain measures that will facilitate organizational change.

Process monitoring and controlling

Once the redesigned process is up and running, the process monitoring and
controlling phase continuously collects and analyzes process execution for per-
formance and conformance to regulations. During this phase bottlenecks and
errors are identified. Such insights, as much as changes in the business en-
vironment and the goals of the company, can trigger a new iteration of the
BPM lifecycle. In practice, the phases are hardly executed in a purely sequen-
tial way. Also, the circle is not always closed, e.g. when a company decides
only to document its processes without considering redesign.

2.2.3 Business Process Management Infrastructure

BPM infrastructure refers to the infrastructure which will be used as foun-
dation for the operational parts of BPM where the BPM lifecycle phases are
operationalized. Therefore, after establishing the objectives for BPM, a BPM
core team is assembled. This team will consist of people responsible for the op-
erationalization of the BPM lifecycle phases. In addition, before the lifecycle
phases are commenced, the appropriate modeling platform is being selected
where the process modeling will take place. The BPM team also defines the
modeling guidelines which will be followed during the modeling of business
processes.

2.2.4 Business Process Management Context Factors

Beyond the phases of the BPM lifecycle, organizations that strive for BPM
success look at BPM from a holistic perspective. In order to ensure a success-
ful BPM project, organizations typically take into consideration the contex-
tual factors we identified which influence the BPM implementation and its

2.2 Business Process Management Reference Framework 23

subsequent success. These are Strategy Alignment, Governance, People and
Culture. Hence, they should provide an environment with cultural readiness
[34, 39], employee awareness [39, 47], management support [39] and strategic
alignment [39, 48].

Strategy Alignment

Strategy Alignment indicates that the BPM initiative should be tightly linked
with the organizational strategy. This means that processes have to be de-
signed, executed, managed, and measured according to the company’s defined
strategy [39]. To increase the likelihood of successful BPM adoption, organi-
zations need a strategy-driven process improvement plan, enterprise process
architecture, clear and shared understanding of process outputs and related
KPIs (Key Performance Indicators), and have to evaluate the actual priorities
of key customers and other stakeholders [39].

Governance

Governance concerns establishing transparency by clearly defining and consis-
tently executing the decision-making processes. The actions conducted by this
element are to clearly specify the process roles and responsibilities, collect the
required process metrics and link them to performance criteria. Additionally,
process management standards are documented and defined, and it is ensured
that the quality and accuracy of process management principles with process
management controls is being maintained [39].

People

People are a core part of every organization. For BPM adoption to be suc-
cessful, people need to understand the concept of BPM and transform their
way of thinking about practices from a traditional functional style to a new
process model [49]. People involved in the BPM project need to have sufficient
process skills, expertise and process management knowledge [39]. Organiza-
tions should facilitate process education and learning, process collaboration
and communication, and ensure there are process management leaders [39].

Culture

Culture is composed of values, beliefs, attitudes and behaviors [50, 51] and
provides unwritten and often unspoken guidelines for how to get along in an
organization [52]. It is about creating a facilitating environment that com-
plements the various BPM projects [39]. Important dimensions of culture fa-
vorable for BPM adoption are accepting change and readiness for change,
process values and beliefs (including the broad process thinking and valuing
of processes), as well as process attitudes and behavior. Leadership atten-
tion and commitment to process management is also vital, along with process
management social networks, such as the existence of BPM communities [39].

24 2 Business Process Management

2.3 Chapter Summary

In this chapter, we provided an overview of business process management and
the key concepts this approach is build on. The chapter focused on adoption
of BPM, which occurs when an organization aims to become more process-
oriented. BPM adoption results in the commencement of a BPM project,
where organizations start to focus on their business processes, primarily with
the intention to better serve their customers and align their business pro-
cesses with the company’s strategy. We explored the current literature on
BPM adoption, in particular on conceptual frameworks that discuss the ma-
jor components of BPM adoption. We found eight works that introduce such
frameworks [2, 36, 39, 42–46]. Each of these works is acknowledged in the
BPM research field; the frameworks are well established in research as well as
often used in practice. All frameworks cover complementary perspectives of
BPM, some highlight the importance of people and culture when commencing
a BPM project, while others focus more on the application side of BPM where
the focus is solely placed on processes. All frameworks serve the same purpose
of guiding the implementation of a BPM project in an organization.

As result of the integration of the activities the frameworks offer, we pre-
sented a reference BPM framework that includes a wide range of elements,
each concerned with an organizational aspect that is important for the suc-
cess of BPM adoption. The framework is holistic because it is not restricted to
operational aspects regarded by the BPM lifecycle phases where the focus is
placed solely on the company’s business processes, but it also includes contex-
tual factors such as Strategic Alignment, Governance, People and Culture. We
found that, when organizations adopt the BPM approach, besides identifying,
discovering, analyzing and redesigning their business processes, they ought to
also consider the contextual BPM elements, which do not directly influence
the way business processes are managed, however they serve as mediators for
the success. In particular, we placed an emphasis on the creation of a process
map, which serves as both a strategic tool used to include the organization’s
management and as a guidance for the phases of the BPM lifecycle.

3

Organizing Business Process Models

As result of BPM projects, which are initiated by adopting the BPM ap-
proach, organizations are faced with process model collections that consist
of large amounts of business process models. In this chapter, we present dif-
ferent approaches for organizing business process models and handling such
large process model collections. In particular, the chapter discusses the no-
tion of a process architecture, which is one of the techniques presented and
used for managing process model collections. A process architecture covers
all processes of one organization, their according details and how they are
integrated with each other, thus encompassing an entire company in process
terms. Then, we focus on process maps which are the top-most view of process
architectures. Accordingly, in this chapter we present the state of the art of
process maps as reported in literature.

The chapter is structured as follows. In Section 3.1 we introduce the differ-
ent techniques presented in prior literature and used to handle process model
collections. Section 3.2 elaborates on the notion of process architecture, while
in Section 3.3 we introduce and discuss process maps. The section presents
the origins of process maps and their state of the art as reported in prior
literature. Last, Section 3.5 concludes this chapter with a summary.

3.1 Process Model Collections

As a result of BPM projects, organizations often end up with a large collection
of hundreds to thousands of business process models, which may have limited
value if not organized properly. Large process model collections lead to further
requirements, such as how to effectively search for processes given a large
process model collection. Testing for the quality of the collection to ensure
it consists of unique and usable processes instead of process redundancies
and obsolete process models has also been a matter which emerged due to
process modeling. As organizations started to intensively model their business
processes, researchers became motivated to find solutions for managing and

26 3 Organizing Business Process Models

maintaining the large process model collections generated as a result. The
research done on process model collections is increasing rapidly, especially
during the last decade [8]. Due to the increasing number of research done
in the area of process collections, studies have been conducted in order to
consolidate existing research on the various techniques developed for their
management [8, 53].

One of the techniques used is process querying, a technique used to search
for a process with specific characteristics from a large process model collection
[8, 54]. For example, we can search for processes by specifying a query that
contains fragments. As a result we are able to identify all processes containing
all or some of the fragments included in the search query [55, 56]. There are
also studies done on searching for processes based on their behavior [57] and
searching through indexing [58]. Even a process querying language has been
introduced which could be used for applying this technique [59].

Searching for similar processes has also been a focus of research. Similarity
search is a technique used to find two or more similar processes from a process
model collection [8]. Methods have been developed that can search for two
exactly same process models which are included in the same process model
collection, or return those processes which are similar based on a scale from
0 to 1 [60–62]. Most methods base the scale on information such as the labels
of process activities, the structure or behavior of processes. Hence, if two
process models share exactly the same labels they are considered as similar.
Additionally, if these two process models also share the same structure and
behavior then they are exactly the same.

A considerable amount of research has been conducted on identifying and
managing business process variants [8, 63–70]. A process variant is a spe-
cialization of a so-called standard process. For example, the business process
“Manufacturing” is a standard process. However, there might be variants to
this process that correspond to the different types of products that need to be
produced. For instance, in a furniture company a chair cannot be produced
exactly the same as a table. Accordingly, there is a process variant of the
manufacturing process for producing chairs and one for producing tables. Or-
ganizations nowadays deal with many process variants, most stemming due
to constraints such as legal or regional. Accordingly, studies have emerged
that propose ways to manage the process model variants that exist in pro-
cess model collections [8]. Some techniques generate one consolidated model
that capture all process variants (e.g. through the use of logic gateways such
as AND and OR). However, there are others that aim towards keeping the
process variants separate while keeping track of all [70].

Merging processes is another method used to streamline a process model
collection. This method is used to check whether there are redundant processes
in one process collection, and if there are then they are merged. Similar to
similarity search, processes could be merged based on information such as
activity labels [71–74], process behavior [71, 72, 75] and even language support
[8, 71, 72, 75]. However, as result of merging, processes could become very

3.1 Process Model Collections 27

complex due to the inclusion of all differences each process entails. These
differences are often integrated within one process model and each difference
is further considered as a process variant part of a large consolidated process.

It is also possible to mine business rules from a collection that consists of
similar processes [8, 76, 77]. Refactoring has also been used to handle large
process model collections [8]. Same as similarity search and process merg-
ing, refactoring is used to find so-called clones in process model collections.
Clones are redundant process models within one process collection [78–80].
However, refactoring could also be applied to identify improperly labeled ac-
tivities. Therefore, this method could be used in cases where process model
collections require fixing certain issues. A process model collection is also a
source for process model reuse [8]. This particularly refers to reference pro-
cess models. Such a collection contains process models that can be reused by
organizations if the process fits their domain of choice and has the required
process granularity [79, 81].

Repository technology has also been proposed as a tool to store process
models [8]. All of the aforementioned techniques could, in turn, be used to
manage the respective process model repositories. Finally, process model col-
lection organization has been receiving some attention by researchers, as well.
It is the increasing process modeling initiatives of organizations and the conse-
quent large sets of process models that have motivated researchers to find ways
to organize the resultant process models, in order for them to be efficiently
and effectively used by the respective organizations. So, besides techniques for
searching for similar processes, processes for potential merging and processes
for refactoring, research is increasing on how to organize large process model
collections in order for organizations to have an overview of all their processes
and to be able to browse the collection to easily find process models they need
[8].

Approaches for offering different views of processes have been introduced
with the aim of organizing process models [82, 83]. Views are typically used
to address the needs of various groups of stakeholders (e.g. organizational
view which shows the different departments and people involved with the
company’s processes [83]) [8]. Recently many studies refer to process relations
as a major facilitator for easier navigation through large sets of processes [84].
In particular, using subprocesses leads to a better overview of a vast amount
of processes [85, 86]. By using subprocesses many process steps can be hidden
and shown only when necessary. Alternatively, there is also the generalization
relation used between a standard process and its variants [85, 86]. It has
been claimed that we can achieve and visualize an overview of a collection
of processes by identifying the relations used to connect these processes with
each other [8]. The concept which has been used in literature for storing all
these processes together with their according details and the relations between
them is called a process architecture [5, 9, 11].

This thesis is concerned with the topic of process collection organization,
in particular with process maps which are the top-most view of a process

28 3 Organizing Business Process Models

architecture. Accordingly, the following subsections present the state of the
art of process architectures and process maps in literature.

3.2 Process Architecture

An architecture is “the fundamental organization of a system, embodied in its
components, their relationships to each other and the environment, and the
principles governing its design and evolution” [87]. When we want to build
a new house we first appoint an architect who will design a blueprint of all
parts the house will include, such as the rooms and how these are related to
each other (e.g. the doors used to go from one room to another). Hence, the
architect creates the architecture as a framework on basis of which the house
will be built. Similarly, to manage the complexity of any large organization
an architecture is often built [88]. Many different architectures co-exist within
an organization, each concerned with a particular domain [88]. Figure 3.1
illustrates the various architectural domains. For example, the application ar-
chitecture includes all software applications an organization needs to run its
business processes, the process architecture depicts all business processes that
are done by the organization typically with the help of applications, and the
product architecture represents the products that come as result of the busi-
ness processes shown in the process architecture. All these architectures coex-
ist within an organization and are referred to as enterprise architecture. “An
enterprise architecture is a coherent whole of principles, methods, and models
that are used in the design and realization of an enterprise’s organizational
structure, business processes, information systems, and infrastructure” [88].
They aim to abstract from the complexity of large organizations by showing
its main components and how they interact with each other.

As depicted in Figure 3.1, there is a dedicated architecture for each in-
dividual component included in an enterprise architecture. Often only the
architect is interested in the enterprise architecture in its full scope and detail
[88], therefore these individual architectures, also referred to as views, are used
to represent the different perspectives of organizations which are of concern to
a different set of stakeholders. One such view are the business processes of an
organization. In Figure 3.1 the process architecture is portrayed as core to the
enterprise. This is because organizations operate through their business pro-
cesses, whereas the other architectural domains either serve the processes (e.g.
technical architecture includes the IT necessary for the applications which are
used to run business processes) or are the outcome of them (e.g. products
displayed in the product architecture are result of business processes).

Process architecture is used as a means for understanding the organization
from a business process perspective [89]. Prior studies have pointed out that
many organizations fail to look at their processes as an integrated collection
and rather focus on singular processes [90]. A process architecture is of good
help in this regard, because it explicates the relations between the different

3.2 Process Architecture 29

Fig. 3.1: Architectural domains, adapted from Lankhorst [88, p.45]

processes of an organization [5]. The definition of a process architecture is
a problem that relates to the research area of quality management for pro-
cess model collections. There are various works that help to verify a single
process model [91], to restructure it [92], or to rework labels [93]. There is
also a significant amount of research done on business process architectures in
terms of identifying relations between business processes from process model
collections as well as empirically grounded.

Beyond the process details, a process architecture also holds the objectives,
principles and guidelines used as foundation for the process models [45]. Hav-
ing an established process architecture is bound to save time and effort when
discussing the company’s processes. It is used between different stakeholders
as means of communication about the process objectives and principles. Hence
it should avoid potential misinterpretation as it is the source everybody uses
as basis for discussions [45]. Thus, a process architecture is used as a refer-
ence for any changes in the way an organization chooses to approach BPM
[45]. It is the link between the organization strategy and the phases of the
BPM lifecycle and is a prerequisite for any organization wishing to undertake
successful BPM-related activities. The process architecture is then used as
the foundation for the organization’s BPM projects. As seen in Figure 3.1,
a process architecture being the core of an enterprise architecture ensures
that processes are aligned with the technical architecture and applications
and with related processes. It also serves as an insurance that the redesigned
processes are meeting the organization’s objectives and fit within the orga-
nization strategy. Particularly, a process architecture presents the company’s
processes in an easily understandable manner [45].

30 3 Organizing Business Process Models

Framework Description

SCOR Framework used to describe complex supply-chain processes. It consists of
four levels: level one defines the supply-chain processes, level two holds 26
core processes, level three keeps information about the 26 processes, level
four focuses on supply-chain improvement implementation.

Handels-H Framework used to understand the organizational structure and IS used in
the retail industry. It consists of two main pillars: one pillar includes mate-
rial procurement and order management activities, second pillar deals with
sales and distribution of goods. Link between the pillars is a warehouse.

eTOM Framework used for storing business processes from the telecommunica-
tions industry. It consists of levels, in level zero there are three main areas:
strategy, infrastructure & products area, operations area and enterprise
management area.

ARIS HOBE Framework used for managing the complexity of organizations. It offers
five views: control, function, data, product and organizational view. The
view integration is done via the control view, where business processes are
described.

DoDAF Framework used to integrate different architectural views of the US de-
partment of defense. It consists of three views: operational, systems &
service and technical view.

BPTrends Framework used to describe business processes. It consists of three levels:
enterprise, process and implementation level.

Table 3.1: Reference frameworks for storing business processes

Different reference frameworks for storing business processes have been
proposed. For instance, the Supply Chain Operations Reference (SCOR)
model has been developed to assist companies with their supply-chain man-
agement [94]. In particular, the SCOR model is used to describe complex
supply-chain processes, compare process performance with the company’s ob-
jectives and map software tools to business processes [94]. The SCOR model
consists of four levels. Level one defines the supply-chain operations. Level two
shows 26 core processes which could be part of the supply-chain shown on level
one. Level three holds information for each of the 26 core processes needed to
improve the supply-chain, such as process element definitions, benchmarks,
best practices, and system software capabilities to enable best practices. The
fourth level focuses on the implementation of the improvements done on the
supply-chain [94].

The Handels-H model has been introduced to help the retail industry un-
derstand their organizational structure and the information systems they need
[95]. The core of this model comprises of two main pillars, one including activ-
ities which are concerned with material procurement and order management,
while the other is dealing with sales and distribution of goods. The warehouse
where goods are stored serves as a link between both. In addition to the core
activities the model also includes administrative tasks necessary for their per-
formance, as well as management tasks, such as controlling, which lead the
core business [95].

3.2 Process Architecture 31

enhanced Telecom Operations Map (eTOM) has been developed for the
telecommunications industry and serves as a framework where business pro-
cesses can be described and analyzed to different levels of detail which is
decided according to their importance for the business [96]. The framework
has been introduced due to the increasing use of process modeling in organiza-
tions. It offers service providers a platform where they can define their business
processes and identify the relations between them. The framework consists of
levels, with level zero illustrating three main areas. The strategy, infrastruc-
ture & product area covers planning and lifecycle management, the operations
area includes the core of operational management, and the enterprise man-
agement area defines the corporate and business support management [96].

The Architecture of Integrated Information Systems (ARIS) introduced
the ARIS House of Business Engineering (HOBE), a widely used framework
for managing the complexity of organizations [83]. It offers five views, each of
concern for different stakeholders. The core of the framework is referred to as
the control view and is where the company’s business processes are described.
The integration with the other four views is done via the control view. For
example, the function view depicts the functions i.e. activities done during the
execution of the processes shown in the control view. The data view consists of
data used by the company’s business processes. Accordingly, the data needed
for each of the functions is represented in this view. The product/service
view illustrates the products and services as result of processes, while the
organizational view depicts all units that comprise an organization along with
the people and their respective positions for each unit. There is a person
appointed for each function shown in the processes from the control view [83].

The Department of Defense Architecture Framework (DoDAF) has been
especially developed for the United States Department of Defense. It is a
framework used to integrate the different architectural views of the depart-
ment. It consists of three main views [97]. The operational view captures
the processes and the data exchanged during these processes. The systems &
service view consists of the services and systems that support all processes
from the operational view. The technical view is for the rules that govern the
arrangement, interaction and relationships of the system parts [97].

Another established framework is the BPTrends pyramid that describes
company’s business processes in terms of three levels, namely enterprise level,
process level and implementation level [98]. Each level corresponds to activities
organizations need to address for their BPM project. For example, the enter-
prise level is concerned with activities such as defining the company’s strategy,
establishing the company’s process architecture, assigning performance mea-
sures for business processes, planning the process management activities and
aligning these with the company’s strategic direction. The process level is
where the process modeling and redesign takes place. The implementation
level is divided into two parts. The first part is human resource development,
where jobs are designed and process management trainings are being imple-
mented. The second part referred to as IT development is for the installation

32 3 Organizing Business Process Models

of the necessary ERP systems, for the development of applications where pro-
cesses will run and for monitoring the performance of business processes [98].

While SCOR [94], eTOM [96] and Handels-H model [95] focus on specific
domains and define architecture levels, ARIS HOBE [83], DoDAF [97], and the
BPTrends pyramid [98] take a more general, domain-neutral perspective. All
provide means of positioning the business processes on a predefined structure
based on hierarchical decomposition. However, some authors have reported
problems when applying these approaches in practice. For instance, Spanyi
[49] emphasizes that reference models lack cross functionality and that this
would be also the case for industry-specific models such as eTOM.

Besides the aforementioned frameworks primarily inspired and initiated
by practice, the topic of process architectures has also been discussed in prior
literature. In particular, for any work that deals with business processes there
is a process architecture set in place [2, 10, 99]. Organizations are entities
with many instances of many processes all operating at the same time [10].
Accordingly, a process architecture is helpful by depicting all these process
instances systematically. According to Dumas et al. [2], a process architecture
is a conceptual model that shows the processes of a company and explicates the
relationships between them. It consists of levels, the top-most level includes
the non-collapsed processes, which are processes not revealing any process
details, whereas the lower levels store the according details of each process
shown on level one. Accordingly, a process architecture helps to store all details
of process models and the relations between them in a systematic manner [5].

According to Ould [10] a process architecture is an illustration of the dif-
ferent process types in an organization and the relationships between them.
The author emphasizes the importance of dynamic relationships between pro-
cesses for understanding how an organization operates [10]. In accordance to
this study, the process architecture of each organization is a reflection of the
organization’s type of business i.e. the domain. The author propose the so-
called method Riva which is intended for managing processes in organizations.
Similar to the BPM lifecycle, Riva proposes steps organizations can use when
they start with process management, namely elicitation, modeling, analysis
and design of business processes. These steps correspond to the first four steps
of the BPM lifecycle (process identification, process discovery, process anal-
ysis and process redesign). However, while the BPM lifecycle emphasizes the
need of a process architecture and its creation during the process identifi-
cation phase, following the Riva method the process architecture should be
consulted during each of the four steps. This is done in order to make sure
that, for example, when the As-Is state of a process is being discovered the
relationships between this process and the other processes are also captured
and accordingly included in the respective process architecture. As reported
in the study, the steps proposed to develop a process architecture are [10]:

1. Identify the essential business entities of the company, where an essential
business entity is a thing that characterizes the business the organization is

3.2 Process Architecture 33

in (e.g. a manufacturing company would have as essential business entities
“supply resources‘”, “manufacture products”, “sale products”).

2. Identify the main units of work, which are processes and process activities
that comprise an essential business entity (e.g. “find suppliers” is a process
included in the essential business entity “supply resource”).

3. Discover how the units of work are related to each other and accordingly
record each identified relationship.

4. Use abstraction techniques for complex processes (processes that contain
many process activities) such as hiding some process activities.

5. Abstract until an overview of all processes is achieved.

Another study defines a process architecture “by the types of resources
used to perform the activities and their physical layout in the processing
network” [100]. According to this author, some organizations have a process
architecture to illustrate the main steps of a standard process used for pro-
ducing all types of products, while others use a process architecture as a
framework to find the right process depending on the product that needs to
be manufactured [100].

Weske [46] points to the different levels of business processes, ranging
from the company’s strategy definition to the operational business processes
where the processes are being implemented and the strategy operationalized.
As stated in the study, the company’s strategic direction is defined at the
highest level, while the operational goals that lead to the achievement of
the strategy are placed in the subsequent level. The third level is where the
business processes that assist in achieving the company’s strategy are shown,
along with their inputs, outputs and how they are related to each other.
Whereas in the third level the processes are abstractly depicted, while the
details of each process are stored in the lower levels. The last level is where
the implemented business processes are presented, which are the processes
from level three that contain information on the execution of the process
activities along with the technical environment in which they will be executed
[46].

In this thesis, we follow the definition of a process architecture as stated in
Dumas et al. [2] and is compliant to the view taken by Ould [10]. According
to Dumas et al. [2] a process architecture is a conceptual model that shows the
processes of a company and makes their relationships explicit. A very simple
illustration of a process architecture is shown in Figure 3.2. From the figure we
can observe that the part of the process architecture that covers the processes
on level one is known as the process map [2]. It shows all company processes
on a very abstract level and also depicts how these processes are related to
each other. The details of each of the processes shown on the process map are
then stored in the lower levels of the corresponding process architecture. For
example, level two of the process architecture holds processes at a finer degree
of granularity, but still in a quite abstract way [2]. The third level is then the
one where the processes are shown in more detail including control flow, data

34 3 Organizing Business Process Models

Fig. 3.2: Process architecture levels, adapted from [2]

inputs and outputs [2]. This decomposition continues until the desired level
of granularity for all processes is reached.

This thesis is concerned with the first level of a process architecture,
namely the process map. Therefore, in the next part of this thesis we fo-
cus solely on process maps. Next we present the state of the art of process
maps as reported in literature.

3.3 Process Maps

In literature and practice the terms process landscape and process map are
used interchangeably, both referring to the same concept. In this thesis, we will
use the term process map when referring to the top-most level of a process
architecture. We decided on this term because, in the field of cartography
i.e. the study and practice of creating maps, a map is a symbolic depiction
highlighting relationships between elements of some domain [101]. Therefore,
just as the world map illustrates the seven continents and means by which
these are related to each other, such as by water or by land, a process map
depicts the company’s main processes and means by which they are related
to each other. As reported in literature, the most important challenge for the
definition of a process architecture is the definition of the process map [2].
As shown in Figure 3.2, a process map is the top-most level of the process
architecture, hence it is the entrance to the lower levels of a corresponding
architecture where the details of the processes shown on the process map are
being stored. Each level, in turn, holds processes with various granularity.

Up until now a considerable amount of research has been done on BPM
and tools for business process modeling. Often, they refer to process maps as

3.3 Process Maps 35

an important step of the BPM project. It has been reported that a process
map has multiple purposes for organizations. For example, a process map
is used to describe the processes of the organization to all staff members
and stakeholders [45]. By placing the process map on the company’s intranet
site, it will likely facilitate understanding of the company from a process
perspective among the company’s senior executives, the management and the
rest of the staff, consequently providing focus for BPM within the organization
[45]. Researchers state that process redundancy could be avoided through
process standardization and a process map facilitates process standardization
[102]. Another study argues that by clearly identifying the interfaces of the
processes, sources of inefficiencies would be avoided [46]. This study illustrates
a process map of a manufacturing company, where processes are depicted and
their dependencies are clearly indicated [46, 103].

The creation of a process map is also likely to engage the company’s man-
agement in the modeling process, because it enables them to define the critical
business processes upon which they may wish to focus [45]. Owning a pro-
cess map will also assist in ensuring that all key executives, stakeholders and
participants in the BPM project have a common language and understanding
[45]. When emphasis is placed on singular processes, overlooking process inte-
gration might lead to process incompatibilities and inconsistencies [35]. From
a process perspective, it is also instrumental to combine the main processes
done across all departments in a company as it facilitates a cross-functional
view and understanding of the company’s processes [46]. Additionally, the in-
tegration of the multiple business processes of small granularity into processes
of larger granularity is likely to reduce the handover of work [46]. It has been
reported that the main benefit of the process map is its ability to provide a
high-level view of the company’s business processes that can be used to link
the lower level processes [45].

We can trace back the concept of process maps to the early 1980s when
Porter introduced the value chain model. According to Porter [104], in order
for organizations to have a competitive advantage, they need to systematically
manage their processes and interactions between them. A tool for achieving
this is the value chain model which provides a process view of an organization
and represents it as a set of core activities a company has to conduct in order
to create value for the customer [104]. “Value is the amount buyers are willing
to pay for what a firm provides them” [104]. According to Porter, the set of
core activities are of strategic relevance used as source of differentiation with
other alike companies [104]. Thus, even organizations stemming from the same
industry could have very different value chains. There are two types of value
activities depicted in a value chain, namely primary activities and support
activities [104]. Primary activities are ones that have direct impact on the
company’s value, whereas support activities support the primary activities by
providing them the necessary means for generating the company value.

The value chain is a collection of interdependent activities [104]. In order
to understand their mutual dependence, linkages between activities have to

36 3 Organizing Business Process Models

be identified [105]. Activities are related to each other in order to coordinate
the order of activity execution and thus achieve the same overall result, which
ultimately is competitive advantage [104]. In the value chain model the re-
lations between the primary and support activities are to a certain extent
explicitly shown, while the relations between the primary processes are rather
more subtle. For example, while it can be seen at what stage of a primary
activity a support activity is needed, the order of execution of the primary
activities is rather unknown.

Scheer adopts the concept of a value chain [83]. He introduces a diagram
that represents those processes that create value for the company. Compared
to Porter’s value chain, the processes are shown in a sequence and each could
be hierarchically decomposed into subprocesses that a super-ordinate process
needs in order to be executed [83]. Similarly, the BPTrends pyramid is often
referred to as a business process architecture for a value chain [98]. According
to Harmon [98], the value chain is usually labeled as the level zero process
that is further decomposed. The subprocesses are shown in the lower levels,
each holding different process granularity. This process decomposition is done
until a process cannot be decomposed any more. Thus, the lowest level of the
process architecture contains the singular activities of processes shown in the
value chain.

SIPOC is another frequently used approach for depicting processes on an
abstract level that also stems from the 1980s. It has especially been used in
Six Sigma and Lean manufacturing [98, 106]. Contrary to a value chain which
places emphasis on the company’s value, the focus of the SIPOC approach
is rather more customer-oriented. SIPOC stands for supplier, inputs, process,
outputs, and customer and is used to guide the analysis of these five aspects
with main focus on the customer [98]. Following the SIPOC approach organi-
zations can summarize their processes along with their relevant aspects, such
as inputs, outputs, suppliers and customers in a tabular form. It has been
used by organizations to lead their process improvement projects by identi-
fying inputs that trigger processes to start executing, suppliers of the inputs
and customers that consume the outputs as result of process execution.

Examples of concrete process maps can be found in literature [2, 45, 46,
98, 107–110]; however, all studies refer to process maps coming from practice.
Most are based upon the value chain concept, while some include additional
information as seen in the SIPOC approach. Compliant to the notion of a
value chain which emphasizes the integration of main processes, most studies
that embrace the importance of process maps for organizations often discuss
process relations as one of the most integral parts to be considered during the
creation of process maps [2, 5, 45, 46, 98]. It has been reasoned that an obvious
communication flow between processes contributes to a good understanding
of business process models, hence enabling a higher success rate than one that
is harder to interpret due to hidden process dependencies [111]. Accordingly,
the interfaces between the company’s business processes needs to be designed
carefully, since unclear process interfaces are a source of inefficiency [46].

3.3 Process Maps 37

According to Weske [46] a process map contains business processes as
blocks, while dependencies between the business processes are represented by
arrows. At this top level of the process architecture the business process is
treated as a black box, meaning that the process details are not given [46].
The process details are shown at a lower level of abstraction where opera-
tional business processes are at the center of attention [46]. Similarly, the
process interfaces shown on process maps need to be broken down to inter-
faces between the operational business processes stored in the lower levels of
the corresponding process architecture [46].

Dijkman et al. [112] proposed an approach for developing process maps
in an organization. The approach considers two dimensions: case type, which
classifies the types of cases that are handled by an organization, and business
function, where the functions of an organization are being classified [2, 9,
112]. A case is something that an organization handles, such as a product
or service that is delivered by an organization to its customers. A function
is something an organization does. Typically, a hierarchical decomposition of
functions can be made [2, 9, 112]. To be able to build a process architecture,
an organization needs to undertake the following four steps: identify case
types, identify functions for case types, construct one or more case/function
matrices, and identify processes. To be able to identify functions for case
types, a classification is developed of the functions that are performed on the
different case types. These are represented in form of a matrix that has the
different case types as columns and the different functions as rows [2, 9, 112].
The final step involves determining which combinations of functions and case
types form a business process [2, 9, 112]. This approach leads to the creation
of the process map that covers the processes on level one of the pyramid shown
in Figure 3.2.

Zur Muehlen designs a process architecture for storing BPMN models,
where the first level is the so-called milestones level, that serves as a process
map of the most important processes [113]. This process map outlines phases
of the process that end in milestones. He claims that this manner of storing
processes is easily transferable to other organizations that need to manage
the quality of BPMN models in large-scale modeling. As reported by Jeston
et al. [45], a process map represents the highest-level view of the organization
from a process perspective, particularly because it lists end-to-end processes.
An end-to-end process is frequently used interchangeably with a value chain
model. Accordingly, an end-to-end process is a cross-functional process, i.e. a
process that goes through more than one organizational unit [114]. It includes
all processes and activities necessary to produce an outcome which is used by
a customer [114, 115].

38 3 Organizing Business Process Models

Pre Sales
Order

Processing
Storage Shipping Debitors

After

Sales
Supplier Customer

Management

M
a
n

a
g

e
m

e
n
t

M
a
rk

e
tin

g

S
ta

ff

D
e

v
e

lo
p
-

m
e

n
t

C
o

n
tro

llin
g

R
e

v
is

io
n

E
x
te

rn
a

l

C
o

m
m

u
n
i-

c
a

tio
n

E
D

P

C
e

n
tr

a
l

S
e

rv
ic

e
s

A
d

m
in

.

A
c
c
o

u
n

ti
n

g

S
ta

ff

A
d

m
in

.

M
a
rk

e
ti
n

g

E
x
e

c
u

ti
o

n
 /

A
d

m
in

.

M
a
s
te

r
D

a
ta

P
ro

je
c
t

E
x
e
c
u
ti
o
n

S
e

m
in

a
r

E
x
e

c
u

ti
o

n

Support

Core

Process

Request

Process

Order

Create

Offer

Change

Offer

Purchase

Order

Rush

Order

Spare

Parts

External

Partners

Service

Orders

Inquiries

Fig. 3.3: Example process map adapted from [7, 107]

3.4 Process Map Elements

One thing all process maps have in common is that they all provide means of
identifying typical process categories and the role each type of process plays
for the company. Harmon gives an example of a process map containing three
types of processes: core, management and support [98]. He states that the core
processes describe a value chain in terms of sub-processes, whereas the other
two process categories are used to support its performance [98]. As stated by
Jeston et al. [45], the depiction of process grouping in process maps is usu-
ally shown in three categories: strategic processes, core processes and support
processes. Strategic processes ensure that all processes meet the specified ob-
jectives of the company, the core processes reflect the main business processes
of the company, while the support processes serve as supporters of the core
processes. Compliant to the value chain proposed by Porter [104], another
study suggests for organizations to make a distinction between primary and
support processes [9]. This makes it easier to identify the main processes that
directly add value for the client, while the rest only supports their execution.

Most of the process maps we found in literature depict processes belong-
ing to three different categories [2, 45, 46, 98, 107–110]. An example of such
a process map can be seen in Figure 3.3. Those processes that directly create
value for the customer and generate revenue are called core processes [6, 108].
In a process map, these processes are usually related to each other in a se-
quential manner. They are represented as end-to-end processes because they
have a customer request as an input, and contain all those processes that lead
to the request being served [114]. In Figure 3.3, the six core processes con-

3.4 Process Map Elements 39

stitute an end-to-end process, with an indicated input (Supplier) and output
(Customer).

The study by Garvin et al. [116] reported that core processes are often tar-
geted for redesign, yet many BPM projects have failed as they place exclusive
emphasis on core processes neglecting administrative processes and manage-
rial coordination. So, in addition to the core process category, the support
and management processes indirectly influence the value creation. Support
processes provide resources to the core processes and enable them to operate
in the most effective and efficient way, such as human resource management
and information technology. [35, 108]. Whereas, management processes in-
clude those processes that develop strategic plans, measure and analyze the
performance of the core processes, and ensure that their execution is aligned
with the company’s strategy [6, 108]. Thus, management processes are present
throughout the entire core process flow, whereas support processes are called
only when necessary. For example, the end-to-end process in Figure 3.3 is
triggered by a “Supplier” providing input, and all core processes are executed
up until the “Customer” has received the order. During the process execution
the support process “Accounting” may be called in case some payment done
by the customer needs to be handled. Similarly, a management process takes
care that throughout the entire process flow all activities carried out are in
compliance with the company’s strategy, such as high quality product and
customer satisfaction.

While an end-to-end process is built up of a number of core processes, a
core process is a singular process that contains activities. A large-scale en-
terprise typically deals with core processes that contain even hundreds to
thousands of such activities [8]. Therefore, in order to handle this complexity,
process maps also often exhibit the notion of process decomposition. To avoid
a process model becoming too complex, a core process is usually hierarchi-
cally decomposed into subprocesses [5, 108]. For example, in Figure 3.3 the
core process “Order Processing” is hierarchically decomposed into five sub-
processes (Process Order, Create Offer, etc.). Hence, this set of subprocesses
build up to the initial core process.

It is common for a process map to explicitly depict relations between
processes that belong in the same process category, such as the sequential
relation between the core processes and the decomposition relation between
a core process and its subprocesses, both seen in Figure 3.3. For example, a
chevron shape is typically used to represent core processes. The set of chevron
symbols placed close next to each other often suggest an end-to-end process.
Therefore, an explicit sequential relationship occurs in case of a close prox-
imity between two or more processes, such as the end-to-end process in the
core process category from Figure 3.3 or a directed arrow used between two
processes.

The dependency between the processes coming from different process cat-
egories is also frequently shown in process maps. In contrast to the sequential
relation between the core processes, many process maps use mechanisms which

40 3 Organizing Business Process Models

assist to implicitly show how process categories are related to each other. To be
able to depict this relationship, organizations tend to use the pentagon-shaped
symbol when depicting the management and support processes. The pentagon-
shaped symbol has the same shape as a chevron, however while a chevron is
horizontally-oriented, a pentagon-shaped symbol is vertically-oriented. Both
the management and support processes from Figure 3.3 are represented with
the pentagon-shaped symbol. Hence, due to the pointing pentagon-shaped
symbol towards the core processes we assume a relation where the support
processes support while the management processes manage the core processes
during their execution.

As seen, shapes are commonly utilized in order to differentiate between the
process types, as well as to implicitly represent certain meaning that cannot
be otherwise depicted. However, in addition to shapes practitioners frequently
use other visual variables, such as color and size [117] in order to strengthen
the message the process map should convey. For instance, to emphasize the
significance of core processes their size is increased compared to the size used
for the management and support processes. Similarly, often organizations use
a different color for the different process types. Sometimes this is used in
combination with a different shape, however in most process maps either one
or the other visual variable is utilized to differentiate between process types.

Beyond process categories and relations between processes, in process
maps from practice we also observe a number of additional concepts, such
as inputs and outputs of processes (e.g. “Suppliers” and “Customers” from
Figure 3.3). Some also include the main actors for each process shown on a
process map (e.g. process manager). This enables employees to immediately
recognize the persons to talk to when interested in the details of a particu-
lar process. Also the notion of resources can be observed and is used when a
process needs some resource during its execution in order for it to end (e.g.
resource water needed during electricity production process). It is often the
case that depending on the role the map plays in a company, all or a com-
bination of the concepts are used to design one process map. The concepts
together should deliver an overview of how the company operates, without
showing any details of the processes.

We have seen that process maps provide an abstract visual overview of
all processes of an organization and the relations between them. Also, other
concepts, such as actors and resources, are often included in process maps in
order to facilitate basic understanding of the way an organization operates,
without necessarily going into process details. A major challenge when creat-
ing a process map is to show how an entire organization operates and yet be
understandable. A process map has also to be sufficiently complete such that
all employees of the company can relate to it in their daily work, and accept it
as a consensual description of the company [2]. The main difference between a
process model and a process map is that a process model is a singular process,
or part of a process, shown on a process map however without revealing its
details. The details of a process shown on a process map are stored in the

3.4 Process Map Elements 41

different levels of the respective process architecture. Thus, while a process
model shows how one business process is done in details, a process map de-
picts how this business process works together and fits with the rest of the
company’s processes.

Fig. 3.4: Example process maps from practice [118]

In prior work, a rich stream of research has proposed guidelines for mod-
eling singular processes [8, 119, 120] and for process architecture design
[5, 89, 90, 99, 113, 121–124]. In contrast to all these efforts, hardly any guide-
lines for designing process maps on the most abstract level of the process ar-
chitecture exist. Existing process modeling languages (e.g. BPMN, EPC) are
being used by practitioners for depicting singular business processes in de-
tails. However, the way most process maps from practice have been designed
is not in accordance to the syntax nor the semantics of any of these process
modeling languages. Although it is valid to assume that an existing modeling
language could also serve for designing process maps, this is not what empir-
ical evidence shows. Examples of process maps from practice can be seen in
Figure 3.4. As the figure shows, practitioners seem to typically rely on their
own creative capabilities and use software packages not primarily developed
for process modeling purposes (e.g. Microsoft PowerPoint) when undertaking
this task. The elements used in the illustrated process maps from Figure 3.4
hardly resemble any of the elements offered by existing process modeling lan-
guages. Accordingly, process map design today is more of a craftsmanship,
rather than a scientific approach. As a result we are faced with a vast amount
of heterogeneous process map designs, despite the fact that they all serve a

42 3 Organizing Business Process Models

similar purpose. Clearly, a dedicated modeling language for process map de-
sign is missing. Addressing this gap has been the motivation for this thesis.
Accordingly, in the next chapters we present the steps we follow to develop a
language for designing process maps.

3.5 Chapter Summary

In this chapter we provided the state of the art of process maps as reported in
prior literature. First, we listed and briefly discussed the different techniques
for handling large process model collections. A process model collection con-
sists of the large amount of business process models which are generated as
result of BPM projects done by organizations. We found that one technique
used for systematically organizing a set of business process models is the use of
a process architecture. A process architecture gives an overview of all business
processes of one organization, along with the relations between the business
processes and their according details. Next, we positioned process architec-
tures in the context of enterprise architectures. In particular, we discussed the
importance of business processes in organizations and the fact that they are
used to integrate the rest of the components that compose an organization,
such as IT, products and data.

The second part of this chapter focused on process maps, which are the top-
most level of a process architecture. A process map depicts a visual overview
of all company’s business processes and how they are related to each other,
without revealing any of the process details. The details of the processes shown
on the process map are stored in the lower levels of the corresponding process
architecture. We found that process maps have multiple purposes for organiza-
tions. They are often used among stakeholders when discussing the company’s
business processes, and it is likely to involve the company’s management in
the modelling process, because it enables them to define the critical business
processes upon which they may wish to focus during the implementation of the
BPM project. We also reported on the origin of process maps. We found that
process maps are often based on the value chain model which has been intro-
duced by Porter [104] in the 1980s. The value chain model has been adopted
by Scheer where the processes that bring the value for an organization are
represented as a value chain [83]. Furthermore, we provided an overview of
the most commonly seen elements in process maps today, as seen in prior
studies. We showed that process maps commonly show processes clustered in
three categories, namely management, core and support process categories.
The value chain model is often used to show a sequential relation between
the core processes. Beyond processes and process relations, process maps fre-
quently depict inputs and outputs of processes, which are concepts adapted
from the SIPOC approach also stemming from the 1980s.

4

Process Maps from Practice and their Effect
on BPM Success

Above, we presented the state of the art of process maps as reported in lit-
erature. Moreover, we positioned the concept of process maps in the field of
BPM, as being part of a process architecture which is used by organizations
to systematically manage their business process models with the according
process details. We also highlighted the importance of organizations owning
a process map, as one of its multiple uses it to guide the operationalization of
the BPM lifecycle phases. This chapter is concerned with the state of the art
of process maps in practice. To this end, we collect existing process maps from
organizations in order to determine whether there is a a connection between
the way a process map is designed and the underlying success of BPM in the
respective organization.

In Section 4.1 we provide an overview of the notion of cognitive effective-
ness. In particular, we shed light on how a process map’s degree of cognitive
effectiveness might affect BPM projects differently. In this section we also
present the research design, where we elaborate on the techniques we employ
for collecting the process maps and analyzing them, respectively. The section
also gives an overview of the findings we derive as result of the process map
analysis, and discusses the cognitive effectiveness of the process maps under
investigation. Next, in Section 4.2 we present our findings on the connection
between the cognitive effectiveness of process maps and its potential effect on
the BPM success in organizations. Last, Section 4.3 summarizes the chapter.

4.1 Cognitive Effectiveness of Process Maps

Process maps play an important role in providing an overview of all pro-
cesses, such as the basic functioning of a company can be understood without
necessarily going into the process details. A process map focuses on depicting
process categories, relationships and dependencies between singular processes.
These aspects are typically shown as a visual representation serving as means
for basic communication and for increased understanding of current business

44 4 Process Maps from Practice and their Effect on BPM Success

processes. Based on the process map design, the next steps of the BPM life-
cycle could successively follow [2]. In view of that, the process map design
quality is essential for BPM success.

Above we acknowledged the many research efforts done on the design and
redesign of process models [111]. Also, developing techniques for managing
large process model collections have been receiving much emphasis [8, 125].
Different approaches for process architecture design have been defined [5, 9].
Also the significance of process architecture for BPM success has been empha-
sized [126–129]. Regardless of its evident importance, process map design has
hardly been subject to research. Practitioners seem to approach this challenge
rather as an art where they rely on their own creativity and a loosely defined
set of concepts in designing a process map. As a result, a diversity of process
map designs is used in practice, despite that most aim towards the same goal.
Many of them are evident cases of craftsmanship, where the concepts used
for their design are not based on generally accepted engineering principles for
designing visual notations [13]. Since the appeal of a model has an effect on
the users usage, it is important for such to be designed appropriately [12].
Given this diversity, there is a strong demand for research into the concepts
used and represented in a process map.

Below we address this gap by assessing the cognitive effectiveness of pro-
cess maps from 15 organizations. We do this by examining the degree to
which process maps comply with the principles for designing cognitively ef-
fective visual notations [13]. In addition, we employ the cognitive fit theory,
where we argue that a process map that does not comply with the conditions
stated by the principles is difficult to interpret, and thereby yields unwanted,
unanticipated or no beneficial effects.

4.1.1 Research Design

For our study we employ the Physics of Notations and its nine principles
proposed by Moody [13]. These principles are Semiotic clarity, Perceptual
discriminability, Semantic transparency, Complexity management, Cognitive
integration, Visual effectiveness, Dual coding, Graphic economy and Cognitive
fit. They provide the basis of discussing visual notations from the perspective
of cognitive effectiveness. This collection of principles is well suited for study-
ing process maps due to their sometimes rich and colorful representation and
because they rely on the extent to which the visual variables introduced by
Bertin [117] have been used within one visual representation. The visual vari-
ables include horizontal and vertical position, shape, size, color, brightness,
orientation and texture. Also the fact that elements in process maps have
not yet been standardized suggests an analysis rather from a visual angle as
opposed to a formal angle. Finally, it has been shown in relation to detailed
process models like BPMN that the consideration of these principles has a
significant effect on understanding [130]. Next, we describe the collection of
process maps we investigate and the way we conduct the analysis.

4.1 Cognitive Effectiveness of Process Maps 45

Data Collection

We use two sources to collect the data from 15 different organizations involved
in this study. First, we conduct interviews with 8 organizations that also pro-
vide us with prints of their process map. We also extract that portion of the
interview transcripts concerning their reasons for adopting BPM and the con-
sequent effects. The other 7 organizations stem from published case studies,
where the process map of the company is included, and the reasons and con-
sequences the organizations want to achieve through BPM are clearly stated
[131]. Table 4.1 shows the process map ID and the organization’s respective
industry.

ID Industry ID Industry

PM1 Service/Airline PM9 Service/Real Estate

PM2 Service/Bank PM10 Manufacturing/Energy

PM3 Service/Insurance PM11 Service/Consulting

PM4 Service/Hospital PM12 Service/Medical

PM5 Service/Waste Management PM13 Service/Retail

PM6 Service/Bank PM14 Service/Consulting

PM7 Manufacturing/Energy PM15 Service/Insurance

PM8 Service/Public Transportation

Table 4.1: Industries

Process Map Analysis

The analysis is done in two stages. First, we assess the cognitive effectiveness of
the process maps. We only focus on the design of a process map, without going
into the process details. We evaluate the extent to which the process maps
are designed according to the principles for designing cognitive effective visual
notations [13]. A process map is cognitively effective if it is self-explanatory,
hence not much effort is needed for a user to understand how the company
operates. To evaluate this, we examine for each principle the extent to which
different visual variables are used for the elements of the process maps [13,
117]. Additionally, we study the process relationships, where a relationship
could be explicit or implicit. A relationship could exist between processes
belonging to the same or different process category.

Second, we use the cognitive fit theory in order to examine if a cognitive
fit exists between the way a process map has been designed, and the goals
companies had with process management. According to this theory, a cogni-
tive fit would support the goal achievement of the company [132]. Hence, we
examine the process maps in order to discover if a process map design infers
certain meaning, and if this meaning leads to an effect towards achieving some
of the initial goals. We argue that if a process map that does not conform to
the conditions stated by the principles, it is difficult to interpret, hence it will
likely yield unwanted, unanticipated or no beneficial effects.

46 4 Process Maps from Practice and their Effect on BPM Success

4.1.2 Findings

Abstract Syntax

Each process map represents some knowledge about the processes in an orga-
nization. There are two types of notations used for knowledge representation.
Abstract syntax (or primary notation) concerns the formal concepts used in
all process maps, something that is there without the aid of visual represen-
tation [133]. Concrete syntax (or secondary notation) goes beyond the formal
concepts, and is typically used to increase the cognitive effectiveness of the
information conveyed [133]. We observed commonalities in the abstract syn-
tax the process maps provide. Similar to what we discussed in Subsection
3.4, we found that companies typically differentiate between different types of
processes. From the 15 process maps we investigated, we found six different
process types. Management processes are concerned with the development of
the companys strategy and usually manage the core processes. Core processes
are those most important for the company (e.g. processes that contribute to
the profit; routine processes). In addition to core processes, some of the pro-
cess maps also exhibited Main processes which also have direct impact on
value-creation. Support processes support the execution mainly of the core
(or main) processes and are called by necessity. Subprocesses are part pro-
cesses of a core (or main) process that need to be executed in order for the
core (or main) process to complete. Subprocesses occur due to process decom-
position. Furthermore, we observed a sixth process type, namely Analysis &
Measure processes. These are processes that are used to analyze and measure
all processes in an organization.

Besides the six process types, there were also some evident relationships
between the processes. These we classified into internal and external relation-
ships. Internal relationships are those that happen between processes that
belong to the same category of processes. Such a relationship could be a
core-to-core process relationship, which indicates that there is a process order
among the core processes (e.g. value chain model). Another internal relation-
ship is process decomposition, where a subset of subprocesses is contained
within one core (or main) process. External relationships on the other hand
appear in a process map where there is a notion of an input and output.
These process maps clearly indicate the input and output of some processes
(e.g. customer, supplier and/or product).

Concrete syntax

Abstract syntax alone is not sufficient for a process map to clearly depict how
a company operates. In the absence of such explicit knowledge, practitioners
often apply informal solutions such as the use of concrete syntax [13]. Concrete
syntax is when additional visual variables are utilized in order to help encoding
the intended information of a process map. We observed a set of symbols

4.1 Cognitive Effectiveness of Process Maps 47

companies use beyond the abstract syntax (Table 4.2). As seen in Table 4.2
each symbol has some meaning and a unique ID which we use during the
course of this chapter. A combination of the symbols typically forms one
process map.

Table 4.2: Symbol description

Figure 4.1 portrays the 15 process maps used for this study, depicting
only the concrete syntax. Each row is a process type, starting from the first
row where the management processes are shown, until the last row where the
analysis & measure processes are stored. Note that there is no special row for
the subprocesses, but instead they are contained in the core or main processes.
Each process map has a unique ID, which we also refer to throughout the rest
of this chapter.

48 4 Process Maps from Practice and their Effect on BPM Success

Fig. 4.1: Process maps - concrete syntax

4.1 Cognitive Effectiveness of Process Maps 49

4.1.3 Evaluation of the Cognitive Effectiveness of Process Map
Design

Moody [13] introduces nine principles for designing cognitively effective visual
notations. Based on this work, we evaluate the conformity of each process map
with the principles and the help of the visual variables introduced by Bertin
[117].

Semiotic clarity (P1) states that one symbol should correspond to ex-
actly one semantic construct [13]. We assume that management, core, main,
support, sub- and analysis & measure processes have similar purpose in all
organizations, hence according to this principle all process maps should rep-
resent these processes using the same or similar symbol. However, in practice
this is not the case. We found that multiple symbols are used to represent the
processes belonging to the same category, ensuing symbol redundancy. These
can be seen in Figure 4.2. Similarly, more process categories use the same sym-
bol to represent one meaning, ensuing symbol overload. To clarify as shown
in Figure 4.2, three process maps use symbol s7 from Table 4.2, seven pro-
cess maps use s8 and four process maps use s9 to represent the management
processes, thus resulting in symbol overload.

Fig. 4.2: Semiotic clarity

Perceptual discriminability (P2) ensures that the different symbols
used in a process map are easily distinguishable from each other [13]. Accord-
ing to this principle, a process belonging to one category should have at least
one characteristic that makes it distinguishable from the processes belonging
to the other categories. In particular, core processes should be emphasized,
as these typically form the core competence of the company. The perceptual
discriminability of each process map is measured based on the visual distance
between the symbols used to represent the processes in each category. The
visual distance is the number of visual variables on which the symbols from
each category differ [13].

50 4 Process Maps from Practice and their Effect on BPM Success

In Figure 4.1 we can see process maps varying in the visual distance.
There are process maps where only one visual variable is used to represent
all processes from all categories, hence the visual distance being zero (e.g.
PM6, PM12). As a result these process maps are difficult to interpret. On the
other hand, we also observe that process maps that use only one symbol for all
processes use additional visual variables, such as color (e.g. PM14), brightness
(e.g. PM4, PM13) or size (e.g. PM2, PM5). The darker the color (e.g. PM4,
PM13), or the bigger the size (e.g. PM2, PM5), the more probable it is that
the process belongs to the core category. Besides, there are process maps that
use different symbols for each process category (e.g. PM1, PM3, PM7, PM8,
PM9, PM10, PM11, PM15). In particular, emphasis is placed on the core
process category, where usually the shape, color and/or size are pronounced
(e.g. PM1, PM3, PM8, PM10, PM11). This enables users to intuitively focus
on the important processes as these values are readably distinguishable by the
human mind [13, 117].

Semantic transparency (P3) exists when the symbols used for the
processes imply the contents of the process category [13]. Additionally, we
check if the relationship between the processes is semantically transparent. A
semantically transparent relationship could be explicit or implicit, and could
exist between processes belonging to the same or different category. An explicit
relationship is one that through additional shapes (s1) or proximity between
two processes (s4) a relationship could be immediately inferred. An implicit
relationship is one in which through the shape (e.g. s2, s3, s7) or position
of the processes, some process relationship or influence could be deduced.
This principle only focuses on the relationship between processes belonging to
the same category. The relationship between processes belonging to different
categories is later on assessed by the principle of cognitive integration.

Figure 4.1 shows that all shapes used to denote the processes are mnemonic,
that is, the meaning of the process is implied by its shape. Such as the arrow-
shaped process (s7) (e.g. PM2, PM3, PM4, PM6, PM7, PM9, PM10, PM11)
implies some process order. The horizontal pentagon-shaped process (s11)
(e.g. PM1, PM7, PM8, PM15) could also imply process order, but also a pro-
cess category. The vertical pentagon-shaped processes (s9, s10) imply some
support towards the processes it points to. And the rectangle-shaped processes
(s8) indicate a single activity. However, this is insufficient to make absolute
statements. For that reason, we classify the shapes in the category of semantic
mnemonicity, where additional explanation is necessary in order to infer the
meaning of the process category [13]. Besides, many process maps explicitly
show the subset of subprocesses contained in a core process (e.g. PM1, PM2,
PM4, PM7, PM8, PM12, PM13). Namely, for a core process to be performed,
a set of subprocesses needs to be executed. Similarly, some process maps indi-
cate the process order, either by the help of an arrow (s1, s2), or the proximity
between the processes (s4) (e.g. PM4, PM7, PM8, PM10, PM12).

Complexity management (P4) is the ability of a visual notation to rep-
resent information without overloading the human mind [13]. In this context,

4.1 Cognitive Effectiveness of Process Maps 51

it is the ability of a process map to represent the operations of a company,
such that a user would be able to discriminate between the process map el-
ements and to comprehend the number of elements on the process map at a
single time [13]. The most common mechanism for dealing with this type of
complexity is by categorizing the different processes. This is initially shown
through the abstract syntax, where the processes are divided into different
categories, each category having a distinct name (management-, core-, main-,
support-, analysis & measure processes) and containing only one type of shape.
In addition to the names, some process maps also emphasize certain process
categories with a different color. This especially helps users to immediately
recognize the core process category (e.g. PM1, PM6, PM8, PM10).

Cognitive integration (P5) makes sure that the different process cat-
egories are integrated with each other. We observe that the combination of
symbols used within one process map helps in understanding the dependency
between the process categories. Here again, we differentiate between explicit
and implicit dependency. For instance, the dependency of the process cate-
gories is implicitly shown in the process maps PM1, PM8 and PM11. This
is due to the shapes used (s9, s10), where it is implied that the management
processes manage and the support processes support the core processes. On
the other hand in PM5 and PM12 the use of a dashed line (s3) points toward
some influence between the process categories. Furthermore, there are process
maps (e.g. PM4, PM7) where the relationship between all process categories
is explicit (s1, s6). This aids to an easier understanding of the process order
and dependency between the process categories.

Visual effectiveness (P6) states that at least 3 visual variables should
be used for a process map to be visually saturated [13]. A visually satu-
rated process map is one that appropriately uses visual variables, such that
the shape is mnemonic, the important processes are emphasized, the process
order is shown, and the dependency between the process categories is visi-
ble. Otherwise, the process map is non-visual. Our analysis shows that eight
process maps are visually effective because they combine three or more visual
variables to convey the information (e.g. PM1, PM3, PM4, PM7, PM8, PM10,
PM11, PM15). The rest uses two or less visual variables, which makes them
difficult to interpret.

Dual coding (P7) encourages the use of text to complement graphics,
which makes the encoding of information more effective compared to graphics
or text alone [13]. First of all, all process maps use a combination of graph-
ics (e.g. shapes) and text (e.g. process names). However, some process maps
utilize additional abbreviation in the form of labels that indicate the process
order (e.g. PM1, PM6, PM7). Whereas other use tags to specify the process
roles either on each process or an entire process category (e.g. PM5, PM7,
PM10). There are process maps where a process abbreviation is attached to
each process implying some process reuse (e.g. PM7, PM10). Others use text
to clearly specify the input and output of each process category, where the
output of one is seen as the input of the next process category (e.g. PM7).

52 4 Process Maps from Practice and their Effect on BPM Success

Similarly, two process maps clarify the meaning of each color through the use
of a legend (e.g. PM5, PM7).

Graphic economy (P8) makes sure that the number of visual variables
used in one process map is cognitively manageable [13]. In addition to the
principles of complexity management and semantic transparency, here we ex-
amine if the combination of all visual variables within one process map is
comprehensible, so that users with few perceptible steps would be able to
recognize the process differences and dependencies. A perceptible step is a
value that is reliably discriminable by the human mind [13, 117]. To sim-
plify, we form three categories of process maps. The first category consists of
process maps that are well cognitively manageable (PM1, PM4, PM7, PM8
and PM11). This category is based on the shapes and/or explicit relationships
used for and between the processes and process categories. Most process maps
from this category use symbols inferring some implied meaning, such as the
vertical-shaped pentagon pointing to the core processes (s9, s10), implying
that the management processes manage and the support processes support
the core processes. Whereas the arrow-shaped processes indicate a process
order (s7, s11). Some in addition explicitly show the relationship between the
processes belonging to different categories (PM4, PM7)

PM3, PM9 and PM10 belong to the second category of process maps. Al-
though these process maps use a variety of symbols, the relationship between
the process categories is not shown and the symbols used in PM3 and PM10
do not imply any dependency between the process categories. However, PM9
could infer more meaning based on the different shape (s10) used for the core
processes, where we assume that the core processes support the performance
of the management processes. The third category of process maps (PM2, PM5,
PM6, PM12, PM13, PM14, PM15) is most difficult to interpret. Most pro-
cess maps from this category use only one symbol for all process categories
and the relationship between the process categories is nearly impossible to be
identified. Thus, the interpretation of the processes could potentially lead to
errors or misinterpretations.

Cognitive fit (P9) suggests that depending on the goals and audience,
the process map should be designed accordingly [13]. Here we only address
the audience for whom the process map has been designed, whereas the next
subsection focuses on the cognitive fit between the goals and process map de-
sign. Based on the process map compliance to the principles, we can say that a
visually saturated process map, with explicitly shown order and dependencies
between the processes and categories, is a cognitively effective process map
that is suitable for advanced users as well as for novices (e.g. PM1, PM4, PM7,
PM8, PM11). While those process maps that have been classified as non-visual
(e.g. PM2, PM3, PM5, PM6, PM9, PM10, PM12, PM13, PM14, PM15) are
intended for advanced users (e.g. employees with years of experience already
familiar with the processes).

4.1 Cognitive Effectiveness of Process Maps 53

Fig. 4.3: Cognitive effectiveness of process maps

54 4 Process Maps from Practice and their Effect on BPM Success

Figure 4.3 summarizes the cognitive effectiveness of all process maps, based
on their compliance to the principles. Each X* in the figure denotes a complete
compliance to the respective principle. An X stands for partial compliance to
the principle. Whereas / means that the process map does not comply to the
corresponding principle. Further explanation for each of the nine principles
could be additionally seen in the legend below Figure 4.3.

4.2 Process Map Design and its Effect on BPM Success

Next, we employ the cognitive fit theory to match the goals with each cor-
responding process map design. According to the cognitive fit theory, the
effective processing of a task requires an appropriate representation of the
subject matter [132]. As tasks contribute to the achievement of goals, we
adopt this theory here. Specifically, a process map as a representation should
be designed in such a way that the achievement of BPM-related activities is
best supported. In case the process map does not provide explicit information
which is relevant, the tasks being conducted towards goal achievement might
be affected in a negative way.

In order to examine this, we first identify the goals each organization
planned to reach with BPM. Next, we consider the effects organizations ex-
perienced after the BPM implementation. This results in nine common goals
as shown in Figure 4.4. These are Strategic alignment, Process transparency,
Work manual, Process navigation, Process redundancy, Decision-making tool,
Role definition, Process measurement and Process efficiently. Figure 4.4 de-
picts the intention to accomplish a goal as a circle. The plus or minus sign
shows the actual achievement. For example, the organization with the pro-
cess map PM1 stated as a goal Process navigation. Thus, they wish to reach
easier navigation through their business processes with the help of the BPM
approach. The same organization claimed they have accomplished this goal
due to BPM. Accordingly, the plus sign within the circle is attached to PM1
for the goal Process navigation. In addition, there were organizations that did
not state certain goals as their target to reach through BPM, although they
claimed they have accomplished them. We consider these as unanticipated
effects due to adopting BPM and label them as a plus however not within a
circle.

Next, we map the cognitive effectiveness in terms of each principle for
all process maps with the respective effects. This helps us to spot potential
connections between process map design and BPM success. To clarify, while
the effects of certain goals are apparent and could be derived from the way a
process map has been designed, others are not that obvious. For instance, for
G9 additional information beyond the process map design is necessary.

4.2 Process Map Design and its Effect on BPM Success 55

Fig. 4.4: Effects from BPM

56 4 Process Maps from Practice and their Effect on BPM Success

Six companies indicated strategic alignment (G1) as a goal, from which
three claimed to have experienced it as an effect (PM7, PM8, PM9). Inter-
estingly, these companies use the same appropriate symbols to represent the
management processes (s9, s10). Since this category comprises of processes
where the company’s strategy is embodied, by elucidating a relationship be-
tween the management and the core process categories, the company ensures
that the management processes manage the core processes, thus guaranteeing
strategic alignment. However, for the three companies (PM4, PM6, PM12)
that did not accomplish this goal we might hypothesize that this could be a
partial consequence of an inappropriate choice of symbols for the management
processes.

Process transparency (G2) is a goal of most of the 15 organizations. In this
context, it entails transparency of the interfaces between processes, explicit
process triggers and process familiarization. So, the process categories should
be easily distinguishable, the process shape should imply a certain meaning,
the relationship between the processes should be transparent, and the input,
output and roles should be defined i.e. P2, P3, P5 and P7 should apply. Our
results point to companies experiencing process transparency when all or a
combination of the above principles hold. What we can see from Figures 4.3
and 4.4 is that PM1 and PM7 pop out, since these are the only organizations
that achieved process transparency as an unanticipated effect and also the only
process maps that comply with all four principles stated as a prerequisite.

For a process map to be used as a work manual (G3), it should have
high cognitive effectiveness. Most importantly, an employee should be able to
identify immediately the processes they are involved with, the process shapes
should imply correct meaning, process order and dependencies should be ex-
plicitly shown and the design should be comprehensible by both, novices and
advanced users i.e. P2, P3, P5, P7 and P9 should apply. We observe that,
while there are some process maps that apply to all the above principles and
are indeed used as work manuals, there are also process maps that do not
comply with many of the above principles, yet they are still used as a work
manual.

Process navigation (G4) entails explicit process order and dependency,
end-to-end view of the core processes and integration among the process cat-
egories i.e. P3 and P5 should apply. We noticed an interesting pattern, where
we find that eight from nine organizations that have achieved process nav-
igation as an effect have a transparent core-to-core relationship, an explicit
process category relationship or both. What is more is that PM3, PM6 and
PM14 are the process maps that use either only one symbol (s7, s8) to rep-
resent all processes or lack explicitly shown process category relationship. As
a result, these organizations did not experience easier navigation through the
processes.

Avoiding process redundancy (G5) is achieved by organizations that could
handle process variants by explicitly showing process containments, integrate
process categories and enable process reuse. Thus, P3, P5 and P7 should hold.

4.3 Chapter Summary 57

Whereas Figures 4.3 and 4.4 indicate some correlation between the effects and
cognitive effectiveness of these principles, it is not significant. This is mainly
because there are organizations with no evident process redundancy effect,
despite the fact that the principles indicate the contrary.

We could claim the same as with G5 for the decision-making tool (G6) goal,
where a process map is intended to give a clear customer-request approach
that will facilitate direct problem solving. For this, an explicit relationship
between all processes in the process map should be provided, hence P3 and
P5 should hold. Although for some organizations that have been faced with
this effect at least one principle holds, there are many process maps that also
comply with both principles, however the organization has not yet realized
that the process map could indeed be used for this purpose.

Role definition (G7) enables limited access to processes, easier process
identification and defined role cooperation. Regardless of P7 stating that only
three process maps show roles on the processes (PM5, PM7, PM10), Figure 3
illustrates eleven additional organizations that defined roles as a result of
the BPM implementation. Similarly, although only five process maps contain
an analysis & measure process category (PM2, PM4, PM5, PM12, PM14),
we would assume that this might help these organizations to reach the goal
process measurement (G8). On the contrary, this effect was experienced by five
additional organizations, where BPM helped to increase process monitoring
and internal benchmarking.

Finally, we found that the process efficiency (G9) goal is most difficult
to trace solely from the process map design. This goal is rather more related
to the details of business processes, which is a concern of the lower levels of
process architectures.

4.3 Chapter Summary

In this chapter, we assessed 15 process maps from organizations by examining
the extent to which their design complies with the nine principles for design-
ing cognitively effective visual notations introduced by Moody [13]. We found
that while some process maps combine various visual variables in order to
represent their processes according to the goals they want to achieve. Most
pay little attention to the process map design. We observed a significant sym-
bol redundancy and overload, as a result of the diversity of symbols used to
represent the same process category.

We point to valuable implications for research and practice. First, due
to the diversity of the concepts used, we clearly showed that the design of
process maps is merely based on the practitioner’s capabilities for creativity.
Because of this ambiguity issues caused by the use of different symbols, the
necessity of ontology-based concept standardization for process map design
has become apparent. In addition, our results partially explain the reason as
to why certain goals have not yet been achieved.

58 4 Process Maps from Practice and their Effect on BPM Success

This thesis is concerned with providing a formal specification of concepts
for process map design. This would help companies to use the same symbol in
representing the same semantic construct. We believe that this will contribute
to an efficient cognitive processing of the organization’s operations.

5

Modeling Languages

In this chapter, we provide an overview of modeling languages. In particular,
we introduce the two main language types, namely sentential languages and
visual languages and discuss the difference between both. Furthermore, the
chapter focuses on modeling languages, which are by nature visual, and their
main aspects.

Accordingly, we start with Section 5.1 where we give an overview of the
language types and how they differ to each other. Next, Section 5.2 shows
the main aspects of modeling languages. These include the three parts that
comprise a modeling language (concrete syntax, semantics, abstract syntax)
and the three aspects which are related to language purpose and usage (do-
main, roles, tasks). We explain each aspect, respectively. Last, Section 5.3
summarizes this chapter.

5.1 Language Types

Languages are means used by people to communicate with each other or with
machines. There are two main types of languages, namely sentential languages
and visual languages [24]. Sentential languages are textual by nature. An ex-
ample of a sentential language is the natural language used by humans in order
to communicate with each other. It consists of words which have a meaning,
and grammatical rules used to combine words together into sentences [24].
People use sentences to be able to express thoughts, feelings and knowledge.
These are understood by those who are familiar with the same language and
its rules.

Visual languages, also referred to as diagrammatic languages, consist of a
collection of symbols and rules used to combine symbols together to express
certain meaning [13, 24, 134]. The meaning a symbol combination expresses
mainly depends on the spatial relationships between them [135]. Typically,
the visual languages that exist and are used today to model aspects of the
real world are referred to as modeling languages. A modeling language is used

60 5 Modeling Languages

to specify, visualize, construct, describe and document some domain from the
real world [136]. The products that result due to using modeling languages
are referred to as models or diagrams. “A model is an explicit representation
of some portions of reality as perceived by some actor” [137]. It consists of a
set of statements created by using a modeling language [138].

Regardless of the type, languages typically consist of syntax and seman-
tics. For sentential languages the syntax includes the set of words and rules
used to combine words into sentences, whereas the semantics is the mean-
ing of words [24]. Modeling languages also comprise of syntax and semantics,
however, compared to sentential languages they also include a visual vocabu-
lary [15]. The visual vocabulary consists of a set of symbols used to visually
represent the underlying concepts the visual language offers. These are also
referred to as concrete syntax. The set of underlying concepts that comprise
the modeling language together with the rules used to combine concepts i.e.
symbols together are referred to as abstract syntax, whereas the meaning of
concepts is called semantics [15].

Both sentential and modeling languages have their strengths in some sit-
uations and weaknesses in others. For example, using text we can describe a
thing clearly and precisely, leaving little to the imagination. Hence, a textual
language is explicit by nature. However, describing a thing using a modeling
language might lead to humans understanding something although it was not
directly expressed. Hence, a modeling language could convey some implicit
meaning. One reason for this is the choice of symbols used in a model to
express a certain meaning. For example, if a model reader has seen the se-
lected symbol in another context, he or she might potentially misinterpret its
meaning due to the meaning they previously attached to the symbol. We can
only judge the goodness of a modeling language by looking at models created
by the language, the purpose they are used for and whether they fulfill this
purpose. Studies point towards the advantages of a real-world aspect repre-
sented in a form of a model as compared to a textual description of the same
[24]. One reason for the superiority of a model over a textual description,
among others, is the fact that models typically group elements together. Such
grouping decreases the time of searching for relevant information [24]. Models
also enable perceptual inferences, which are reported as extremely easy for
humans [24].

“A picture is worth a thousand words”, or better yet “A diagram is (some-
times) worth ten thousand words” [24] implies that a complex real-world as-
pect can be conveyed with just a single diagram. To compare diagrams i.e.
models with textual descriptions of the same real-world aspect we need to as-
sess their informational and computational efficiency [24, 139, 140]. If we take
an example from the field of business process management, a process model is
informationally equivalent with a textual description of the same process if no
information is lost by the transformation from one to the other [139]. Hence,
both types of representations model and text depict exactly the same process
and how the process is done. A process model and a textual description of

5.1 Language Types 61

the same are computationally equivalent if they are informationally equivalent
and the same information can be extracted by both with the same amount of
effort [24, 139]. This means that, if we try to answer some question on basis
of the process, regardless of the type of representation we use as basis for
answering the question (model or text) we should be able to reach the answer
with the same amount of effort and the same amount of time. An example of
a question would be: “How many activities need to be performed during the
entire process?”. According to Larkin et. al. [24] the advantages of diagrams
are computational.

For example, Figure 5.1 illustrates two different representations of the same
concept, namely a circle. On the left-hand side a circle is textually described,
while on the right-hand side a circle is visually depicted. Clearly, these repre-
sentations look different, although they both refer to the same concept. They
are both informationally equivalent, however, the two representations are not
computationally equivalent. From the representation on the right-hand side
we can immediately infer that the symbol implies a circle, on the other hand,
it might take a while until the human brain is able to infer that the text
presented on the left-hand side is indeed a description of a circle. One of the
underlying reasons for this is the fact that human abilities to recognize in-
formation are highly dependent on the type of representation in which the
information is presented [24].

Fig. 5.1: Textual vs. visual representation

Most process modeling languages are visual. Various experiments have
been conducted to assess the equivalence of process models with textual de-
scriptions of processes. Most studies argue in favor of process models over text,
claiming that using process models to solve problems gives far better perfor-
mance than doing that on basis of text [2]. For instance, a textual description
of a process might be overwhelming when used to search for a piece of informa-
tion which is somewhere within the text. Searching for a specific information
on basis of text requires searching linearly down the textual description [24].
However, searching for the same information using a process model can be
quite different. In a process model the information which is searched has a
location. Thus, when this location is found no search is required through the

62 5 Modeling Languages

remaining parts of the process model [24]. A process model, compared to a
textual description of a process, provides guidance which enables users to shift
their attention to the important parts of the model that help find a particular
information. This is typically done by the linkages between symbols which
often indicate order of occurrence. Differences in search strategies associated
with these two types of different representations are namely one of the major
sources of computational inequivalence [24].

It is important that a representation is easy to understand for untrained
users as much as for experienced ones. An untrained user is one with not much
experience with the language used nor the domain represented. Hence, it is
essential for users to be presented with a representation they could learn and
understand without any particular difficulties. In this regard a visual language
could be helpful, since the meaning of the elements from such representations
are directly perceived [141]. For example, it might be more efficient if we
simply displayed the symbol of a circle as shown in Figure 5.1 in order to
let a person know that we are talking about a circle, rather than describing
what a circle is. In such cases we assume that this person has already seen
a circle. By explaining the concept of a circle the person would need signif-
icantly more time in order to figure out and visually imagine what is being
described. A reason why visual languages are more effective than textual ones
might be mainly because certain inferences might be more immediate in vi-
sual languages [16]. When trying to understand complex things our train of
thoughts is often interrupted. “When a train of though is broken again by
the need to find something out the hard way, it is difficult to place thoughts
together into inspirations; it is difficult enough even to finish a simple train
of thought without making a mistake, simply because of having to get the
information in some tedious and error-prone way” [141, 142]. Hence, trying
to understand the textual description of a circle the thoughts of a person will
likely be interrupted by trying to grasp the meaning of every word presented
in it.

Evidently, compared to sentential languages, visual languages are more
efficient and effective when used to describe certain aspects of the real world.
The aforementioned claims might have motivated the development of lan-
guages such as BPMN for representing business processes in forms of models,
rather than textually describing them. Representing business processes in form
of business process models is in fact one of the key factors for organizations
becoming process-oriented [1]. Compliant to the process modeling languages
used today (e.g. BPMN, EPC) and the process maps we have observed in
organizations, we develop a visual modeling language for designing process
maps. Accordingly, the language development we document in this thesis will
comprise of symbols and rules organizations will follow when designing their
process maps. In the following subsections we elaborate on the main aspects
of a modeling language.

5.2 Main Aspects of Modeling Languages 63

5.2 Main Aspects of Modeling Languages

As already mentioned in Section 5.1, regardless of the type, languages always
consist of syntax and semantics. Syntax comprises of all concepts which con-
stitute the language’s vocabulary, and rules used to combine concepts together
into meaningful statements, whereas semantics assigns meaning to the con-
cepts. In terms of sentential languages concepts are the words, and the rules
constrain what words can be placed together to form sentences. Each word
has a particular meaning, whereas words combined in sentences are able to
express thoughts, feelings and knowledge. In contrast, the syntax of model-
ing languages is divided into abstract syntax and concrete syntax. Abstract
syntax resembles the syntax for sentential languages. It includes all concepts
that comprise the vocabulary of the modeling language and the rules used
to combine these concepts together in order to form certain expressions. A
symbol is assigned to each concept of the abstract syntax, thus using mod-
eling languages instead of words, people communicate through symbols or
combination of symbols. The set of symbols for each concept of the abstract
syntax comprises the concrete syntax of the modeling language. Each symbol
is assigned an appropriate semantics.

We refer to the abstract syntax, semantics and concrete syntax as intra-
language aspects, because they are the main parts that constitute a modeling
language. Hence, if at least one of these three parts has not been determined,
the modeling language is not completely defined. Nevertheless, a language is
always bound to a purpose. This means that there must be a certain reason
why a language is being developed, otherwise the effort of defining a language
is of no value. In the case of sentential languages, for instance the English
language has been developed in order for humans to be able to communicate
with each other by expressing thoughts, feelings and knowledge. When we take
BPMN as an example, this process modeling language has been developed to
enable organizations to model their business processes in form of business
process models. Because, as we already discussed previously, it seems these
are much more effective and efficient when used to discuss the company’s
business processes than doing that on basis of a textual description of the
processes.

Respectively, beyond the intra-language parts, there are also other aspects
necessary to be considered, as these ensure the language will be utilized af-
ter it has been developed. Accordingly, when creating a modeling language
we ought to make sure the language fits a certain domain, since the domain
is the setting in which the subsequent modeling will occur and the models
created by the language will be used [134]. Clearly, those involved in the lan-
guage’s development need to make sure the language being developed will fit
a real world domain. We identified two different types of roles for modeling
languages. One type creates the models using a modeling language, and an-
other type reads the models that have been created with the use of a modeling
language [138]. We call those that create models using a modeling language

64 5 Modeling Languages

modelers, whereas those that read the models being created are referred to a
readers. The models created by the modelers are typically used for different
purposes. Thus, the readers of the models often solve problems on basis of the
models created. Accordingly, the models should be used to solve tasks.

Fig. 5.2: Modeling language aspects

Therefore, beyond the syntax and semantics, the three aspects necessary
to be considered when developing modeling languages are domain, roles and
tasks. In particular, they ensure the language’s usage after it has been devel-
oped. We refer to these as extra-language aspects. All six aspects for modeling
languages can be seen in Figure 5.2. In the following subsections we explain
each of them.

5.2.1 Abstract Syntax

Compared to a sentential language, a modeling language divides the syn-
tax into abstract and concrete syntax [13, 15]. The abstract syntax includes
all concepts a language offers and rules that are used to combine concepts
together in order to form valid expressions. Typically the abstract syntax
concepts are represented in a form of a meta-model, which is a model that
defines the concepts that comprise the language. “A meta-model is a model
that defines the language for expressing a model” [17]. Thus, one process map
would be an instance of the meta-model if it consists of elements of the set of
all valid expressions which can be generated with the process map language
associated with the meta-model [17].

The meta-model underlying the language is a model that defines the lan-
guage which is used for expressing models [17]. Accordingly, the process map
meta-model will hold all types, properties and interrelationships of the con-
cepts that exist for the whole domain of process maps. The idea is that, the
process map meta-model should hold all possible concepts necessary to create
process maps which are correct mappings of how things are done in real world

5.2 Main Aspects of Modeling Languages 65

[143]. We place an emphasis here on the real world. Hence, we recognize the
importance of the fact that the concepts included in a meta-model should
reflect those from the domain in the real world. Accordingly, the meta-model
concepts will comprise the so-called alphabet of the process map language.

The concepts that are defined with the meta-model are only concerned
with the abstract syntax of the language. Thus, the abstract syntax focuses
purely on the notational aspects of a language, completely disregarding any
meaning [15]. The meaning i.e. semantics of the language is still a matter that
needs to be defined [15].

5.2.2 Semantics

Every concept from the meta-model is assigned a unique meaning, also called
concept semantics. The semantics of each meta-model concept including the
relations used between the concepts comprises the language semantics. Same
as with the abstract syntax, the semantics is also accompanied by well-defined
rules [15]. The language semantics comprises of two parts, namely a semantic
domain and a semantic mapping from the abstract syntax to the semantic
domain [15]. Semantic mapping assigns meaning to each of the syntax concepts
from the semantic domain. The semantic domain defines the kind of things we
want our language to express [15]. Accordingly, the meaning of each concept
from the abstract syntax should be derived from a real world domain. For
example, the process map concept semantics should clearly be derived from
the domain of process maps used in real world organizations.

The concept semantics must be unambiguous in order for valid expressions
to be made by using the respective language. One way of ensuring this is by
defining semantics on basis of existing well-defined ontologies. For example,
the Bunge-Wand-Weber (BWW) ontology is typically used to evaluate mod-
eling languages from the IS field for their completeness and clarity [20]. Thus,
by mapping the semantics of language concepts with the BWW concepts we
can evaluate whether the language is ontologically complete i.e. it consists of
all concepts necessary to represent the real world domain, and ontologically
clear i.e. whether the language can represent the real world domain uniquely
using its concepts [20].

5.2.3 Concrete Syntax

Concrete syntax refers to the visual representation of concepts that comprise
the abstract syntax. Thus, besides assigning semantics to meta-model con-
cepts, each concept is also assigned a designated symbol by means of which
it is being recognized. In modeling languages the syntax concepts and the
semantics do not separate clearly [16]. For example, the alphabet of a model-
ing language may include shapes such as squares and arrows [16] which when
used in combination could convey a certain meaning. Similarly, since modeling
languages often include visual variables such as size, shape, and color, these

66 5 Modeling Languages

could also lead to transmitting certain cues to users as to what the symbols
might mean, such as the close proximity of two symbols could mean they are
somehow related. Consequently, modeling languages have more intrinsic prop-
erties than sentential ones, since their alphabet could be directly interpreted
[16].

A language is determined in terms of the symbols used to express its
concepts and the relations between the concepts [16, 143]. Since a modeling
language is perceptual by nature, the meaning of the language’s symbols is
typically perceived directly, without prior knowledge of their underlying se-
mantics [141]. It is likely that a person has already seen or used a symbol
which is part of the language, consequently this person would create their
own meaning the symbol is supposed to convey. Therefore, we need to make
sure that we use visual representations which are already familiar [15]. More
importantly, the intrinsic properties of each symbol should correspond to the
properties in the represented real world domain [16].

5.2.4 Domain

A modeling language is developed to fit a certain real-world domain. The
domain encompasses the setting in which modeling occurs and models are
used [134]. It consists of all possible statements that would be correct and
relevant for solving particular tasks [144]. Understanding the models created
by a modeling language chiefly relies on the thoughts and meanings people
share [141]. Hence, achieving understanding would be possible if the thoughts
and meanings belong to one specific real-world domain which is familiar to all
people that use the modeling language to create models or read the models
created by it. Thus, one of the factors that makes a modeling language suc-
cessful is the language’s ability to provide to people all concepts that can be
used to express relevant domain abstractions [143].

A model’s effectiveness is measured by how well it represents the domain
[16]. It has been stated that the stronger the match between a model and
the domain it represents, the easier it is for people to understand the model
[16]. This often relies on how well the person using the modeling language to
create models is familiar with the domain the modeling language is used for as
well as on this person’s perception of the domain conveyed in the model [138].
Whereas modeling is the procedure used to model aspects of a real world
domain, the models created by a modeling language are used by people to
reason and communicate about the domain in order to improve their common
understanding of it [138]. Therefore, when developing modeling languages, it
is of upmost importance for the language developers to be able to capture all
concepts that constitute the domain of interest. As a result, people would be
able to create correct representations of the domain, and others would be able
to understand what has been conveyed in the models.

5.2 Main Aspects of Modeling Languages 67

5.2.5 Roles

Modeling languages are typically used by people to depict some aspect of
a domain from the real world. Similarly, people use the models that have
been created with the use of a modeling language to understand the particu-
lar aspect of the real-world domain that has been depicted. Accordingly, we
differentiate between two types of roles, namely people that are involved in
creating the models and people reading the models that have been developed
using a modeling language [145]. We refer to these as modelers and readers,
respectively. The aim of the modeler is to create a model which will be a cor-
rect representation of a real world domain [144]. Accordingly, a reader should
use the model as basis to solve different types of tasks related to the real
world domain depicted in it. The aim of the reader is to interpret the same
real world domain the modeler has conveyed in the model [32, 138].

Modelers and readers typically have different experiences both with the
real world domain and the modeling language [141]. For example, modelers
may have experience with the modeling language and the concepts it comprise,
but less with the domain being modeled. However, readers may have more
knowledge about the domain the modeling language is used for, whereas their
experiences with the modeling language might not be as vast. These can also
be seen in Figure 5.2 by the use of dashed lines between roles and domain with
modeling language. The lines between these aspects are not solid, hence they
imply that the different types of roles, namely modelers and readers might not
have the perfect knowledge with both, the domain and the modeling language,
respectively.

Norman’s Theory of Action is often used when considering the two types
of roles [32]. The theory states two forms of discrepancies: a gulf of execution
and a gulf of evaluation. A gulf of execution occurs when there is a discrepancy
between the reader’s intentions for using the model and the language’s ability
to fulfill the reader’s intentions with the model [32, 138]. Conversely, gulf of
evaluation occurs when a discrepancy exists between the model created using
a modeling language and the intentions the reader has for using the model
[32, 138]. Thus, a modeler needs to be able to create models using a modeling
language that will satisfy the needs of the model’s readers. In other words, the
connotational and denotational semantics should be the same. Denotational
semantics is the semantics built into the modeling language by its developers,
hence it is the semantics that is depicted in the model created by the modeler
[146]. Whereas the connotational semantics is the semantics the readers create
when interpreting the model [146].

For all the above reasons, the two types of roles are important to be consid-
ered when developing a modeling language, as they will be the ones that will
ultimately use the language. As seen in Figure 5.2, roles are weakly coupled
with the modeling language. This is primarily because a modeling language is
designed to fit a certain domain. Hence, a modeler’s ability to depict correct

68 5 Modeling Languages

representations of a domain is mainly influenced by the ability of the modeling
language to depict all concepts that constitute the domain.

5.2.6 Tasks

Different roles are typically interested in different types of tasks. When we talk
about tasks we do not necessarily refer only to tasks readers can do on basis of
models created with a modeling language. On the contrary, tasks can also be
involved solely with the domain the modeling language is concerned with or
with the modeling language itself, disregarding the domain it represents. Both
the modelers and the readers are engaged with distinct tasks. For example,
it is common that modelers less experienced with the domain than readers
[141]. Therefore the tasks typically of concern for the modeler are to learn
and understand the domain the modeling language will be used for. This is
important for the modeler to be able to create models which will be correct
representations of the domain being modeled. Also, in case the modelers are
not yet familiar with the modeling language, another task for them would be
to learn the modeling language in order to create models which will follow
the defined syntax and semantics of the language. As a result, models should
consists of correct statements created using the modeling language [138].

On the other hand, common tasks of concern for the reader would be to
understand the domain that has been communicated in the model by the mod-
eler. In order to be able to read the model created by the modeling language,
the reader might also have to get familiar with the elements of the modeling
language. As a result the modeler, ideally in collaboration with the reader,
could change the domain by optimizing the aspect of the domain that has
been represented in the model.

Evidently, modeling languages and models created by modeling languages
are used for different tasks [134]. These tasks are typically concerned with
certain real world domains [144]. In order for a modeler to be able to create
a model which is a correct representation of a domain, an understanding is
necessary not only of the domain which the model represents, but also of the
tasks for which the models will be used for [16]. This relationship between
the tasks and the modeling language is also appropriately represented with a
solid line between the two and can be seen in Figure 5.2.

5.3 Chapter Summary

In this chapter we provided an overview of the two types of languages, namely
sentential languages and visual languages. Both language types consist of
syntax and semantics. Syntax includes all concepts which constitute the lan-
guage’s vocabulary, and rules used to combine concepts together in order to
form meaningful statements. Each concept has a unique meaning. The mean-
ing of all concepts from the language’s vocabulary comprise the language’s

5.3 Chapter Summary 69

semantics. Visual languages, compared to sentential languages, include ab-
stract and concrete syntax. The abstract syntax holds all concepts and rules
used to combine concepts together, whereas the concrete syntax comprises the
symbols used to visually represent the concepts from the language’s vocabu-
lary. Hence, each concept of the visual language has a dedicated symbol by
means of which the concept is recognized, and also has a unique meaning i.e.
semantics. Naturally, the concept and the symbol the concept is represented
by share the same semantics.

Modeling languages are visual by nature. Studies have reported that visual
representations such as models which result when using modeling languages
are often better than text at capturing more naturally aspects of real world
domains [24]. This is especially valid for untrained users with not much expe-
rience with the domain being modeled nor the modeling language used [141].
Therefore, in this chapter we presented two complementary perspectives of
modeling languages. We refer to the abstract syntax, semantics and concrete
syntax as the intra-language aspects of a modeling language, as these are the
language’s constituent parts. However, when developing a modeling language
we also need to consider the domain the language will be developed for, the
tasks the models created by the language will be used for, and the two types
of roles, namely the modelers that create the models using the modeling lan-
guage and the readers that will use the models to be able to solve certain
tasks. Thus, the domain, roles and tasks are the extra-language aspects of
modeling languages. Accordingly, the last part of this chapter was dedicated
on explaining the six aspects important for modeling languages.

6

Modeling Language Quality

In Chapter 5, we discussed modeling languages in general along with the parts
that comprise a modeling language and the aspects important to be consid-
ered when developing a modeling language. In this chapter, we focus on the
quality of modeling languages. In particular, we present a systematic literature
review we conduct on quality requirements for modeling languages and mod-
els created by modeling languages. In the last part of this chapter, we focus
on quality requirements specifically important for the language for designing
process maps. These requirements will accordingly be used as guidance for
the language development.

Section 6.1 provides an overview of the importance of following quality
requirements when developing languages and creating models using modeling
languages. In Section 6.2 we elaborate on the guidelines we follow for conduct-
ing the systematic literature review on quality requirements. Here we discuss
the protocol we develop for the literature search along with the techniques
we use to extract the relevant data from each article we found relevant for
this topic. The section also presents the results of the literature review. In
Section 6.3 we provide the protocol we use to select the relevant quality re-
quirements we follow when developing the language for process maps. Section
6.4 summarizes this chapter.

6.1 Overview of Modeling Language Quality

Modeling languages are used by both individuals and organizations. Models
created by modeling languages are read by an even larger amount of indi-
viduals, all having diverse backgrounds. Individuals range from students to
professionals, while organizations come from all types of industries, such as
financial, medical, educational, etc. When developing modeling languages this
diversity needs to be taken into consideration. Accordingly, languages should
be developed in such a way that they serve relevant users in the most effec-
tive and efficient way. In other words, diverse users need to be able to create

72 6 Modeling Language Quality

and read models with the same modeling language without facing particular
difficulties. Along these lines, people using modeling languages developed ac-
cording to well-studied and pre-defined set of quality requirements would be
able to create and read models in the most efficient and effective way. Conse-
quently, the risks of the modeling language not being appropriate for its users
is significantly decreased.

To the best of our knowledge, there are hardly any studies conducted on
how to develop modeling languages from scratch. The documentation avail-
able shows that the development of modeling languages has progressed in a
step-wise manner, through a series of drafts, until they are approved by stake-
holders responsible for defining standards [147]. Thus, modeling languages are
typically products of de facto processes, rather than de jure ones [147]. There
are only a handful of studies that propose quality requirements for model-
ing languages [13, 119, 120, 136]. Most of these studies refer to guidelines for
creating models, rather than for developing an entire modeling language. On
the other hand, a considerable amount of studies exist on language evaluation
[137, 138, 144]. Apparently, after so many languages have been developed and
their development process has not been documented, many researchers faced
the necessity to introduce criteria against which existing modeling languages
can be evaluated. These criteria serve to, among others, assess the language’s
ease of use and ease of understanding in order to further improve the language
to better suit its users.

Taking this into consideration, we intend for the language for designing
process maps to be developed according to scientifically evidenced quality
requirements. We follow this approach in order to ensure the language will be
efficient and effective for fulfilling its purpose, namely creating process maps.
Thus, as a first step towards developing the process map language we conduct
a systematic literature review on existing quality requirements for designing
modeling languages. Our aim is to search for literature in the broad field of
modeling languages mainly because, first of all, the process of developing a
process modeling language such as BPMN has been documented, however in
a rather bureaucratic way, as its development has progressed by tracking and
solving arising issues that have occured through its usage [18]. Second, we are
not aware of any quality requirements which were followed when developing
such a language.

Quality requirements are used as things against which other things are
developed, judged or measured [148]. We differentiate between three types of
quality requirements: guidelines, principles and quality criteria. We believe
they all serve a different purpose and are used at a different point in time,
either during the language development, or after a language has been devel-
oped. Also, some are used only for models, while others are applied during
language design. Next we present our proposed definitions for the three types
of quality requirements:

Guideline is “a rule of instruction that shows or tells how something should
be done” [148]. Hence, it is a rule that provides guidance to appropriately cre-

6.1 Overview of Modeling Language Quality 73

ating models. A guideline gives specific recommendations on how to create a
model from scratch or improve aspects of an existing model [119]. Guidelines
are specific and straightforward, thus typically used to guide the selection of
elements and their usage within one instance of a model. Examples of guide-
lines are: “Area: minimize the area occupied by the drawing” [149], “Have
verticality of hierarchical structures” [149] and “Use as few elements in the
model as possible” [119].

Principle is “a rule that helps you know what is right and wrong and that
influences your actions” [148]. It is accepted as true and used to improve
the quality of models and languages. in terms of languages, it helps language
designers meet their goals [136]. Principles provide language designers with
direction on whether to include certain features in their languages [136]. Sim-
ilarly, principles provide modelers with direction that will primarily lead to
the model satisfying the reader’s expectations. Models created by modeling
languages developed according to principles are assumed to be more effective
than models developed not according to defined principles [136]. Thus, prin-
ciples are used to guide the development of modeling languages and models.
Some examples of principles are: “Simplicity: no unnecessary complexity is
included in the language” [136], “Model-visualization distinction: make clear
distinction between a model and its visualizations” [88], and “Semiotic clar-
ity: there should be a 1:1 correspondence between semantic constructs and
graphical symbols” [13].

Quality criterion is a benchmark in terms of which a language can be
judged [137, 144]. According to Merriam-Webster [148] a criterion is a “‘stan-
dard on which a judgment or decision may be based”. Thus, quality criteria
are used to evaluate the goodness and appropriateness of an existing model-
ing language or a model created by a modeling language. Examples of quality
criteria are: “Semantic quality: how well the model corresponds to the do-
main” [137, 144, 150], “Syntactic quality: how well the model corresponds to
the language” [137, 144, 150] and “Recognizability: the ease with which the
drawn object is recognized geometrically and semantically” [151].

In line with the definitions for the three types of quality requirements we
can conclude that only guidelines are not used on a language-level, whereas
all three types of standards can be used on a model-level. However, while
guidelines are used for guiding the selection of single elements that should
comprise a model, a principle would be used to improve the quality of the
entire model during model creation. Likewise, a principle is used to improve
and ensure the quality of a modeling language during its development. A
quality criterion, on the other hand, is typically used to evaluate the quality
of already developed languages and models. In the rest of this section, when
we talk about the three types we refer to them as quality requirements. On
the other hand, when we discuss each of them separately, then we use the
term guideline, principle or quality criterion, respectively.

74 6 Modeling Language Quality

6.2 Literature Review on Quality Requirements for
Modeling Languages and Models

For the systematic literature review we follow the guidelines proposed by
Kitchenham et al. [14, 152]. We use the proposed three phases for undergoing
a literature review. The three phases together with their ten according stages
are [14]:

1. Phase 1: Plan review
a) Specify research questions
b) Develop review protocol
c) Validate review protocol

2. Phase 2: Conduct review
a) Identify relevant research
b) Select primary studies
c) Assess study quality
d) Extract required data
e) Synthesize data

3. Phase 3: Document review
a) Write review report
b) Validate report

The following three subsections are for each of the three phases of the
literature review process.

6.2.1 Review Protocol

Conforming to the systematic literature review process as described by the
phases, first we plan the review by specifying the objectives we aim to reach.
Compliant to our intention to develop a language based on well-established
requirements for languages and models, our objective is to find all guidelines,
principles and quality criteria reported in past studies. We prepared a re-
view protocol we follow when searching for literature on quality requirements
for modeling languages and models. We search the following six electronic
libraries:

• ScienceDirect
• IEEExplore
• ACM digital library
• Springer
• EBSCO
• AISeL (AIS electronic Library)

We focus on these libraries because they primarily target articles in the
fields of computer science and information systems. Additionally, we also

6.2 Literature Review on Quality Requirements for Modeling Languages and Models 75

consider the eight basket IS journals: European Journal of Information Sys-
tems (EJIS), Information Systems Journal (ISJ), Information Systems Re-
search (ISR), Journal of the Association for Information Systems (AIS),
Journal of Information Technology, Journal of Management Information Sys-
tems (MIS), Journal of Strategic Information Systems (JSIS) and Manage-
ment Information Systems Quarterly (MISQ). We do this because some of
the IS basket journals are not indexed in any of the aforementioned libraries.
Whereas EJIS, the Journal of Management IS, the Journal of the AIS, the
Journal of Strategic IS and ISJ are already indexed in the ACM digital li-
brary, AISeL, ScienceDirect and EBSCO, respectively, ISR, MISQ and the
Journal of IT are not indexed in any of the six libraries we searched. In order
to ensure that we do not miss an article that might be potentially relevant
for our objective, we additionally use GoogleScholar to search for literature
in each of these three IS journals. Once we have derived a list of relevant
primary sources, we also use the “snowball” technique, hence we checked the
references of the papers we derived as result of our search in order to iden-
tify other relevant references from each primary source. A primary source is
a relevant paper found as result of the literature search [14].

We use these libraries and journals as outlets to search for available and
relevant studies done on guidelines, principles and quality criteria for the
development and evaluation of modeling languages and models created by
modeling languages. Because process modeling started to be widely used only
some decades ago, it has its roots from other, more established, disciplines.
Therefore, we widen our spectrum of domains by including not only Process
Modeling (PM) but also, Conceptual Modeling (CM), Data Modeling (DM),
Information modeling (IM), Software Requirements Specification (SRS) and
Domain-Specific Language (DSL). Considering that the process map language
is a type of modeling language, we search for papers in the broad domain of
Modeling Languages. We extend our search by including the terms Modeling
Grammar, Modeling Technique and Modeling Notation, as all of these are
partially used interchangeably. Also, since a modeling language is a type of
visual language, we also include papers from the domains of Visual Languages,
Visual Notations, Visual Programming Languages and Icon Design.

At the beginning, we did not restrict the time period for the literature
search. However, we found that no relevant results showed up which were
older than 1983, hence later on we restricted our search to papers published
between 1980 and the present day. We used our research objective as main
keywords (guideline, principle and criteria) and the aforementioned domains
as a second set of keywords to construct the search expressions for automated
searches. We added the term “evaluation” or more specifically “evalu*” to the
set of main keywords which we used in combination of each of the domains.
Using “evalu*” instead of “evaluation” would return as result papers that
include one or all of the words that have as stem “evalu” (e.g. evaluation,
evaluate, evaluating). Apart from only using the domain as a search term,
we also used the model produced as result of a domain as a search term.

76 6 Modeling Language Quality

Keyword Conju-
nction

Keyword Type Field Time
period

“modeling” AND quality journals computer
science

1980-
2015

“modeling
language”

OR principle magazines decision science

“modeling
grammar”

guideline, proceedings business &
management

“modeling
technique”

evalu* chapter business
information
systems

“modeling
notation”

“modeling script”

“process model*”

“data model*”

“conceptual
model*”

“information
model*”

“requirements
specification”

“visual language”

“programming
language”

“domain-specific”

“icon design”

Table 6.1: Search expressions

For example, while we searched for guidelines for process modeling, we also
searched for guidelines for process models. If applicable, we did this for all
domains. Similar to “evalu*”, we searched for “process model*”, which as
result will give back papers about both process modeling and process models.

Additionally, we used the logical conjunctions “AND” and “OR” to con-
nect both the main keywords and the domains. However, we found that differ-
ent libraries act differently when certain conjunctions or conjunction combina-
tions are used. In particular, many of the libraries did not act as we expected
when we used both “AND” and “OR” conjunctions within the same expression
of search terms. Therefore, whenever applicable, we used both “AND” and
“OR” conjunctions within the same search expression in order to connect one
or all domains with all main keywords (e.g. “modeling language” AND (guide-

6.2 Literature Review on Quality Requirements for Modeling Languages and Models 77

line OR principle OR criteria OR evalu*)). Otherwise, we composed separate
search expressions for each of the diverse keyword combinations (e.g. “mod-
eling language” AND guideline, “modeling language” AND principle, etc.).
Depending on the library, we searched for four main types of publications,
namely journals, magazines, proceedings and chapters. Likewise, depending
on what the libraries offered, we searched for papers within five main fields,
namely computer science, decision science, business & management, business
IS, and IS. Figure 6.1 illustrates all keywords and logic conjunctions we used
to form search expressions. The figure also shows the publication types and
fields we used as constraints for our search.

6.2.2 Paper Selection and Data Extraction

As result of the literature search, we retrieved a large amount of papers. The
paper count found from each library can be seen in table 6.2. From Table 6.2
we can see that the six libraries provided us with a total of 17,319 papers, each
including presumably one or more of the keywords we included in the search
expressions. More than 50% of the papers come from the Springer digital
library, while the least come from AISeL, with only 285 papers. According to
the stages introduced by Kitchenham et al. [14], as a first step we need to
identify the relevant papers. Hence, we first reviewed the titles of each paper
that was identified by the initial search, namely the 17,319 papers.

We started by only focusing on the title, since many of the papers were
simply too far from the field we were aiming for, namely modeling languages. If
the title pointed to a study that might have to do with certain type of modeling
language or a model, we then reviewed the abstract of the respective paper. We
did this for all papers. As a result, we selected 108 papers, which is less than
1% of the initial search. We considered these papers to be good candidates for
including in the set of primary sources. Accordingly, the 108 papers went to
the second round of reviews, which includes reading the entire paper. Hence,
we wanted to make sure that the study is indeed about guidelines, principles
or quality criteria for developing or evaluating modeling languages and models
produced by languages. After reading the 108 papers we ended up with 64
papers we included in our final set of primary sources.

In addition to the six libraries, we also used the same search expressions
as shown in Figure 6.1 to search in the three IS journals: MISQ, ISR and the
Journal of IT. We did this with the help of GoogleScholar. As result we found
four more papers we included in our final set of primary sources. Finally, we
skimmed through the references of our final selection of papers, which led to
11 more papers we added to the set of primary sources. These are noted as
other in Table 6.2, and mostly refer to books, technical reports or simply
articles which were not indexed in any of the libraries we used. We ended up
with a total of 79 papers we use to derive a list of guidelines, principles and
quality criteria for modeling languages and models.

78 6 Modeling Language Quality

Online library Papers found 1st selection Final selection

ScienceDirect 3131 37 16

IEEE 1245 10 6

ACM 2242 9 9

Springer 9234 19 21

EBSCO 1182 24 10

AISeL 285 9 2

IS basket 4

other 11

Total: 17319 108 79

Table 6.2: Papers found from literature search

The final step of the literature review is extracting and synthesizing the
required data from the 79 primary sources. For this, we read each of the 79
papers carefully. Our intention was, after reading the first couple of papers, to
find out what data we will focus on extracting from each article, beyond the
respective guidelines, principles and quality criteria. As we read the papers, we
found that each paper refers to a modeling language or a model coming from a
specific domain, such as process modeling, or conceptual modeling. Moreover,
we also observed that, for example, albeit using “conceptual model*” as a
keyword to search for relevant articles, the search did not necessarily return
only papers that deal with conceptual modeling. Nonetheless, we kept track of
the main domain each paper was concerned with. Furthermore, we identified
that all papers introduce guidelines, principles or criteria either for creating
or evaluating an entire language (e.g. BPMN, UML), or models created by
certain language domain (e.g. data model) or even instances from a single
model (e.g. icons used in a model). Accordingly, we recorded for each paper
whether the proposed guidelines, principles and quality criteria are applied
on a language level (l-l), model level (m-l) or instance level (i-l).

6.2 Literature Review on Quality Requirements for Modeling Languages and Models 79

Domain ID Level ID

Information Systems IS Language level l-l

Meta Modeling MM Model level m-l

Enterprise Modeling EM Instance level i-l

Process Modeling PM

Conceptual Modeling CM Type ID

Data Modeling DM Guideline g

Information Modeling IM Principle p

Software Requirements Specification SRS Criteria c

Domain-Specific Language DSL

Diagrams Di

Visual Language VL

Visual Programming Languages VPL

Information Visualization IV

Graphical User Interfaces GUI

Table 6.3: ID’s for domains, levels and types

Finally, for each primary source, we recorded whether the paper was re-
ferring to guidelines, principles or quality criteria. This was also the most
challenging part, as many papers referred to all as simply being criteria. How-
ever, we diagnosed the context in which the criteria were used and classified
them accordingly. For example, if the proposed quality requirements were used
to evaluate the performance of a language or a singular model, we categorized
them as quality criteria. On the other hand, if they were used to specify, for
example, how many elements a language should offer, we clustered them as
principles. Moreover, if a quality requirement was used as instruction towards
choosing the appropriate elements for one model, for instance, how many ele-
ments a model should have, these were considered as guidelines, respectively.
Table 6.3 depicts all domains we found to be subject of interest in the 79
primary sources (IS, Meta Modeling (MM), Enterprise Modeling (EM), PM,
CM, DM, IM, SRS, DSL, Diagram (Di), Visual Language (VL), Visual Pro-
gramming Language (VPL), Information Visualization (IV), Graphical User
Interface (GUI)). This table also shows the levels and type of quality require-
ment, and an assigned ID to each of them, respectively. Whenever applicable,
we refer to the ID’s of each throughout the rest of this thesis.

We extracted the required data from all primary sources. We found that
many papers were referring to quality requirements that were initially intro-
duced by a prior study. If the prior study was not already in our set of primary
sources, we included it respectively. The data extraction resulted in a large
set of data clustered into guidelines, principles and quality criteria. Although
many of the guidelines, principles and criteria were repeating, we kept track
of all. Thus, we ended up with a total of 122 guidelines, 109 principles and
635 quality criteria. We used Microsoft Excel to keep track of the data.

The next step was to make sure that our extracted data does not include
any redundancies. Therefore, we searched for repeating guidelines, principles

80 6 Modeling Language Quality

and criteria and merged them accordingly. First of all, those quality require-
ments that shared the same name were merged. However, we merged also those
that were assigned a different name, but shared the same meaning. While we
kept track of the type of quality requirement (guideline, principle or quality
criteria), we also observed that while in some papers a quality requirement
is used as a guideline, in another paper the same requirement is used as a
principle or a quality criterion. Therefore, depending on the setting in which
the quality requirement is used, we clustered it as a guideline, principle or
quality criterion. Removing the redundant quality requirements left us with
a total of 314 guidelines, principles and quality criteria.

We believe that 314 is still a large amount to handle, so our goal was
to make our data more appealing by clustering subsets of the 314 instances.
After going through the list of quality requirements, we found that many
of them were concerned with certain parts of a language, such as syntax and
semantics. Moreover, there were also quality requirements which were referring
to the visual aspect of languages or models, namely the concrete syntax of
modeling languages. In addition, there were quality requirements referring to
specific matters, such as the completeness, correctness or clarity aspects of a
language or a model. Accordingly, we created preliminary cluster themes, such
as concrete syntax, abstract syntax, semantics and pragmatics. As we went
through our data, we were able to find more cluster themes. Our approach
resulted in 33 different clusters each having a unique theme and each holding
a subset of the quality req. The cluster themes are shown in Table 6.4.

concrete syntax clarity reusability

abstract syntax redundancy granularity

semantics feasibility abstraction

pragmatics flexibility decomposition

social quality reliability modularity

physical quality consistency generalization

empirical quality comprehension specialization

ontology usability representation

completeness executability operational features

correctness integration appropriateness

validity integrity resources

Table 6.4: Cluster themes

6.2 Literature Review on Quality Requirements for Modeling Languages and Models 81

Furthermore, we found that each of the cluster themes pointed to one
or more of the six main aspects of modeling languages which we discussed in
Chapter 5, in particular in Section 5.2. Therefore, we use the language aspects
abstract syntax, semantics, concrete syntax, domain, roles and tasks as shown
in Figure 5.2 and map the quality requirements to the language aspect it per-
tains to. If an entire cluster of quality requirements was concerned mainly with
one language aspect, we included all quality requirements from this cluster in
the according aspect, respectively. For instance, the clusters completeness and
correctness hold quality requirements that refer to the language’s domain. Ac-
cordingly, we relate these clusters to the higher-level cluster domain. Similarly,
the clusters that hold quality requirements regarding redundancy, feasibility,
flexibility and reliability of modeling languages and models are also a matter
of the language’s domain. In contrast, those quality requirements that deal
with the issues of validity and clarity of modeling languages and models are
requirements that relate to tasks. On the other hand, the clusters pragmat-
ics, social quality, physical quality, empirical quality and understandability
hold quality requirements that are mainly concerned with the roles aspect of
modeling languages and models. Hence, they belong to the cluster roles.

Whereas for some of the clusters from Figure 6.4, it was easy to determine
the aspect to which it belongs to, for other clusters this was not as straight-
forward. For example, the quality requirements that deal with usability of
modeling languages and models apply to all of the extra-language aspects,
namely domain, roles and tasks. For cases like this, we went through each of
the quality requirements included in the particular cluster, checked the main
topic each requirement pertains to, and accordingly classified the requirement
to the appropriate aspect. As a result, quality requirements that pertain to
usability of languages and models could be found in all three extra-language
aspects, domain, roles and tasks. We did this procedure for all of the 33 clus-
ters and each of the 314 quality requirements. Subsequently, we ended up with
six main quality clusters, each holding quality requirements that pertain to
each of the six language aspects as seen in Figure 5.2.

6.2.3 Guidelines, Principles and Quality Criteria for Modeling
Languages and Models

Here we present the results of the systematic literature review we conducted
on guidelines, principles and quality criteria for modeling languages and mod-
els created by modeling languages. The results are presented in form of tables.
Each table includes quality requirements pertaining to one of the language as-
pects shown in Figure 5.2. The language aspect can be identified by the table
label. As depicted in Figure 5.2, each of the aspects is assigned an ID (e.g.
Concrete Syntax (CS), Semantics (S), Abstract Syntax (AS), Domain (D),
Roles (R), Tasks (T)). Accordingly, each guideline, principle and quality cri-
terion is assigned a unique ID, compliant to the main aspect it belongs to. For
each quality requirement we refer to whether the requirement is a guideline,

82 6 Modeling Language Quality

principle or a quality criterion. Accordingly, we attach the respective ID’s
as seen in Table 6.3 next to the requirement’s name Guideline (g), Princi-
ple (p), Quality Criterion (c). The tables also provide a short description for
each quality requirement, the domain’s ID the requirement is applied in (see
Table 6.3), the level it is used on (language level (l-l), model level (m-l) or
instance level (i-l)), and the respective papers it is mentioned in. Beyond the
tables, we also provide explanations for the quality requirements that belong
to each language aspect.

Quality Requirements for Concrete Syntax

Over one third of the requirements, or more specifically, out of 314 quality
requirements a total of 107 guidelines, principles and quality criteria are con-
cerned with the visual aspects of modeling languages and models. These are
shown in Table 6.5 as quality requirements with ID’s ranging from cs1 until
cs107. The visual aspects are concerned with the concrete syntax of modeling
languages and models. Few of the quality requirements refer to the visual as-
pects of modeling languages in general terms (cs1-cs5 from Table 6.5), such as
the degree to which information using a specific language can be represented
visually (cs2) [153–157] or the principle of semiotic clarity (cs3) which states
that there should be a 1:1 correspondence between semantic constructs and
graphical symbols [13].

On the other hand, most of the quality requirements we found are con-
cerned with more specific visual aspects. For example, there are 10 require-
ments that refer to visual complexity (cs6-cs16). These suggest to use few
elements rather than making a language too rich. Same applies for models.
The quality requirements recommend using as many elements as necessary
to express a meaning (cs10) [154, 157], and if a model includes many ele-
ments, than group them (cs16) either by their size, shape [158], color (cs12)
[141, 158, 159] or their close proximity (cs11) [141, 158–160].

Furthermore, some principles suggest for symbols within one language to
be consistent i.e. a language should provide symbols that conform to a pattern
which will increase understandability (cs17) [141, 151, 160, 161]. In line with
this, to avoid overloading the human brain, it is highly advantageous to repeat
some aspect of the design throughout one model to give the impression of
coherence and organization (cs18) [141, 160]. Many studies also point to the
importance of discriminating between the different symbols (cs22), of course
only in the case they refer to different semantics [13, 141, 160–163].

Another major determinant towards users easily learning to use a mod-
eling language or read models created by a modeling language is the user’s
familiarity with the language’s symbols (cs26) [151, 159, 161, 164]. Hence, a
modeling language consisting of symbols that have some kind of a cultural
or intuitive relationship with the objects they represent (cs26) [141, 160], or
if the symbol’s visual representation suggests its meaning (cs29) [13], these

6.2 Literature Review on Quality Requirements for Modeling Languages and Models 83

languages in turn will be easier to use also for untrained users, rather than
languages with symbols which are not related to their meaning.

Beyond symbol familiarity, there are studies that point towards the im-
portance of the user-friendliness of modeling languages [13, 141, 154, 157,
161, 165–167]. They suggest that, a language that offers meaningful sym-
bols (cs31) [164], user feedback about the symbol (cs34) [161], stable symbol
meaning (cs36) [161] and different visual dialects for different audiences (cs38)
[13] is a language of high quality. Guidelines, principles and quality criteria
are introduced that are concerned with the use of the eight visual variables
introduced by Bertin [117]. These are the quality requirements with the fol-
lowing ID’s cs39-cs43. Particularly, it is advised to use different colors (cs40)
[158, 161, 168] or sizes (cs42) to emphasize the importance of certain elements
[151, 158].

The rest of the quality requirements mostly refer to the geometrical aspects
of the elements within models. For example, there is a principle that points to-
wards how a model should be structured (cs44) [119, 141, 159, 160, 169, 170]
and guidelines recommending how elements within a model should be or-
ganized and aligned (cs45, cs46) [141, 160, 171]. Guidelines concerning the
regularity (cs58) [151], symmetry (cs49) [149, 151, 158] and proportionality
(cs50) [168] of elements included in models are also included. Specific features
of models and model elements are as well presented as important to be con-
sidered when creating models, such as the number of turns in a model (cs53),
and the type of font used (cs58) [172, 173].

Quality requirements about the characteristics of single elements (e.g. sym-
bols) have also been proposed (cs71-cs81). Some studies say that symbols
should be tested before being included as part of a modeling language (cs71)
[161] and they should be as simple as possible (cs73) [151, 158, 161, 164]. This
can be achieved by excluding features that are not particularly necessary to
be part of the symbols. In addition, it is crucial to introduce symbols that can
clearly be differentiated from the background of models (cs74) [161]. More-
over, studies emphasize that elements that are placed in a straight line are
typically perceived as belonging together (cs78) [158]. Also, by placing ele-
ments at the center of a model, we accordingly place emphasis on them (cs82)
[158]. Likewise, there are guidelines concerned with the edges used to connect
two or more elements together within one model (cs82-cs105). Some guide-
lines say that the number of edge intersections should be minimized (cs87)
[149, 151, 158, 173, 174], while others place emphasis on the importance of
the edge length (cs96) [149]. In particular, it is recommended to minimize the
length of the longest edge.

The last quality requirements address more general visual aspects of lan-
guages. For instance, it has been prescribed to use an appropriate amount
of syntactic sugar in languages (cs106) [163]. Syntactic sugar serves to im-
prove the readability of models created by modeling languages (e.g. selected
keywords to point out the meaning of an element).

84 6 Modeling Language Quality

ID Name Description Domain Level Paper

cs1 Model-
visualization
distinction
(p)

Make clear distinction between a
model and its visualizations.

EM m-l [88]

cs2 Visual
nature (p)

Represent information in a graphical
form by using layout, grouping, color,
and other cues to convey extra mean-
ing, beyond the official semantics of
the language.

PM,
DSL,
VPL

l-l [153–
157]

cs3 Semiotic
clarity (p)

Ensure a 1:1 correspondence between
semantic constructs and graphical
symbols.

VL l-l [13]

cs4 Exploitation
of human
visual
perception
(c)

This property is related to the notion
of effectiveness: whether a language ex-
ploits the capabilities of the output
medium and the human visual stream,
and to computational offloading: the
extent to which a representation of a
problem can reduce the amount of cog-
nitive effort needed to solve the prob-
lem by providing the means for direct
perceptual recognition of important el-
ements in it.

SRS l-l [141,
160]

cs5 Dual coding
(p)

Use text to complement graphics. VL l-l [13]

cs6 Geometrical
complexity
(p)

Create simple models. The simpler it
looks, the simpler its components are
geometrically, the easier it can be un-
derstood.

DM m-l [151]

cs7 Space
economy
(p)

Use as few elements in the model as
possible. Models should take up as lit-
tle space on the printed page as possi-
ble.

CM,
VL,
PM,
DSL,
SRS

m-l [13, 119,
136, 141,
160, 163,
174]

cs8 Graphic
economy
(p)

The number of different graphical sym-
bols should be cognitively manageable.

VL,
SRS,
VPL

l-l [13, 141,
154, 157]

cs9 Complexity
manage-
ment
(p)

Include explicit mechanisms for deal-
ing with complexity.

VL l-l [13]

cs10 Diffuseness
(p)

Use as many elements as required to
express a meaning. Some languages use
a lot of symbols or a lot of space
to achieve the results that other lan-
guages achieve more compactly.

VPL l-l [154,
157]

cs11 Proximity
(p)

Group symbols physically close to each
other.

SRS,
DM,VL

m-l [141,
158–160]

cs12 Similarity
(p)

Group symbols that are similar in size,
shape, color, etc.

SRS,
DM,
VL

m-l [141,
158, 159]

Table 6.5: Quality requirements for concrete syntax

6.2 Literature Review on Quality Requirements for Modeling Languages and Models 85

ID Name Description Domain Level Paper

cs13 Common
fate (p)

Group symbols that move or appear to
move in the same direction and/or at
the same speed.

SRS,
DM

m-l [141,
159]

cs14 Connecte-
dness
(p)

Unite graphically connected elements. VL m-l [158]

cs15 Familiarity
(p)

Group elements that seem to be famil-
iar or (semantically) meaningful.

VL m-l [158]

cs16 Group of
objects (p)

Group objects so that they are dis-
played as a straight line or on a shape
established by an external semantic
feature.

VL m-l [158]

cs17 Symbol
consistency
(p)

Use symbols that conform to a pattern
as they are easier to understand. In-
consistent symbols are difficult to learn
and recall.

DM,
IM,
SRS,
GUI

i-l [141,
149, 151,
160, 161]

cs18 Repetition
(p)

Repeat some aspect of the design
throughout the model to give the im-
pression of coherence and organiza-
tion.

SRS m-l [141,
160]

cs19 Contrast
(p)

Elements of a model that are the same
should be represented in exactly the
same way; if they are not the same,
then they should be clearly different.

SRS m-l [141,
160]

cs20 Unity (p) Symbols should be as unified as possi-
ble. For example, when solid and out-
line figures occur together, the solid
figure should be within the outline fig-
ure.

GUI i-l [161]

cs21 Uniform
appearance
(p)

Provide a uniform appearance of the
drawing to support similarity and ho-
mogeneity.

VL m-l [158]

cs22 Symbol
discrim-
inability
(p)

Make different symbols in the lan-
guage easy to distinguish from one an-
other. The ease with which different
symbols in a language can be distin-
guished from one another depends on
how physically distinct each symbol is
from others in the language.

SRS,
GUI,
VL,
DSL

i-l, l-
l

[13, 141,
160–163]

cs23 Notationality
in diagrams
(c)

An unambiguous relationship should
exist between each symbol in the dia-
gram and the object to which it refers.
When we look at a model, even if it
represents something we do not under-
stand, we can nonetheless detect the
objects it contains and then discrimi-
nate among them and configure them
into groups.

Di l-l [165]

cs24 Symbol
prominence
(p)

Apply contrast in symbols by using
color, shape, and size which can cause
them to pop out perceptually and call
attention to themselves.

VL m-l [164]

Quality requirements for concrete syntax (continued)

86 6 Modeling Language Quality

ID Name Description Domain Level Paper

cs25 Preattentive
processes
(p)

A language should contain symbols
that enable perceptual discrimination.
Perceptual discrimination detects sim-
ilarities and differences among the
symbols, determining that some are
the same and others different.

VL l-l [162]

cs26 Familiarity
(p)

The symbols of a language should be
familiar to its users. Familiarity is an
important predictor of speed and ac-
curacy of symbol identification, irre-
spective of concreteness. Familiarity
reflects the frequency with which sym-
bols are encountered. This property is
thought to be an important determi-
nant of usability. If symbols are fa-
miliar it means that the symbols in
the language will be closely related to
the concepts that they represent and
therefore that their meaning will be
clear, even to untrained users.

DM,
SRS,
GUI,
VL

i-l, l-
l

[141,
151,
159–
161, 164]

cs27 Concreteness
(p)

Concreteness is an important determi-
nant of the speed and accuracy with
which users can identify symbols. This
is because concrete symbols depict
objects, allowing people to use their
knowledge of the everyday world in or-
der to interpret them but this is less
easily done with abstract symbols.

VL i-l [164]

cs28 Recognizabi-
lity
(p)

Symbols should be easy to recognize.
Well-constructed graphic symbols have
emergent properties that facilitate eas-
ier recognition. A square consists of
four lines. However, when we look at
a square we perceive it as a square,
not as four separate lines. Squareness
is thus an emergent property of this
configuration of lines.

GUI,
DM,
EM, Di

i-l [88, 151,
161, 165]

cs29 Semantic
trans-
parency
(p)

Use visual representations whose ap-
pearance suggests their meaning. The
symbol’s implicit meanings should be
close to the intended ones.

VL,
GUI

i-l, l-
l

[13, 161]

cs30 Visual
routines (p)

Languages should provide the ability
to shift attention from one location in
the model to another. Users first find
the most easily detected, simplest, and
most prominent symbol in a model. It
would seem reasonable that they move
from there to the next most prominent
symbol and so on.

Di,
SRS,
VPL

m-l,
l-l

[141,
154, 157,
165]

cs31 Meaningfu-
lness
(c)

Meaningfulness refers to how meaning-
ful the users perceive the symbols to
be.

VL m-l [164]

cs32 Suitability
(p)

Symbols should express their intended
messages clearly. Similarly, the struc-
ture of a model should follow its in-
tended function.

DM,
GUI

i-l,
m-l

[161,
166]

Quality requirements for concrete syntax (continued)

6.2 Literature Review on Quality Requirements for Modeling Languages and Models 87

ID Name Description Domain Level Paper

cs33 Perceptual
precedence
(c)

A model should be created such that
users, when reading the model, can
discriminate between the symbols and
start looking for the necessary infor-
mation. The level of detail at which
a reader enters a model is deter-
mined by what is known as the per-
ceptual precedence of the symbols in
the model. Precedence is fundamental
to search in models because the level
at which readers discriminate and con-
figure the symbols in the model deter-
mines where they start looking for in-
formation.

Di m-l [165]

cs34 Feedback
(c)

Does the symbol offer some kind of
feedback to users?

GUI i-l [161]

cs35 Friendliness
(c)

Does the language give users the op-
tions to use the symbols they prefer?

GUI l-l [161]

cs36 Reliability
(p)

The symbols’ meanings should be sta-
ble, thus not a matter of ambiguity.

GUI i-l [161]

cs37 Degree of
aesthetics
(c)

Degree to which the model provides
the user with a pleasing and satisfying
interaction.

PM m-l [167]

cs38 Cognitive
fit (p)

Use different visual dialects for differ-
ent tasks and audiences.

VL l-l [13]

cs39 Visual
expressive-
ness
(p)

Use the full range and capacities of vi-
sual variables.

VL l-l [13]

cs40 Color (p) Color should be used in symbol design.
It is recommended to use color selec-
tively, so that it brings key information
into focus.

VL, IV,
GUI

i-l [158,
161, 168]

cs41 Orientation
(p)

Use horizontal or vertical orientations
as they are more likely perceived as a
figure than other orientations.

VL m-l [158]

cs42 Size (p) The size of the elements should be
chosen according to the importance of
the individual elements. Element sizes
should be kept consistent.

DM,
VL

m-l [151,
158]

cs43 Shape (p) Use standard elements such as regular
polygons, circles, ellipses, trapezoids,
and diamonds unless special elements
are required. Element shapes should be
kept consistent.

DM m-l [151]

Quality requirements for concrete syntax (continued)

88 6 Modeling Language Quality

ID Name Description Domain Level Paper

cs44 Amount of
structure
inherent
(p)

A model needs to be clearly struc-
tured, as a consequence it will involve
less effort on the part of readers to
find, decompose, and abstract informa-
tion, and thus be easier to understand.
Structured models can be seen as for-
mulas with balanced brackets i.e. every
opening bracket has a corresponding
closing bracket of the same type. Un-
structured models are not only more
likely to include errors, people also
tend to understand them less easily.

DM,
SRS,
PM

m-l [119,
141, 159,
160, 169,
170]

cs45 Organized
(c)

A model is organized if its contents are
arranged so that readers can easily lo-
cate information and logical relation-
ships among adjacent sections are ap-
parent.

SRS,
EM

m-l [88, 171]

cs46 Alignment
(p)

Alignment aims to ensure that nothing
is placed randomly in a model. Each
element should, where possible, have
a strong visual connection with some-
thing else in the model and the overall
structure should appear to be a cohe-
sive unit.

SRS m-l [141,
160]

cs47 Use a grid
system for
alignment
(g)

Grid systems are commonly employed
to layout technical content because
they provide visually appealing orga-
nization and/or symmetry. Grids con-
tain two basic elements: content space
and gutters. Gutters separate and or-
ganize content spaces. The most basic
grids use a symmetrical pattern, where
columns and rows are of equal sizes,
and gutters separate them by a fixed
size. The grid allows us to align each
of the graphical elements on the page.

IV,VL m-l [158,
168]

cs48 Regularity
(p)

Elements should be systematically ar-
ranged by certain patterns such that
the underlying structure regularity can
be formulated geometrically. The map
should be well-organized rather than
drawn randomly.

DM m-l [151]

cs49 Symmetry
(p)

Arrange the elements in models such
that the size, form, shape, and arrange-
ment of figure elements on opposite
sides of a plane, line, or point corre-
spond to each other.

DM,
VL, IM

m-l [149,
151, 158]

cs50 Proportiona-
lity
(p)

Apply visual order that complements
the structured functional decomposi-
tion of this diagram.

IV m-l [168]

cs51 Coupling
(g)

The classes connected to model ele-
ments outside a package should be spa-
tially separated from the classes con-
nected to elements inside only.

VL m-l [158]

Quality requirements for concrete syntax (continued)

6.2 Literature Review on Quality Requirements for Modeling Languages and Models 89

ID Name Description Domain Level Paper

cs52 Layout
should fit
abstract
and
concrete
syntax (p)

A layout should be preferred which
does not have any impact on the mean-
ing of the model, and thus, does not
affect the translation of the concrete
to the abstract syntax and the seman-
tics. A good layout of a model can be
used to simplify the understanding for
a human reader and is often used to
structure the model.

DSL m-l [163]

cs53 Turns (g) Minimize the number of angles in a
model.

DM m-l [151]

cs54 Area (g) Minimize the area occupied by the
drawing.

IM m-l [149]

cs55 Balance (g) Balance the diagram with respect to
the axis.

IM m-l [149]

cs56 Vert (g) Represent hierarchical structures ver-
tically, rather than horizontally.

IM m-l [149]

cs57 Text
direction
(g)

All text labels should be horizontal,
rather than a mixture of horizontal and
vertical.

SRS m-l [173,
175]

cs58 Font type
(g)

All text fonts should be the same,
rather than using different fonts for
different types of labels.

SRS m-l [173,
175]

cs59 Width of
layout (g)

The physical width of the drawing
should be minimized.

SRS m-l [173,
175]

cs60 Drawing
size (g)

Minimize the drawing size to support a
homogeneous node and edge distribu-
tion and to reduce the need of scrolling
the final drawing.

VL, PM m-l [158,
174]

cs61 Median
positions
(g)

Apply median positions to elements in
hierarchies, i.e. elements being higher
in hierarchy should be placed as close
as possible to the median positions of
the related elements on the next lower
hierarchy level.

VL m-l [158]

cs62 n-ary asso-
ciations
(g)

Center the rhomb in n-ary associations
between the connected classes to ex-
pose the special nature of this relation.

VL m-l [158]

cs63 Association
classes (g)

Center association classes with respect
to its dashed line and place them next
to the center of the association path it
connects to, i.e. the dashed line should
clearly connect to the part and not to
the classes connected by the associa-
tion or to any adornment.

VL m-l [158]

cs64 Comments
(g)

Keep comments, which may connect to
multiple other model elements, as close
as possible to the related elements.
Thus, place comments connected to
multiple model elements at the center
if possible.

VL m-l [158]

Quality requirements for concrete syntax (continued)

90 6 Modeling Language Quality

ID Name Description Domain Level Paper

cs65 Disconnected
elements
(g)

Place disconnected elements at the
border of the drawing.

VL m-l [158]

cs66 Joined
target style
(g)

Apply the joined target style instead
of the separate target style for gener-
alizations. Both styles are defined in
UML as presentation options and are
therefore the choice of the user. The
joined target style is recognized as an
improvement for readability.

VL m-l [158]

cs67 Orthogonally
drawn
elements
(g)

Maximize the number of orthogonally
drawn connecting elements.

PM m-l [174]

cs68 Connecting
objects (g)

Maximize the number of connecting el-
ements respecting workflow direction.

PM m-l [174]

cs69 Adapt
element
size (g)

Adapt the size of elements such that
all elements have enough space.

PM m-l [174]

cs70 Use of
partitions
(g)

Consider the use of partitions, e.g.
pools and swimlanes.

PM m-l [174]

cs71 Test before
use (p)

The symbols should be tested before
being used.

GUI i-l [161]

cs72 Typography
(c)

The symbols’ typeface should be lim-
ited to one or two type families only.

GUI i-l [161]

cs73 Symbol
simplicity
(p)

The symbol features should be as sim-
ple as possible, consistent with the
inclusion of features that are neces-
sary. Simple symbols enhance perfor-
mance because they can be discrimi-
nated more easily in arrays and are lo-
cated more easily in visual search.

GUI,VL,
DM

i-l,
m-l,
l-l

[151,
158, 161,
164]

cs74 Figure/
Ground (c)

The symbol should clearly be differen-
tiated from the background.

GUI i-l [161]

cs75 Order (p) When a symbol is dynamic, the se-
quence of displaying the series of sym-
bols should be considered.

GUI i-l [161]

cs76 Boundaries
(p)

The symbol should have clear bound-
aries.

GUI i-l [161]

cs77 Layout (p) The features in a symbol should be ar-
ranged carefully. Their relative direc-
tion, location, etc., could affect symbol
quality.

GUI i-l [161]

cs78 Continuation
(p)

Elements are perceived as belonging
together when they are placed in
straight or smoothly curved lines.

VL m-l [158]

cs79 Degree (g) Place elements with high degree in the
center of the drawing.

IM m-l [149]

Quality requirements for concrete syntax (continued)

6.2 Literature Review on Quality Requirements for Modeling Languages and Models 91

ID Name Description Domain Level Paper

cs80 Uniden (g) Have uniform density of elements in
the drawing.

IM m-l [149]

cs81 Overlaps
(g)

Avoid overlaps between elements as
well as between elements and edges.

VL, PM m-l [158,
174]

cs82 Center of
boundary
(g)

Place some elements at the center or
at the boundaries of the model to em-
phasize the elements.

VL m-l [158]

cs83 Edges (g) Edges of one kind in a model should
use the same shape and thickness. Dif-
ferent kind of edges in the same model
should use different shapes and/or
thickness. Different kinds of edges in
different models could use the same
shape and thickness.

DM m-l [151]

cs84 Drawing
single edges
(g)

Edges must never cross nodes other
than the origin and target ones.

DM m-l [151]

cs85 Drawing
multiple
edges (g)

If the number of edges between two
nodes is even and the origin and target
nodes are circles or ellipses, then edges
are so drawn that all arc centers are
on the line which is perpendicular and
passes the center of the line connecting
the centers of the two nodes.

DM m-l [151]

cs86 Orthogonality
(g)

Fix elements and edges to an orthogo-
nal grid.

SRS m-l [173,
175]

cs87 Intersection
(g)

The number of edge intersections
should be minimized.

DM,
IM,
SRS,
VL, PM

m-l [149,
151, 158,
173, 174]

cs88 Closeness
(g)

Related edges should be kept close to-
gether.

DM m-l [151]

cs89 Separation
(g)

Unrelated edges should be kept sepa-
rated from each other.

DM m-l [151]

cs90 Line
difference
(p)

Line separation influences the degree
of ease with which two lines are differ-
entiated.

DM m-l [151]

cs91 Contours
(p)

Edges play a very important part in
figure ground perception.

VL m-l [158]

cs92 Good con-
tinuation
(p)

Lines segments that are smooth con-
tinuations of one another tend to be
seen as parts of the same line.

SRS,
DM

m-l [141,
159]

cs93 Closure (p) Lines that form a closed region tend to
be viewed as forming a distinct object
or shape.

SRS,
DM

m-l [141,
159]

cs94 Angle (g) Angles between edges should not be
too small .

IM m-l [149]

Quality requirements for concrete syntax (continued)

92 6 Modeling Language Quality

ID Name Description Domain Level Paper

cs95 Crossing
(g)

Minimize the number of faces drawn as
convex polygons.

IM m-l [149]

cs96 Length (g) Minimize the global length of the
edges.

IM m-l [149]

cs97 Maxcon (g) Minimize length of the longest edge. IM m-l [149]

cs98 Minimize
bends (g)

The total number of bends in polyline
edges should be minimized.

SRS,
VL, PM

m-l [158,
173, 174]

cs99 Inheritance
(g)

Inheritance lines should be joined prior
to reaching the super class, rather than
being represented as separate arcs.

SRS m-l [173,
175]

cs100 Directional
indicators
(g)

Arcs should be labeled with two rela-
tionship labels and two directional in-
dicators, rather than one.

SRS m-l [173,
175]

cs101 Adjacent
arrows (g)

All arcs are undirected with an adja-
cent arrow indicating the direction of
the message sent, rather than all arcs
being directed.

SRS m-l [173,
175]

cs102 Arrow
lengths (g)

The arrows adjacent to the arcs should
be the same length as the arcs, rather
than shorter than the arcs.

SRS m-l [173,
175]

cs103 Uniform
flow (g)

Edges should highlight a uniform flow
and therefore should have similar edge
directions. This rule applies to all
edges in a graph without considering
different type of edges.

VL m-l [158]

cs104 Hyperedges
(g)

Hyperedges i.e. edges between edges
such as generalizations of associations
or xor-constraints should be drawn as
direct as possible.

VL m-l [158]

cs105 Symbol for
edge
crossings
(g)

The symbol for edge crossings at asso-
ciations might be applied to improve
readability when relations cross an as-
sociation.

VL m-l [158]

cs106 Use
syntactic
sugar ap-
propriately
(p)

Languages typically offer syntactic
sugar, i.e. elements which do not con-
tribute to the expressiveness of the lan-
guage. Syntactic sugar mainly serves
to improve readability, but to some ex-
tent also helps the parser to parse ef-
fectively. Carefully selected keywords
help to make text readable. Generally,
if an efficient parser cannot be imple-
mented, the language is probably also
hard to understand for human read-
ers. However, an overuse of the addi-
tion of syntactic sugar distracts, be-
cause verbosity hinders to see the im-
portant content directly.

DSL l-l [163]

Quality requirements for concrete syntax (continued)

6.2 Literature Review on Quality Requirements for Modeling Languages and Models 93

ID Name Description Domain Level Paper

cs107 Presentation
media and
venue (p)

Based on whether the presentation me-
dia will be electronic and/or hardcopy,
or is for reports versus presentation,
or stand alone versus part of a larger
package, will drive some of the visual
presentation properties of the gener-
ated views. These include but are not
limited to properties such as font size
and type, aspect ratio of the diagram
(e.g., landscape vs. portrait orienta-
tion), amount of text versus symbols
and images, and so forth. This also
includes considerations that there are
cases when the same views may need
to modified for different venues.

IV l-l [168]

Quality requirements for concrete syntax (continued)

Quality Requirements for Semantics

Almost 11%, or to be exact 34 quality requirements, we retrieved from our
literature search are concerned with the semantics of modeling languages and
models. These can be seen in Table 6.6. The majority of them are quality
criteria that have been proposed to evaluate the semantic quality of languages
and models. Most refer to the correspondence between the language symbols
with the real world objects (s1-s3) [137, 144, 150, 176–181]. Many studies
state the importance of semantic quality for modeling languages and models
(s2). Semantic quality specifies in how far the model elements correspond
to real world objects [144, 150, 156, 176–185]. Similarly, it is recommended
that symbols should be chosen that are closely related to what they intent to
represent from the real world (c3) [164].

Beyond modeling languages being used by people, they are also used to
allow creating models for the sake of simulation and automation (s8, s14). For
example, if there exists a software tool that supports the models created by
using modeling languages, then the model has the property of being executable
and interpretable (s8) [136, 137, 171, 177, 186]. Accordingly, software tools
ought to exist that support modeling languages (s11) [156, 186]. Moreover,
it is crucial for a model to be easily implemented within time, budget and
technology constraints (s10) [145, 149, 187–190]. Also, it is prescribed for the
requirements stated in models to have only one possible interpretation (s18)
[151, 171, 181, 191, 192]. Consistency is another property that contributes
to defining the semantics of languages. It has been reported that models are
consistent if they do not contradict themselves. For this, the same type of
concepts is used to denote the same type of elements from the real world (s6)
[88, 136, 141, 154, 157, 160, 163, 166–168, 170, 184, 191, 193, 194]. Similarly,
the various elements within a modeling language need to be consistent, which
points towards the internal consistency of a language (s7) [171, 193].

94 6 Modeling Language Quality

We also found principles concerned with classes of modeling language
elements. For example, if a class is decomposed into subclasses, then the
subclasses must be associated with additional properties which are not re-
lated neither with the super-class nor with the other existing subclasses (c28)
[195, 196]. Moreover, the covering principle states that every instance of the
language is member of at least one class at every time (c29) [197]. In a nut-
shell, it is recommended that the semantics assigned to each piece of syntax
is independent of context (s34) [198].

ID Name Description Domain Level Paper

s1 Perceived
semantic
quality (c)

The correspondence between the user
interpretation of a model and his or her
current knowledge of the domain, and
what can actually be checked during
quality control/validation.

CM m-l [150,
176–180,
182, 183]

s2 Semantic
quality (c)

If the elements in a model reflect real
world objects, the semantic quality of
a language would be increased. Seman-
tic quality specifies in how far the ref-
erence of the model elements to real
world objects is appropriate i.e. to
which degree the underlying real world
excerpt is adequately depicted in the
model.

IS, CM,
PM

m-l [144,
150, 156,
176–185]

s3 Semantic
distance (p)

Symbols should be chosen that are
closely related to what they intend to
represent. Semantic, or articulatory, is
a measure of the closeness of the rela-
tionship between the symbol and what
it is intended to represent.

VL i-l [164]

s4 Semantic
richness
(c)

Semantic richness relates to the lan-
guage ability to express what is actu-
ally performed during software devel-
opment processes.

PM l-l [186]

s5 Standardisa-
tion
(c)

The accuracy of the corresponding lan-
guage documentation evaluated by the
level of standardization of modeling se-
mantics.

PM l-l [156]

s6 Consistency
(p)

A model is consistent if it does not con-
tradict itself. Apply the same type of
concepts to denote the same type of
elements from the real world. Model
similar relations in a similar manner.
Use the same terms to denote the same
concepts, also in related models. When
some of the language structure has
been learned, how much of the rest can
be inferred successfully?

CM,
DM, IS,
SRS,
DSL,
IV,
VPL,
PM,
EM,
MM

m-l [88, 136,
141,
154, 157,
160, 163,
166–
168, 170,
184, 191,
193, 194]

s7 Internal
consistency
(p)

The various elements within a lan-
guage and a model should be consis-
tent.

DM,
SRS

m-l,
l-l

[171,
193]

Table 6.6: Quality requirements for semantics

6.2 Literature Review on Quality Requirements for Modeling Languages and Models 95

ID Name Description Domain Level Paper

s8 Executability
appropri-
ateness
(c)

A model is executable, interpretable,
or prototypable iff there exists a soft-
ware tool capable of inputting the
model and providing a dynamic behav-
ioral model.

CM,
SRS,
PM

m-l [136,
137, 171,
177, 186]

s9 Technical
actor inter-
pretation
enhance-
ment
(c)

For the technical actor, it is especially
important that the language lends it-
self to automatic reasoning. This re-
quires formality, but formality is not
necessarily enough, since the reason-
ing must also be fairly efficient to be
of practical use. This is covered by exe-
cutability i.e. to have exploited the op-
erational semantics, and analyzability
i.e. to have exploited the mathematical
semantics.

CM l-l [182]

s10 Implementa-
bility
(c)

The ease with which the model can
be implemented within the time, bud-
get and technology constraints of the
project.

CM,
DM,
IM, PM

m-l [120,
145, 149,
187–190]

s11 Tooling
support (c)

The extent to which a language is sup-
ported by a tool.

PM l-l [156,
186]

s12 Model
export (c)

It should be easy to export the created
models to another software.

PM l-l [156]

s13 Paradigm
support (c)

The degree to which the language
supports its intended programming
paradigm.

VPL l-l [153]

s14 Model con-
struction
(c)

The ability of the language to con-
struct an adequate model ready to sim-
ulate.

PM l-l [156]

s15 Computable
(c)

A structural form is computable if it
only involves computations that are
defined according to the standard the-
ory of computation and are within the
limits defined by the program, the pro-
gramming language and/or the ma-
chine.

SRS m-l [170]

s16 Achievable
(c)

A model is achievable iff there could
exist at least one system design and
implementation that correctly imple-
ments all the requirements stated in
the model.

SRS m-l [171]

s17 Design-
independent
(c)

A model is design-independent iff there
exist more than one system design and
implementation that correctly imple-
ments all requirements stated in the
model.

SRS m-l [171]

Quality requirements for semantics (continued)

96 6 Modeling Language Quality

ID Name Description Domain Level Paper

s18 Unambiguous
(c)

The requirement that all components
of a view are clearly defined. It spec-
ifies in how far the elements of the
model are intuitively formulated with
respect to content. A model is unam-
biguous if and only if every require-
ment stated therein has only one pos-
sible interpretation.

IS, DM,
SRS,
PM

m-l [151,
171, 181,
191, 192]

s19 Consistent
level of
abstraction
and detail
(c)

This criterion pertains to the consis-
tency in decomposing one function into
a set of sub-functions at the next lower
level of refinement. All of the decom-
posed sub-functions should be at the
same abstraction at a particular level.

IS l-l [184]

s20 Fully
informative
(p)

If at any time for each instance in-
cluded in it every relevant property of
the instance is included in the defini-
tion of at least one class to which the
instance belongs.

CM l-l [197]

s21 Maximal
abstraction
(p)

A relevant property possessed by all in-
stances of a class should be included in
the class definition.

CM, IM l-l [196,
197]

s22 Seamlessness
(p)

Allows mapping of abstractions in the
problem space to implementations in
the solution space without changing
notation, thus avoiding the impedance
mismatches that often arise through-
out the development process.

CM l-l [136]

s23 Determinism
(p)

Every event at every level in the level
structure of the system is either an ex-
ternal event or a well-defined internal
event. Determinism will be violated in
models if an analyst does not specify
the condition causing a split in an ac-
tivity.

CM m-l [199–
201]

s24 Parameteri-
zed
(c)

A module is parameterized if it con-
tains as parameters all and only the
necessary and sufficient inputs and
outputs to characterize a particular
well-defined function/procedure.

SRS m-l [170]

s25 Encapsulated
(c)

The way variables are used can have
a significant impact on the modular-
ity and hence self-contained quality
of modules, programs, and systems. A
variable should be used only within the
scope in which it is defined.

SRS m-l [170]

s26 Distinct
behavior
(p)

A subclass may be defined whose in-
stances have the same properties as
those of the superclass, but different
behavior. When distinct behavior is
used to define subclasses, instances of
the subclass must possess additional
structural or relational properties of
interest which are not shared by other
instances of the superclass.

IM l-l [196]

Quality requirements for semantics (continued)

6.2 Literature Review on Quality Requirements for Modeling Languages and Models 97

ID Name Description Domain Level Paper

s27 Value
restriction
(p)

When value restriction is used to de-
fine subclasses, instances of the sub-
class possess additional properties of
interest which are not shared by other
instances of the superclass.

IS, IM l-l [195,
196]

s28 Intersect
extensions
of existing
classes (p)

When a user identifies a subclass with
more than one superclass, probe for
additional properties associated with
the subclass. If none can be identified,
the class is unnecessary.

IS, IM l-l [195,
196]

s29 Covering
(p)

Iff every instance is a member of at
least one class at every time.

CM l-l [197]

s30 Inclusion
(p)

Every potential class can be included
in some class structure. Inclusion en-
sures that every concept of interest
can, in principle, be included in a
model that supports cognitive princi-
ples.

CM l-l [197]

s31 Variant (c) A loop guard is variant if it defines
a relation (the variant condition) that
is congruent with, and derivable from,
the variant function used to prove ter-
mination of the loop.

SRS m-l [170]

s32 Focus on
the infor-
mation, not
the form
(p)

Draw attention to the information, not
the form. One way to do this is by ex-
cluding meta-data of represented con-
structs. For example, when two con-
structs are related to each other the re-
lationship between the concepts should
be put into focus, and not the con-
structs. This can be done by remov-
ing the visual aspects that might place
focus on the constructs instead of the
relationship.

IV m-l [168]

s33 Explicitness
principle
(p)

Make the informational content ex-
plicit, not implicit.

Di l-l [198]

s34 Interpretation
principle
(p)

Ensures that the semantics assigned to
each piece of syntax are independent of
context.

Di l-l [198]

Quality requirements for semantics (continued)

Quality Requirements for Abstract Syntax

A similar amount as with semantics, there are 38 quality requirements (12.1%)
applied for developing or evaluating the abstract syntax of modeling languages
and models. The quality requirements for abstract syntax are shown in Ta-
ble 6.7. Few criteria are involved particularly with the abstract syntax of
languages (as1-as3). For instance, the syntactic quality has been reported as

98 6 Modeling Language Quality

a quality criterion that assesses the correspondence between the model and
the language extension of the language in which the model is written (as2)
[144, 150, 156, 176–182, 184, 185]. We also need to assure that what is repre-
sented in a model complies to the rules set by the language syntax (as1) [181].
The complexity of the abstract syntax has also been taken into consideration.
In particular, it has been suggested to assign the syntax rules such that they
are understandable (as3) [184].

Many quality requirements as seen in Table 6.7 are guidelines concerned
with specific operational features modeling language and models should pos-
sess (as4-as16). Operational features refer to attributes that contribute to a
modeling language or a model operate more efficiently and effectively. Accord-
ing to a study by Mendling et al. [119], there is a strong correlation between
the number of modeling errors and the average or maximum degree of ele-
ments in a model, hence the routing paths per element should be minimized
(as4). Also the guideline of parallelism states that a modeling language needs
to provide a mechanism for specifying concurrent activities, because many of
the software processes nowadays are intrinsically concurrent (as7) [202]. Like-
wise, studies in the field of business process modeling suggest to use one start
and one end event within a single process model (as6), as well as to avoid
OR routing elements, but instead use AND and XOR, because as it seems,
process models that include OR routing elements tend to be more error-prone
(as6) [119]. In addition, there are studies that provide guidance of how to label
the elements that comprise a modeling language and are included in models
(as9-as13). These advise to use verb-object activity labels (as12) [119, 174],
shorter activity labels (as10) [174] and a uniform style for names and flow
descriptions (as11) [174]. Moreover, beyond the guidelines proposed for the
immediate model elements, there are also guidelines concerning the presence
of general information about the models, such as title, type, authorship and
dates when the model has been created (as14) [168]. And, when a model con-
tains abbreviations, the modelers that create the model should make sure that
these are appropriately explained (as15) [168]

We are aware that modeling languages today tend to be complex due
to the richness of elements they offer. Therefore, special attention has been
placed on the different ways large amount of elements can be managed. Many
studies have been done on how to efficiently manage different granularity
(as17) [191, 202, 203]. Abstracting from a vast amount of elements is one of
the criteria used to evaluate the ability of a language to manage granularity
(as18) [141, 154, 155, 157, 170, 202]. Breaking down complex scenarios into
smaller and manageable models is also a preferred technique (as21) [151, 184].
Especially for complex systems it is desirable to allow users to arrange their
models in hierarchies (as24) [156, 158, 163] [171, 204, 205]. Modularity is
another way of structuring a model in many logically independent units called
modules (as25) [163, 167, 170, 171, 174, 186, 202, 205]. Similar to abstraction,
generalization is a mechanism that allows for the creation of superordinate
types by uniting existing types (as27) [50, 155, 170, 202], where each type

6.2 Literature Review on Quality Requirements for Modeling Languages and Models 99

is associated with one or more generic categories (as29) [206]. On the other
hand, specialization is a mechanism for representing one or more possibly
overlapping subtypes of a type (as30) [50].

Quality requirements have been proposed which refer to the manner el-
ements are represented in languages and models, disregarding the visual as-
pects. For instance, simplicity is a virtue of languages and models because it
enhances the understandability of both (as31) [136, 145, 187–189, 207]. And
a model is more prone to errors if it is complex (as32) [159, 174, 184]. Thus,
it is advised to avoid inefficient language elements, as these will affect the
language’s comprehensibility. Moreover, a language should allow the repre-
sentation of both technical and non-technical activities (as36) [202], and it
also should support multiple views (e.g. data view, process view, etc.) (as38)
[186].

ID Name Description Domain Level Paper

as1 Text syntax
(c)

Covers the combination of sentences to
form complex expressions i.e. the tran-
sitive combination of words to form
texts. It specifies to which degree a
model conforms to the rules of the lan-
guage which govern the combination of
sentences to form complex expressions.

PM m-l,
l-l

[181]

as2 Syntactic
quality (c)

The correspondence between the
model and the language extension of
the language in which the model is
written.

IS, CM,
PM

m-l [144,
150, 156,
176–182,
184, 185]

as3 Syntax
complexity
(c)

This criterion relates to the under-
standability of the syntax rules of a
language.

IS l-l [184]

as4 Minimize
the routing
paths per
element (g)

The higher the degree of an element
in the model i.e. the number of input
and output arcs together, the harder
it becomes to understand the model.
There is a strong correlation between
the number of modeling errors and
the average or maximum degree of el-
ements in a model.

PM m-l [119]

as5 Use one
start and
one end
event (g)

The number of start and end events is
positively connected with an increase
in error probability. Most workflow en-
gines require a single start and end
node. Models satisfying this require-
ment are easier to understand and al-
low for all kinds of analysis.

PM m-l [119]

as6 Avoid OR
routing
elements
(g)

Models that have AND and XOR con-
nectors are less error-prone. There are
some ambiguities in the semantics of
the OR join leading to paradoxes and
implementation problems.

PM m-l [119]

Table 6.7: Quality requirements for abstract syntax

100 6 Modeling Language Quality

ID Name Description Domain Level Paper

as7 Parallelism
(p)

The language should provide mecha-
nisms for specifying concurrent activi-
ties and synchronizing their evolution,
because software processes are intrin-
sically concurrent.

PM l-l [202]

as8 Permit
comments
(p)

Comments on model elements are es-
sential for explaining design decisions
made for other developers. This makes
models more understandable and sim-
plifies or even enables collaborative
work.

DSL l-l [163]

as9 Labeling
(g)

The stored data relating to each en-
tity are labeled such that the applica-
ble models can be determined.

IS m-l [206]

as10 Label size
(g)

Use shorter activity labels. PM m-l [174]

as11 Label style
(g)

Use a uniform style for names and flow
descriptions.

PM m-l [174]

as12 Verb-object
labeling (g)

Use verb-object activity labels. PM m-l [119,
174]

as13 Font - type
and size (g)

Use of fonts should adhere to simple
patterns throughout the views and the
products they are used in (e.g. reports,
websites, presentations, etc.). The sim-
plest rule is to use the same font type
within and across all diagrams. More
advanced patterns include: using hier-
archy of type, where the size of the
font is proportional to the significance
of the content; using the same font for
headlines; matching diagram font type
to the products they are employed in;
having no fonts smaller than 7 pt. Con-
sider a uniform orientation of text la-
bels and if not restricted by UML use
similar sizes for semantic groups of el-
ements.

IV, VL m-l [158,
168]

as14 Diagram
information
(g)

Model information such as title, type,
authorship, revision, status, dates, and
so forth should not be overlooked in
abstracting viewpoints as templates
for views. Of note: equal thought
should be given to what information
about the diagram is needed to con-
vey the message and what information
is superfluous; especially when some
of it is auto generated and placed
as a default by the software tool
of choice. Additionally, the modeling
team should consider whether the di-
agram information content should be
configured globally for the entire mod-
eling project; if applied, this would
provide consistency by ensuring that
each diagram has the required basic in-
formation for the viewer.

IV m-l [168]

Quality requirements for abstract syntax (continued)

6.2 Literature Review on Quality Requirements for Modeling Languages and Models 101

ID Name Description Domain Level Paper

as15 Abbreviations
and
acronyms
(g)

Ensuring that the audience can easily
discern all abbreviations and acronyms
within a diagram can play a larger role
toward understanding the content of
a view, and, as such, considerations
should be given to this concern.

IV m-l [168]

as16 Provide
analysis
tools (c)

Provide analysis tools including pro-
cess and product measurement facili-
ties, scheduling and planning tools.

PM l-l [202]

as17 Granularity
(c)

How efficiently different granularity
can be managed.

DM,
PM

m-l,
l-l

[191,
202, 203]

as18 Abstraction
(p)

The availability and types of abstrac-
tion and structuring mechanisms pro-
vided by a language. An abstraction
mechanism allows one to focus on the
important aspects of a system while ir-
relevant details remain hidden.

SRS,
DSL,
VPL,
PM

l-l [141,
154, 155,
157, 170,
202]

as19 Appropriate
level of
abstraction
(c)

The degree to which an abstraction
(decomposition) is appropriate for a
particular level.

IS l-l [184]

as20 Abstraction
from
instances
(p)

A class can be defined only if there
are instances in the relevant universe
possessing all properties defining the
class. Adherence to this principle sup-
ports the fundamental meaning of con-
cept - a specification of the properties
common to some instances. For every
proper class, a subset of the properties
is sufficient to identify class member-
ship.

IS, CM,
IM

l-l [195–
197]

as21 Decomposi-
tion
(c)

The ability of a model or a language
to break down complex scenarios into
smaller, manageable models.

IS, DM m-l,
l-l

[151,
184]

as22 Decompose
a model
with more
than 50
elements
(p)

Large models should be split up into
smaller models. Large sub-components
with a single entry and a single exit
can be replaced by one activity that
points to the original sub-component
as a separate models.

PM m-l [119]

as23 Losslessness
(p)

Every inherited state variable and ev-
ery emergent state variable in a sys-
tem is preserved in the decomposi-
tion. Losslessness will be violated in
class diagrams if an analyst decom-
poses classes in such a way that im-
portant associations among classes are
lost or part-whole relationships are not
correctly specified and the attributes
or class names of the wholes or parts
are lost.

CM m-l [199–
201]

Quality requirements for abstract syntax (continued)

102 6 Modeling Language Quality

ID Name Description Domain Level Paper

as24 Hierarchy
(c)

Especially for complex systems it is
desirable to allow users to arrange
their models in hierarchies. A diagram
should express a clear structure in
terms of semantic and visual hierarchy.
The ability of a language to offer com-
position and decomposition in hierar-
chical fashion. A model is traceable iff
it is written in a manner that facili-
tates the referencing of each individual
statement.

SRS,
DSL,
VL, PM

m-l,
l-l

[156,
158, 163,
171, 204,
205]

as25 Modularity
(p)

Modularity provides the possibility of
structuring a specification or program
in many logically independent units,
called modules. The construction of
sub-models using some standard pat-
tern or plan, thus reducing the number
of linkages that a reader need to con-
sider. Modularity is achieved by using
subprocesses.

DM,
SRS,
DSL,
VL, PM

m-l,
l-l

[151,
163, 167,
170, 174,
186, 202,
205]

as26 Cluster
similar
elements
(p)

Cluster similar elements and consider a
spatial distribution according to these
clusters.

CM,
DM,
VL

m-l [50, 151,
158]

as27 Generaliza-
tion
(p)

Generalization is a mechanism that al-
lows for the creation of new object
types by uniting existing object types.
Generalization is to be applied when
different object types play identical
roles in fact types. Genericity provides
the way of describing a general solution
for a set of related problems, by param-
eterizing it with respect to its possible
instantiations.

CM,
SRS,
DSL,
PM

m-l,
l-l

[50, 155,
170, 202]

as28 Sequence
typing (p)

Sequence typing offers the opportunity
to represent sequences, built from an
underlying element type. This notion
is expressible in terms of generaliza-
tion.

CM m-l [50]

as29 Known
categories
of data (p)

Each entity type is associated with
one or more predefined generic cate-
gories. Category-specific functionality
is invoked at run time for each entity
type.

IS l-l [206]

as30 Specialization
(p)

Specialization is a mechanism for rep-
resenting one or more possibly overlap-
ping subtypes of an object type. Spe-
cialization is to be applied when only
for specific instances of an object type
certain facts are to be recorded.

CM m-l [50]

Quality requirements for abstract syntax (continued)

6.2 Literature Review on Quality Requirements for Modeling Languages and Models 103

ID Name Description Domain Level Paper

as31 Simplicity
(p)

A model should contain the minimal
possible constructs. A language should
be as simple as possible in order to
express the concepts of interest and
to support its users in their preferred
ways of working. Simplicity is a well
known criterion which enhances the
understandability of a language. A
short notation is more preferable for
frequently used elements rather than
for rarely used elements.

CM,
DM,
DSL,
FDL

m-l,
l-l

[136,
145,
187–
190, 204,
207, 208]

as32 Complexity
(p)

There is a relationship between the
complexity of a model and its under-
standing and error probability: more
complex models tend to be more dif-
ficult to understand and more prone
to errors. It is advised to achieve the
lowest possible complexity in models.

IS, DM,
PM

m-l [159,
174, 184]

as33 Conciseness
(p)

A model is concise if it is as short
as possible without affecting any other
quality of the specification. Reducing
the amount of expressions or simpli-
fying their appearance while the se-
mantics is not changed leads to better
understanding of the application lan-
guage and the domain.

DM,
SRS,
DSL

m-l [155,
166, 171]

as34 Balance
compact-
ness and
comprehen-
sibility
(p)

Usually a document is written only
once but read many times. Therefore,
the comprehensibility of a notation is
very important, without too much ver-
bosity. On the other hand, the com-
pactness of a language is still a worth-
while and important target in order to
achieve effectiveness and productivity
while writing in the language. Hence
a short notation is more preferable for
frequently used elements rather than
for rarely used elements.

DSL l-l [163]

as35 Maxim of
manner (g)

Avoid obscurity of expression, avoid
ambiguity, be brief, avoid unnecessary
concepts and relations, and be orderly.

EM m-l [88]

as36 Representa-
tion
(c)

Represent both technical and nontech-
nical activities.

PM l-l [202]

as37 Avoid
inefficient
language
elements
(p)

Efficiency of a model should be trans-
parent to the language user and there-
fore should only depend on the model
itself and not on specific elements
used within the model. Elements which
would lead to inefficient model should
be avoided already during language de-
sign so that only the language user is
able to introduce inefficiency.

DSL l-l [163]

Quality requirements for abstract syntax (continued)

104 6 Modeling Language Quality

ID Name Description Domain Level Paper

as38 Support of
multiple
views (c)

A language should allow the support
of multiple views and assure the vari-
ous views are mutually consistent. For
example, UML allows the creation of
multiple models, each addressing dif-
ferent aspects, such as the Class model
represents relationships between differ-
ent process constituents, while the Use
Case model shows the relationships be-
tween process roles and the main work
definitions.

PM l-l [186]

Quality requirements for abstract syntax (continued)

Quality Requirements for Roles

A key virtue of a modeling language is the extent to which it is used by
modelers who create models using the modeling language to depict a portion
of a real world domain, and the reader’s correct interpretation of the models
created by the modeler. The quality requirements that have been prescribed
for the language aspect roles amounts to 35, namely 11.1% of all retrieved
guidelines, principles and quality criteria. The quality requirements pertaining
to roles are illustrated in Table 6.8.

It has been stated that a language has high pragmatic quality if it pro-
duces models that are understood by its audience (r1) [114, 144, 150, 176,
178, 178, 180, 181, 185]. In addition, quality criteria have been introduced
to assess a language for the extent to which tools can be constructed and
people can understand the models produced by the language (r1, r3) [178].
Studies have also emphasized the significance of the role’s prior modeling and
domain knowledge and how it could influence their interpretation of mod-
els (r2, r4) [137, 150, 176–179]. Creating models using a modeling language
has also been under investigation. Accordingly, a language has high empirical
quality if the error frequency when a model is read or written is low (r10)
[114, 176, 178, 178, 185, 204].

Many quality requirements have been proposed which are particularly in-
terested in the comprehensibility of models by its readers. Comprehensibil-
ity makes sure that models have been understood by their relevant audience
(r11) [137, 144, 156, 176, 176, 178, 179]. This typically depends on the de-
gree to which the model interpretation represents the model semantics (r15)
[138, 185] as well as on the resources necessary for interpreting the correct
model semantics (r16) [138, 185]. People unfamiliar with languages typically
are required to perform more complex mental operations in order for them to
understand models created by it, than people with modeling experience (r19)
[141, 154, 157].

6.2 Literature Review on Quality Requirements for Modeling Languages and Models 105

Another crucial matter for whether languages and models will be used by
people is the degree to which a person believes a language or a model will be
effective in achieving their intended objective (r18, r12) [183, 209]. Numerous
requirements have been proposed for reaching high language usability. For
example, if a language is easy to learn, or more specifically, if a modeler or
a reader believes a language to be easy, then the language will be adopted
(r20, r21) [156, 209]. Accordingly, one of the underlying factors for whether
a language will be used is the appropriateness between a language and its
users (29). Language-user appropriateness measures the extent to which the
modelers and readers are able to learn, understand, and use the language [144,
176, 178, 180]. There is also the appropriateness between the users and the
domain that measures the extent to which the audience is already familiar with
the domain the modeling language is used in (r32) [144, 150, 176, 176, 179,
180]. Moreover, we found a criterion which is concerned with the language’s
adequacy to create models that will satisfy the intentions of its readers (r35)
[167, 210].

ID Name Description Domain Level Paper

r1 Pragmatic
quality (c)

The correspondence between model
and the audience’s interpretation of
the model, the statements that the au-
dience think that the model consists of.

CM,
PM

m-l [144,
150, 176,
178–183,
185, 191]

r2 Social
pragmatic
quality (c)

To what extent people understand the
models.

CM m-l [178]

r3 Technical
pragmatic
quality (c)

To what extent software tools can be
constructed to understand models.

CM m-l [178]

r4 Social
quality (c)

The agreement on participant knowl-
edge and individual interpretation.

CM m-l [150,
176–
179, 182]

r5 Agreement
(c)

The various projections due to the dif-
ferent people reading the model should
be consistent. Agreement covers agree-
ment in knowledge, agreement in inter-
pretation, and both relative and abso-
lute agreement.

CM m-l [176,
178, 179,
182]

r6 Feasible
agreement
(c)

Feasible agreement is achieved if fea-
sible model comprehension is achieved
and inconsistencies between state-
ments in the different interpretations
of the model are resolved by choosing
one of the alternatives when the bene-
fits of doing this are less than the draw-
backs of working out an agreement.

PM m-l [137]

r7 Physical
quality (c)

The correspondence between partici-
pant knowledge and the externalized
model.

CM m-l [150,
176–
180, 182]

Table 6.8: Quality requirements for roles

106 6 Modeling Language Quality

ID Name Description Domain Level Paper

r8 Externaliza-
bility
(c)

The knowledge of some social actor
has been externalized by the use of a
language. The major mean for achiev-
ing this is the domain and participant
knowledge appropriateness of the lan-
guage used.

CM m-l [176,
178, 179,
182]

r9 Internaliza-
bility
(c)

The externalized model is persistent
and available enabling users to make
sense of it. It can be achieved by two
means: persistency and availability.

CM m-l [176,
178, 179,
182]

r10 Empirical
quality (c)

The error frequency when a model is
read or written.

CM,
DSL

m-l [150,
176,
178–180,
182, 204]

r11 Comprehe-
nsibility
(c)

Means that models have been under-
stood by their relevant audience.

CM,
PM

m-l [137,
144, 156,
176, 178,
179, 182]

r12 Comprehe-
nsibility
appropri-
ateness
(c)

The ease with which models from a
language can be understood. A model
is understandable iff readers can easily
comprehend the meaning of all require-
ments with less effort.

CM,
DM,
SRS,
IS,
VPL,
PM

m-l,
l-l

[145,
153,
167, 171,
177, 178,
181, 184,
187–
190, 210]

r13 Perceived
ease of un-
derstanding
(c)

It is the degree to which a person be-
lieves that using a particular system
would be free of effort. System qual-
ity can be measured by ease of use,
which refers to the user friendliness of
the system.

CM m-l [183]

r14 Communica-
tability
dimension
(c)

The communication ability of a lan-
guage refers to the readability and un-
derstandability of the model produced
by the use of the language.

DM, IS m-l,
l-l

[169,
184]

r15 Interpreta-
tional
fidelity (c)

How faithfully does the interpretation
of the model represent the semantics
in the model?

CM l-l [138,
185]

r16 Interpreta-
tional
efficiency
(c)

What resources are used to interpret
the model?

CM l-l [138,
185]

r17 Hard
mental
operations
(c)

The extent to which a language in-
creases the mental operations of users.
Some languages require readers of
models to perform mental operations
that are extremely complex, especially
for people who are unfamiliar with the
languages. Hard mental operations are
a further barrier for readers of a model
who are unfamiliar with the language
in which it is written.

SRS,
VPL

l-l [141,
154, 157]

Quality requirements for roles (continued)

6.2 Literature Review on Quality Requirements for Modeling Languages and Models 107

ID Name Description Domain Level Paper

r18 Usability
(c)

This standard measures how usable a
language is. In other words, it relates
to the degree of difficulty faced by an
analyst applying a language. Degree to
which a model can be used by specified
users to achieve specified goals with ef-
fectiveness, efficiency, and satisfaction
in a specified context of use.

IS, DM,
DSL,
PM

m-l,
l-l

[156,
166, 167,
184, 184,
204]

r19 Perceived
usefulness
(c)

The degree to which a person believes
that a language or a model will be ef-
fective in achieving the intended objec-
tive.

CM,
PM

m-l,
l-l

[183,
209]

r20 Ease of use
(c)

The ease of use identifies how easy a
user can learn and use the language
and how convenient this is concerning
the modeling procedure.

PM l-l [156]

r21 Perceived
ease of use
(c)

The degree to which a person believes
that using a language would be free of
effort.

PM l-l [209]

r22 Fitness (c) The degree to which the agents per-
forming the process can faithfully fol-
low the process steps it specifies.

PM m-l [203]

r23 User
satisfaction
(c)

User satisfaction is the extent to which
users believe the information system
available to them meets their informa-
tion requirements. It is the capability
of the function to satisfy users in a
specified context of use.

CM,
PM

m-l [183,
209]

r24 Pragmatic
feature (c)

The capability to provide an appropri-
ate model for specified user objectives.
A model needs to be usable in place of
an original with respect to some pur-
pose.

IS, PM,
EM,
MM

m-l [17, 88,
184, 210]

r25 Annotated
by version
(c)

A model is annotated by version if a
reader can easily determine which re-
quirements will be satisfied in which
version of the product.

SRS m-l [171]

r26 Annotated
by relative
importance
(c)

A model is annotated by relative im-
portance if a reader can easily deter-
mine which requirements are of most
importance to customers, which are
next most important, etc.

SRS m-l [171]

r27 Annotated
by relative
stability (c)

A model is annotated by relative sta-
bility if a reader can easily determine
which requirements are most likely to
change, which are next most likely, etc.

SRS m-l [171]

r28 Longevity
(c)

A language should be used and useful
for a non-trivial period of time in order
to ensure tool support, and to make
it possible to quantify to the language
stakeholders the payoff obtained from
using the language.

DSL l-l [204]

Quality requirements for roles (continued)

108 6 Modeling Language Quality

ID Name Description Domain Level Paper

r29 Language-
user
appropri-
ateness
(c)

The extent to which the audience is
able to learn, understand, and use the
language. The goal is to ensure that
there are no statements in the explicit
knowledge of the participant that can-
not be expressed in the language.

CM l-l [144,
178, 180,
182]

r30 Linguistic
quality (c)

Users of the representation need to be
able to master the basics of the em-
ployed modeling language in order to
understand the conceptual representa-
tion.

CM l-l [180]

r31 Knowledge
layer (c)

Knowledge layer quality refers to the
“subjective” notion of quality i.e. the
quality as perceived by the reader or
modeler.

CM l-l [180]

r32 User-
domain
appropri-
ateness
(c)

The extent to which the audience is al-
ready familiar with or is able to get fa-
miliar with the domain.

CM m-l,
l-l

[144,
150, 176,
179, 180,
182]

r33 Pedagogical
quality (c)

The user must have the proper mindset
as defined by the model’s paradigm.

CM l-l [180]

r34 Manual
articulation
(c)

The external representation of partici-
pant knowledge about the domain into
the model using the language.

PM m-l [137]

r35 Learnability
(c)

Degree to which a model can be used
by specified users to achieve specified
goals when learning to use it.

PM m-l [167,
210]

Quality requirements for roles (continued)

Quality Requirements for Domain

After the concrete syntax, most of the quality requirements we gathered from
prior literature are involved with the language aspect domain. A total amount
of 76 quality requirements (24.2%) concerned with the aspect domain are pre-
sented in Table 6.9. Apparently, the fit between the modeling language or the
model with the real-world domain or a portion thereof is an important qual-
ity criterion for modeling languages and models. Ontology is closely related
to the notion of domains. Ontological quality of a language is evaluated by
the extent to which the grammar of a language is able to express all concepts
necessary for representing a model which is a clear representation of the real
world (d2) [180]. Research done by Wand & Weber on the representation the-
ory [20, 199], and the BWW (Bunge-Wand-Weber) ontology they developed
on from a more philosophical ontology, have set the standard grounds for eval-
uating modeling languages. According to their work, a language needs to be
complete and clear. A language is complete if it contains all constructs neces-

6.2 Literature Review on Quality Requirements for Modeling Languages and Models 109

sary for representing the real world. In other words, a language is ontologically
complete if it offers all constructs that can be matched to the concepts of the
BWW ontology (d4) [20, 209]. A language is clear if its constructs have a one-
to-one correspondence with the concepts from the real world i.e. constructs
of the BWW ontology (d7) [20, 209]. A language is clear if it does not ex-
hibit notions of construct overload i.e. two or more modeling constructs map
a single ontological construct (d8) [13, 20, 209, 211], construct redundancy
i.e. a single modeling construct maps to two or more ontological constructs
(d9) [13, 20, 209, 211], and construct excess i.e. a modeling construct does not
map to any ontological construct (d10) [13, 20, 209, 211].

In addition to ontological completeness, a vast amount of studies point
towards the importance of models and languages being complete in terms
of containing all statements which are relevant to a specific problem domain
(d15) [88, 137, 144, 145, 149, 167, 170, 171, 176, 178, 179, 181, 184, 190,
194, 196]. Some quality requirements have also been introduced that lead to
completeness, such as the fact that every relevant property of every instance
and every inference about properties of instances must be included in at least
one class (d18, d19) [212]. Models and languages also need to be correct.
Since models are abstract representations of real-world aspects, the aspects
represented in a model need to be modeled in a correct and complete way
(d20) [88, 120, 137, 144, 145, 167, 170, 171, 176, 178, 179, 184, 190, 210].
Similar to completeness, there are a number of quality requirements we found
in literature that, if satisfied, could increase the correctness of a model and a
language. For example, the language developer needs to make sure that the
language, when used, would not induce “careless mistakes” (d25) [154, 157].

Furthermore, redundant elements are not wished for as part of model-
ing languages (d27) [20, 141], which is compliant to the ontological clarity
standard introduced before. And most importantly, it is almost impossible to
create a perfect model that is both complete and clear, unless what we want to
model is very simple. If we try to represent everything in a model, the model
will likely be quite unclear. Therefore, the notion of feasibility has been intro-
duced which clearly states that we cannot proceed with modeling endlessly.
Rather, we need to only model what is necessary and stop when modeling
becomes less beneficial (d29) [88, 120, 137, 149, 162, 176, 176, 179, 187, 188].

Flexibility is another matter researchers point as crucial when developing
modeling languages and creating models. For example, a language should be
developed such that it is flexible enough to allow modifications (d30) [88,
154, 156, 157, 167, 169, 189, 191, 202, 210]. The ability to adapt to changes
that are happening in the environment and accordingly allow extensions when
additional constructs need to be supported (d32) [156, 167, 204] is another
important property of languages. So is the language’s scalability i.e. useful for
both small and large systems (d34) [136, 153, 202, 204]. The development of
reliable models is another virtue of modeling languages (d41) [136, 210, 213].

Modeling languages are typically used to create models that will capture
different aspects of one organization. When multiple models exist within an

110 6 Modeling Language Quality

organization, well-defined relationships are defined between them, accordingly
the different parts of the same domain can be integrated (d44) [120, 149].
This in turn will assure the consistency of a single model with the rest of the
organizations’ aspects (d42) [13, 145, 156, 169, 187–189, 202]. Furthermore, a
model needs to adhere to technical design principles (d53). Beyond technical
rules, models follow business rules that define what can and cannot happen
to the data processed by it (d52) [139, 145, 188, 189]. Prior literature also
suggests a criterion that assesses the extent to which guidelines have been
followed within a modeling project (d56) [120].

Numerous modeling languages exist that fulfill the same or similar pur-
poses. When there is a need to develop a new language, it is advised to reuse
existing languages and language definitions, of course if the language con-
cepts come from the same or a similar domain and hence they fit together
(d60, d61) [50, 169, 171]. Also, it is recommended for models created by
modeling languages to be minimal. A minimal model is one that does not
contain elements that are not desired by the user and every aspect of the
domain appears only once (d67) [190, 193, 199–201, 208]. Most of the qual-
ity requirements we have mentioned and are concerned with the language
aspect domain are influenced by the appropriateness between the modeling
language or the model with the domain the modeling language and the mod-
els depict. The expressiveness of a modeling language is namely its ability to
generate models that capture information about a real world domain (d69)
[138, 141, 144, 149, 154, 157, 163, 177, 178, 180, 182, 204]. According to
a study, any modeling language being developed must be appropriate to the
modeler’s knowledge of the real world domain (d70) [180]. Consequently, mod-
els created by modeling languages must be appropriate to the domain being
modeled (d72) [180].

ID Name Description Domain Level Paper

d1 Intentional
quality (c)

The real world should remain true to
the mindset and the meanings defined
by the model. For example, the onto-
logical foundations for the use of rela-
tionships, and what a relationship re-
ally is, are found in the model.

CM m-l [180]

d2 Ontological
quality (c)

The language (syntax and semantics of
the language) must be appropriate for
expressing the concepts of the model
and for ultimately encoding the con-
cepts in the real world.

CM l-l [180]

d3 Expressive
power (c)

The extent to which a modeling lan-
guage achieved ontological complete-
ness and ontological clarity is a mea-
sure of its expressive power.

IS, PM l-l [20, 202]

Table 6.9: Quality requirements for domain

6.2 Literature Review on Quality Requirements for Modeling Languages and Models 111

ID Name Description Domain Level Paper

d4 Ontological
complete-
ness
(c)

Whether a modeling language can rep-
resent the same information about the
real world that can be represented in
the model. Users of ontological incom-
pleteness are unable to represent all
real world phenomena that might in-
terest them.

IS, PM l-l [20, 209]

d5 Construct
deficit (c)

An ontological construct exists that
has no mapping from any modeling
construct 1:0.

IS, PM,
VL

l-l [13, 20,
209, 211]

d6 Perceived
construct
deficit (c)

The extent to which a user perceives a
modeling language to have a deficit of
constructs that he/she would require
to describe all real world phenomena
that she seeks to have represented in a
model.

PM l-l [209]

d7 Ontological
clarity (c)

The expressiveness of a modeling lan-
guage is also a function of how clearly
each construct in the language repre-
sents an ontological construct.

IS, PM l-l [20, 209]

d8 Construct
overload (c)

Two or more modeling constructs map
to a single ontological construct 1:m.

IS, PM,
VL

l-l [13, 20,
209, 211]

d9 Construct
redundancy
(c)

A single modeling construct maps to
two or more ontological constructs
m:1.

IS, PM,
VL

l-l [13, 20,
209, 211]

d10 Construct
excess (c)

A modeling construct does not map
onto any ontological construct 0:1.

IS, PM,
VL

l-l [13, 20,
209, 211]

d11 Perceived
construct
overload
(c)

The extent to which a user perceives
a modeling language to provide more
constructs than required to describe a
single-world phenomenon that he/she
seeks to have represented in a model.

PM l-l [209]

d12 Perceived
construct
redundancy
(c)

The extent to which a user perceives
a modeling language to provide con-
structs that can each be used to de-
scribe more than one single real world
phenomenon in a model.

PM l-l [209]

d13 Perceived
construct
excess (c)

The extent to which a user perceives
a modeling language to provide con-
structs that do not describe any rel-
evant real world phenomenon in a
model.

PM l-l [209]

d14 Equivalence
(c)

The construct prescribed by the refer-
ence framework can unequivocally be
mapped to one and only one construct
of the modeling language (1:1 map-
ping).

PM,
DSL

l-l [204,
211]

Quality requirements for domain (continued)

112 6 Modeling Language Quality

ID Name Description Domain Level Paper

d15 Completeness
(c)

The model contains all the statements
which would be correct and relevant
about the problem domain.

IS, CM,
DM,
IM,
SRS,
PM,
EM

m-l [20, 88,
137,
144, 145,
149, 166,
167, 170,
171, 176,
178, 179,
181, 182,
184, 184,
187–190,
192–194,
196, 197,
199, 212]

d16 Perceived
complete-
ness
(c)

The number of relevant knowledge
statements known but not seen in the
model, divided by the total number of
relevant knowledge statements known
by the actor.

CM m-l [176,
179, 182]

d17 Verifiable
(c)

A model is verifiable if there exist fi-
nite, cost effective techniques that can
be used to verify that every require-
ment stated therein is satisfied by the
system to be built.

SRS m-l [171]

d18 Properties
(p)

Every relevant property of every in-
stance should be included in at least
one class.

CM l-l [212]

d19 Inferences
(p)

Every inference about properties of in-
stances should be included in at least
one class.

CM l-l [212]

d20 Correctness
(c)

A model should be a correct repre-
sentation of something from the real
world, focusing on specific aspects.
While models abstract from certain as-
pects, the aspects they focus on should
be modeled in a correct and com-
plete manner. All statements in the
model are according to the syntax and
vocabulary of the modeling language.
Semantic correctness postulates that
the structure and the behavior of the
model is consistent with the real world.

IS, CM,
DM,
SRS,
PM,
EM

m-
l,l-l

[88, 120,
137,
144, 145,
166, 167,
170, 171,
176, 179,
181, 182,
184, 184,
187–
190, 193,
194, 210]

d21 Precise (c) A model is precise iff numeric quanti-
ties are used whenever possible and the
appropriate levels of precision are used
for all numeric quantities. A variable
or constant is imprecisely typed when
its precision is not sufficient to meet
the required accuracy of the computa-
tion.

SRS,
PM

m-l [170,
171, 203]

d22 Assigned
(c)

A variable is assigned if it receives a
value prior to its use.

SRS m-l [170]

d23 Initialized
(c)

A loop structure is initialized if all
variables in a loop are initialized prior
to loop entry and as late as possible
prior to loop entry.

SRS m-l [170]

Quality requirements for domain (continued)

6.2 Literature Review on Quality Requirements for Modeling Languages and Models 113

ID Name Description Domain Level Paper

d24 Progressive
(c)

A loop or recursive algorithm is pro-
gressive if there is clear evidence that
the structure makes progress towards
termination with each iteration or re-
cursive call and the associated variant
function is bounded below by zero.

SRS m-l [170]

d25 Error-
proneness
(c)

Does the design of the language induce
“careless mistakes”?

VPL l-l [154,
157]

d26 Maxim of
quality (g)

Do not model what you believe to be
false. Do not model that for which you
lack adequate evidence.

EM m-l [88]

d27 Redundant
recoding (c)

The ability to express information in a
model in more than one way.

IS, SRS l-l [20, 141]

d28 Non-
redundancy
(c)

A language or a model contains no re-
dundant elements if no two elements
represent the same information.

CM,
DM,
SRS,
IS, IM,
DSL

m-l,
l-l

[136,
163,
169, 171,
193–
197, 212]

d29 Feasibility
(p)

We cannot proceed with modeling end-
lessly. We relax upon validity and com-
pleteness by letting the modeling pro-
cess end when the model has reached
a state where further modeling is re-
garded less beneficial than that by ac-
cepting the model in its current state.
Make models as correct and complete
as needed.

CM,
DM,
IM,
PM,
EM

m-l [88, 120,
137, 149,
162, 176,
179, 182,
187, 188]

d30 Flexibility
(c)

The capacity for a language or a model
to change in order to accommodate
new demands. A language should be
flexible enough to allow dynamic pro-
cess modification i.e. while it is being
enacted.

CM,
DM,
IM, VL,
PM,
EM

m-l,
l-l

[88, 154,
156, 157,
167, 169,
181, 189,
191, 202,
210]

d31 Annotated
by relative
stability (c)

A model is annotated by relative sta-
bility if a reader can easily determine
which requirements are most likely to
change, which are next most likely, etc.

SRS m-l [171]

d32 Adaptability
(c)

Degree of effectiveness and efficiency
with which a model can be adapted
from one language to another. The ex-
tent to which a language can change
and adapts to change in its environ-
ment. The language can be extended
to support additional constructs.

DSL,
PM

m-l,
l-l

[137,
156, 167,
202, 204]

d33 Maintaina-
bility
(c)

Degree of effectiveness and efficiency
with which a model can be modified
by the intended maintainers. It mea-
sures the ease with which the model
can evolve. A model is modifiable if its
structure and style are such that any
changes can be made easily, completely
and consistently.

CM,
DM,
SRS,
PM

m-l [137,
166, 167,
171, 190]

Quality requirements for domain (continued)

114 6 Modeling Language Quality

ID Name Description Domain Level Paper

d34 Scalability
(c)

A language should ideally be useful for
both small and large systems.

CM,
DSL,
VPL,
PM

l-l [136,
153, 202,
204]

d35 Productivity
(c)

The capability of the model to enable
users to expend appropriate amounts
of resources in relation to the effective-
ness achieved in a specified context of
use.

PM m-l [210]

d36 External
change (c)

Changes in the domain should be-
come known to all users of the model.
Known changes should become articu-
lated into the model.

PM m-l [137]

d37 Reversibility
(p)

Changes made during one stage of the
development lifecycle can be automat-
ically reflected back to earlier stages.

CM l-l [136]

d38 Redesign
issues (c)

A model should provide a tangible ba-
sis for model redesign according to or-
ganizational strategic plans.

PM l-l [156]

d39 Recoverability
(c)

The capacity to re-establish the ade-
quate level of performance with mini-
mum loss of data.

PM m-l [213]

d40 Entity
identifica-
tion
(p)

The stored data relating to each entity
are uniquely identified in a way which
is invariant with respect to model
change.

IS l-l [206]

d41 Reliability
(c)

The capability of the model to main-
tain a specified level of performance
when used under specified conditions.
Modeling languages must support the
production of reliable models.

CM,
PM

m-l,
l-l

[136,
210, 213]

d42 Integration
(c)

The integration of the model with the
rest of the organization’s systems and
data. The language should include ex-
plicit mechanisms to support integra-
tion of information from different mod-
els.

CM,
DM,
DSL,
VL, PM

m-l,
l-l

[13, 145,
156, 169,
187–189,
202, 204]

d43 Hidden de-
pendencies
(c)

A hidden dependency is a relationship
between two components such that one
of them is dependent on the other, but
that the dependency is not fully visi-
ble.

CM,
SRS,
DSL,
VPL

m-l [50, 141,
154, 157,
163]

d44 Systematic
design (c)

Postulates well-defined relationships
between models which belong to dif-
ferent views.

IM, PM m-l [120,
149]

d45 Cohesiveness
(p)

Each entity represents a certain theme.
Hence, the attributes of the entities
should be closely related to each other.

CM,
DM,
SRS

m-l [166,
170, 191,
199–201]

d46 Role-
expressiveness
(c)

Can the reader see how each compo-
nent of a model relates to the whole?

VPL l-l [154,
157]

Quality requirements for domain (continued)

6.2 Literature Review on Quality Requirements for Modeling Languages and Models 115

ID Name Description Domain Level Paper

d47 Coexistence
(c)

Permit coexistence of both formally
described parts and informal, incom-
plete, or ambiguous parts in the same
process specification.

PM l-l [202]

d48 Multiplicity
(c)

Multiplicity implies that several views
of a domain, each supporting cognitive
economy and inference, can coexist.

CM l-l [197]

d49 Binding (c) Support the binding of the execution
of the different parts of a process to
computing devices, human beings, or
predefined tools.

PM l-l [202]

d50 Weak
coupling
(c)

Weak coupling will be violated in mod-
els if an analyst includes unnecessary
interaction among objects.

CM,
SRS

m-l [170,
199–201]

d51 Cross-
referenced
(c)

A model is cross referenced iff cross-
references are used in the model to re-
late sections containing requirements
to other sections containing: identi-
cal i.e. redundant requirements, more
abstract or more detailed descriptions
of the same requirements and require-
ments that depend on them or on
which they depend.

SRS m-l [171]

d52 Integrity
(c)

The extent to which business rules are
enforced by the model. Business rules
define what can and cannot happen
to the data. Business rules are neces-
sary to maintain the consistency and
integrity of data stored, as well as to
enforce business policies.

CM,
DM

m-l [145,
169,
188?
, 189]

d53 Soundness
(c)

Soundness represents adherence to
technical design principles.

DM m-l [166]

d54 Conformity
(c)

To evaluate to what extent the com-
pared approaches reuse a specific stan-
dard.

PM l-l [186]

d55 Pre-
scriptiveness
(c)

Prescriptive modeling implies the pro-
cess should be performed a particular
way.

PM m-l [203]

d56 Guideline
of compara-
bility
(c)

This guideline demands the consistent
use of all guidelines within a modeling
project.

PM m-l [120]

d57 Construction
principle
(p)

Impose only the necessary restrictions
on what constitutes a well-formed
statement.

D m-l [198]

d58 Reusable(c) A model is reusable iff its sentences,
paragraphs, and sections can be easily
adopted and adapted for use in subse-
quent models.

SRS m-l [171]

Quality requirements for domain (continued)

116 6 Modeling Language Quality

ID Name Description Domain Level Paper

d59 Data
reusability
(c)

The data stored in the database should
be reusable for purposes beyond those

CM,
DM

m-l [50, 169]

d60 Compose
existing
languages
where
possible (p)

Existing languages can be reused,
sometimes even without adaptation.
However the concepts of the lan-
guages to be composed need to fit
together. Additionally, when compos-
ing languages care must be exercised
to avoid confusion: similar constructs
with different semantics should be
avoided.

DSL l-l [163]

d61 Reuse
existing
language
definitions
(p)

Taking the definition of a language as
a starter to develop a new one is better
than creating a language from scratch.
Both the concrete and the abstract
syntax will benefit from this form of
reuse. The new language then might
retain a look-and-feel of the original,
thus allowing the user to easily iden-
tify familiar notations.

DSL l-l [163]

d62 Reuse
existing
type
systems (p)

A language designer should reuse ex-
isting type systems to improve compre-
hensibility and to avoid errors that are
caused by misinterpretations in an im-
plementation.

DSL l-l [163]

d63 Adopt
existing
notations
domain
experts use
(p)

It is generally useful to adopt what-
ever formal notation the domain ex-
perts already have, rather than invent
a new one. Computer experts and es-
pecially language designers are usu-
ally very practiced in learning new lan-
guages. On the contrary, domain ex-
perts often use a language for a longer
time and do not want to learn a new
concrete syntax especially when they
already have a notation for a certain
problem. Inventing a new concrete syn-
tax for given concepts would raise the
barrier for domain experts. Thus, ex-
isting notations should be adopted as
much as possible. In case a suitable no-
tation does not already exist, the new
language should be adopted as close
as possible to other existing notations
within the domain or to other common
used languages.

DSL l-l [163]

d64 Functionality
(c)

The general applicability of the lan-
guage rather than its restriction to a
specific field of application. How well
a language perform its objective.

IS,
VPL,
PM

l-l [153,
156, 206]

d65 Guideline
of relevance
(c)

A model includes elements without rel-
evance, if they can be eliminated with-
out loss of meaning for the model user.

PM m-l [120]

Quality requirements for domain (continued)

6.2 Literature Review on Quality Requirements for Modeling Languages and Models 117

ID Name Description Domain Level Paper

d66 Domain
precision
(c)

The level of detail used in specifying
an attribute’s domain.

DM m-l [?]

d67 Minimality
(c)

A model or a language is minimal if it
does not contain elements that are not
desired by the user and every aspect of
the requirements appears only once.

CM,
DM

m-l,
l-l

[190,
193,
199–
201, 208]

d68 Principle of
construc-
tion
adequacy
(p)

The appropriateness of a model implies
the consideration which specific infor-
mation objects need to be included in
the model.

IM m-l [149]

d69 Language-
domain
appropri-
ateness
(c)

A measure of how the language fits
the domain, the extent to which the
language makes the kind of statements
needed in the domain. The expressive-
ness of a language is the ability to gen-
erate models that capture information
about a modeled domain.

CM,
IM,
SRS,
DSL,
VPL

m-l,
l-l

[138,
141, 144,
149, 154,
157, 163,
177, 178,
180, 182,
204]

d70 Applied
domain-
language
appropri-
ateness
(c)

Any modeling language being devel-
oped must be appropriate to the mod-
eler’s knowledge of the real-world do-
main.

CM l-l [180]

d71 Articulation
(c)

Domain features should be represented
in the model by means of the modeling
language.

PM m-l [137]

d72 Model-
domain
appropri-
ateness
(c)

The model must be appropriate to the
domain being modeled.

CM l-l [180]

d73 Representa-
tional
fidelity (c)

How faithfully does the model rep-
resent someone’s perception, or some
group’s negotiated perception, of the
semantics of the domain?

CM l-l [180,
185]

d74 External
consistency
(c)

The specifications of elements across
various models and within the lan-
guage should be consistent.

DM,
SRS

m-l,
l-l

[171,
193]

d75 Concept
expressive-
ness
(c)

Concept expressiveness measures
whether the concepts are expressive
enough to capture the main aspects of
the reality.

CM, D m-l,
l-l

[190,
198, 208]

d76 Schema
expressive-
ness
(c)

Schema expressiveness measures the
expressiveness of the model as a whole.

CM m-l [190,
208]

Quality requirements for domain (continued)

118 6 Modeling Language Quality

Quality Requirements for Tasks

The last set of quality requirements are addressing the language aspect tasks
which can be seem in Figure 5.2. We found that tasks have received the least
attention by researchers who are interested in evaluating modeling languages
and models. Namely, only 24 of the total amount of 314 quality requirements
(7.6%) we gathered from prior literature are concerned with this language
aspect. All these are shown in Table 6.10. Besides the significance of the fit
between a language or a model with the domain being modeled, the purpose
of using modeling languages and models is also crucial to consider during their
development. In order for a modeler to be able to create a model which is a
correct representation of a portion of a real world domain, an understanding is
necessary not only of the domain, but also of the tasks for which the models
will be used for [16]. Tasks have been partially regarded in literature. For
example, some studies suggest that all statements in a model should be correct
and relevant to a particular problem (t1) [17, 88, 144, 166, 176] and if a model
is clearly represented then it should be easier to read (t3) [20, 120, 149, 190,
208]. A model is said to be expressive if it represents user requirements in
a natural way (t4) [190, 198, 208]. Likewise, we found a criterion that is
concerned with the language’s adequacy to create models that will satisfy the
goals and objectives of users (t24) [167, 203, 210].

Another guideline for increasing the use of a modeling language is if the
purposes of the modeling language are identified before the language is de-
veloped (t15) [163]. Accordingly, it can be decided whether the language will
be graphical or a simple textual language would be enough to satisfy its pur-
poses (t17) [163]. This way the language would be tailored for the needs of
its prospective users. Another major concern of people using a language are
the resources necessary for its implementation. Prior literature also pointed
towards quality requirements which relate to time, cost and resources. In par-
ticular, there are criteria that measure the costs of purchasing the software
tool that supports a modeling language (t5) [156], the amount of work, peo-
ple or things a system deals with in a particular period of time (t11) [213],
and even the effort required to create a model using a specific modeling lan-
guage (t13) [138]. Moreover, the resources necessary for creating models using
modeling languages has also been stated as a concern of modelers (t14) [185].

ID Name Description Domain Level Paper

t1 Validity (c) All statements in the model are correct
and relevant to the problem.

CM,
DM,
PM,
EM,
MM

m-l [17, 88,
137, 144,
166, 176,
178, 179,
182, 191]

t2 Perceived
validity (c)

The number of invalid statements in-
terpreted divided by the total number
of statements interpreted by the actor.

CM m-l [176,
179, 182]

Table 6.10: Quality requirements for tasks

6.2 Literature Review on Quality Requirements for Modeling Languages and Models 119

ID Name Description Domain Level Paper

t3 Clarity (c) Clarity measures the ease with which
a model could be read.

IS, CM,
IM, PM

m-l [20, 120,
149, 190,
208]

t4 Expressive-
ness
(c)

Model is said to be expressive when it
represents user requirements in a nat-
ural way.

CM, D m-l [190,
198, 208]

t5 Cost of
pursue (c)

The cost of acquisition of the specific
supporting software tool and the cus-
tomer support that the developing or-
ganization provides.

PM l-l [156]

t6 Cost
efficiency
(c)

The aim is to develop, produce, and
deliver models at the lowest possible
cost.

PM m-l [213]

t7 Timeliness
(c)

Having information timely and avail-
able when required i.e. response time.
The response time of a system is the in-
terval between a user request and the
corresponding system response.

PM m-l [213]

t8 Time
efficiency
(c)

The capability of a model to provide
appropriate response and processing
times and throughput rates when per-
forming its function, under stated con-
ditions. The skillfulness in avoiding
wasted time and effort.

CM,
PM

m-l [138,
210, 213]

t9 Time to
access (c)

A measure of readiness for usage of an
input. The model cannot be executed
until the input is regained.

PM m-l [213]

t10 Time
constraints
specifica-
tion
(c)

Models may be viewed as a set of activ-
ities that proceed in parallel and react
to external events which may occur at
unpredictable times. These activities
must be scheduled in a way that re-
spects logical precedence relations, and
yet meets their required deadlines.

PM l-l [202]

t11 Throughput
(c)

The amount of work, people, or things
that a model deals with in a particular
period of time.

PM m-l [213]

t12 Resource
efficiency
(c)

The capability of the model to use
appropriate amounts and types of re-
sources under stated conditions.

CM,
PM

m-l [210,
212, 213]

t13 Efficiency
(c)

The effort required to create a model. CM l-l [138]

t14 Representa-
tional
efficiency
(c)

The resources used to create the
model.

CM l-l [185]

Quality requirements for tasks (continued)

120 6 Modeling Language Quality

ID Name Description Domain Level Paper

t15 Identify
language
uses (p)

The language defined will be used for
at least one task. Most common uses
are documentation of knowledge and
code generation. However, there are
a lot more forms of usage: definition
or generation of tests, formal verifi-
cation, automatic analysis of various
kinds, etc. An early identification of
the language uses (before its develop-
ment) has strong influence on the con-
cepts of underspecification.

DSL l-l [163]

t16 Balance
objectives
(c)

The overall goal is to develop a model
that provides the best balance among
the possibly conflicting objectives.

DM m-l [169]

t17 Decide
whether to
use
graphical or
textual
language
(p)

Textual representations for example
usually have the advantage of faster
development and are platform and tool
independent whereas graphical models
provide a better overview and ease the
understanding of models. Therefore,
advantages and disadvantages have to
be weighted and matched against user
preferences in order to make a substan-
tiated decision for one of the realiza-
tions. From this point on, a more in-
formed decision can be made for a con-
crete tool to realize the language based
on their particular features and the in-
tended use of the language.

DSL l-l [163]

t18 Applicability
(c)

The degree to which a view’s compo-
nent is pertinent to satisfy intended
applications.

DM,
EM

m-l [88, 191]

t19 A model
has to
provide
answers to
questions
(p)

Modeling in itself is not an objective, a
model serves a purpose to answer some
particular questions. Making this ques-
tions explicit help you to find the ap-
propriate scope and focus while creat-
ing a model.

DSL,
EM

m-l [88, 163]

t20 Treat
different
concerns
orthogo-
nally
(g)

Different concerns should be addressed
in different parts of the model, or in
different, related models.

EM m-l [88]

t21 Perspective
(p)

Visual languages often do not only pro-
vide hierarchical structuring or modu-
larization, but also provide heteroge-
neous model types e.g. for represent-
ing and visualizing different perspec-
tives. Multiple perspective languages
offer different tools for representing
more than one view on the same set
of entities.

VL l-l [205]

Quality requirements for tasks (continued)

6.3 Process Map Quality 121

ID Name Description Domain Level Paper

t22 At right
level of
detail (c)

Requirements can be stated at many
levels of abstractions. The right level
of detail is a function of how the model
is being used. Generally, the model
should be specific enough so that any
system built that satisfies the require-
ments in the model satisfies all user
needs, and abstract enough is so that
all systems that satisfy all user needs
also satisfy all requirements.

SRS m-l [171]

t23 Maxim of
quantity
(p)

Make your model as informative as
necessary. Do not make your model
more informative than necessary.

EM m-l [88]

t24 Multi-
paradigm
representa-
tions
(c)

The suitability of a modeling approach
will depend on the goals and objec-
tives for the resulting model. A given
language type will be better suited
to achieving some modeling objectives
than others.

PM m-l [203]

Quality requirements for tasks (continued)

6.3 Process Map Quality

Our primary goal for conducting the systematic literature review on quality
requirements for modeling languages is to use them as foundation when de-
veloping the language for creating process maps. As result of the literature
search we gathered a total of 314 unique quality requirements used to guide
the creation of both modeling languages and models, and also to evaluate
existing modeling languages and models. As this thesis is concerned with the
development of a modeling language, of interest for us are only those quality
requirements that are used on a language-level. Therefore, we disregard all
guidelines from the quality requirements we found, as guidelines are typically
used to guide the creation of a single model, which is not what we require.
Likewise, there are many principles that are also applied only on a model-
level. For instance, the principle cs6 i.e. Geometrical complexity was excluded
because it recommends to create simple models. This is a recommendation to
modelers who use a modeling language to create a model, thus it can only
occur after a language has been developed.

We observed that there are different types of principles, such as those
concerned with more technical aspects of modeling languages. However, the
purpose of process maps is rather more strategic. Therefore, we disregard
these principles and do not take them into consideration when developing the
language. Similarly, the main purpose of a process map is to show abstract
view of business processes. Hence, we eliminate those principles that pertain
to details of models created by modeling languages. Also, many principles

122 6 Modeling Language Quality

point towards how to group symbols together, either in general or specifically
within one model (e.g. cs11-cs16 from Table 6.5). These principles refer to
specific recommendations on how to use the language, which is not within the
scope of this thesis, therefore, we do not include them. Likewise, principles
that are addressing visual variables such as size or color are not of concern to
us, since the choice of color is a matter of the respective company (e.g. usually
organizations have a signature color by means of which the company is mar-
keted). The same applies for the size of elements in process maps, which are
rather context-specific and of no use during the development of the language
for process maps.

Similarly, we do not consider principles that are restricted to specific tasks,
such as a language must be able to create models that will fulfill certain
purpose. We believe this is on the usage side of a language, rather than on the
development side. There are also numerous principles that address operational
features of languages. While some can be applied for the process map language
(e.g. as7: Parallelism suggests for the language to provide mechanisms for
specifying concurrent activities), others tend to be used for models with higher
level of detail. Moreover, we do not use those quality requirements that address
the language’s ability to integrate a single model with other organizational
views. The integration of a process map with other models is subject of further
research which is beyond the scope of this thesis.

We also exclude all quality criteria that are typically used to evaluate the
efficiency and effectiveness of modeling languages and models. These are cri-
teria that can only be applied after a language has been developed and are
used to evaluate either an entire language or models created by them. For
example, understandability and usage of the modeling language and models
created by it are not of interest when developing a language. These are issues
which are generally evaluated after a language has been used by people. For
example, the quality criterion r29 from Table 6.8 (Language-user appropriate-
ness) assesses the extent to which the audience is able to learn, understand
and use the language. However, there are quality criteria, especially regarding
the extra-language aspects, which we consider when developing the language
for designing process maps. We choose these quality criteria, as they are also
partially referring to the language’s abstract syntax and semantics. Most are
related to ontological expressiveness of languages, thus they are criteria in-
troduced to evaluate whether a language includes all concepts necessary to
model real-world domains completely and correctly [20].

In a nutshell, we are mainly interested in principles used for developing
the intra-language parts and are used on a language-level. However, we also
include principles used on an instance-level, because these point to specific
characteristics symbols should have, such as the properties symbols should
possess in order for them to be easily recognized. In addition, we include
quality criteria used mainly for evaluating the extra-language quality, such as
assessing the ability of a modeling language to represent real-world aspects.
We use these as principles, as well.

6.3 Process Map Quality 123

Following our argumentation, we consider the following aspects when se-
lecting the quality requirements appropriate to follow when developing the
language for process maps:

• Principles used to improve the concrete syntax quality of modeling lan-
guages (e.g. cs8: Graphic economy recommends for the number of graphical
symbols to be cognitively manageable [13, 141, 154, 157])

• Principles used to improve the semantics quality of modeling languages
(e.g. s3: Semantic distance prescribes to select symbols which are closely
related to what they intend to represent [156])

• Principles used to improve the abstract syntax of modeling languages (e.g.
as37: Avoid inefficient language elements suggests not to include elements
in a language that would lead to creating inefficient models [163])

• Principles used to increase the language quality in general (e.g. t15: Iden-
tify language uses states for developers to identify the different uses of the
language before the language is developed [163])

• Quality criteria that lead to the language being appropriate for building
models which would be correct representations of a real world domain
(e.g. d2: Ontological quality says that a language must be appropriate for
expressing the concepts of the model and for encoding the concepts in the
real world [180])

Taking the above into consideration, we selected a subset of the quality re-
quirements from all six language aspects (refer to Tables 6.5, 6.6, 6.7, 6.9, 6.8
and 6.10). Table 6.11 illustrates all principles that address the intra-language
quality of modeling languages, namely principles which are addressing the
three constituent parts of modeling languages i.e. concrete syntax, seman-
tics and abstract syntax. The table depicts principles with identical ID’s and
names as seen in Tables 6.5, 6.6 and 6.7. We do not include the principle’s de-
scription, as these are already introduced in the respective tables from Section
6. Moreover, the ID’s and names of the principles relevant for the development
of the process map language are depicted in “bold” in Tables 6.5, 6.6 and
6.7. This should enable the reader to easily recognize them.

First of all, compliant to the results retrieved from the systematic litera-
ture review, the majority of principles are concerned with the concrete syntax
of languages. Some of the principles are addressing characteristics of single
symbols (e.g. cs71, cs73), while there are others that are referring to the im-
portance of symbol familiarity (e.g. cs26, cs27). There are also principles that
recommend how to deal with groups of symbols (e.g. cs9, cs17, cs22). Secondly,
only few principles can be used to define the semantics and abstract syntax
of the language for process maps. With regard to the language semantics, it
is vital for the symbols we assign to the process map language concepts to
be ones that are closely related to what they intend to represent (e.g. s3).
According to principles involved with the abstract syntax, we ought to make
sure to avoid elements which would lead to creating inefficient models (e.g.
as37).

124 6 Modeling Language Quality

Language aspect ID Name

Concrete syntax cs2 Visual nature

cs3 Semiotic clarity

cs5 Dual coding

cs8 Graphic economy

cs9 Complexity management

cs10 Diffuseness

cs17 Symbol consistency

cs22 Symbol discriminability

cs23 Notationality in diagrams

cs25 Preattentive processes

cs26 Familiarity

cs27 Concreteness

cs28 Recognizability

cs29 Semantic transparency

cs30 Visual routines

cs32 Suitability

cs36 Reliability

cs38 Cognitive fit

cs39 Visual expresiveness

cs43 Shape

cs71 Test before use

cs73 Symbol simplicity

cs76 Boundaries

cs77 Layout

Semantics s3 Semantic distance

s7 Internal consistency

s26 Distinct behavior

s33 Explicitness principle

s34 Interpretation principle

Abstract syntax as7 Parallelism

as18 Abstraction

as25 Modularity

as26 Cluster similar elements

as27 Generalization

as30 Specialization

as31 Simplicity

as34 Balance compactness and comprehensibility

as37 Avoid inefficient language elements

Table 6.11: Principles for intra-language quality of process map language

We also found some principles and quality criteria that pertain to the
extra-language quality of modeling languages. These are concerned with the
language’s domain and tasks and are shown in Table 6.12. We refer to all as
principles, as we use them to guide us during the development of the language.
From the table we can observe that most of them are concerned with the
language’s domain, whereas there are only two principles we can use and are
addressing the aspect of tasks. This is mainly because, principles for tasks

6.3 Process Map Quality 125

are typically used after a language has been developed, thus they are matters
of language utility and understandability. This is in particular of concern
with the extra-language aspect roles, because both types of roles modelers
and readers come into play only after a language has been developed. This is
accordingly the reason why there are no quality requirements concerned with
the aspect roles we will follow when developing the language for designing
process maps. In terms of the principles which refer to language tasks, we
selected one that will make sure we identify the language uses early i.e. before
we develop the language (e.g. t15). As a result we can decide whether the
language should be visual, or a textual language will fulfill its uses (e.g. t17).
With regard to the language’s domain, we select principles that will ensure the
language does not exhibit concept redundancy (e.g. d14, d28). The language
should be minimal, thus it should contain only those elements necessary to
represent the real world domain (e.g. d67). Also, a language should be flexible,
such that it will allow the addition of new concepts, if these are necessary (e.g.
d30, d32).

Language aspect ID Name

Domain d2 Ontological quality

d3 Expressive power

d4 Ontological completeness

d5 Construct deficit

d7 Ontological clarity

d8 Construct overload

d9 Construct redundancy

d10 Construct excess

d14 Equivalence

d28 Non-redundancy

d30 Flexibility

d32 Adaptability

d34 Scalability

d60 Compose existing languages where possible

d61 Reuse existing language definitions

d63 Adopt existing notations domain experts use

d64 Functionality

d67 Minimality

d69 Language-domain appropriateness

d75 Concept expressiveness

Tasks t15 Identify language uses

t17 Decide whether to use graphical or textual language

Table 6.12: Principles for extra-language quality of process map language

Accordingly, the principles shown in Tables 6.11 and 6.12 are all relevant
principles we will follow when developing the language for designing process
maps. In the next chapters, where the steps undertaken for developing the

126 6 Modeling Language Quality

language for designing process maps are described, whenever applicable, we
refer to how the language satisfies each of the principles shown in Tables 6.11
and 6.12.

6.4 Chapter Summary

In this chapter, we discussed the notion of quality of modeling languages
and models created by modeling languages. We conducted a systematic lit-
erature review on quality requirements for modeling languages and models.
We differentiate between three types of quality requirements, namely guide-
lines, principles and quality criteria. While guidelines are typically used to
provide specific guidance for creating models, such as selecting the appropri-
ate elements a model should comprise, principles and quality criteria could be
applied on both model-level and language-level. A principle is a rule that is
accepted as true and used to improve the quality of entire languages and mod-
els, thus it helps language designers meet their goals [136]. Principles are used
to lead the development of languages and models. On the contrary, quality
criteria are used to evaluate already existing modeling languages and models.
A quality criterion is a benchmark in terms of which a language can be judged
[137, 144].

We follow the phases for conducting systematic literature reviews as sug-
gested by Kitchenham et al. [14]. Therefore, we developed a protocol we use as
guidance for the search. The protocol consists of keywords we used to generate
search expressions in order to find relevant articles about guidelines, princi-
ples and quality criteria for modeling languages and models. We found a total
of 79 papers we consider as primary sources. We used these primary sources
to extract the relevant data concerned with quality standards for modeling
languages and models. We synthesized the retrieved data by assigning it to
six main clusters. The six clusters are for each of the six language aspects we
identified in Section 5.2. Thus, we found quality requirements that pertain to
the language’s abstract syntax, semantics, concrete syntax, domain, roles and
tasks (see Figure 5.2). In the last part of this chapter we explained how we
selected quality requirements that can be applied for developing the language
for designing process maps. We selected those principles that could be applied
for the concrete syntax, semantics and abstract syntax of modeling languages.
These are principles that will potentially increase the intra-language quality.
Similarly, we selected principles that would increase the extra-language qual-
ity, which are ones that are addressing the domain, roles and tasks aspects of
modeling languages.

7

Abstract Syntax and Semantics of the
Language for Designing Process Maps

In this chapter, we elaborate on the definition of the abstract syntax and se-
mantics of the language for designing process maps. In particular, we present
an explorative method we follow for defining the concepts and concept rela-
tions that will comprise the vocabulary of the process map language. Also, we
present the rules used to combine concepts together in order to form state-
ments which will be part of resultant process maps. The concepts and rules
comprise the process map meta-model. Additionally, in this chapter we present
a method for identifying usage patterns of concepts seen in the meta-model.
Usage patterns refer to combination of concepts used frequently within single
process maps from practice. This approach enables us to get empirical insights
on how concepts are typically used in process maps. Furthermore, we illus-
trate the approach used to define the semantics of the language for designing
process maps. For the semantics definition we rely on prior literature as well
as on empirical data we gather through interviews with organizations. We use
the usage patterns together with the abstract syntax and semantics as basis
for defining the language’s concrete syntax.

The chapter is structured as follows. In Section 7.1, we elaborate on the
methods we use to derive the abstract syntax and semantics of the language,
along with the techniques we utilize to collect data we use for the language
development. Section 7.2 presents the abstract syntax and semantics that
comprise the language for process maps. This section depicts the final process
map meta-model and the semantics of each concept included in the meta-
model. In addition, the section provides insights into the most frequently
used concepts and concept combinations in process maps from practice. We
summarize the chapter in Section 7.3.

128 7 Abstract Syntax and Semantics of the Language for Designing Process Maps

7.1 An Explorative Study for Defining the Abstract
Syntax and Semantics

Principle t15 (Identify language uses) from Table 6.12 emphasizes the im-
portance of early identification of the language uses, preferably before the
development of the language. Early identification of uses has a strong influ-
ence on the concept definition that will comprise the language, as well on the
decision of the type of language that will fulfill its uses (t17: Decide whether
to use graphical or textual language from Table 6.12) [163]. We have already
identified the main uses of the language we develop in this thesis. Most are
stated in Section 3.3. The language will be used for designing process maps,
which are abstract representations of all processes of one organization and the
relations between them. Process maps are used to depict how an organization
operates as a whole, in process terms, without necessarily going into the pro-
cess details. Compliant to existing process modeling languages (e.g. BPMN)
and process maps from practice, we develop a visual language for designing
process maps.

To define the abstract syntax we conduct an explorative study in order
to better comprehend the nature of existing process maps from practice. We
follow this approach because, first of all, most organizations today already
have a process map and, second, our intention is to introduce a language
that includes concepts that are used in process maps nowadays and thus are
familiar to practitioners. Our aim is to avoid introducing a completely new
language, but develop one which is deeply grounded in practical usage. Also,
by developing the language based on empirical data, we assure the compliance
of a number of principles from Tables 6.11 and 6.12. For example, the principle
d63 (Adopt existing notations domain experts use) from Table 6.12 states that
in case a suitable notation does not already exist, the new language should
be adapted as close as possible to other notations within the domain [163].
As a result, also users who do not have much modeling experience would be
able to use the language without any particular difficulties. Using process map
concepts used in practice will also assist in decreasing the mental operations of
users when using the language, especially because familiarity of the language
concepts is considered as one of the major factors for the extent to which
a language increases the mental operations [141, 154, 157]. Thus, one of the
underlying reasons for following this approach is to not make practitioners
learn yet another language, which often causes user resistance. As a result of
our approach, the language for process maps will be familiar to organizations,
since its abstract syntax and semantics will assimilate what they have already
been designing and using.

During the course of the explorative study we first investigate the included
concepts of 67 process maps from practice. We complement these with a one-
week, in-depth qualitative study with one of our industry partners. We do
this in order to make sure the concepts included in the 67 process maps are
all concepts that could be seen in all process maps, also beyond the 67 maps.

7.1 An Explorative Study for Defining the Abstract Syntax and Semantics 129

Thus, we aim at concept saturation. As a result, we present a process map
meta-model, which integrates the concepts and relationships represented in all
maps. We define the semantics for each concept based on existing literature
and interview data. As basis for the semantics we use definitions from the
common business process management literature [2, 45, 46, 98], because most
concepts included in process maps have been discussed in current BPM litera-
ture. Additionally, the one-week, in-depth qualitative study with our industry
partner helps us to refine the concept semantics. Moreover, whenever appli-
cable, we make sure to define the concept semantics in terms of the BWW
ontological constructs [20]. Accordingly, we aim for an ontologically expres-
sive language. Last, we investigate patterns of usage of the concepts from the
process maps we used when defining the abstract syntax. In this way, we aim
to provide a foundation for the standardization of a language for process map
design.

Accordingly, the objective of this chapter is to understand the current
practice of process map design. In this context, we focus on the following
goals:

1. Identify, elicit meaning and develop knowledge of the concepts used within
a single process map and the relations between them.

2. Define the semantics for each identified concept.
3. Find patterns of the combined usage of concepts and their frequency.

7.1.1 Method for Generating a Process Map Meta-Model

To address the first point, we gather 67 process maps from practice and an-
alyze each of them for the concepts being used and any means by which the
identified concepts are related to each other. We do this by examining each
process map and identifying all concepts that are included within them. For
example, the process map from Figure 3.3 in Section 3.3 exhibits the notion
of processes (e.g. Controlling, Pre Sales, Storage, Process Request, Account-
ing, etc.) belonging to three different process categories (Management, Core
and Support). The processes in the core process category are represented as
a value chain model, hence we identify a sequential relation between the core
processes. We can also observe the decomposition relation, because almost all
of the core processes are decomposed into subprocesses (e.g. the core process
“Order Processing‘” is further decomposed to its subprocesses “Process Or-
der”, “Create Offer”, “Change Offer”, “Purchase Order” and “Rush Order”).

The process map also exhibits an implicit notion of a manage relation
which occurs between the management processes and the core processes. We
assume the management processes are managing the core processes. We ob-
serve the same behavior between the support and core processes, thus assume
the relation between these two categories is support coming from the support
processes towards the core processes. We make these assumptions, first, based
on the pentagon shaped symbols used for both the management and support

130 7 Abstract Syntax and Semantics of the Language for Designing Process Maps

processes, each pointing towards the core processes. Second, the name of the
categories, namely management processes and support processes, imply some
type of management and support, respectively. The process map also includes
the notion of Supplier and Customer, which are instances of the concepts in-
put/output, as they are positioned right before the first core process of the
value chain and directly after the last core process of the value chain, respec-
tively. These show that a core process starts with a trigger from a supplier,
while the outcome of a core process goes to a customer.

Therefore, for identifying the concepts included in all process maps under
investigation, we rely on both the visual representation (e.g. symbols used)
and the implied semantics of each represented concept (e.g. Customer after a
value chain of core processes indicates a consumer of a process output). We
apply the same method for each of the 67 process maps we gathered. As a
result, we generate a process map meta-model, which encapsulates all concepts
and relations between the concepts we observed. In this way, we generalize
from a set of instance models towards their underlying meta-model. We use
UML (Unified Modeling Language) as a language to design the meta-model.

In order to make sure that the concepts included in the resultant meta-
model are the only concepts that could be seen on any process map from
practice, we complement the data we gathered from the process maps we an-
alyze with an in-depth, qualitative study with an industry partner. By doing
this we aim to reach concept saturation, which means that the resultant pro-
cess map meta-model will include all concepts and relations between the con-
cepts which are necessary to depict an organization in terms of their business
processes. Following this approach, we make sure the principles d2 (Ontolog-
ical quality), d67 (Minimality), d69 (Language-domain appropriateness), d75
(Concept expressiveness), as31 (Simplicity), as34 (Balance compactness and
comprehensibility) and as37 (Avoid inefficient language elements) from Tables
6.11 and 6.12 are satisfied. These principles ensure that the language will be as
simple as possible in order to express the concepts of interest [136, 145, 187–
190, 204, 207, 208] and it will be compact, such that it only includes the neces-
sary concepts as seen in practice [163]. Moreover, the language will not include
elements that are not desired by the user [190, 193, 199–201, 208], hence each
concept will be mapped to only one meaning (d14)[204, 211], it will fit the
domain of process maps, since it only includes concepts that are used for de-
signing process maps [138, 141, 144, 149, 154, 157, 163, 177, 178, 180, 182, 204],
hence it will capture the main aspects of the reality (d2) [180, 190, 198, 208].

This is also rather covered by the criteria for reaching ontological complete-
ness and clarity (d4, d7), namely construct deficit-, overload-, redundancy-,
and excess. They recommend to avoid the following cases [20]: an ontologi-
cal construct exists that has no mapping from any modeling construct i.e. 1:0
(d5); two or more modeling constructs map onto a single ontological construct
i.e. 1:m (d8); a single modeling construct maps to two or more ontological
constructs i.e. m:1 (d9) and a modeling construct does not map onto any
ontological construct i.e. 0:1 (d10), respectively. However, for the purpose of

7.1 An Explorative Study for Defining the Abstract Syntax and Semantics 131

process maps we do not take as basis the BWW ontological model and its
proposed ontological constructs [20]. Instead, we take as foundation for com-
pleteness and clarity of the domain of process maps. Hence, we assure that our
language for designing process maps consists of all concepts that are necessary
for depicting process maps, and each concept is assigned a unique semantics
that is a reflection of reality. As a consequence, using the meta-model should
allow practitioners to include all requirements they need in order to depict
how their organization operates without necessarily going into the details of
each business process.

Qualitative Data Analysis

We had three main targets for conducting the qualitative study:

1. Validate the concepts shown in the process map meta-model.
2. Identify, if existent, additional concepts that were not yet included in the

meta-model, but indeed belong to the set of concepts for designing process
maps.

3. Define the final semantics of each process map concept. The case study
enables us to validate the provided process map concept definitions, refine
them when necessary, and also define the newly added concepts, if such
occur.

The case study enables us to empirically assess the extent to which the
concepts included in the meta-model are exhaustive. Accordingly, we are able
to make sure that the meta-model is saturated. In this way, we aim to ensure
that there are no other process maps from practice that will offer an additional
concept that is not yet included in the meta-model generated on basis of the 67
process maps. Since our industry partner is one of the leaders and a very well-
established software developer worldwide, and because of the company’s size,
we find it suitable to ensure the saturation of the process map meta-model.

For the analysis, we follow the grounded theory approach, which fits well
our purpose, as it is used to describe, explain and interpret collected data
[214]. In particular, the Straussian grounded theory method offers three cod-
ing steps that lead to theory building [215]. However, since we are not aiming
at building theory but in validating the process map concepts, adding any
missing concept, and defining their semantics, we only use the first two cod-
ing steps, namely the open and axial coding. During open coding we examine,
conceptualize and categorize our interview transcripts [215]. We do this by go-
ing through our interview data and identify all concepts our interview partners
discuss as either already part of their process map or necessary to be included.
This results in a list of concepts our industry partner considers important to
be shown on a process map level.

During the axial coding step, we categorize the derived concepts in line
with the concepts from the existing process map meta-model. Hence, we match

132 7 Abstract Syntax and Semantics of the Language for Designing Process Maps

the derived list of concepts to those shown in the process map meta-model. In
this way, we are able to validate the process map meta-model. Additionally,
those concepts that could not be matched to any of the concepts shown in
the meta-model are concepts that extend the meta-model. During our data
analysis, we are also able to confirm the validity of the provided concept
definitions. Additionally, in cases when our interview material points us to
additional attributes of the existing concepts, we refine the concept definition
accordingly. We use the qualitative analysis tool NVivo to assist us with the
analysis of our data and to keep track of all resultant concepts. As a result of
the data analysis, we arrive at a saturated list of concepts for process maps,
along with their corresponding semantics.

7.1.2 Method for Identifying Usage Patterns of Process Map
Concepts

For identifying the frequency and combinations of concepts, we adopt the
approach of zur Muehlen et al. [216]. First, we create an Excel spread sheet
and for every process map we analyze we record each concept, relation be-
tween the concepts, whether this relation occurs between singular processes
or a set of processes, etc. For example, in the process map from Figure 3.3
(refer to Section 3.3), we observe and record the following concepts: process,
category (core, support and management), input, output, and four types of
relations (sequence trigger, decomposition trigger, support, manage). We also
keep track of the setting for each relation. For instance, in Figure 3.3 the
sequence relation is only used between the core processes. Accordingly, we
record in our Excel spread sheet a sequence relation between core processes.
Similarly, we record decomposition relation of the core processes. In this way,
we want to be aware whether certain concepts can only be seen in a particular
setting of a process map. Also, recording these information will assist us in
defining the appropriate concrete syntax for each process map concept.

We treat each process map as a single unit of observation and denote each
concept occurrence with a binary value. as a result, we derive a chart depicting
the most often used concepts in process maps from practice. As we encode
usage of each concept with 1 and 0, we can apply hierarchical clustering using
the Euclidean distance measure which finds the co-occurrence relationship
between concepts, based on how many concepts the process maps have in
common. In this way, we identify concepts that most frequently occur in a
specific combination, and also those that rarely occur together within a single
process map.

7.1.3 Process Map Collection for Abstract Syntax

In the following subsections we name the techniques we followed to gather the
data we use for the definition of the language abstract syntax.

7.1 An Explorative Study for Defining the Abstract Syntax and Semantics 133

Process Maps Used for Generating the Meta-Model

We gather process maps coming from both practice and literature. We found
that process maps from literature are typically slightly adapted maps taken
as example from practice. The slight adaptation commonly refers to excluding
visual variables such as color and size, thus simplifying the process map in
order to be included and referred to in the respective literature. As there are
only very few research articles that discuss process maps, we browsed the
following BPM books that cover process architecture as a topic [45, 46, 107–
110, 217–221]. We end up with a total of 21 adapted practice process maps
from literature. In addition, we utilize three sources for collecting process
maps we use for analysis. First, we conduct interviews with companies and 11
of them provided us with a print of their process map. Also, we use 7 process
maps that were part of published case studies [131].

Source Amount

Literature 21

Case study 7

Practice 11

Internet search 28

Total 67

Table 7.1: Process map collection (meta-model)

In order to make sure we do not miss any concept necessary for designing
process maps, we search for additional process maps using an Internet search
engine. For this we use three key words, namely “process map”, “process land-
scape” and “Prozesslandkarte” (German equivalent to both process landscape
and process map). Besides the many search results, we chose 28 process maps
that appeared to be different than the ones we already had (e.g. the concepts
within these process maps had a slightly different visual representation than
the ones we saw in our process map collection, or we spotted new concept
combinations within single process maps, etc.). Also, during the analysis of
the process maps, we found that no new concepts occurred after the analysis
of the first 50 process maps. Altogether, we use 67 process maps for the anal-
ysis. The process maps stem from a wide range of industries, thus we assure
the general applicability of the language rather than its restriction to a spe-
cific field of application (d64 from Table 6.12) [153, 156, 206]. We generalize
from these process maps to their underlying meta-model. Table 7.1 shows the
amount of process maps we gathered from each of our data sources.

Process Maps Used for Concept Saturation

The meta-model we generated on basis of the 67 process maps we gathered
from the three different sources is solely based on identifying concepts and

134 7 Abstract Syntax and Semantics of the Language for Designing Process Maps

any means of relatedness between the concepts. Thus, we lack empirical con-
firmation that the concepts we have identified are correctly interpreted and
that they do indeed represent the meaning we have attached to them. To
make sure the resultant meta-model is a correct generalization of the 67 in-
stance process maps, we complement the process maps with data we gathered
during a one-week, in-depth qualitative study we conducted with one of our
industry partners. Our industry partner is a software development company
with more than 60,000 employees. During our 5-day stay at their premises
in September 2014, we conducted 15 interviews (Interview guideline can be
seen in Appendix A). Our goal was to make sure that the concepts we have
captured in our process map meta-model are indeed concepts our industry
partner considers important to be included in a process map. Additionally,
we also aimed to ensure that our meta-model is saturated, thus, that there
are no other concepts which could be seen on process maps beyond the 67
maps we analyzed. The case study also assists in ensuring that the semantics
assigned to each process map concept is independent of context (s34: Inter-
pretation principle from Table 6.11) [198]. If the meaning we have attached
to the concepts on basis of prior literature and the implied meaning from the
process maps we have already analyzed matches the one we derive from the
interviews we conducted with our industry partner, this principle would be
satisfied.

Our interview partners were employees that are mainly responsible for pro-
cesses shown in their process map (e.g. process managers). These are typically
employees in charge for the end-to-end execution of one or more processes
shown on the process map. In addition, we interviewed employees who are
members of the BPM governance team of the company. They are involved
during all stages of the BPM project, such as setting the BPM standards,
the phases of the BPM lifecycle and ensuring strategic alignment. We also in-
terviewed the company‘s main process analysts, who are employees that lead
the process modeling project and are thus directly involved with modeling
the company‘s business processes. The interviews can be grouped as follows:
BPM governance team (5 interviews), process managers (9 interviews) and
process analysts (1 interview).

The interviews were conducted following an interview guideline. Prior to
our stay we were made aware of most of our interview partners. Accordingly,
we created two types of interview guidelines. One guideline consists of ques-
tions regarding characteristics of singular processes or group of processes, such
as questions revealing the relations between processes shown in the process
map and process triggers. We used this interview guideline in the case of our
interview partners being process managers, as they are the ones that know
best the process they are responsible for. The second interview guideline in-
cludes more strategic questions, such as questions regarding the process map
in general, the role the process map plays within the organization and any
means of guidelines the process map needs to comply too. We used the ques-
tions of this guideline to lead the interviews we conducted with the members

7.1 An Explorative Study for Defining the Abstract Syntax and Semantics 135

ID Interview partner Interview time Transcript (words)

I1 Process manager 00:37:48 4578

I2 Process manager 00:43:16 4114

I3 Process manager 00:34:19 4315

I4 Process manager 01:01:53 8764

I5 Process manager 00:28:58 3198

I6 Process manager 00:39:24 4036

I7 Process manager 00:37:11 4465

I8 Process manager 00:18:37 1831

I9 Process manager 00:30:44 3165

I10 BPM governance team 01:02:32 7771

I11 BPM governance team 01:03:51 9459

I12 BPM governance team 00:20:18 2392

I13 BPM governance team 00:35:12 4830

I14 BPM governance team 00:22:25 1473

I15 Process analyst 00:42:13 5908

Total 9:38:41 70299

Table 7.2: Interviews

of the BPM governance team. Also, the meaning of the process map concepts
were revealed during all interviews. The interviews were semi-structured, thus
they ended up in open discussions about the company‘s processes that are part
of their process map, the relations between them, and any concepts directly
connected to a process and should be shown on their process map.

As a result of the interviews, we end up with approximately 10h of inter-
view material (approx. 5.5h with process managers, approx. 3.5h with BPM
governance team, and approx. 1h with process analysts). The 10h of material
was transcribed using the transcription software F4 which results in about
100 pages (font size 11) of interview transcripts. Table 7.2 illustrates the 15
interviews we conducted. It shows the ID for each interview partner, the posi-
tion each interview partner has in the organization, the respective time each
interview lasted and its respective transcript size in words.

Process Maps Used for Identification of Usage Patterns

In addition to the 67 process maps we use to generate the process map meta-
model, we add 104 new process maps to the collection, thus increasing our
data set to 171 process maps in total. We increase the process map collection
because we assume that while the same concepts reoccur in most process maps,
the manner of how these concepts are combined is more likely to change. This
is mainly due to the diversity of industries the process maps stem from, which
likely affects the way processes interact. We use the same sources for collecting
process maps as for generating the process map meta-model. In addition to
the process maps shown in Table 7.1, we found 19 new process maps coming
from practice. These are all process maps that some of our industry partners

136 7 Abstract Syntax and Semantics of the Language for Designing Process Maps

provided us during our collaboration. Also, we gathered more process maps
using an Internet search, which provided us with 85 new process maps. We
added these because they were all different from the ones we already had.
Table 7.3 gives an overview of the amount of process maps from each source.

Source Amount

Literature 21

Case study 7

Practice 30

Internet search 113

Total 171

Table 7.3: Process map collection (usage patterns)

7.2 Abstract Syntax of Language for Designing Process
Maps

In this section, we present the abstract syntax of the process map language
in form of a meta-model, following by the semantics for each meta-model
concept and the results from the hierarchical clustering which illustrates the
usage patterns across the collection of all analyzed process maps.

7.2.1 Process Map Meta-Model

The results of the process map analysis are summarized in the meta-model
depicted in Figure 7.1. The meta-model provides a generic way to deal with
process map design by depicting all unique concepts we found in the 67 pro-
cess maps, the additional concepts we identified due to our case study and
the different types of relations found between concepts. The meta-model con-
sists of concepts which are not context-specific, as the data we used for its
generation comes from a wide range of organizations coming from different
industries. The organizations also differ in their size, ranging from hundred to
thousands of employees. Accordingly, the process map language can be used
for both small and large organizations (d34: Scalability from Table 6.12). As
result of the case study, we were able to validate all concepts included in the
meta-model based on the 67 process maps. Also, the meta-model can be ex-
tended to include new concepts, if such are found after the language has been
defined (d30: Flexibility and d32: Adaptability from Table 6.12).

In addition to the concepts coming from the 67 analyzed process maps,
the in-depth qualitative study pointed us to three new concepts which should
belong on a process map, but were not part in the original meta-model. These
are Service and Object, which are concepts directly connected to a process,

7.2 Abstract Syntax of Language for Designing Process Maps 137

and a new type of control flow relation, namely the Specialization relation,
which is a relation between a standard process and its variants. Interesting
to note is that, after we identified the two new concepts and the one new
type of relation, we went back to the 67 process maps we initially analyzed to
derive the meta-model and we found that indeed six process maps included
the specialization relation to show process variants, while three process maps
attached objects to processes. Omitting the concept Object during the initial
process map analysis might have happened due to our unfamiliarity with this
concept and also due to its lack of explanation in prior literature. Nevertheless,
our negligence to detect the Specialization relation is mainly because both the
decomposition and specialization relation have been represented in a similar
visual manner in all process maps they were included in. Therefore, it was
simply impossible to differentiate between them.

Fig. 7.1: Process map meta-model

When defining the process map meta-model, we also ensured that all con-
cepts are unique, thus the meta-model contains no redundant elements i.e.
elements that represent the same information (d28: Non-redundancy from

138 7 Abstract Syntax and Semantics of the Language for Designing Process Maps

Table 6.12)[136, 163, 169, 171, 193–197, 212]. In the following, we define and
explain all unique meta-model concepts and relations between them in detail.

Process

The key component of process maps is a business process. A Process belongs
to a category depending on the role the process plays for an organization. A
process could belong to a phase, depending on the time the process should
be performed. A process is triggered by an input and when a process has
finished, it gives a result in a form of an output. An actor is often assigned to
a process. Some processes need resources in order for them to be performed
while some offer services to employees. An object is commonly assigned to a
process, which is something that is conquered due to the process performance.
Processes are related to each other via different types of relations (Control
flow-specialization, Control flow-sequence, Control flow-decomposition, Data
flow, Manage, and Support). Some process relations could occur only between
processes coming from the same category, while some relations can only occur
between processes that come from different process categories.

Input

An Input triggers a process to start. It triggers the execution of an end-to-end
process i.e. a sequence of core processes. As result of our case study we found
that there are two different types of inputs, namely external and internal
inputs. External inputs come from a customer external to the company (not
a company employee), while an internal input is one which is provided either
by a company employee or by another process. An external input can trigger
an end-to-end process; however it can also trigger a singular process which
is part of the process map (e.g. the core process Sales from Figure 3.3). On
the other hand, an internal input can only trigger singular processes within
the process map (e.g. all processes shown on a process map). One input can
trigger one or more processes.

Examples of external inputs are:

• a customer request to purchase a new product
• a customer request to maintain an existing product
• a contractual requirement to ensure process quality

Examples of internal inputs are:

• an employee request to implement a new idea
• data outputted by a process needed for another process to start
• raw material necessary for product development

7.2 Abstract Syntax of Language for Designing Process Maps 139

Output

An Output is a result generated due to process execution. Both a sequence of
processes (e.g. an end-to-end process) and a singular process (e.g. Sales) can
produce outputs. Similar to input, there are external and internal outputs.
External output is one which is used by an external customer. An external
customer is a customer external to the company (not a company employee).
Typically, a process that has been triggered by an external input produces
an output which is sent to an external customer, which is typically the one
that triggered the process in the first place. For example, if a customer or-
ders a table from a furniture company, the company will have to execute a
sequence of processes in order to provide the table to the customer (e.g. the
processes Sales, Accounting and Logistics will be triggered in order to pro-
cess the order). In contrast, an internal output is one which is used by an
internal customer, either being that a company employee, or another process.
One process could produce one or more outcomes. In the process map meta-
model from Figure 7.1, we consider the different types of inputs and outputs
as attributes of both.

Examples of external outputs are:

• a consummated order, such as ordered products, services or support
• a consulting service
• a finished good such as a product

Examples of internal outputs are:

• a product portfolio necessary to develop a new product
• a strategic decision
• a product material necessary to place the product on the market

Resource

A Resource is a source of supply or support that can be drawn upon when
needed by any process or an instance of a process. A resource does not trig-
ger a process to start, however during the execution of a process a resource
might be necessary for a process activity to be executed. It supplies processes
with means they need in order to be performed. According to supply-chain
literature, a production process uses resources which can be both technical
and human [222]. Note that, a resource shown on a process map is a type of a
technical resource, not a human resource. As example, consider the resource
water, which is required during the production of energy, or the resource wood
needed for the production of furniture. If necessary, one process uses one or
more resources throughout its execution. However, a process does not neces-
sarily need to use a resource in order to produce an output.

140 7 Abstract Syntax and Semantics of the Language for Designing Process Maps

Actor

We refer to a human resource as an actor. An Actor is a person responsible
for a process shown on the process map. They are typically called process
managers and are those who are responsible for the entire end-to-end process.
Process managers are also the ones who communicate with the employees that
are involved with the process, usually called process performers. One process
could have none, one or more assigned actors.

Service

One process could offer services, which is an act provided by the company
or a particular process to employees and is typically considered as a benefit.
For example, the HR (Human Resources) process provides employees services
such as sport courses and medical assistance. All these belong to services,
which are not necessarily defined as processes themselves, but are provided by
processes. This means that, a company must not have a defined process of how
the service is executed, in fact when an employee accepts a service provided by
the company, all done for the service execution is a matter of external parties.
For example, if an employee needs a medical assistance during working days,
the company will provide the employee the necessary service by referring the
employee to the appropriate medical doctors, which are not employed by the
same company but work in an external institution. One process need not offer
services, but it could also provide access to many.

Object

An Object is a thing associated with only one process. It is a focus of atten-
tion and the purpose of a specific action [148]. A process must not have an
object, however when a process is assigned an object, the performance of this
process must be able to attain the assigned object. Thus, the process perform-
ers during process execution must take into consideration, at all times, the
object‘s presence. The object resembles the flow unit in business processes. A
flow unit is an item being analyzed. Depending on the process, it can be a
unit of input, a unit of output or a financial value of the input or output [100].
In addition to a flow unit, an object could also be a more abstract concept
that must not necessarily be seen, but is at all times present. An example of
an object for the process “Production” would be product quality. This means
that, during the execution of the process “Production”, all products that are
produced have to be of high quality, as this is the object that should be kept
in mind constantly during process execution.

Category

According to principle as26 (Cluster similar elements) from Table 6.11, it is
prescribed to cluster elements which are similar to each other [50, 151, 158].

7.2 Abstract Syntax of Language for Designing Process Maps 141

The process map language will allow that by using categories. A Category
is a group of processes that have a similar purpose in an organization. For
example, the core process category typically consists of all value-creation pro-
cesses, while the support process category includes processes which support
the value-creation processes. A process is always assigned to a category. One
process can belong to only one category. Processes that are clustered in one
category serve a similar purpose. One category contains more than one pro-
cess. Most common process categories are: management, core and support
process categories.

Phase

A Phase is a temporal cluster of processes that contains a subset of processes
coming from one or more process categories. It is temporal because a certain
number of processes need to be performed in order for an intermediate out-
come to be produced. This intermediate outcome is used as a trigger for the
processes that belong to the next phase. The intermediate outcome could also
be kept in the database for later usage, thus it does not necessarily need to
trigger the next phase of processes. For example, manufacturing a product is
commonly done in different phases. The first phase will deal with supplying
all material needed for the product to be manufactured. The second phase
would keep all those processes that handle the actual production. Finally, the
third phase contains the processes that market or sale the finished goods.

Condition

The Condition constraints or guards the relation that is used between two
or more processes. For instance, if process C can only start after processes A
and B have been executed, than the condition will rule-out all those relations
that do not capture this behavior.

Relation

One process can be related to other processes through one or more relation
types. There are four main process relations: control flow, data flow, manage
and support.

Control flow relations could be used between processes that belong to
the same or to different process categories. There are three types of control
flow relations:

• Sequence control flow is a control flow relation used between processes
to indicate order of performance. When two processes are sequentially re-
lated, two cases could occur. First, the second process can start performing
only after the first process has finished executing. This is the case we have
captured on basis of the 67 process maps. However, due to the case study
we conducted, we found that a sequence relation between two processes

142 7 Abstract Syntax and Semantics of the Language for Designing Process Maps

does not necessarily mean a strict sequential relationship. When two pro-
cesses are sequentially related, the second process could also start without
the first process having completed immediately before the second process
has started. However, the first process must have been executed at least
once before the second process could start executing.
A suiting example to illustrate this case would be to consider the two core
processes “Production” and “Sales”. Of course a product must be produced
for it to be sold. However, a product that has already been produced can
be sold at any time in the future, as long as there are still products in stock.
Only in the case there are no products left for selling, the “Production”
process must be executed at least once before the “Sales” process could
start again. Alternative variations of process order are also possible. For
instance, one process could trigger at the same time more processes. In this
case, the processes that are triggered are performed in parallel. By doing
this, we follow the principle as7 (Parallelism) which clearly states that a
language should provide mechanisms for specifying concurrent activities,
because software processes are intrinsically concurrent [202]. Similarly, the
processes performed in parallel could in turn trigger one or more processes.
There could also exist process loops, which means that one single process,
if necessary, could be triggered several times in a row until the desired
outcome is produced.

• Decomposition control flow involves abstraction. Abstraction (as18
from Table 6.11) together with generalization (as27 from Table 6.11) are
both important principles to consider when defining the intra-language
parts [50, 141, 151, 154, 155, 157, 158, 170, 202]. The decomposition trig-
ger relates a super-ordinate process with its subprocesses. This is a one-
to-many relation, which means that one super-ordinate process could have
a number of subprocesses. A subprocess always possesses additional prop-
erties which are not shared by other subprocesses (s26: Distinct behavior
from Table 6.11). When the decomposition relation is used between pro-
cesses, two cases could occur. In the first case, once the super-ordinate
process has started, all its subprocesses are triggered and must be per-
formed in order for the super-ordinate process to finish its performance.
Here, the subprocesses are commonly related to each other with the se-
quence relation. The second case is rather more flexible compared to the
first case. Here, when a super-ordinate process is triggered, at least one
subprocess must be executed for the superordinate process to produce an
output. A decomposition relation could occur only between processes that
belong to one process category.
For example, for the core process “Pre Sales” from Figure 3.3 to be per-
formed, the subprocess “Process Request” needs to be executed. On the
other hand, the core process “After Sales” can finish its execution if only
one of its subprocesses has been executed, depending on what is necessary
at an exact point in time. Typically, after a decomposition control flow has

7.2 Abstract Syntax of Language for Designing Process Maps 143

been used, the next process to be performed is related with a sequential
control flow. Otherwise, the process ends.

• Specialization (as30 from Table 6.11) is a mechanism for representing one
or more possibly overlapping subtypes of an object type [50]. Similar to
the decomposition relation, the Specialization relation also relates one
process to more processes. Contrary to the decomposition relation, the
specialization relation relates a standard process to its variants. Process
variants are processes that slightly vary from the normal flow of execution
of its standard process. For example, in a furniture company a chair is pro-
duced differently than a table, however for both to be produced the process
“Production” is triggered. Thus, the process “Production” is the standard
process which has two process variants, one process “Produce chair” and
one process “Produce table”, respectively. Contrary to the decomposition
relation, the specialization relation could occur between processes within
one or more process categories. For example, if an organization differenti-
ates between two different types of customers, companies and individuals,
the processes necessary to handle orders coming from individuals might
slightly differ from those handling orders from companies. Since a core
process might need processes from other process categories when fulfill-
ing a customer order, depending on the type of customer, the appropriate
process from the other process category would be triggered.

Data flow could be used between processes that belong to the same or
different process categories. This relation, when used, does not trigger another
process. Instead, it only passes information from one process to another with-
out interrupting its performance. For example, if process A produces some
type of a document, and this document is one of many documents needed by
process B, then process A passes the document to process B. However, even
after receiving the document from process A, process B is still in an idle state
and starts only when it has received all necessary documents. If data sent from
a process triggers another process to start executing, then this is considered
as an internal input as described above.

Contrary to the other relations, manage and support are relations that can
be seen only between processes coming from two different process categories.

The Manage relation can only occur between processes that come from
different process categories. As the name implies, the manage relation relates
the management processes with all processes coming from the other process
categories, (e.g. core and support processes). The management processes are
there to manage the performance of all other processes shown on the process
map. These processes govern all processes during their execution and they
ensure that all processes are performed according to the rules defined by
them. For example, the management process “Strategic alignment” makes sure
that all done during the core processes is according to the defined company
strategy. Thus, all done during the core processes will assist in attaining the
company’s strategic direction.

144 7 Abstract Syntax and Semantics of the Language for Designing Process Maps

Similarly, the Support relation can occur only between processes coming
from different process categories. It is a relation between the support processes
and the processes from the other process categories (e.g. core and management
processes). The direction of support goes from the support processes to all
processes from the other process categories. It is an implicit relation, thus
no direct explicit relation is shown between two particular processes, as it is
typically the case of using an arrow to indicate sequential trigger relation.
Instead, all support processes are there to serve any immediate need by all of
the other processes shown on the process map. There could be subcategories
of processes. For instance, there are cases where the support processes are
categorized into local and global. This means that, the local support processes
support only a subset of processes from another category (e.g. the support
process “Audits” supports only the core process “Production” by ensuring
its quality), whereas the Global support processes are there to support all
processes (e.g. the process “HR” supports all other processes of the company).
Sub-categorization can occur within the other process categories as well.

7.2.2 Use of Process Map Concepts

The meta-model from Figure 7.1 summarizes process map concepts, whereas
Figure 7.2 gives an overview of the frequency of occurrence of each concept
in the investigated maps.

From Figure 7.2 we can clearly see that the three types of process categories
core, management, and support are the most frequently used concepts. In fact,
there is not a single process map without a core process category. However,
also the management and support process categories are used by more than
93% of the maps. From the figure we can also observe that the three most
commonly used relations are the sequence-, manage- and support relations,
with approximately 50% of the process maps using them to relate processes.
Interestingly, the support- and manage relations can be seen in only about
50% of the process maps. This is quite unexpected considering the high usage
of the corresponding categories. Apparently, the explicit inclusion of these
relations is only done by only half of the maps.

There is also a notable difference in the usage of the other types of re-
lations. For example, the decomposition relation is the next most frequent
type of relation used, nonetheless only 23% of the maps show processes de-
composed to their subprocesses. Significantly less process maps, only 6%, in-
clude the dataFlow relation and only 4% show process variants by using the
specialization relation. Also, other concepts are rarely seen in process maps.
Particularly, the actor, object and resource concepts are barely included.

Hierarchical Cluster Analysis of Process Map Concepts

In order to gain a better understanding of how the various process map con-
cepts are utilized, we conduct a hierarchical cluster analysis using the Eu-
clidean distance measure. As a result, we obtained a hierarchical classification

7.2 Abstract Syntax of Language for Designing Process Maps 145

Fig. 7.2: Occurrence Frequency of Process Map Concepts

of process map concepts that indicate which concepts are used alternatively
and which concepts are used in combination.

Figure 7.3 depicts the results of the hierarchical cluster analysis. The figure
gives us insights into the design of process maps, namely, it shows us which
concepts are most frequently used together in combination within one single
process map. The figure points to the apparent connection between the con-
cepts which are shown in more than 50% of the process maps, which can be
seen in the lower part of Figure 7.3. For example, the three most frequently
used concepts as shown in Figure 7.2 belong to the same cluster, which means

146 7 Abstract Syntax and Semantics of the Language for Designing Process Maps

that when a process map includes a management process category, the same
process map is also likely to include the core and support process categories.
Same rule applies with the core and support categories. Thus, organizations
that own a process map show all three process categories.

Similarly, a process map which includes inputs is likely to also show the
corresponding outputs. Additionally, when a process map includes inputs and
outputs, it can be expected that the same process map shows how processes
are related to each other by using the decomposition and sequence relations.
Thus, a process map that explicitly shows the inputs that trigger processes to
start executing, this map also tends to show the subprocesses involved during
the execution and the sequence in which these processes are executed in order
to produce outputs.

As seen in Figure 7.2, whereas all process maps include management and
support process categories, only half of them explicitly show how the pro-
cesses coming from different categories are dependent on each other. Due to
the hierarchical cluster analysis we were able to argue why this is the case.
Figure 7.3 shows that when an organization decides to include more concepts
on the process map beyond the three process categories, like inputs and out-
puts, then they are also likely to show how processes are related to each other.
Moreover, when a process map explicitly depicts relations between processes
from the same process category, the same process map is prone to also show
how processes that belong to different process categories are related by using
the manage and support relations. Apparently, there are organizations with
varying opinions about the level of detail they include in their process maps.
It seems as, while some organizations have process maps that provide many
details, including several types of relations, other organizations‘ process maps
aim at providing a broad overview by omitting all types of relations.

Concerning the less frequently used concepts as seen in the upper part of
Figure 7.3, we observe two aspects. First, actors, resources, objects and leg-
ends are part of one cluster. Hence, their occurrence is positively correlated.
This can be explained by the phenomenon we already discussed in the con-
text of relations. Either an organization provides all in their process map or
they include none. Apparently this tendency also applies to the rarely used
concepts. Moreover, if actors, resources and objects are used, they are likely
to also be accompanied by a legend, which points to the fact that when a
process map includes many details, a legend is shown to explain what certain
aspects signify. As a side note, we did not include the notion of a legend in
the process map meta-model from Figure 7.1, because a legend is external
to process maps and it is not directly related to a process. The second point
relates to the co-occurrence of the specialization relation, dataFlow relation
and phase. As indicated by the clusters, there is a tendency for these to occur
together. This shows that maps containing phases are also likely to show data
that is passed by processes from one phase to another.

The hierarchical cluster analysis points to the fact that process maps might
be used with differing intentions. While some maps provide extensive detail

7.2 Abstract Syntax of Language for Designing Process Maps 147

Fig. 7.3: Hierarchical Clusters of Process Map Concepts

such as actors, resources, and triggers, other are rather inclined to provide
an abstract picture of the company’s processes. The latter category tends to
omit concepts like data flow relations and other details such as actors and
resources.

Beyond recording the usage of each concept as seen in the meta-model from
Figure 7.1, we also kept track of the setting of each concept and the relation
used to connect concepts to each other. For example, when a process map
exhibited an input, we kept track whether the input triggers all processes
shown on the process map or only a portion of them. Similarly, we noted
whether a relation is used to relate processes from one process category or
processes that come from different process categories. Figure 7.4 illustrates
the result of the hierarchical clustering we did on the concepts with their
according setting.

The results shown in Figure 7.4 confirm many of the usage patterns we
observed in Figure 7.3. For example, when an organization includes one pro-
cess category, they tend to include the other process categories as well. Other
insights we found are the symmetry of concept usage in process maps. To ex-
emplify, when an organization uses an input that points towards all processes

148 7 Abstract Syntax and Semantics of the Language for Designing Process Maps

Fig. 7.4: Detailed hierarchical Clusters of Process Map Concepts

of the process map, then this organization also tends to include an output
which is result of all processes shown on the process map. Same happens with
inputs which are triggering only the core processes, the same process maps also
exhibits outputs due to the performance of core processes. Moreover, when
a process map shows the decomposition of core processes, the same process
map is likely to depict a sequential relation between the subprocesses which
come as result of the decomposition.

Furthermore, from Figure 7.4 we can see that organizations that include
more concepts beyond the frequently used ones (e.g. process categories), then
they tend to include all. For instance, process maps that show process variants,
they are also likely to depict the data flowing from one process to another, ac-
tors responsible for processes, resources and objects. These are complemented
by legends, which are then used to explain the details that constitute the
process map.

7.3 Chapter Summary

In this chapter, we presented the development and definition of the two main
parts of the process map language, namely the abstract syntax and semantics.
We presented the various methods we used in order to define both. Also, we
showed the different techniques we used to collect empirical data on which

7.3 Chapter Summary 149

we base the definition of the abstract syntax and semantics. For defining the
abstract syntax we conducted an explorative study in order to better compre-
hend the nature of existing process maps from practice. We collected a total of
67 process maps coming from literature and practice. The process maps from
literature are typically slightly adapted process maps also coming from prac-
tice. We record each concept we found in the collection of 67 process maps.
Accordingly, we derived the process map meta-model which reflects the ab-
stract syntax of the language. We also made sure the process map meta-model
is saturated. For this reason, we conducted an in-depth qualitative study with
one of our industry partners, in order to make sure that the concepts that
comprise the meta-model are the only concepts that can be seen in process
maps. As result of the qualitative study, we were able to add three new con-
cepts to the meta-model. Also, the study enabled us to define the concept
semantics.

In addition, the chapter also provides insights into the occurrence fre-
quency of process map concepts. We found that most process maps cluster
the processes into process categories. Beyond the process categories, more
than half of the process maps we analyzed relate the core processes to the
use of the sequence relation, while less than half of the process maps also im-
plicitly show how the different process categories are related to each other. In
contrast, concepts such as actors, resources, objects, together with the other
types of relations are used significantly less. In addition, we present the results
of the hierarchical clustering we conducted in order to find out what are the
combinations of concepts often seen in process maps from practice. The re-
sults pointed to interesting patters. We observed high correlation between the
frequently used concepts. For instance, when a process map includes inputs,
they are likely to also include an according output. Moreover, when a process
map shows an input triggering only the core processes, this process map also
shows an output as result of the core process performance.

8

Concrete Syntax of the Language for Designing
Process Maps

In this chapter, we define the third intra-language part, namely the concrete
syntax of the language for designing process maps. In particular, the chap-
ter explains the methods we followed for assigning a visual representation to
each of the concepts found in the meta-model from Figure 7.1. Here, we also
describe the technique we employ for collecting process maps we use as basis
for defining the language’s concrete syntax. In addition, in this chapter we
elaborate on the symbols practitioners use for depicting the various concepts
in process maps. We use this data as basis for defining the concrete syntax
for the process map language. The last part of the chapter is where the final
concrete syntax of the language is presented. All along the parts of this chap-
ter, we refer to the principles we follow when defining the language’s concrete
syntax.

The chapter is structured as follows. In Section 8.1, we present the method
we use to generate the concrete syntax along with the data collection tech-
nique. Section 8.2 lists the most frequently used symbols for depicting each
of the process map meta-model concepts, while in Section 8.3 we present the
complete concrete syntax of the language for designing process maps. Section
8.4 summarizes the contributions of this chapter.

8.1 An Explorative Study for Defining the Concrete
Syntax

One of the virtues of modeling languages is being able to represent informa-
tion in a graphical form by using shapes, layout and grouping (cs2: Visual
nature from Table 6.12) [153–157]. It has been stated that humans are able to
recognize information easier and faster using a visual representation, rather
than doing so on basis of a textual representation [24]. Similar as with the ab-
stract syntax definition, we follow an explorative approach in order to discover
and define the concrete syntax of the language, namely the visual represen-
tation of the concepts that are included in the process map meta-model from

152 8 Concrete Syntax of the Language for Designing Process Maps

Figure 7.1. Our aim is to reuse visual representations of concepts that are
already used in practice, because as stated by principle cs26 (Familiarity):
symbols of a language should be familiar to its users. Namely, familiarity is
an important factor for usability and also influences the speed and accuracy of
symbol identification [141, 151, 159–161, 164]. Therefore, if we reuse already
existing symbols practitioners use to represent the unique concepts shown in
the meta-model (see Figure 7.1), the symbols will be closely related to the
concepts they represent in the real world, as they have already been used for
the same purpose. Likewise, our language will consist of symbols that have
been already tested (cs71) [161]. We believe that following this approach we
are more likely to eliminate any potential user resistance towards using the
process map language and reading the process maps created by the language.
Reusing already existing symbols would potentially increase the process map
understandability among users, since the language will comprise symbols al-
ready familiar to users.

8.1.1 Method for Generating Concrete Syntax

We analyze process maps by identifying how concepts included in each process
map are visually depicted. To be able to do this, we use the process map
meta-model as illustrated in Figure 7.1. The meta-model shows all concepts
that could be seen on a process map. We analyze each process map from our
collection and identify all concepts and relations the process map includes
and how each of these are visually represented. We record each unique visual
representation for each of the concepts included.

Fig. 8.1: Visual variables from Moody [13]

We observed process maps that use the same symbols to represent differ-
ent concepts. In many maps, the symbols differ solely on the size, colors used,
the orientation of the symbol or their position on the process map. To be
able to differentiate between similar symbols, we rely on the 8 visual variables
(shape, size, color, brightness, orientation, texture, horizontal position, verti-
cal position) introduced by Bertin [117]. Thus, using the visual variables we
are able to differentiate between the different types of concepts used, although

8.1 An Explorative Study for Defining the Concrete Syntax 153

they are represented using the same shape. The visual variables can be seen
in Figure 8.1. We keep track of the concept representation using the software
package PowerPoint.

Fig. 8.2: Example process map from practice [223]

Figure 8.2 is an example of a process map coming from the education in-
dustry (found using an Internet search engine), while Figure 8.3 illustrates all
unique symbols used within this process map. The process map exhibits three
different types of processes belonging to three different process categories,
namely management, core and support processes. Accordingly, we record that
the management and support process categories are depicted using the rect-
angle shape “a.1” from Figure 8.3, while the core process category is using
the symbol “b.3”. The pentagon-shaped symbol pointing down is used to rep-
resent the management processes (symbol “b.1” from Figure 8.3).

The support processes are depicted using the same type of shape, however
pointing up (symbol “b.2” from Figure 8.3), while two types of shapes are
used to represent the core processes, namely the symbols “b.3” and “c.3” from
Figure 8.3. The core processes are triggered by an input, and they produce
an output. For the input the same shape is used as for core processes (symbol
“b.3” from Figure 8.3), however with a different size, whereas symbol “g” is
used to show an output, or the receiver of an output produced by the execution
of processes. The process map also shows that core processes are executed
in a sequence. Process sequence can be seen first by the close proximity of
the symbols “c.3” which indicates a value chain, and second using an arrow

154 8 Concrete Syntax of the Language for Designing Process Maps

Fig. 8.3: Symbols used in Figure 4.1

“j.1” between two processes. In addition, core processes are shown in three
different phases (Study matriculation, Study program, Study graduation).
These are expressed using the rectangle shape (symbol “a.1” from Figure 8.3),
however compared to the categories which are represented with a horizontally
positioned rectangle, phases are represented vertically.

We apply this method for all process maps. As a result we derive a list of
symbols and the frequency of occurrence of each unique symbol for each of the
concepts in all process maps under investigation. Naturally, for defining the
concrete syntax we would choose the most frequently used symbol for each of
the process map concepts. However, many process maps use one single shape
to represent different concepts, thereby violating established design princi-
ples, such as the principle of Semiotic clarity (cs3) which is used to ensure a
1:1 correspondence between semantic constructs and graphical symbols [13].
Thus, we select the final concrete syntax such that it complies to all princi-
ples for defining concrete syntax from Table 6.12. For example, we make sure
each concept is assigned a unique symbol, because the different symbols in
the language should be easy to distinguish from each other. Two symbols are
easily distinguished from each other by the extent to which they are physi-
cally distinct (cs22: Symbol discriminability) [13, 141, 160–163]. Likewise, it
has been suggested for a language to contain symbols that enable perceptual
discrimination (cs25: Preattentive processes), where perceptual discrimination
detects similarities and differences among the different symbols, determining
that some are the same and others different [162]. Thus, to make sure these
principles have been satisfied, additionally we employ the range and capacities
of the visual variables from Figure 8.1 for the symbol definition (cs39) [13]. As
a result, readers looking at a process map created using the language we de-
velop would be able to detect the symbols it contains and discriminate among
them (cs22) [165]. Also, since we are aware of process modeling languages
mostly used today, such as BPMN, when appropriate, we reuse concepts and
their according symbols (d60: Compose existing languages where possible from
Table 6.12) [163].

8.2 Visual Representation of Process Map Concepts and Concept Relations 155

8.1.2 Process Map Collection for Concrete Syntax

We use the same collection of process maps we have analyzed for identifying
the usage patterns of process map concepts, which can be seen in Section
7.1 and are shown in Figure 7.3. Accordingly, our data set comprises of 171
process maps we analyze for the way concepts are visually represented.

8.2 Visual Representation of Process Map Concepts and
Concept Relations

As a result of our analysis, we derived a list of unique symbols used in the 171
process maps and the way these are related to each other (we refer to them
as connectors). They are illustrated in Figure 8.4. We assigned an ID for each
unique symbol and connector. The symbols are also clustered, which can be
observed by the indicated ID. For example, symbols “b.1”, “b.2”, “b.3” and
“b.4” belong to the same cluster, because all four use the same shape however
they differ by one visual variable, namely the orientation. Same applies for
clusters “a”, “c”, “d” and “e”. The last cluster holds unique symbols that
do not resemble each other (symbols “f”, “g”, “h”, “i” and “j”). All symbols
are used to represent the concepts from the process map meta-model from
Figure 7.1. The connectors in the lower part of Figure 8.4 are ones we identified
and are used to relate two or more concepts. We refer to the ID‘s of the
elements from Figure 8.4 throughout the next part of the chapter whenever
we discuss the respective symbol or connector.

Next we present symbols we identified and are used for each unique concept
from the process map meta-model (Figure 7.1).

8.2.1 Current Concept Representation

According to the process map meta-model from Figure 7.1, all process maps
include processes that can be clustered in categories and phases and are re-
lated by six types of relations. Additionally, there are six types of process
attachments. These are concepts that could be seen attached to a process
shown on a process map, such as an actor or an object. As result of the analy-
sis we were able to identify how most of these concepts are visually depicted.
The only concept for which we found no visual representation in the process
maps is the concept service. This is a concept our industry partner recognizes
as important to be included in a process map, however it has not been in-
cluded in any of the 171 process maps under investigation. In the following
paragraphs we present our findings.

Process

Our process map analysis showed that there exist four types of processes,
namely management, core and support processes, in line with the different

156 8 Concrete Syntax of the Language for Designing Process Maps

Fig. 8.4: Symbols used

types of process categories, and subprocesses, which are processes as result of
process decomposition. Figure 8.5 illustrates all symbols we identified for each
of the four types of processes. We also indicate the frequency of occurrence of
each symbol for the respective process type. These can be seen as a number
within the boundaries of each symbol.

From Figure 8.5 we can observe that the most frequently used shape for
representing all types of processes is the rectangle (symbol “a.1” from Fig-
ure 8.4). The majority of process maps use this shape when representing the
management, support and subprocesses, with 44%, 46% and 44% respectively.
In contrast, the most frequently used symbol for core processes is the so-called
chevron (symbol “c.3” from Figure 8.4), which stems from the value chain in-
troduced by Porter [105]. Approximately 30% of the maps use the pentagon-
shaped symbol in a horizontal position (“b.3”) for the core processes, which
is a symbol that resembles the chevron shape. Moreover, in almost 30% of
the process maps we observe that the core processes are depicted with the
rectangle shape. We also observe a trend that, when the management and
support processes are represented using the pentagon-shaped symbol facing
up or down (“b.1” and “b.2”), the same process map tends to use the chevron
symbol for the core processes. Similarly, when the management and support
processes are depicted with a rectangle, the same shape is used for the core
processes as well.

20% of the maps use both symbols “b.3” and “c.3” to depict both the
management and support processes. On the other hand, when a process map

8.2 Visual Representation of Process Map Concepts and Concept Relations 157

Fig. 8.5: Representation of process

does not use symbol “b.1” for the management processes, they tend to depict
this process type with a shape that closely resembles the pentagon, such as
symbols “c.1”, “d.1” and “e.1”. The same happens with the support processes
where instead of using symbol “b.2” to indicate support, the symbols “c.2”,
“d.2” and “e.2” are used to bring in the same meaning. With regard to the
subprocesses, almost 45% of the maps that use process decomposition show the
subprocesses using the rectangle shape, while the rest use either the chevron
symbol or the horizontally-positioned pentagon shape.

Process category

Our analysis showed processes clustered into three main types of process cat-
egories, namely management, core and support process categories. Each of
these categories hold management, core and support processes, respectively.
In addition, we observed subcategorization of processes that belong to one
category. As expected, more than 50% of the process maps use the rectangle
shape to categorize the different processes. However, our data also pointed us
to the usage of the pentagon-shaped symbols pointing down and up to catego-
rize the management and support processes. Whereas, for the core processes

158 8 Concrete Syntax of the Language for Designing Process Maps

often the pentagon-shaped symbol which is horizontally positioned and the
chevron symbols were used. This trend complies with the semantics of these
three types of processes, namely that the management processes are manag-
ing all processes towards which they are pointing, while the support processes
support the same, and the core processes are the ones that are being exe-
cuted in order to produce an output that is used by a customer, hence their
horizontally pointing direction.

Fig. 8.6: Representation of category

Interestingly, our data shows us that, when management processes are not
represented with the pentagon-shaped symbol pointing down, the respective
process map uses the pentagon shape to categorize all management processes.
The same occurs with the support processes. Correspondingly, the semantics
of these processes is implicitly stated. With regard to subcategories, only
12% of the maps categorize processes that belong to one category. All of
these maps use the rectangle shape for sub-categorization, congruent with
the frequently used shape for the three process categories. Alternatively, 5 of
these organizations use the rectangle shape with dashed lines. This usage of
a different texture makes it possible to differentiate between a category and a
subcategory.

8.2 Visual Representation of Process Map Concepts and Concept Relations 159

Phase

12 process maps use phases to show the temporal execution of processes.
Compared to a category which shows processes in a horizontal manner, phases
cluster processes vertically. This helps to represent processes that belong to
different process categories in the same phase. Some process maps use the
rectangular shape to show phases, while others use the chevron symbol, which
facilitates explicit depiction of execution order of group of processes. On the
other hand, most process maps that include a phase, they do that by simply
assigning labels on top of a group of processes.

Fig. 8.7: Representation of phase

Input

Our analysis pointed us to three input groups: input that triggers a single core
process, input that triggers the core process category or input that triggers
all process categories. In addition, we found that 80% of the maps show only
one generic input (e.g. customer order), whereas the rest 20% of the maps
list multiple inputs (e.g. order, market requirement, etc.). Figure 8.8 exhibits
all symbols used for representing inputs in process maps. In addition, we
found different types of connectors used to relate an input symbol with the
core process category or a single core process. When a connector is used it
means that the connected process or process category will be triggered by the
respective input.

From Figure 8.8 we observe that the majority of inputs in process maps
either trigger one or all core processes. Particularly, almost 50% of the inves-
tigated process maps show an input using the symbols “b.3”, “c.3” and “e.3”
pointing towards the core process category, as seen in Figure 8.9.c. When the
other symbols are used (“a.1”, “i”, “j”), a connector is added to relate the
input with the core category, such as in Figure 8.9.b. This indicates that the
respective input triggers all processes from the core process category to start

160 8 Concrete Syntax of the Language for Designing Process Maps

Fig. 8.8: Representation of input

with execution in order to produce an output which is typically consumed by
a customer.

In some maps, we could also identify inputs that trigger a single core
process. When this occurs, the core process related with the input will start
executing immediately after the input is received. Often, when this particular
core process finishes its execution it will likely trigger other processes to start,
up until the moment an output is produced which can be used by a customer.
Three of the process maps use an arrow to directly connect an input with a
process, whereas the other four process maps either use the symbols “b.3”,
“c.3” and “e.3” attached to the process, or depict the input with natural
language located at the beginning of the process, as shown in Figure 8.9.d.

When an input is not directly connected to a category or a process, it
means that one or all processes shown on the process map might be needed
for an output to be produced. In this case the most often used symbol is the
rectangle i.e. “a.1” which is placed vertically along all process categories, as

8.2 Visual Representation of Process Map Concepts and Concept Relations 161

Fig. 8.9: Example of input types

shown in Figure 8.9.a. Additionally, 8 process maps explicitly show different
input types. Each type could be used to trigger processes to start executing.

Output

Similar to input, there are three groups of output: output from a single core
process, output as result of a core process category, and an output coming
from all process categories. We found that organizations tend to use the same
or a similar symbol for an output they used to depict an input, suggesting
that the process or group of processes that have been triggered by an input
yield an output which is consumed by a customer that initially delivered the
input. For example, a “customer order” is an input which is processed by an
organization by executing all processes necessary that will result in an output
“customer satisfaction”.

As seen in Figure 8.10, almost 70% of process maps that include an output
use the rectangle shape (symbol “a.1” from Figure 8.4). Interestingly, exactly
the same amount of process maps use this symbol to represent an input.
Thus, when an input in a process map is illustrated by a rectangular shape,
the output in the same process map is also depicted using the same symbol.
The same happens with symbols “c.3”, “i” and “j” from Figure 8.4, namely
the process maps that use these three symbols to represent an input, the same
process maps use exactly the same symbols to represent an according output.

In addition, we found that process maps which use symbols “g” or “c.3”
(see Figure 8.4) for depicting outputs, the same maps depict the core process
category with symbol “c.3”, and the input with symbols “b.3” or “c.3”. Ac-
cordingly, all three concepts when placed together constitute a whole in form
of a rectangle or a chevron, as seen in Figure 8.11. Alike, when an organiza-
tion represents both input and output with a rectangle, the same organization

162 8 Concrete Syntax of the Language for Designing Process Maps

Fig. 8.10: Representation of output

Fig. 8.11: Example of input - process category - output

clusters the core processes using the same shape, thus forming a whole from
three different parts.

As with inputs, outputs are also related to a process or group of pro-
cesses by using connectors. Especially in cases where outputs are depicted
with the rectangular shape, connectors such as “k.2”, “k.7”, “k.8” or “k.9”
(Figure 8.4) are used to relate the output with a process or group of processes.
This indicates that an output has been produced due to performance of cer-
tain processes, such as in b and c from Figure 8.12. On the other hand, when
natural language is used to indicate an output, then the output label is placed
close to the core process (Figure 8.12.d) to express a result due to the execu-
tion of the respective process. Nonetheless, the majority of process maps that

8.2 Visual Representation of Process Map Concepts and Concept Relations 163

Fig. 8.12: Example of output types

include an output tend to simply show the notion of an output by placing a
rectangular shape along the entire process map (Figure 8.12.a). Last, same as
inputs, most process maps show one single output, however there are process
maps that depict output types that could result due to process performance.

Object

Figure 8.13 shows that only 2 process maps assigned an object to processes.
One map uses a rectangle to depict an object. The second process map uses
symbol “d.1” from Figure 8.4. Both representations entail that during the
execution of the respective process the object attached needs to be considered.
For example, if the object is labeled as “strategy” it means that during the
process execution all done needs to comply to the company’s strategy.

Resource

Same as with objects, only two process maps show resources necessary for pro-
cess execution (Figure 8.14). Our analysis revealed two ways of representing
resources. First, a resource is attached on a corner of a process by means of a
tiny rectangle. Second, rectangular stripes are placed in the background along
the whole process. In both representations the resource is not fully revealed.
Instead, an abbreviation is used to simply point to the necessary resource.
Both process maps are complemented by a legend explaining the meaning of
the abbreviations used.

Actor

Figure 8.15 shows five process maps depicting an actor in five different ways.
While three process maps place an actor at different positions in or surround-
ing a process, the other two attach an actor to a process either by using the

164 8 Concrete Syntax of the Language for Designing Process Maps

Fig. 8.13: Representation of object

Fig. 8.14: Representation of resource

connector “k.1” from Figure 8.4 or by displaying an actor with a rectangular
shape closely placed under a process. The commonality all maps share is that
an actor is always labeled via natural language, which is typically the name
of an employee who is responsible for the respective process.

Process relations

In addition to the process map concepts, organizations use dedicated visual-
izations also for the six types of process relations. In the following paragraphs
we present the different visual appearances organizations use to illustrate how
processes are related to each other.

Sequence relation

The sequence relation is the most commonly used relation to show the se-
quence of execution of a group of processes. In particular, more than 55% of
the investigated process maps use this relation to relate two or more processes.
This process relation is most commonly used between the core processes, and

8.2 Visual Representation of Process Map Concepts and Concept Relations 165

Fig. 8.15: Representation of actor

rarely seen between management processes. In addition, we found that half
of the process maps that show process decomposition also use the sequence
relation to relate the subprocesses which are generated due to the decompo-
sition.

Our analysis revealed four distinct ways of sequentially relating two pro-
cesses. First, and most frequent, is through the use of the chevron symbol for
representing processes (“c.3” from Figure 8.4). Thus, when two processes are
depicted using the chevron symbol and the proximity between them is very
close, then they are sequentially related (see Figure 8.17.a). Accordingly, the
second process can start executing only when the first process has finished.
This type of sequence relation is seen between all three process types, namely
the core, management and subprocesses.

The second style used to sequentially relate two processes is through the
use of connectors. Therefore, regardless of the type of symbol used to depict
processes, two processes are sequentially related if a connector is used between
them. The most commonly used connector to show process sequence is the
directional arrow (symbol “k.2” from Figure 8.4). This is namely the only
connector that could be seen between the management and subprocesses. The
other two types of connectors that are also used between core processes are
symbols “k.8” and “k.9” from Figure 8.4.

The last two rarely used styles is by enumerating processes as shown in
Figure 8.16 where clearly process 1 will execute first before process 2 can
start, and as shown in Figure 8.17.b, which occurs only between subprocesses.
From Figure 8.17.b we can infer that, first, for the core process to be executed
both subprocesses must have been executed before, and second the successive
subprocess can start only after the first subprocess has finished executing.
This is implied due to the order in which the subprocesses are placed along
the core process.

166 8 Concrete Syntax of the Language for Designing Process Maps

Fig. 8.16: Representation of sequence relation

Fig. 8.17: Example of sequentially related processes

Furthermore, compared to Figure 7.2 where the sequence relation is used
by 96 process maps, Figure 8.16 indicates 116 cases of sequence relation be-
tween two processes. This is simply because within a single process map mul-
tiple types of sequence relations could be observed. For example, while the
core processes are sequentially related as shown in Figure 8.17.a, the sub-

8.2 Visual Representation of Process Map Concepts and Concept Relations 167

processes within the same process map use a different visual representation
for the sequence relation than the one between the core processes, such as in
Figure 8.17.b.

Decomposition relation

Process decomposition is the second most often used process relation. In con-
trast to the sequential relation which is a one-to-one relation, the process
decomposition relation is a one-to-many relation, hence one super-ordinate
process is related to more sub-ordinate processes. Thus, through process de-
composition the subprocesses that constitute an end-to-end process are explic-
itly shown. Since this is a part-whole relation, all visualizations used imply
parts i.e. subprocesses that constitute a whole i.e. end-to-end process. Accord-
ingly, one of the most frequently used visual representation for this relation
is a whole process containing its subprocesses within its borders. There are
also process maps that list the subprocesses underneath the super-ordinate
process, and some instead use a connector to relate them (connectors “k.1” or
“k.2” from Figure 8.4). Regardless of the type of visual representation used,
the size for the subprocesses compared to the super-ordinate process is always
significantly smaller.

Fig. 8.18: Representation of decomposition relation

Specialization relation

It is quite challenging to differentiate between a decomposition and a spe-
cialization relation, solely based on the visual representation. Therefore, to
be able to identify specialization relations, besides only relying on the visu-
alization, we also looked into the labels of the processes shown which seemed

168 8 Concrete Syntax of the Language for Designing Process Maps

as parts of another process. We did this in order to be able to discriminate
between a process variant and a subprocess. A specialization relation relates a
standard process to its process variants. A process variant is slightly different
than its standard process. The difference is typically due to certain constraints
imposed by either different regions the process is executed in, different laws
due to the different regions, or simply because it is a different product the
process is dealing with.

The analysis pointed to two types of specialization relations, namely pro-
cess variants that relate only to the core processes, and process variants that
relate to all processes shown on the process map. When process variants are
related to the process map as a whole, this might imply that, depending on
the constraint, all processes shown on the process map might run slightly
differently than when there are no imposed constraints. However, when the
variants are only related to the core processes, then one core process might
offer multiple process variants, each satisfying a constraint. For example, a
core process “Production” might adjust some process activities depending on
the product types being produced.

Fig. 8.19: Representation of specialization relation

From Figure 8.19 we can observe that, similar to the decomposition re-
lation, process variants are shown as parts of a whole process. Thus, when
a specialization relation is used within the core processes, all variants shown
point to all variations of the same core process they are related to. On the
other hand, when a specialization relation is used for all processes shown on
the process map it indicates that depending on the selected process variant
all processes on the map will be slightly different.

8.2 Visual Representation of Process Map Concepts and Concept Relations 169

Data flow relation

Only nine process maps explicitly show data sent from one process to another
(Figure 8.20). Seven of these maps complement the sequence relation between
two processes with data. Hence, when the first process is finished, it sends
data to the process sequentially related to it, typically done via a connector
(connectors “k.2” or “k.8” from figure8.4). In addition, in two process maps we
could see explicitly stated data either at the beginning and end of a process, or
the top and bottom of it, as seen in Figure 8.20. Accordingly, besides showing
inputs and outputs that trigger a group of processes and are output thereof,
organizations aim at depicting inputs and outputs for each process shown on
the process map.

Fig. 8.20: Representation of data flow relation

Manage relation

A manage relation is an implicit relation between the management processes
and all other processes shown on the process map. Therefore, it does not nec-
essarily disturb the performance of the processes it is related to, but rather
guides the direction of their execution. Figure 8.21 illustrates how the manage

170 8 Concrete Syntax of the Language for Designing Process Maps

relation is visually represented in the process maps we analyzed. As seen in
Figure 8.21 and referring back to Figure 8.5, those process maps that use the
pentagon-shaped symbol (“b.1” from Figure 8.4) for representing the manage-
ment processes, or any other symbol which due to its shape and orientation
point towards other process categories (“c.1”, “d.1”, “e.1” from Figure 8.4), si-
multaneously also entail the meaning of the manage relation. Otherwise, when
none of the aforementioned symbols are used to represent management pro-
cesses, then organizations tend to categorize them using the pentagon-shaped
symbol pointing down i.e. toward the other process categories, thereby imply-
ing a manage relation.

Fig. 8.21: Representation of manage relation

On the other hand, we observe from Figure 8.5 that most management
processes and categories are represented with the rectangular shape. All of
these process maps that do not use any symbol that might imply a manage
relation add a connector in order to make sure this type of relation is present.
When a connector is used, it is typically placed between the management and
core process categories. This infers that all done during the core processes
should be as defined by the management processes. The most commonly used
connectors are “k.8” and “k.10” from Figure 8.4. Both entail the same se-
mantics as a management process being represented by the pentagon-shaped
symbol.

Additionally, there are also some process maps that use a bi-directional
connector (such as “k.3”, “k.6” or “k.7” from Figure 8.4) to relate the manage-
ment and core process categories. Using these suggests that the relationship
between both categories is not one-directional as in the aforementioned cases.
Thus, rather than only the management processes managing the core process

8.3 Final Selection of Concrete Syntax of the Language for Designing Process Maps 171

performance, the core processes additionally need to provide some type of
feedback back to the management processes.

Support relation

Similar to the manage relation the visualizations used to depict a support
relation between the support processes and all other processes shown on the
process map is mainly by means of using the pentagon-shaped symbol pointing
up (towards the other process categories). Namely, 67 process maps used this
symbol to represent a support relation. When a process map does not use the
pentagon-shaped symbol, then they typically use a connector to be able to
convey the meaning of support between the support processes and all other
processes. Figure 8.22 illustrates all symbols and connectors used to depict
a support relation. From Figure 8.22 we can see that organizations tend to
use a multitude of different-looking connectors in order to represent support.
In particular, in total 11 process maps used one-directional connectors to
represent support coming only from the support processes, whereas 7 process
maps used bi-directional connectors. These imply support coming from both
the support processes and all other processes on the process map.

Fig. 8.22: Representation of support relation

8.3 Final Selection of Concrete Syntax of the Language
for Designing Process Maps

The final selection of the symbols we use for visually depicting the process
map concepts are shown in Figure 8.23. This figure depicts the concrete syn-
tax of the language for designing process maps. From the figure we can clearly

172 8 Concrete Syntax of the Language for Designing Process Maps

see that, obviously, we did not choose the most frequently used symbols for all
concepts, as described in Section 8.2.1. The intra-language quality principles
we followed when developing the language constrained us when choosing the
appropriate visual representation for each process map concept and concept
relation. For example, when developing a language a 1:1 correspondence be-
tween semantic constructs and graphical symbols needs to be ensured (cs3:
Semiotic clarity) [13]. Consequently, it is necessary for each process map con-
cept to correspond to exactly one visual representation.

Fig. 8.23: Concrete syntax of the language for designing process maps

8.3 Final Selection of Concrete Syntax of the Language for Designing Process Maps 173

Moreover, people should be able to distinguish between symbols that are
associated with different semantics (cs: Symbol discriminability) [13, 141, 160–
163]. Therefore, whenever some shapes used to represent different concepts
were the same, we make them differ by adding at least one visual variable
to each from the ones introduced by Bertin [117]. For instance, whereas the
symbols used to represent the management and support processes are of the
same shape, the orientation of both is different, one pointing downwards, while
the other upwards. We could have chosen symbols that use completely different
shapes, however this would have violated other principles, such as the principle
of Semantic transparency (cs29) which suggests to use visual representations
whose appearance suggests their meaning. Similarly, the principle of semantic
distance (s3) prescribes for a symbol to be closely related to what it intends
to represent [164]. Thus, the symbol’s implicit meanings should be close to
the intended ones [13, 161] and it is preferred as well for symbols to express
their intended messages clearly (cs32: Suitability)) [161, 166]. Accordingly, we
use the pentagon-shaped symbol pointing towards the other process categories
which indeed implies manage relation between the processes. The same applies
with the support processes.

It has also been reported that users find first the most easily detected
and most prominent symbol in a model. They typically move from there to
the next most prominent symbol and so on [141, 154, 157, 165]. Therefore,
it is essential for a language to provide the ability to shift attention from
one location in the model to another (cs30: Visual routines). Since the core
category holds the value-creation processes for an organization, the shape used
for these processes is different than the ones for the other process types. Also,
the shape used for clustering the set of core processes differs than the other
process categories. As a result, readers would be able to first focus on the
symbols most different than the rest, then shift their attention to the other
concepts included in the process map.

As already mentioned, the language for designing process maps is grounded
in actual practical usage, hence we reuse symbols organizations use for de-
picting the process map concepts. First of all, the number of visual elements
the process map language consists of is compliant to the number of concepts
practitioners stated as important to include in their process maps. Accord-
ingly, the language for process maps includes only those elements necessary
to achieve the results it intends to (cs10: Diffuseness) [154, 157]. So, the num-
ber of different graphical symbols is cognitively manageable, because the lan-
guage does not include any symbols not desired by the users (cs8: Graphic
economy)[13, 141, 154, 157].

Moreover, by reusing concrete symbols already familiar to organizations,
readers could use their knowledge of the everyday world in order to in-
terpret them. Accordingly, the language complies to the principle of Con-
creteness (cs27), as such symbol concreteness is an important determinant
of the speed and accuracy with which readers identify symbols in mod-
els [164]. Similarly, symbols would be easy to recognize, since they all use

174 8 Concrete Syntax of the Language for Designing Process Maps

simple and already-known shapes (cs43: Shape) [151], and they all have
emergent properties by means of each they can easily be recognized (cs28:
Recognizability)[88, 151, 161, 165]. For example, the arrow-looking shape is
an emergent property of the chevron-shaped symbols used for depicting core
processes. The meaning comes from the well-known value chain model, hence
readers would have no significant difficulties in recognizing this symbol and
its according meaning. Furthermore, the symbol selected to represent an actor
clearly indicates a person. A person attached to a process conveys an apparent
meaning, which is a type of responsibility. The same applies for the other pro-
cess attachments. For example, when an abbreviation is attached to a process,
and this is appropriately explained in a legend underneath, readers should be
able to infer some type of resource. However, the use of an appropriate expla-
nation in a legend is vital for the correct interpretation of the same. This is
namely stated by the Explicitness principle (s33) which recommends to make
the informational content explicit, rather than implicit [198].

Also, the features of the symbols were properly chosen (cs77: Layout) [161].
For example, the orientation of the different types of processes gives cues
of the role the process has in an organization. Similarly, the symbols used
for depicting inputs and outputs are chosen such that, when placed on the
appropriate position on the process map (e.g. inputs are placed on the left side
along the process map, while outputs on the right) they would imply some type
of supplier and receiver from external stakeholders. This is essentially because,
their position is not within the processes that comprise an organization, but
at their outer boundary. The usage patterns illustrated in Figures 7.3 and
7.4 also supported us when deciding on the visual representation of these
process map concepts. For example, we observed that when organizations
depict an external input, then they also tend to add an external output in
their process maps. For this reason, the symbols we selected for these concepts
are complementary, such that when these two symbols are placed together,
they form a whole.

Moreover, the directional arrow used between two processes that are within
the boundaries of a process map clearly implies an internal input/output. The
data attached to the arrow is the output of the first process which is used as
an input that triggers the consecutive process. While a solid line usually is
associated with a strong dependency between the connected concepts, such as
to show an order of occurrence, a line which is dashed is typically used to carry
information. Similar to the role of a dashed arrow in BPMN, a dashed arrow
shown on a process map means data exchange [18]. When a directional dashed
arrow is used, the data is send from one process to another. In contrast, a line
with not specific direction implies data exchange coming from both connected
processes.

8.4 Chapter Summary 175

8.4 Chapter Summary

In this chapter, we presented the concrete syntax of the language for designing
process maps. In particular, we discussed the methods we followed to select an
appropriate visual representation for each concept and concept relation shown
on the process map meta-model (Figure 7.1). The chapter also discussed the
process map collection we used as basis for the symbol selection. Afterwards,
we elaborated on the various symbols used in process maps to visually depict
process map concepts. The last part of this chapter introduces the final selec-
tion of the concrete syntax that comprise the language for designing process
maps.

In the process maps we analyzed, we observed that many organizations use
one symbol to represent different process map concepts. In addition, we found
that organizations tend to use alternative orientations of the same shape to
represent the different types of processes. For example, the core processes are
often represented using the chevron-shaped symbol as seen in the value chain
model by Porter [104]. In contrast, the management and support processes
are depicted using the same shape, however with a different orientation. Both
point towards the other process categories, which in fact implies a relation
between the different types of processes. Similarly, a process map that uses
a pentagon-shaped symbol to illustrate an input, the size of the symbol is
significantly different than the one used for the management and support
processes. The location of the input is also different, it is positioned in a way
such that it points towards a set of processes, hence implying a certain type
of trigger from an external stakeholder. Moreover, our analysis showed that
organizations use different types of connectors to relate the various concepts
included in process maps.

As a result of the analysis we were able to define an appropriate visual rep-
resentation for each concept and concept relation included in the process map
meta-model (Figure 7.1). Figure 8.23 illustrates the final set of symbols cho-
sen which satisfy the quality requirements for defining concrete syntax. This
language for designing process maps with the appropriately defined concrete
syntax enables organizations to represent a complete and correct overview of
all their business processes and the relations between them.

9

Suitability of BPMN for Designing Process
Maps

Prior research has accentuated the capabilities of BPMN as opposed to other
process modeling languages [209, 224–227]. Accordingly, BPMN has become
the leading standard for business process modeling, and it offers a large list
of elements supporting practitioners in modeling all aspects of their business
processes [18]. Despite its wide user acceptance, the collection of process maps
that we have collected from our industry partners do not use any of the sym-
bols this language offers when designing their process maps, even though most
of these organizations use BPMN for modeling their business processes. The
reason why practitioners seem so reluctant in using BPMN when designing
their process maps has been our inspiration for conducting a study we present
in this chapter. In particular, we wish to check whether the language for de-
signing process maps we present in this thesis is indeed necessary, despite
that process modeling languages such as BPMN exist. Therefore, the research
question we aim to answer in this chapter is: Why is BPMN not appropriate
for designing process maps?

The chapter is structured as follows. Section 9.1 introduces the method we
follow to assess the suitability of BPMN for designing process maps. In Sec-
tion 9.2 we present the findings we derived by means of the methods employed.
This section also includes discussion of the findings. Section 9.3 summarizes
this chapter.

9.1 Methods

This section is dedicated to the methods we use in order to assess the suit-
ability of BPMN for designing process maps.

9.1.1 Data Collection

To be able to test the suitability of BPMN for designing process maps, we
need all concepts used on a process map and concepts used for BPMN. With

178 9 Suitability of BPMN for Designing Process Maps

regard to the process map concepts, we use the process map meta-model from
Figure 7.1 and the concept semantics as presented in Section 7.1. In order to
discuss the capabilities of BPMN for designing process maps, we also need a
list of BPMN elements. Since BPMN is a very rich modeling language with
an immensely long list of elements, we only focus on the process modeling
conformance class and use the list of the extended BPMN elements from this
class [18]. We selected these mainly because the other BPMN conformance
classes focus on process execution matters, thus their purpose is rather more
technical. Given both lists, we are able to match the semantics of the process
map concepts to the semantics of the BPMN extended list of elements.

9.1.2 Semantic Mapping

We use semantic mapping in order to be able to match process map concepts
to BPMN concepts. Semantic mapping is used for schema matching, which
has been motivated by schema integration, a method used to integrate two
independently developed schemas into a single schema [228]. Researchers have
identified various types of semantic relationships [19, 229]. For our study we
use the four most commonly used semantic relationships: equivalence, sub-
sumption, intersection and disjointness. We use these because they are well-
grounded and well-defined in the research area of schema matching. They are
also used to formalize the representational relationships that Wand et al. [20]
describe. We adopt their definitions as defined by Rizopoulos et al. [19]. These
are:

• Equivalence: two schema constructs A and B are equivalent, A = B, if and
only if Di(A)

s
= Di(B)

• Subsumption: schema construct A subsumes B, A ⊂ B, if and only if

Di(A)
s
⊂ Di(B)

• Intersection: two schema constructs A and B are intersecting, A ∩ B, if

and only if Di(A)
s
∩Di(B) 6= Ø,∃C : Di(A) ∩Di(B) = Di(C)

• Disjointness: two schema constructs A and B are disjoint, A
s

6 ∩ B, if and
only if Di(A) ∩Di(B) 6= Ø,∃C : Di(A) ∪Di(B) ⊆ Di(C)

Imagine A is a process map concept, and B is a BPMN concept. The rela-
tionships explained in natural language would be as follows: the equivalence
relationship occurs between concepts A and B if their semantics are the same.
When the semantics of concept A subsumes the one of concept B it means
that concept A includes the semantics of concept B and more. The seman-
tics of concepts A and B are intersected if they share some commonalities,
but they are not entirely equal. Last, concepts A and B are disjoint if they
have no elements in common. We manually matched the semantics of each
process map concept to the semantics of each BPMN concept. The result is
a table depicting all concepts that are related by one of the first three shown
semantic relationships. The rest of the concepts that could not be matched
are naturally those related by the disjointness relationship.

9.1 Methods 179

9.1.3 Representation Analysis

As result of the semantic mapping we can use the representation theory crite-
ria to argue about the capabilities of BPMN for abstract depiction of business
processes [20, 230]. In particular, we use the representation model as proposed
by Wand et al. [230] as a basis for evaluating BPMN in terms of its ability to
generate process maps that are good representations of the company’s opera-
tions. Accordingly, we evaluate the language using two criteria: completeness
and clarity [230]. Figure 9.1 depicts both criteria. In terms of completeness,
BPMN is complete, hence suitable for designing process maps, if and only if
it contains all constructs that enable to depict all concepts that are shown
in our process map meta-model from Figure 7.1. Thus, if all concepts shown
in the process map meta-model entail the same semantics of concepts that
BPMN already offers, we consider BPMN as complete, thus suitable for de-
signing process maps. This is appropriately illustrated on the left-hand side
of Figure 9.1.

Fig. 9.1: Representation theory - criteria of completeness and clarity

The second principle, clarity, states that BPMN is clear if and only if
each of its constructs has a one-to-one correspondence with one of the con-
cepts shown in the process map meta-model. This criterion points to three
conditions that need to be satisfied in order for it to hold. Therefore, there
should be no construct overload i.e. one process map meta-model concept
maps to two or more BPMN constructs, no construct redundancy i.e. two or
more process map meta-model concepts map to one BPMN construct, and
no construct excess i.e. a process map meta-model concept does not map to
any BPMN construct, BPMN is clear, thus suitable for process map design.
The tree conditions are illustrated on the right-hand side of Figure 9.1. An
expressive modeling language is one that satisfies both quality criteria com-
pleteness and clarity. We argue that if BPMN is not expressive in terms of the
process map meta-model, the process maps that are designed using BPMN

180 9 Suitability of BPMN for Designing Process Maps

will be deficient [230]. Specifically, if BPMN is not complete, it might lack the
constructs needed to convey meaning about some aspect concerning the com-
pany’s operations. If BPMN is not clear than it has constructs that convey
ambiguous meaning about the company’s operations.

9.2 Findings

In this section we present the findings as result of applying the semantic
mapping and the representation theory criteria.

9.2.1 BPMN - Process Map Concepts Semantic Mapping

Table 9.1 depicts the results of the semantic mapping between the process map
meta-model concepts and concept relations from Figure 7.1 and the extended
list of BPMN elements from OMG [18]. As seen from Table 9.1, in addition
to the process map concepts, we also include the relationships between the
concepts we see in the process map meta-model from Figure 7.1. We do this
because some BPMN elements could only be matched to the semantics of a
relationship between two process map concepts. The table is organized in the
following way. The first column is for the BPMN elements, the second column
is for the process map concepts and relationships, while in the third column
the semantic relationship between the BPMN element and the corresponding
process map concept is defined. For example, the first row can be read as
follows: the BPMN elements multiple start event, parallel multiple start event,
intermediate catching message event and intermediate catching signal event
are semantically equivalent to the process map concept input. This means
that, the concept input could be represented by all of the four aforementioned
BPMN elements. We sorted the rows of the table according to the semantic
relationship. Hence, the concepts in the first eight rows (excluding the first
row) are semantically equivalent, in rows 8 and 9 the BPMN and process
map concepts are semantically intersecting. Rows 10-16 show the process map
concepts which are subsuming BPMN elements, while rows 17-22 the BPMN
elements are subsuming process map concepts. The last two rows are for all
BPMN and process map concepts that could not be matched, hence they are
semantically disjoint.

BPMN element (B) Process map concept
(P)

Semantic
relationship

Start events (multiple, parallel multiple); Inter-
mediate catching events (message, signal)

Input B
s
= P

Multiple end event; Intermediate throwing events
(message, signal)

Output B
s
= P

Table 9.1: Semantic mapping: BPMN elements - process map concepts

9.2 Findings 181

BPMN element (B) Process map concept
(P)

Semantic
relationship

Expanded sub-process Decomposition-trigger
relation

B
s
= P

Gateways (exclusive, event-based, inclusive) Specialization-trigger re-
lation

B
s
= P

Flows (normal, uncontrolled) Sequence-trigger rela-
tion

B
s
= P

Message flow triggers; yields B
s
= P

Category Category B
s
= P

None Start event Input B
s
∩ P

None End event Output B
s
∩ P

Start events (message, timer); Data input Input B
s
⊂ P

End events (message, signal); Data output Output B
s
⊂ P

Gateways (parallel, parallel event-based) Sequence-trigger rela-
tion

B
s
⊂ P

Data object Object B
s
⊂ P

Lane Actor B
s
⊂ P

Activity Process P
s
⊂ B

Group belongs to P
s
⊂ B

Category Phase P
s
⊂ B

Participant Actor P
s
⊂ B

Association Relations (dataFlow,
manage, support); trig-
gers, yields; uses; is
responsible for; provides
access to; attains; is
performed in; belongs to

P
s
⊂ B

Directional association internal Input; internal
Output; Relations (man-
age, support); triggers,
yields; uses; is responsi-
ble for; provides access
to; attains; is performed
in; belongs to

P
s
⊂ B

/ Resource; Service P
s

6 ∩ B

Semantic mapping: BPMN elements - process map concepts (continued)

182 9 Suitability of BPMN for Designing Process Maps

BPMN element (B) Process map concept
(P)

Semantic
relationship

Start events (conditional, signal); Intermediate
throwing & catching events (none, timer, es-
calation, compensation, conditional, link, multi-
ple, parallel multiple); End events (escalation, er-
ror, cancel, compensation, terminate, multiple);
Task (atomic); Choreography task; Sub-process
(collapsed, nested/embedded); Sub-choreography
(collapsed, expanded); Complex gateway; Flows
(conditional, default, exception); Compensation
association; Looping (activity, sequence flow);
Multiple instances (sequential, parallel); Process
break; Transaction; Off-page connector;

/ P
s

6 ∩ B

Semantic mapping: BPMN elements - process map concepts (continued)

The semantic mapping results point to a number of interesting observa-
tions. First of all, only two BPMN elements have a one-to-one mapping to one
process map concept, and only one of them share the same name, that is the
BPMN and process map concept category. Accordingly, these share the same
semantics. The second one-to-one mapping occurs between the BPMN element
expanded sub-process and the process map concept decomposition-trigger rela-
tion. Although these two concepts do not belong to the same category of con-
cepts, one being a type of process, the other a type of relation, both concepts
relate a super-ordinate process to its subprocess, hence they are semantically
equivalent. Most of the rest of equivalence mappings are many-to-one which
means that there are usually more than one BPMN elements that entail equal
semantics with only one process map concept. The only semantic intersections
occur between the none start/end events and the input/output process map
concepts. This is because both BPMN and process map concepts are defined
in a way that they share some commonalities, however both have additional
attributes that the other cannot be matched to.

One of the most interesting findings from Table 9.1 is that the majority of
mappings between BPMN and process map concepts are semantic subsump-
tions. This means that, most concepts of the one are specialization of the
other. Considering the purpose of process maps as compared to the purpose
of BPMN models, especially the fact that process maps are abstract repre-
sentations of processes, while BPMN models are detailed descriptions of the
processes shown in process maps, it simply makes sense that there are many
subsumption relationships. For example, the message/timer start events and
data input are subsumed by the process map concept input. Hence, both start
events and the data input are specializations of input. This was likely, because
a process map input can take the form of a message, but a process in a pro-
cess map can also be triggered by a contractual requirement, which might be
in form of a reminder. In the same manner, all three BPMN elements mes-
sage/signal end events and data output are specializations of output. Similarly,

9.2 Findings 183

the semantics of the BPMN element data object is subsumed by the semantics
of the process map concept object, because an object could be a data object,
but not necessarily.

There are a similar number of subsumption mappings showing the case
when BPMN concepts subsume process map concepts. For example, the main
concept of process maps process is a specialization of the BPMN concept ac-
tivity, because an activity could be atomic and non-atomic, but a process map
process, as defined, can only be atomic. Similarly, a phase is subsumed by a
BPMN category, because a category does not restrict the time when its con-
tained processes will be executed, while a phase does exactly that. Moreover,
an actor is a specialization of participant, because a participant could be a
person that is responsible for the execution of a process just as an actor is,
however a participant could also be a buyer, a seller, or a manufacturer, while
an actor cannot.

The last semantic subsumptions that could easily be spotted from Table 9.1
are between the BPMN concepts association and directional association and
the process map relations manage/support and all of the relationships between
the process map concepts. These are one-to-many relationships since the se-
mantics of both association and directional association elements entail that
they can be used to link information and artifacts with any BPMN graphical
element and other artifacts. Thus, these two BPMN elements could basically
be used to relate a process with all other process map concepts. In particular,
it is interesting to mention that these are the only BPMN elements that could
be used to express the semantics of the relations manage and support in a
process map.

Last, we can see that there are only two process map concepts (resource
and service) that cannot be mapped to any of the BPMN elements we inves-
tigated, while there are many more BPMN elements that cannot be mapped
to any of the process map concepts from the meta-model shown in Figure 7.1.

9.2.2 Suitability of BPMN for Designing Process Maps

The semantic mappings from Table 9.1 also help us to assess the completeness
and clarity of BPMN and its suitability for designing process maps in terms of
the representation theory and its criteria of completeness and clarity as defined
by Wand et al. [230]. Accordingly, BPMN is complete if and only if it contains
all concepts that enable to depict all process map concepts from Figure 7.1. If
BPMN is complete, it is suitable for designing process maps. However, as we
can observe from Table 9.1 this is not the case. Figure 9.2 is an illustration
of a portion of BPMN elements and process map concepts. With this figure
we show that BPMN is not complete in terms of the process map meta-
model, because the two process map concepts service and resource cannot be
semantically mapped to any of the investigated BPMN elements. Accordingly,
we can claim that BPMN does not satisfy the criteria of completeness because

184 9 Suitability of BPMN for Designing Process Maps

Fig. 9.2: Suitability of BPMN for representing process maps

it does not offer all elements that could be used to represent all process map
concepts.

In terms of clarity, BPMN is clear if and only if each of its concepts has a
one-to-one correspondence with one of the process map concepts. To test for
clarity, we must check for cases of construct overload, redundancy and excess.
In Table 9.1 we spot that all three cases have occurred. These are shown also
in Figure 9.2. First, one process map concept maps to more than one BPMN
elements, which is the case of construct overload. Similarly, there are cases
when one BPMN element is mapped to more than one process map concepts,
hence construct redundancy occurs. Last, there are two process map concepts
that do not map to any BPMN element, and many BPMN elements that
do not map to any process map concepts, hence construct excess is present.
Accordingly, we can conclude that BPMN is not clear in terms of the process
map meta-model.

9.2.3 Discussion of Results

First of all, as a result of the semantic mapping and the representational
analysis, we found that BPMN is not complete, therefore if an organization
would use BPMN to design their process map, they might lack the necessary
concepts needed to represent all requirements they aim to depict. This will
most likely happen in case an organization intends to include the concepts
service or resource in their process map, as there are no BPMN elements
that even remotely relate to the semantics of these two process map concepts.
Furthermore, we also found that BPMN is not clear in terms of the process
map meta-model. Thus, when an organization uses BPMN to design their
process map, they will possibly face difficulties in choosing between the various

9.3 Chapter Summary 185

BPMN elements that entail the same semantics as one process map concept.
For example, a process map designer has the option to choose between three
different types of BPMN gateways (exclusive, event-based, and inclusive) in
order to represent process variants (specialization-trigger relation).

Similarly, since there are two or more process map concepts that relate to
only one BPMN element, if one BPMN element is used to represent different
process map concepts, the resultant process map would be prone to misinter-
pretation and would likely convey ambiguous meaning about the company‘s
operations. Let us take as an example the inclusion of the BPMN element
association in a process map to capture the semantics of both process map
relations manage and support. First of all, when two processes are related by
a manage relation, it means that processes from one category manage the
performance of all processes from the other categories. If the support relation
is used, this means that processes from one category support the execution of
all processes from the other process categories. Thus, using the same BPMN
concept to represent both would be subject of misinterpretation, as associa-
tion does not imply neither manage nor support. To make sure that process
map users would infer the correct semantics of both, the BPMN element text
annotation might be attached to each giving extra explanation. Nevertheless,
our intention is to avoid exactly such cases of users mitigating construct excess
by using supplementary elements. In addition, if association is used to relate
a process map process with the rest of the concepts included in the map, the
meaning of manage and support might even get more unclear.

As a result of the semantic mapping, it is justified to assume that BPMN,
primarily used for modeling the fine-granularity of business processes, is not
applicable for abstract modeling. If BPMN would be used for designing pro-
cess maps, first, a user with modeling experience would likely misinterpret
the concepts on the process map, as the user has probably seen and used the
same concepts in detailed process models. Second, many studies point to the
complexity of BPMN due to its richness of elements, thus a user with less or
no modeling experience would likely not understand a process map designed
with BPMN, which could cause potential user resistance. Nonetheless, even
semantically equivalent concepts might be misinterpreted when used for dif-
ferent purposes. For example, using the BPMN element activity to represent
a process on a process map might be misleading because it could infer a single
activity, when indeed it is an end-to-end process which does not expand to its
constituent parts.

9.3 Chapter Summary

In this chapter, we presented a study that assesses the suitability of BPMN
(the standard for process modeling today) for designing process maps. We
addressed this by using a formal semantical mapping technique from schema
transformation for mapping the process map concepts with BPMN elements.

186 9 Suitability of BPMN for Designing Process Maps

We do this in order to analyze the relationship between both, hence test for
the capabilities of BPMN to represent all process map requirements. Last,
we use the semantic mapping as foundation to analyze BPMN in terms of
completeness and clarity introduced by Wand et al. [230]. Based on this, we
were able to test the extent to which BPMN is complete and clear for designing
process maps. We found that BPMN is neither complete, nor clear for process
maps. Thus, if organizations use BPMN for designing their process map, they
will encounter multiple BPMN elements which entail the same semantics as
one process map concept, and vice versa, one BPMN element could also be
used to represent multiple process map concepts. Our findings illustrate many
concepts as specializations of others. This makes sense mainly because of the
differing purposes of BPMN models and process maps. That is, while BPMN
models show the details of a process, the purpose of a process map is to depict
an abstract overview of all company‘s processes, hence they show how BPMN
models fit together, excluding their details.

Based on our study, we were able to show that BPMN is indeed not suitable
for designing process maps. Thus, we point to the necessity of the language
for process map design we have developed and presented in this thesis. As a
result, the language will support practitioners when undertaking this task.

10

Evaluation of the Language for Designing
Process Maps

This chapter is dedicated to stages four and five of the design science research
methodology from Figure 1.1, namely demonstration and evaluation. Here
we discuss the evaluation of the language’s usability by means of an experi-
ment. We believe that, although the language has been developed according
to well-established principles for defining the intra-language parts, end-user
evaluation is important as it will provide insights into the actual usage of the
language and its ability to create process maps which are correct and complete
in terms of the company’s business processes. Hence, the chapter discusses the
experimental design. We present the Norman’s theory of action [32] which we
take as basis for the language evaluation. In line with this theory, we develop
the hypotheses we test with the help of an experiment. Furthermore, we elab-
orate on the methods we use to gather data for the experimental treatments,
as well on the participants we use as subjects for our experiment. In the last
part of this chapter, we present our results from the analysis we did on the
experimental data. First, we discuss the demographics of our subjects, then
we focus on the hypothesis testing results. As result, we are able to discuss
the efficiency and effectiveness of the language for process maps i.e. its ability
to clearly represent an abstract overview of all processes of one organization
and the relations between them.

Along these lines, the sections of this chapter are structured as follows.
Section 10.1 presents the theory we use as lens to develop our hypotheses,
while Section 10.2 formulates the hypotheses we test by means of the experi-
ment. Furthermore, in Section 10.3 we introduce the experimental design we
conduct to evaluate the language for designing process maps. Here we also
discuss the experiment material and participants. Section 10.4 presents the
results from our analysis of the experimental data, while Section 10.6 sum-
marizes this chapter.

188 10 Evaluation of the Language for Designing Process Maps

10.1 Theoretical Considerations

We follow the guidelines for empirical evaluation of modeling languages as
introduced by Burton-Jones et al. [146]. According to this study, to evaluate
the performance of a modeling language we must know how it is used [146].
As already discussed in 5.2, modeling languages are employed by two types
of roles, namely modelers and readers. There are two main tasks for which
modeling languages are used: to create models and to interpret them. There-
fore, we can evaluate a language’s performance by assessing the effectiveness
and efficiency in supporting model creation and model interpretation. The
primary purpose of process maps is to be able to reflect the semantics of the
domain dealing with the organization’s business processes. Therefore, we can
assess the effectiveness of a process map in terms of fidelity [231]. Fidelity
is translated as adherence to fact or detail, in our context it is the degree
or accuracy the process map has been designed to reflect the domain of an
organization in terms of their business processes. We can measure fidelity in
terms of model creation and model interpretation. Representational fidelity
measures how faithfully the process map represents the modeler’s perception
of the semantics of the domain. Interpretational fidelity measures how faith-
fully the interpretation of a process map represents the semantics built in the
process map during its creation.

Fig. 10.1: Norman’s theory of action, adapted from [32, 138]

We view the representational and interpretational fidelity from the lens of
Norman’s theory of action [25, 32, 138]. The theory is illustrated in Figure 10.1
and also views a model from the two perspectives, modeler i.e. the process
map designer, and reader i.e. person that reads and interprets the process map
after it has been created. According to this theory, a process map has been
designed to show a certain domain, thus the modeler communicates a domain

10.2 Hypotheses Development 189

through the design of the process map. The theory is used to ensure that the
reader of the resultant process map has interpreted the correct domain that
the modeler of the process map has communicated.

Norman’s theory of action states two forms of discrepancies: a gulf of ex-
ecution and a gulf of evaluation. A gulf of execution occurs when there is
a discrepancy between the reader’s intentions for using the model and the
language’s ability to fulfill the reader’s intentions with the model [32, 138].
Conversely, gulf of evaluation results due to a discrepancy between the model
created using a modeling language and the intentions the reader has for using
the model [32, 138]. Thus, a modeler needs to be able to create models using a
modeling language that will satisfy the needs of the model’s readers. In other
words, the connotational and denotational semantics should be the same. In
line with this, we want to examine how well the denotational semantics i.e. the
semantics built into the process map language by its modelers, corresponds
to the connotational semantics i.e. the semantics as result of readers creating
meaning and interpreting the process map [146, 232]. We conduct an exper-
iment in order to assess if there is a difference between the semantics put
into a process map by its modelers, and the semantics interpreted by the pro-
cess map readers i.e. mismatch between the denotational and connotational
semantics. In this experiment we only focus on the interpretational fidelity.

Furthermore, we assess the efficiency of a process map in terms of the
amount of resources needed to interpret the process map [146]. Thus, we mea-
sure the interpretational efficiency which is the time needed for a reader to
complete tasks on basis of the process map created by the language. This is
typically done by examining comprehension task efficiency, where the process
map readers are given a set of comprehension questions regarding the seman-
tics of the process map, which they have to answer on basis of the process
map. The time needed to answer each such question will be measured in order
to assess the interpretational efficiency of process maps.

10.2 Hypotheses Development

In line with the theoretical lens, we argue that a process map created using
the language for designing process maps will lead to better interpretational
fidelity and interpretational efficiency, as opposed to one not designed using
the process map language. We measure the interpretation fidelity in terms
of scores i.e. correctly solved tasks, while the interpretational efficiency in
terms of time needed to solve the tasks. Accordingly, we state the following
hypotheses:

H10 The score of the tasks solved on basis of a process map not designed
according to the language for designing process maps will be the same as
the score of the tasks solved on basis of a process map created using the
language for designing process maps.

190 10 Evaluation of the Language for Designing Process Maps

H1A The score of the tasks solved on basis of a process map not designed
according to the language for designing process maps will be lower than
the score of the tasks solved on basis of a process map created using the
language for designing process maps.

H20 The time to solve the tasks on basis of a process map not designed
according to the language for designing process maps will be the same as
the time to solve the tasks on basis of a process map created using the
language for designing process maps.

H2A The time to solve the tasks on basis of a process map not designed
according to the language for designing process maps will be higher than
the time to solve the tasks on basis of a process map created using the
language for designing process maps.

In addition, we argue that, readers would perceive it more difficult to solve
tasks on basis of a process map not designed using the language we have de-
veloped. In contrast, readers would perceive less difficulties solving tasks on
basis of a process map designed using our language. For this we measure the
reader’s perceived difficulty to solve a particular task on basis of a given pro-
cess map. Also, we argue that the overall efficiency will be higher when using
a process map designed following the process map language. On the contrary,
the overall efficiency will be lower when using a process map not designed
according to our language. We measure the overall efficiency in terms of the
correct scores done in a particular time frame (Overall efficiency=score/time).

The hypotheses that capture this are:

H30 The overall efficiency when using as basis a process map not designed
according to the language for designing process maps will be the same as
the overall efficiency when using as basis a process map designed according
to the language for designing process maps.

H3A The overall efficiency when using as basis a process map not designed
according to the language for designing process maps will be the smaller
than the overall efficiency when using as basis a process map designed
according to the language for designing process maps.

H40 The reader’s perceived difficulty to solve tasks on basis of a process map
not designed according to the language for designing process maps will
be the same as the reader’s perceived difficulty to solve tasks on basis of
a process map designed according to the language for designing process
maps.

H4A The reader’s perceived difficulty to solve tasks on basis of a process map
not designed according to the language for designing process maps will
be higher than the reader’s perceived difficulty to solve tasks on basis of
a process map designed according to the language for designing process
maps.

In the following section we discuss the design of our experiment.

10.3 Experiment Design 191

10.3 Experiment Design

In order to be able to evaluate the modeling language for process maps, we
need to assess the effectiveness of each concept the language offers. The process
map concepts are considered as independent variables i.e. variables in the
experiment that are manipulated and controlled [233]. Observing the effect
of such a large amount of independent variables would require an even larger
amount of subjects that should take part in the experiment in order to get
significant results. In addition, to test the effectiveness and efficiency of a
modeling language, a counterpart is required against which we compare the
language. For example, it is possible to compare the fidelity and efficiency of a
business process model created using BPMN with the same business process
model built using EPC as a modeling language. This is because the purpose of
both modeling languages is modeling details of business processes. However,
since, to the best of our knowledge, there exists no other dedicated modeling
language for designing process maps, we cannot assess process maps created
by two different modeling languages.

We might be able to create a process map using BPMN as a modeling
language and use this map as a control treatment, however we evidenced that
BPMN is neither complete nor clear for designing process maps [31]. As a
result, a process map created using BPMN elements would be a subject of
potential misinterpretation. This is because BPMN includes elements used
to explain business processes with their according details, whereas process
maps depict business processes in abstract terms. Hence, readers with BPMN
experience would likely be biased. Similarly, we could use the value chain
model offered by ARIS as a control treatment, however the purpose of a
value chain model is rather more narrow than the one of a process map. For
example, a value chain model is used to represent the core processes of one
organization in a sequential manner. A process map also shows core processes
in a sequential manner, however it typically includes additional concepts a
value chain model does not cover, such as objects and services.

Therefore, we decided to use textual representation as a counterpart
against which we compare the visual language for designing process maps.
Compared to BPMN and the value chain model, we consider text as the best
alternative, because it will induce the least bias from the participants. Also,
using text will help us represent the correct semantics of all process map con-
cepts, which, for instance, is not the case with BPMN. As we have already
seen, BPMN is not complete in terms of the process map meta model. Thus, if
a company would use BPMN to design their process map they might lack the
necessary concepts needed to represent all requirements they aim to depict.
For example, there are no BPMN elements that relate to the semantics of
the process map concepts service and resource. The same issue would arise if
the value chain model is used to design a process map. In addition, design-
ing a process map using a modeling language which has been developed for
modeling the details of business processes might cause readers to misinterpret

192 10 Evaluation of the Language for Designing Process Maps

the process map. For example, the only BPMN element that could be used
to represent a process on a process map is an activity. Using an activity to
represent a process on a process map might be misleading, because it could
infer a single activity, when indeed it is an end-to-end process which does not
expand to its constituent parts.

Another issue we were faced with is the large amount of subjects necessary
to take part in the experiment in order to be able to evaluate the effectiveness
and efficiency of the entire language for designing process maps. Therefore,
instead of evaluating the entire language, we decided to only focus on five
process map concepts. These are: input, output, and three types of relations,
namely decomposition relation, specialization relation, and data flow relation.
We chose exactly these concepts for the following reasons. First, as already
discussed in Chapter 7, we faced some difficulties when differentiating between
the way the decomposition and specialization relations are visually depicted
in process maps. Therefore, using an experiment we want to assess the effec-
tiveness of the visual representations we selected for both relations. Second,
inputs and outputs might also be confounded with the data flow relation.
In particular, the internal inputs and outputs occur between two processes
shown on a process map. Since the internal inputs and outputs are typically
seen as data flowing from one process to another using a directional arrow, it
might be confused with the data flow relation. The data flow relation is used
to send data from one process to another, however, contrary to an internal
input, this relation does not trigger a process to start with execution, while
an input does.

10.3.1 Experiment Treatments

Our experiment includes two treatments, control and experimental treatment
[233]. The control treatment is a process map with the aforementioned con-
cepts textually explained, while the experimental treatment is a visually sat-
urated process map i.e. one with all concepts being represented by means
of visual representation. Thus, in treatment two the textually described con-
cepts from the process map from treatment one are visually represented using
the symbols we offered in Section 8.3. These are the five concepts we already
discussed: internal inputs and outputs, data flow, decomposition and special-
ization relations. We use the control treatment as baseline measure. Thus, we
assess the effectiveness and efficiency of the visually saturated process map
i.e. experimental treatment against the process map with textual explanation
of concepts i.e. control treatment. We also ensure that both treatments are
informationally equivalent [138], thus they both hold exactly the same amount
of information.

As shown in Chapter 8, organizations today frequently depict their core
processes as a value chain model, while they use the pentagon-shaped sym-
bol pointing towards the other process categories for the management and

10.3 Experiment Design 193

support processes. Also, most process maps from practice often include ex-
ternal inputs and outputs. Therefore, we use this format of a process map as
basis for both treatments. Accordingly, the base process map includes three
process categories (management, core, support process categories), external
input and external output. These are all depicted using their according sym-
bol from the language for designing process maps we present in this thesis.
The base process map can be seen in Figure 10.2. Therefore, a process map
we use for the control treatment will be the base process map with the five
concepts (internal input, internal output, data flow relation, decomposition re-
lation, specialization relation) textually explained beneath the process map.
The visually saturated process map is the base process map enhanced with the
respective symbols used to represent all five concepts which have been textu-
ally described for the control treatment. In this was, both process maps hold
exactly the same information. Whereas the experimental treatment is a pro-
cess map created fully according to the language for designing process maps,
the control treatment is a process map not using the full range of concepts
our language offers.

Fig. 10.2: Base process map

We use a 1x2 mixed-group experimental design, translated into one factor
with two treatments. Using this design we can compare the two treatments
(control and experimental) against each other [233].

10.3.2 Experiment Material

We prepared a paper-based questionnaire including four different parts for
the experiment. Part one consists of four groups of questions. The first group
holds basic demographic questions about the subject, such as the subject’s
age, gender (female or male) and level of study (undergraduate or graduate).

194 10 Evaluation of the Language for Designing Process Maps

The second group is concerned with the experience our subjects have about
business process modeling. This group holds questions such as “Have you ever
taken a business process modeling course at university?”, or “How many work
days of formal training on process modeling have you received within the last
12 months?”. The third group includes questions that deal with the subject’s
experience with process maps. The types of questions this group comprises
range from survey open questions to multiple-choice questions. Example of
questions from this group are: “How familiar are you with the term process
map (sometimes also referred to as process landscape or process architec-
ture)?”, and “Have you ever been involved in the creation of a process map?”.
The last group of questions are ones that ask for the subject’s familiarity
with four types of processes: Software development, Electronics production,
Manufacturing products and Value chain process. We included these because
two are the main domains the process maps we use as treatments stem from,
and two are generic processes closely related to them. In addition to survey
questions, we also add some rating scale questions that need to be answered
on basis of a likert scale (1 to 7). With such questions we want to reveal the
level of familiarity, confidence and competence the subject have with BPMN
and process maps.

Part two of the experiment is the so-called practical part, where the main
elements of a process map are being described. We include this part in order to
ensure that subjects who have never seen a process map before get familiarized
with the process map elements. Part three and four of the experiment are
for the control and experimental treatment, respectively. For both treatments
each subject receives 18 questions. The subject has to answer the 18 questions
on basis of the provided process map. For each of the first 16 questions the
subjects have to answer an additional question which measures their perceived
difficulty of answering the respective question on a scale from 1 (very easy)
to 7 (very difficult) (“How difficult was to answer the question?”). The 17th
and 18th questions are ones which are concerned with the perceived difficulty
of the domain the process map represents, and the perceived difficulty of
answering all 16 questions on basis of the provided process map, respectively.

Besides answering the questions, subjects were also told to make note of
the exact time after finishing each experiment part. The according field was
provided at the end of each part. Using the time stamp we are able to measure
the interpretational efficiency. Also, before the subjects could start with the
experiment they have to read the experiment introduction provided at the
beginning of the questionnaire. This introduction consists of brief explanation
of process maps, the aim of the experiment, a confidentiality clause, important
rules to follow during the experiment, and the structure of the experiment.
The experiment can be seen in Appendix B.

For the treatments we use data we collected via interviews with two of our
industry partners. One (company A) is from the case study we used for sat-
urating the process map meta model (refer to Section 7.1). This process map
is depicting processes from the Software Development domain. The second

10.3 Experiment Design 195

industry partner is an organization from Estonia dealing with the production
of electronics (company B). We conducted interviews with both. Through the
interviews we were able to identify information about the five concepts we in-
tend to visually depict in the process map we use as experimental treatment.
Both industry partners provided us with prints of their existing process maps.
The original process maps did not include any of the five concepts we want
to measure, namely the internal input, internal output, data flow relation,
decomposition relation and specialization relation, although the companies
would have wished to represent these concepts on their process maps. How-
ever, they included some additional concepts which are not included in the
base process map as seen in Figure 10.2. For example, company A also as-
signed an object to each of the process on their process map, while company
B showed the actor responsible for each process. Since we do not want to
measure the effectiveness of these particular concepts, we excluded them from
the base process map. Thus, the process maps we use as a control treatment
from both companies resemble the base process map as seen in Figure 10.2,
however with an additional textual description of the five concepts we identi-
fied with the help of the interviews. The process maps we use as experimental
treatments include the five concepts in form of symbols as seen in Figure 8.23.

Groups Treatments

1.1 TA VB

1.2 VB TA

2.1 TB VA

2.2 VA TB

Table 10.1: Experimental design: groups and treatments

So, for each of the two process maps we create a control and an exper-
imental process map, respectively. For example, let us call the process map
from the electronics company A used as a control treatment TA (T stands
for a base process map (Figure 10.2) with Textually explained additional con-
cepts), and the experimental treatment VA (a base process map with Visually
depicted concepts). Similarly, the control treatment from the Software devel-
opment company B would be TB, whereas the experimental treatment is VB.
Accordingly, we have two main versions of the experiment. One version is
an experiment with the combination TA as part 3 and VB as part 4 of the
experiment, while the second version is the experiment with the combination
TB as part 3 and VA as part 4. Secondly, we also want to make sure we avoid
the learning bias, which might occur due to the presentation sequence of the
treatments. Hence, we add two more combinations, namely VB as part 3 and
TA as part 4, VA as part 3 and TB as part 4, which resulted in four versions

196 10 Evaluation of the Language for Designing Process Maps

of the experiment. Hence, while some participants received as part 3 the con-
trol treatment and as part 4 the experimental treatment, other participants
received the experimental treatment first as part 3 and the control treatment
second as part 4. The treatment sequence is illustrated in Table 10.1. From
the table we can see that there are four groups of experiment participants.
For instance, group 1.1 received as part 3 the treatment TA and as part 4 the
treatment VB, whereas group 2.1 received as part 3 the treatment TB and as
part 4 the treatment VA. We randomly assigned the experimental material to
our subjects.

10.3.3 Participants

We use a mixed-group experimental design, which is a combination of both
within-group design and between-group design [233]. This is because, although
we apply randomization in our experiment, each of our subjects also receives
both treatments. We were able to do this by means of using two process maps
coming from two different organizations from different industries.

We conducted the experiment at the Stevens Institute of Technology in
Hoboken, New Jersey, USA. Our subjects were 48 undergraduate students
from the course “Fundamentals of Information Systems”, and 19 graduate stu-
dents from the course “Advanced Business Process Management”. We chose
students as participants because they are the typically the future users of
business process models and process maps. Also, we use graduate students
who are already familiar with business process modeling because they have
taken fundamental courses on BPM prior to the experiment. Similarly, we
use undegraduate students who have no prior process modeling experience,
since the course they were taking at the time of the experiment was the first
BPM course they could register for in the course of their undergraduate stud-
ies. Therefore, we consider the undergraduate students as novices, while the
graduate students as experts, also because the professor teaching both courses
labeled them as such.

10.4 Experiment Results

In the following, we present the results of the analysis of our experimental
data. We begin by introducing the demographic data of the subjects, which
concerns data about their experience with process modeling, process maps
and the treatment domains. Then, we focus on the hypotheses testing and
present the results of whether the hypotheses were confirmed or not.

10.4.1 Demographics

A total of 67 students participated in the experiment, from which 48 were
undergraduate students i.e. bachelor students, and 19 were graduate students

10.4 Experiment Results 197

i.e. master students. We recorded the answers for each question and the times
noted for each part of the experiment using an Excel spread sheet. First of
all, we checked whether the data inserted by each subject is reasonable and
has been collected correctly [233]. Secondly, we reviewed the data in order to
ensure there are no outliers which would disrupt our results. For example, a
participant answering all questions with the same value would be a case of
an outlier. Already when inserting the data in the spread sheet we found two
outliers, because we saw they both answered all questions same. Therefore,
we exclude these two subjects from our analysis. Next, we prepared the data
such that it could be read by SPSS. Accordingly, we labeled each correct
answer with 1, and each incorrect answer with 0. The answer options for each
question were correct, false and I don’t know. We included the option I don’t
know because we wanted to avoid participants guessing the answer. However,
since each of the provided questions could be answered with either correct or
false (the process map provided all answers for each question), we considered
all I don’t know’s as a false answer.

Figure 10.2 shows the demographic information of all experiment subjects.
From the figure we observe that the age difference between the undergraduate
and graduate students is 10 years, with average age of the undergraduate
students being 18.6, and the graduate students 28.5. From the total amount
of 67 subjects, 24 were female, while 43 male.

of students Age (mean) Female Male

Undergraduate: 46 18.6 19 29

Graduate: 19 28.5 5 14

Table 10.2: Demographics

Figure 10.3 illustrates the data we gathered about the experience our sub-
jects stated to have with process modeling. We see an apparent difference
between the undergraduate and graduate students. Namely, undergraduate
students, as expected, have almost no experience with process modeling and
BPM-related activities, whereas the graduate students could be clustered as
experts due to their longer period of process modeling experience. It is in par-
ticular notable to see the engagement of the graduate students in the BPM
field, in particular with their familiarity and confidence concerning BPMN.

198 10 Evaluation of the Language for Designing Process Maps

Undergaduate Graduate

Visited BPM course (number of students) 1 16

Professional modeling experience (average days) 0 54,2

Modeling experience (average years) 0 3

Analyzed process models in last 12 months (average) 0 18,7

Created process models (average) 0 13,9

Formal training on process modeling (average days) 0 9

Self-education on process modeling (average. days) 0 14

BPMN experience (average months) 1 12

Familiar with BPMN (median 1 to 7) 1 4

Confidence with BPMN (median 1 to 7) 1 5

Competence with BPMN (median 1 to 7) 1 4

Table 10.3: Process modeling experience

Figure 10.4 depict the experience subjects have with process maps in par-
ticular. Compliant with the process modeling experience, only 3 undergrad-
uate students stated they have seen a process map as part of a university
course, whereas more than half of the graduate students have been involved
with the creation of a process map. Similarly, the familiarity with process
maps concerning undergraduate students is very small, however graduate stu-
dents seem quite familiar with the concept of process maps, and some have
even used it in a professional setting.

Undergraduate Graduate

Familiarity with process maps (median 1 to 7) 1,5 4,0

Process maps part of university course (number of students) 3 14

Process maps for professional purposes (number of students) 2 5

Involved in process map design (number of students) 3 10

Table 10.4: Process map experience

The last demographic data is concerned with the experience subjects have
with the four stated domains, namely Software development, Electronics pro-
duction, Manufacturing products and Value chain model. We measured this
using a likert scale (1 to 7). Following the same trend, graduate students
seem to be far more familiar with the domains than undergraduate students.

10.4 Experiment Results 199

Taken all demographic information into consideration, we do indeed classify
undegraduate students as novices and graduate students as experts in process
modeling and process maps.

Undergraduate Graduate

Software development (median 1 to 7) 2 4

Electronics production (median 1 to 7) 2 3

Manufacturing products (median 1 to 7) 2 4

Value chain model (median 1 to 7) 1 4

Table 10.5: Domain experience

10.4.2 Hypotheses Testing

Here we report on the results we obtained by testing our hypotheses. First of
all, we tested for the difference of score, time and efficiency between the two
types of participants, namely graduate students and undergraduate students.
Doing this, we want to check whether experts perform better than novices in
terms of score, time and efficiency. Therefore, we used the two-sample T-test,
because we want to compare if the means of the two samples (graduate and
undergraduate) are equal. The two samples are independent, because a stu-
dent is either a graduate student or an undergraduate student, but not both.
The results of the testing are shown in Table 10.6. The table illustrates the
mean difference T-V for both graduate and undergraduate students. Using
the two-sample T-test we were able to confirm that the two population means
for all score, time and efficiency are equal. In other words, the P-values for
score, time and efficiency shown in Table 10.6 are all above 0.05. This means
that, at a 5% significance level, the score, time and efficiency are not sig-
nificantly different for both graduate and undergraduate students, they both
perform the same. For that reason, when testing our hypotheses we do not
make difference between graduate students (participants with process mod-
eling and process map experience) and undegraduate students (participants
with no prior experience). As a result, we are able to pool the group data.
Hence, we compare between data derived from the visually saturated process
map and data derived from the textually described process map.

200 10 Evaluation of the Language for Designing Process Maps

Graduate
(mean differ-
ence T-V)

Undergraduate
(mean differ-
ence T-V)

T-value P-value

Score -1.57895 -1.63830 0.08496 0.93272

Time 163.25000 119.71429 0.43145 0.66792

Efficiency -0.01244 -0.00967 -0.31119 0.75694

Table 10.6: Two-sample T-test results

Given that each subject received both treatments, namely T i.e. the control
treatment, process map with textual description of concepts and V i.e. the
experimental treatment, visually enhanced process map, the samples for T
and V are not independent. As such, we employed a paired T-test, rather than
a two sample T-test which assumes independence of samples. We use this test
because it enables us to make comparisons of the means of both treatments
T and V. Therefore, we use the paired T-test to test our hypotheses. What
we want to achieve is the rejection of the null hypothesis, which states that
regardless if the subjects use a visually enhanced process map (V) to answer
the questions or a process map with additional textual description (T), the
scores, time, efficiency and perceived difficulty would be the same.

Figure 10.7 illustrates the results of our hypotheses testing. The figure con-
tains four rows, each for the four hypotheses we test. This figure also shows
that three of the four hypotheses were confirmed. For score we hypothesize
that the score mean of T will be lower than the score mean of V. This has ac-
cordingly been strongly confirmed, at a 5% significance level, with a p-value
of 0.000. In other words, our results have confirmed that both novices and
experts have better scores when answering questions on basis of the visually
enhanced process map (V) than on basis of the base process map with addi-
tional textual explanation (T) of the five concepts (internal input and output,
data flow, specializaton and decomposition relation). This is also confirmed
looking at the T-value (-4.966), which indicates that the effect is not due to
random chance, but it is rather statistically significant.

10.5 Discussion 201

Mean T Mean V Mean dif-
ference T
- V

T-value Hypothesis P-value

Score 7.892 9.569 -1.677 -4.966 H10 : µT = µV ,
H1A : µT < µV

0.000

Time 442.820 313.508 129.312 1.823 H20 : µT = µV ,
H2A : µT > µV

0.037

Efficiency 0.033 0.038 -0.005 -1.602 H30 : µT = µV ,
H3A : µT < µV

0.057

Perceived
difficulty

4.738 3.862 0.876 4.696 H40 : µT = µV ,
H4A : µT > µV

0.000

Table 10.7: Paired T-test results

With regard to the time taken to answer the questions on basis of the
two process maps, we hypothesize that the time taken for subjects to answer
questions on basis of the process map with textually described concepts (T)
will be longer than the time taken to answer the same questions on basis of
the visually saturated process map (V). This hypothesis has been confirmed
as well, given that the p-value is 0.037.

Concerning the perceived difficulty, our results also illustrate that subjects
perceived greater difficulty when answering the questions on basis of the con-
trol treatment (T), than when they did so on basis of the visually enriched
process map (V). Accordingly, hypothesis four has also been confirmed, with
a p-value of 0.000.

Last, the only hypothesis our testing did not confirm at a 5% significance
level is the one regarding the overall efficiency. This hypothesis states that
people would have more correct answers within a specific time frame using
the visually enriched process map (V), rather than using the process map
with additional textual description (T). This has not been confirmed, which
means that the difference of the means for the efficiency of both T and V is
not significant, hence our hypothesis has been rejected.

10.5 Discussion

10.5.1 Discussion of Results

The testing of our experiment data has confirmed that the score, time and
efficiency of both graduate and undergraduate students is equal. Since we con-
sider graduate students as experts and undergraduate students as novices, the
results indicate that both novices and experts interpret the same semantics
of a process map designed using our language. With regard to the hypotheses
testing, our results showed that, with a 5% significance level, three of our

202 10 Evaluation of the Language for Designing Process Maps

hypotheses have been confirmed, while only one was not confirmed. In hy-
pothesis H1 we speculated that the score of the tasks solved on basis of the
process map with textually described concepts will be lower than the score
of the tasks solved on basis of the visually saturated process map. Table 10.7
shows that the experiment treatment had a significant effect on the score
(P=0.000). This indeed confirms that the interpretational fidelity is increased
when all elements in a process map are visualy represented, rather than tex-
tually explained. Therefore, representing the internal inputs and outputs, and
the three types of relations in process maps visually rather than textually
leads to readers interpreting the process map more correctly.

In hypothesis H2 we speculated that partitipants will need more time to
solve tasks on basis of the process map with textually described concepts
than on basis of the visually saturated process map. Our results also indicate
that this hypothesis has been confirmed, hence the interpretational efficiency
is lower when using a visually enriched process map to solve tasks. This is
another indicator of the usefulness of visual representations as discussed in
Chapter 5.1. Namely, searching for information using a visual representation
is indeed faster than doing so on basis of text. This is indeed in line with
the claim that human abilities to recognize information are highly depen-
dent on the type of representation in which the information is presented [24].
Thus, although both process maps are informationally equivalent, they are
not computationally equivalent, because participants needed more time to
answer questions on basis of the textually described process map. While a
person could immediately infer the meaning of a certain symbol, it might
take a while until a human brain is able to infer the same meaning from a
textual description. The underlying reason for this is because, searching for
a specific information on basis of text requires searching linearly down the
textual description [24]. However, searching for the same information using a
visual representation is less time-consuming, since in a visual representation
the specific information has a location. When this location is found no search
is required through the remaining parts of the representation [24].

Hypothesis H3 is concerned with the difficulty participants face when using
a particular process map for solving tasks. In particular, we speculated that
the perceived ddifficulty to solve tasks on basis of the textually described
process map will be higher than the perceived difficulty to solve tasks on basis
of the visually saturated process map. The results from Table 10.7 confirm
this hypothesis. Although the visually depicted concepts in the experimental
process map were appropriately described using text in the control process
map, participants still found it far more difficult to search for the answers using
text rather than searching for the same information using just the process map
and the visual elements it includes. This might be because of the perceptual
nature of visual languages, where the meaning of symbols is typically perceived
directly, without the need of prior knowledge of their underlying semantics
[141]. It is likely that the participants have already seen or used some of

10.5 Discussion 203

the symbols presented in the visually saturated process map, consequently
enabling them to create their own meaning the symbol is supposed to convey.

The only hypothesis that was not confirmed was H3. With this hypoth-
esis we speculated that the overall efficiency will be smaller when using the
textually described process map. This translates to, people would be able to
solve more tasks correctly within a particular time when using the visually
saturated process map. Although the statistical test did not confirm this hy-
pothesis, by looking at the means of both treatments, we can see that there is
indeed a slight difference. This difference shows that the experimental group
was in fact able to solve more correct tasks per specific time, however this
difference is small and is thus considered insignificant. A possible reason for
the rejected hypothesis might be that there are some participants that need a
lot of time to solve the tasks, even though their answers were incorrect. The
score and time of these participants could have contributed to the rejection
of hypothesis H3.

With regard to the confirmed hypotheses, clearly solving tasks on basis
of a visually saturated process map leads to better score, takes less time and
is perceived less difficult than doing so on basis of a process map with some
concepts textually explained. Apparently, designing process maps using the
full range of elements the language for designing process maps offers enables
complete and clear representation of the company’s processes and any means
by which they are related to each other.

10.5.2 Threats to Validity

Besides the results we presented above, it is also important to address the
question of validity [233]. In particular, we need to check whether the results
we obtained are indeed valid for the population from which the sample is
drawn, and also whether these results could be generalized to the wider pop-
ulation of concern [233]. Thus, here we discuss the threats of internal and
external validity [233].

Internal validity is concerned with the relationship between the treatment
and the outcome. In particular, an experiment is internally valid if it is ensured
that the results are indeed due to the factor that has been tested, and not
due to some factor that could not be controlled for nor tested. In terms of our
experiment, internal validity is achieved if we can ensure that the better score,
faster time and less perceived difficulty is in fact because of the five visually
represented concepts, and not due to unanticipated factors. Threats to internal
validity can be addressed by, for example, including a control treatment, which
is indeed the case with our experiment. By introducing a control treament
we were able to compare the results of both. Moreover, because all of our
participants received both the control and experiment treatment, the threat
of multiple groups is eliminated [233]. In addition, we applied randomization,
where one group of participants received first the control treatment and second
the experiment treatment, another group of participants received the reverse

204 10 Evaluation of the Language for Designing Process Maps

sequence of treatments. Accordingly, we were able to eliminate the hazard of
one group’s learning ability.

With regard to the selection threat, which is concerned with how the
participants are selected from a larger group, we consider students taking
BPM and IS courses as appropriate subjects. This is because, students are
the future modelers and readers of modeling languages and models created
by modeling languages. However, prior to the experiment students were not
given notice about the experiment taking place, which might have had an
effect on their motivation, thereby slightly affecting the internal validity of
the experiment.

The results of our experiment indeed show a difference in the interpreta-
tional fidelity and efficiency which is in favor of the visually saturated process
map. However, concerning the causal relationship between the treatment and
the outcome, we have to take into consideration the fact that we did not
evaluate the entire language, but manipulated only five concepts, which is a
potential threat of the experiment’s internal validity. For example, we used a
base process map for both treatments and we assumed that participants would
be familiar with the elements of the base process map because it is often used
in practice. Although most tasks participants had to solve on basis of the pro-
vided process map were concerned with the five concepts we manipulated, we
cannot be fully certain that the better interpretational fidelity and efficiency
is indeed due to the five concepts, or the base process map also played its
role. Testing for all concepts of the process map language would accordingly
omit this threat. We consider our results point towards the goodness of the
visually saturated process map compared to the process map with textually
described concepts, however the experiment is only the beginning of a series
of experiments necessary to evaluate the entire language for designing process
maps.

External validity is concerned with the ability to generalize the results
of our experiment to industrial practice [233]. As already stated above, we
selected as participants students with potential future careers in these fields.
Furthermore, our intention was to develop a language that is familiar to both
novices and experts. Therefore, by following the principles for developing mod-
eling languages, we ensured that also employees of an organization who have
no prior experience in process modeling would be able to correctly interpret
the process map created using our language. As our results showed, the score,
time and efficiency of both graduate and undergraduate students is equal.
Hence, we were able to confirm that process maps created using our language
are correctly interpreted by both novices and experts. Accordingly, we are
able to assume that the subjects are representative of the population we want
to generalize to, which are future readers of process maps created using our
language. However, we conducted the experiment in a university, which is not
a real-world setting in which process maps are typically used in. Therefore,
an evaluation with practitioners is still a matter that needs to be addressed
in the future.

10.6 Chapter Summary 205

10.6 Chapter Summary

In this chapter we presented the evaluation of the language for designing pro-
cess maps. Due to the fact that there is hardly any language for designing
process maps other than what we introduced in this thesis, evaluation of the
entire language was quite difficult. Therefore, we only evaluated the effective-
ness of five process map concepts, namely internal input and output, and the
three types of relations: data flow, decomposition and specialization relation.
We focus on these concepts because, first of all, we found that the manner
organizations visually depict the decomposition and specialization relations
is very similar, which causes confusion. And second, the internal input and
output could also be interpreted as a data flow relation, since both are con-
cerned with data transfer, however only inputs can trigger processes to start
with execution, while a data flow relation is a non-triggering one.

We used the Norman’s theory of action [32] as a theoretical lens for formu-
lating the hypotheses. The theory is concerned with communication through
models. It states that, the reader of a model should interpret the same domain
the modeler depicted in the model. Accordingly, we formulated four hypothe-
ses in terms of score, time, efficiency and perceived difficulty. We tested the
hypotheses by means of an experiment. A total of 67 subjects took part in
the experiment. Each received both control and experimental treatments. The
control treatment was a process map with five concepts textually described,
while the experimental treatment was a process map with visually depicted
concepts. Our testing confirmed three out of the four hypothesis. Only the
efficiency was not confirmed, although the means are indeed stating there is
a slight difference between the efficiency of both treatments. However, our re-
sults showed strong significance concerning the other three hypotheses. This
means that, readers solving tasks on basis of visually saturated process map
created using the language for designing process maps would lead to bet-
ter scores. Similarly, readers would solve tasks faster when using a visually
saturated process map, rather than doing so on basis of text, and they also
perceive solving tasks on basis of text more difficult. In addition, we found
that experience in process modeling does not make a difference when inter-
preting process maps created using the language we have developed. Hence,
both novices and experts could read process maps created by the language
with no particular difficulties.

11

Conclusion

In this last chapter, we summarize the results of this thesis and provide di-
rections for future research. Namely, in Section 11.1 we show a brief summary
of the results of this thesis. Section 11.2 discusses the results and states their
implications for both research and practice. We finalize this thesis with Sec-
tion 11.3 where we outline possible directions for future research on process
maps.

11.1 Summary of Results

In this doctoral thesis we presented an approach for developing a language for
designing process maps. Process maps are used by organizations to abstract
from the vast amount of business process models as result of adopting BPM.
The language is grounded on actual usage of process maps from practice, as
well as based on scientifically-established quality requirements from literature
used for defining new modeling languages. The resultant language is intended
to support practitioners when designing their process maps. In the following,
we briefly elaborate on the main results of this thesis.

• Method for assessing cognitive effectiveness of process maps used
in practice: We assessed the state of the art of process maps used in or-
ganizations today. As a result, we observed a high heterogeneity of process
map designs, although they all serve a similar purpose. The process map
design heterogeneity stems from the lack of a dedicated language for de-
signing process maps. Hence, practitioners often use their own creativity
skills when undertaking this task. Thus, as a first step we conducted a
study to evaluate the cognitive effectiveness of process maps from prac-
tice, as it has been reported that the appeal of a model could potentially
have an effect on the user using the model [12]. We followed the eight prin-
ciples for cognitively effective visual notations proposed by Moody [13]. In
addition, we employed the cognitive fit theory in order to check whether

208 11 Conclusion

the process map design assists or hinders the underlying BPM success in
the respective organization. We found that, the design of process maps
does indeed have an effect on the company’s BPM success. Especially, a
process map that does not comply to the principles for cognitively effective
process maps could hinder the BPM success of the respective organization.
This method could be followed by all who wish to assess cognitive effective-
ness of models and their subsequent effect on accomplishing the purpose
the model is intended for.

• Quality requirements for modeling languages and models: Model-
ing languages should be developed in such a way that they serve relevant
users in the most effective and efficient way. Accordingly, users with diverse
backgrounds and experiences should be able to create and read models us-
ing the same modeling language without facing any particular difficulties.
Therefore, before we began with the language development, we conducted
a systematic literature review on quality requirements for modeling lan-
guages and models created by modeling languages. Quality requirements
are used as things according to which other things are developed, judged or
measured. We followed the phases for conducting systematic literature re-
view as stated by Kitchenham et al. [14]. Accordingly, we searched through
six electronic libraries (ScienceDirect, IEEExplore, ACM digital library,
Springer, EBSCO, AISeL) for articles related to quality requirements of
modeling languages and models published between 1980 and 2015.
We found 79 relevant papers from which we retrieved three types of quality
requirements, namely guidelines, principles and quality criteria. A guide-
line is a rule that provides specific recommendations on how to create a
model. A principle provides language designers direction on whether to
include certain features in their languages. A quality criterion is a bench-
mark in terms of which a language can be judged. As a result, we provided
a consolidated list of 314 unique guidelines, principles and quality criteria.
In addition, we selected principles relevant to follow when developing the
language for designing process maps.

• A language for designing process maps: The major outcome of this
thesis is a language that will support practitioners when designing process
maps. We have defined the intra-language parts of the language, namely
the abstract syntax, semantics and concrete syntax. We followed an ex-
plorative approach for defining all parts. Hence, we primarily relied on
empirical data in order for the language to reflect actual usage in practice.
The empirical data we used for the language development was a collection
of process maps and a qualitative in-depth study with one of our indus-
try partners. We used the process map collection to define the process
map meta-model which includes all concepts and concept relations orga-
nizations include in their process maps. The qualitative in-depth study
enabled us to ensure the process map meta-model is saturated.

11.2 Implications of Results 209

We defined the concrete syntax of the language in a similar manner. Hence,
we reused the most frequently used symbols seen on process maps. We as-
signed these to the process map meta-model concepts. Accordingly, each
concept can be recognized by means of a visual symbol. In addition, we
defined the semantics of each process map concept and concept relation.
During the development of the abstract syntax, semantics and concrete
syntax, we used the principles for developing modeling languages as con-
straints when defining each part. We did this in order to make sure the
resultant modeling language complies to scientifically-established princi-
ples from literature.

• Method for checking language suitability for a particular pur-
pose: In addition to the language, we conducted a study to check the
appropriateness of BPMN for designing process maps. We wished to dis-
cover the reason why practitioners seem so reluctant in using BPMN when
designing their process maps, although most use this language for modeling
their business processes. For this, we used semantic mapping in order to be
able to match the process map concepts to BPMN elements. We took the
four most commonly used semantic relationships: equivalence, subsump-
tion, intersection and disjointness. Thus, we checked if the semantics of
BPMN elements is equivalent to the semantics of process map concepts, if
they subsume or intersect with each other, or they simply share no com-
mon properties. The results of the semantic mapping enabled us to follow
the representation theory by Wand et al. [20]. This theory is based on
two criteria, namely completeness and clarity. Hence, we checked BPMN’s
completeness and clarity in terms of the process map concepts. We found
that, BPMN is neither complete nor clear, thus not suitable for designing
process maps.

11.2 Implications of Results

The research we conducted for this thesis and the consequent results have
strong implications for BPM research and for practice.

Cognitive effectiveness of process maps In terms of practice, we currently
showed that the design of process maps is based on practitioner’s capabili-
ties for creativity. Up until now process map design has been more an issue
of a craftsmanship rather than science. The ambiguity issues caused by the
use of different symbols for depicting one concept in process maps has made
the necessity of concept standardization for process map design apparent. In
addition, our results partially explain the reason as to why certain goals orga-
nizations pursuit to achieve through the adoption of BPM have not yet been
achieved. Thus, the findings of Chapter 4 could be used as a guide for prac-
titioners in order to avoid common errors and unanticipated effects as result
of their BPM projects.

210 11 Conclusion

Dedicated language for designing process maps The findings of Chapter 9
showed that BPMN, which is the standard process modeling language used
most often today by organizations, is not fitting for process maps. There-
fore, the language we have defined in this thesis will support practitioners
when designing their process maps as it will release them from the burden of,
first relying on their own creativity when designing process maps, and second
choosing among the numerous elements existing process modeling languages
offer in order to be able to capture their requirements. Most importantly, hav-
ing a language which offers appropriate elements for all concepts shown in the
process map meta-model would assist practitioners in ensuring they depict a
correct overview of their company’s operations, accordingly decreasing threats
of potential misinterpretation.

Furthermore, as a consequence of BPM projects, organizations are typi-
cally faced with a vast amount of process models. Accordingly, a process map
could be used as a tool to abstract from the details of many process models to
a single model which captures the essence of their performance. Thus, research
about the design of process maps complements prior research on managing
process model collections [8]. However, compared to the existing literature
which has a more technical focus, process maps could be used to understand
process model collections from a more strategic perspective. In this way, man-
aging process model collections could take the turn of adopting a top-down
approach, rather than the bottom-up one followed until now.

Language suitability for a specific purpose Prior research has raised awareness
of the significance of good quality of modeling languages in terms of the BWW
representation model [209, 226, 234]. However, while such quality is indeed
necessary, it might not be sufficient for the uptake of a language. The cognitive
fit theory states that, for a model to be used for problem solving a cognitive
fit must exist between the way a model has been created and the goals the
model should accomplish [132]. As a model is bound to a specific purpose,
these can be lifted to the modeling language which is bound to all purposes
of the models created by it. Thus, although BPMN has been developed for
the purposes of discovering, simulating and executing business processes [224],
process modeling in abstract terms has hardly ever been considered as one of
the reasons for using BPMN. Hence, another complementary perspective of
the results presented in Chapter 9 is our research design which, beyond being
used to argue about the suitability of BPMN for process map design, can also
be generalized to a method for conceptual fit analysis of modeling languages.
Accordingly, we contribute with a method for checking language suitability
for a particular purpose.

Approach used to define the intra-language parts of a modeling language Be-
yond the language for designing process maps we present in this thesis, the
approach we follow to develop the language is one that, to the best of our
knowledge, has not been applied before when undertaking this task. Our wish
for a language which is grounded in both practice and research has resulted in

11.2 Implications of Results 211

an approach for developing modeling languages. Accordingly, this approach
could be followed whenever a necessity for a new modeling language arises.
The experimental evaluation of the language for designing process maps we
presented in Chapter 10 has shown that, regardless of the user’s experience
with process modeling, process maps created using the language are indeed
more effective when solving tasks than process maps that do not use the
full range of concepts the language offers. Hence, using this empirically-based
approach leads to a language familiar to both experts and novices. Our ap-
proach is also related to a stream of research that aims to improve conceptual
modeling by investigating actual usage. In this way, it complements papers
that investigate UML usage [227], BPMN usage [209], as well as the usage of
models versus text [216].

Quality requirements for modeling languages and models As described in
Chapter 6, the majority of published studies concerned with quality of mod-
eling languages and models that exist today propose either guidelines for
creating single models, or quality criteria used for evaluating existing model-
ing languages and models crated by them. There are only a handful of papers
that propose principles language designers could follow when developing a lan-
guage. Most of these authors propose principles concerned only with certain
aspects related to modeling languages, not convering all of its parts. We found
that most authors refer to all quality requirements as simply criteria. We also
found that there exist three types of quality requirements, namely guidelines,
principles and quality criteria. They differ mainly on the scope they cover, or
the time they could be applied. For example, guidelines are only used on a
model-level, however principles and quality criteria could be applied on both
models and languages. The main difference between a guideline and a prin-
ciple is the scope they are concerned with. For instance, while a guideline
is used for guiding the selection of single elements included in a model, a
principle is followed to improve the quality of an entire model during model
creation. Similarly, whereas a principle is used to guide the development of an
entire language, a quality criterion is employed to measure the performance
of already existing languages.

As result of the systematic literature review on quality requirements for
modeling languages we were able to develop a language that is understood
by both experts and novices. Given the diversity of quality requirements we
uncovered, besides their use for the purposes of this thesis, the consolidated list
could serve researchers as basis for developing modeling languages and models
or evaluating the performance of existing ones. In addition, some of the quality
requirements could be relevant for practitioners who wish to measure the
quality of models their organization owns. Moreover, the range of guidelines
our list provides could assist practitioners in creating models which will satisfy
required quality standards.

212 11 Conclusion

11.3 Future Research Outlook

As we have already mentioned, an increasing amount of research has been
conducted on handling large process model collections [8]. Moreover, the use-
fulness of process architecture has also been accentuated as one technique for
systematically storing the different levels of granularity of business process
models in organizations [5, 9]. The notion of a process map, which is frequently
used in organizations today to be able to abstract from the vast amount of
business processes, has until now not received much attention. Therefore, the
research concerned with process maps we have presented in our thesis is only
a starting point from where a stream of potential research arises.

In this thesis, we presented a visual language for designing process maps,
however the language we propose does not yet include the full range of visual
variables introduced by Bertin [117]. This is mainly because, visual variables
such as color and size are highly dependent on the organizational context.
Therefore, despite the formal concepts included in all process maps, the cre-
ation of a process map should in addition incorporate additional variables,
as these further assist in transferring the knowledge in a cognitively effective
manner [6, 13]. Hence, additional research is necessary in this direction. This
type of research could measure the amount of visual variables necessary to be
included in process maps. Such recommendations will further support practi-
tioners when choosing the different visual variables to include in their process
maps.

Also, taking into account that the process map design is considered as
a strategic step and as such the foundation for the consequent BPM imple-
mentation in organizations [6], a process map design could strongly influence
the subsequent detailed process modeling. This is namely another potential
direction of future research about the usage of process maps. Such research
would involve exploring the utility of process maps in practice, which will
result in usage patterns that could lead to explaining the specific role pro-
cess maps play for organizations. Accordingly, this type of inquiry will aid
in providing relevant guidelines for designing process maps that will fit its
role in the respective company. Moreover, the relations between the processes
shown on the process map and the process details stored in the lower levels
of the corresponding process architecture have not yet been fully identified.
We are aware of the typical hierarchical decomposition of processes, however
this type of decomposition does not apply to all organizations [10]. Hence,
finding out the different types of relations between abstract and detailed pro-
cess models is a starting point for using a process map as complementary to
the business process models already existent in organizations. As a result, the
process map language will be used interdependantly with any of the process
modeling languages that exist today.

Furthermore, while some techniques for automatic derivation of business
process categories from large business process model collections have been pro-
posed [235], how to abstract from process model collections to the respective

11.3 Future Research Outlook 213

process map and all concepts it includes has not yet been addressed. There-
fore, uniting process maps with existing process model collections is still an
issue that needs to be resolved. This would especially be useful for organiza-
tions who already own a collection of business process models as a technique
to abstract to their respective process map. Integrating business processes
with the rest of the company’s views is also important to consider. While this
is already part of the field of enterprise architectures [88], specific guidelines
on how to integrate a process map with the other views of a company has not
yet been addressed. Accordingly, this is another topic that can be pursued as
future research on process maps.

References

[1] Hajo A Reijers. Implementing BPM systems: the role of process orien-
tation. Business Process Management Journal, 12(4):389–409, 2006.

[2] Marlon Dumas, Marcello La Rosa, Jan Mendling, and Hajo A Reijers.
Fundamentals of business process management. Springer, 2013.

[3] Frances X Frei, Ravi Kalakota, Andrew J Leone, and Leslie M Marx.
Process variation as a determinant of bank performance: evidence from
the retail banking study. Management Science, 45(9):1210–1220, 1999.

[4] Kevin McCormack. Business process orientation: do you have it? Quality
Progress, 34(1):51–60, 2001.

[5] Monika Malinova, Henrik Leopold, and Jan Mendling. An empirical
investigation on the design of process architectures. Wirtschaftsinfor-
matik, 75, 2013.

[6] Monika Malinova and Jan Mendling. The effect of process map de-
sign quality on process management success. In Proceedings of the 21st
European Conference on Information Systems, 2013.

[7] Monika Malinova, Henrik Leopold, and Jan Mendling. A meta-model
for process map design. In CAiSE Forum, 2014.

[8] Remco M Dijkman, Marcello La Rosa, and Hajo A Reijers. Manag-
ing large collections of business process models-current techniques and
challenges. Computers in Industry, 63(2):91–97, 2012.

[9] Remco Dijkman, Irene Vanderfeesten, and Hajo A Reijers. The road
to a business process architecture: an overview of approaches and their
use. The Nederlands: Einhoven University of Technology, 2011.

[10] Martyn A Ould. Business Process Management: a rigorous approach.
BCS, The Chartered Institute, 2005.

[11] Rami-Habib Eid-Sabbagh, Remco Dijkman, and Mathias Weske. Busi-
ness process architecture: use and correctness. In Business Process Man-
agement, pages 65–81. Springer, 2012.

[12] Jan Recker, Michael Rosemann, Peter F Green, and Marta Indulska. Do
ontological deficiencies in modeling grammars matter? MIS Quarterly,
35(1):57–79, 2011.

216 References

[13] Daniel L Moody. The physics of notations: toward a scientific basis for
constructing visual notations in software engineering. Software Engi-
neering, IEEE Transactions on, 35(6):756–779, 2009.

[14] Barbara Kitchenham, O Pearl Brereton, David Budgen, Mark Turner,
John Bailey, and Stephen Linkman. Systematic literature reviews in
software engineering–a systematic literature review. Information and
software technology, 51(1):7–15, 2009.

[15] David Harel and Bernhard Rumpe. Modeling languages: Syntax, se-
mantics and all that stu. Technical report, 2000.

[16] Corin A. Gurr. Effective diagrammatic communication: Syntactic, se-
mantic and pragmatic issues. Journal of Visual Languages & Comput-
ing, 10(4):317–342, 1999.

[17] Kuhne Thomas. Matters of (Meta-)Modeling. Software and Systems
Modeling, 5(4):369–385, dec 2006.

[18] Object Management Group. Business Process Model and Notation
(BPMN), 2011.

[19] Nikolaos Rizopoulos and Peter Mçbrien. A general approach to the gen-
eration of conceptual model transformations. In Advanced Information
Systems Engineering, pages 326–341. Springer, 2005.

[20] Yair Wand and Ron Weber. On the ontological expressiveness of in-
formation systems analysis and design grammars. Information Systems
Journal, 3(4):217–237, 1993.

[21] Ken Peffers, Tuure Tuunanen, Marcus Rothenberger, and Samir Chat-
terjee. A design science research methodology for information systems
research. Journal of Management Information Systems, 24(3):45–77,
2007.

[22] R Hevner von Alan, Salvatore T March, Jinsoo Park, and Sudha Ram.
Design science in information systems research. MIS quarterly, 28(1):
75–105, 2004.

[23] Alan Hevner and Samir Chatterjee. Design research in information
systems: theory and practice, volume 22. Springer, 2010.

[24] Jill H Larkin and Herbert A Simon. Why a diagram is (sometimes)
worth ten thousand words. Cognitive science, 11(1):65–100, 1987.

[25] Donald A Norman and Stephen W Draper. User centered system de-
sign. New Perspectives on Human-Computer Interaction, L. Erlbaum
Associates Inc., Hillsdale, NJ, 1986.

[26] Monika Malinova and Jan Mendling. A qualitative research perspective
on BPM adoption and the pitfalls of business process modeling. In
Business Process Management Workshops - BPM 2012 International
Workshops, Tallinn, Estonia, pages 77–88, 2012.

[27] Monika Malinova, Brina Hribar, and Jan Mendling. A Framework for
Assessing BPM Success. In Proceedings of the 22nd European Confer-
ence on Information Systems, 2014.

[28] Monika Malinova, Henrik Leopold, and Jan Mendling. An Explorative
Study for Process Map Design. In Information Systems Engineering

References 217

in Complex Environments - CAiSE Forum, Selected Extended Papers,
pages 36–51. Springer, 2014.

[29] Monika Malinova. A Language for Process Map Design. In Business
Process Management Workshops, pages 567–572. Springer, 2014.

[30] Monika Malinova and Jan Mendling. Leveraging innovation based on
effective process map design: Insights from the case of a European insur-
ance company. In BPM-Driving Innovation in a Digital World, pages
215–227. Springer, 2015.

[31] Monika Malinova and Jan Mendling. Why is BPMN not appropriate
for Process Maps? In Proceedings of the International Conference on
Information Systems, ICIS, Fort Worth, Texas, 2015.

[32] Donald A Norman. Cognitive engineering. User centered system design,
pages 31–61, 1986.

[33] Mohamed Zairi. Business process management: a boundaryless ap-
proach to modern competitiveness. Business Process Management Jour-
nal, 3(1):64–80, 1997.

[34] William J Kettinger and Varun Grover. Special section: toward a the-
ory of business process change management. Journal of Management
Information Systems, pages 9–30, 1995.

[35] Ruth N Kiraka and Karen Manning. Managing organisations through
a process-based perspective: its challenges and benefits. Knowledge and
Process Management, 12(4):288–298, 2005.

[36] W.J. Kettinger, J.T.C. Teng, and S. Guha. Business Process Change: a
Study of Methodologies, Techniques, and Tools. MIS Quarterly, pages
55–80, 1997.

[37] Peter Trkman. The critical success factors of business process manage-
ment. International Journal of Information Management, 30(2):125–
134, 2010.

[38] Hajo A Reijers, Sander van Wijk, Bela Mutschler, and Maarten Leurs.
BPM in practice: who is doing what? In Business Process Management,
pages 45–60. Springer, 2010.

[39] Michael Rosemann and Jan vom Brocke. The six core elements of busi-
ness process management. In Handbook on Business Process Manage-
ment 1, pages 107–122. Springer, 2010.

[40] Roy G Lee and Barrie G Dale. Business process management: a review
and evaluation. Business process management journal, 4(3):214–225,
1998.

[41] Richard Yu-Yuan Hung. Business process management as competitive
advantage: a review and empirical study. Total Quality Management &
Business Excellence, 17(1):21–40, 2006.

[42] H James Harrington and James S Harrington. Total improvement man-
agement: the next generation in performance improvement, volume 198.
McGraw-hill New York, NY, 1995.

218 References

[43] Jörg Becker, Martin Kugeler, and Michael Rosemann. Process manage-
ment: a guide for the design of business processes. Springer Science &
Business Media, 2013.

[44] T.H. Davenport. Process Innovation: Reengineering Work Through In-
formation Technology. Harvard Business School Press, 1993.

[45] John Jeston and Johan Nelis. Business process management: practical
guidelines to successful implementations. Routledge, 2008.

[46] Mathias Weske. Business Process Management: Concepts, Languages,
Architectures. Springer, 2nd edition, 2012. ISBN 3540735216.

[47] Michaela A Balzarova, Christopher J Bamber, Sharon McCambridge,
and John M Sharp. Key success factors in implementation of process-
based management: A uk housing association experience. Business Pro-
cess Management Journal, 10(4):387–399, 2004.

[48] Colin Armistead, Jean-Philip Pritchard, and Simon Machin. Strate-
gic business process management for organisational effectiveness. Long
Range Planning, 32(1):96–106, 1999.

[49] Andrew Spanyi. Business process management is a team sport: play it
to win! Anclote Press, 2003.

[50] Arthur HM ter Hofstede, Henderik Alex Proper, and Th P Van
Der Weide. Formal definition of a conceptual language for the descrip-
tion and manipulation of information models. Information Systems, 18
(7):489–523, 1993.

[51] Edgar H Schein. Organizational culture and leadership, volume 2. John
Wiley & Sons, 2010.

[52] Kim S Cameron and Robert E Quinn. Diagnosing and changing orga-
nizational culture. revised edition. SF: Jossey-Bass, 2006.

[53] Zhiqiang Yan, Remco Dijkman, and Paul Grefen. Business process
model repositories–framework and survey. Information and Software
Technology, 54(4):380–395, 2012.

[54] Jianmin Wang, Tao Jin, Raymond K Wong, and Lijie Wen. Querying
business process model repositories. World Wide Web, 17(3):427–454,
2014.

[55] Zhiqiang Yan, Remco Dijkman, and Paul Grefen. Fnet: An index for
advanced business process querying. In Business Process Management,
pages 246–261. Springer, 2012.

[56] Sherif Sakr, Ahmed Awad, and Matthias Kunze. Querying process mod-
els repositories by aggregated graph search. In Business Process Man-
agement Workshops, pages 573–585. Springer, 2012.

[57] Matthias Kunze, Matthias Weidlich, and Mathias Weske. Querying
process models by behavior inclusion. Software & Systems Modeling, 14
(3):1105–1125, 2015.

[58] Tao Jin, Jianmin Wang, Marcello La Rosa, Arthur Ter Hofstede, and
Lijie Wen. Efficient querying of large process model repositories. Com-
puters in Industry, 64(1):41–49, 2013.

References 219

[59] Arthur HM Ter Hofstede, Chun Ouyang, Marcello La Rosa, Liang Song,
Jianmin Wang, and Artem Polyvyanyy. Apql: A process-model query
language. In Asia Pacific Business Process Management, pages 23–38.
Springer, 2013.

[60] Zhiqiang Yan, Remco Dijkman, and Paul Grefen. Fast business process
similarity search. Distributed and Parallel Databases, 30(2):105–144,
2012.

[61] Remco Dijkman, Marlon Dumas, Boudewijn Van Dongen, Reina Käärik,
and Jan Mendling. Similarity of business process models: Metrics and
evaluation. Information Systems, 36(2):498–516, 2011.

[62] Matthias Weidlich, Remco Dijkman, and Jan Mendling. The icop frame-
work: Identification of correspondences between process models. In
Advanced Information Systems Engineering, pages 483–498. Springer,
2010.

[63] Michael Rosemann and Wil MP van der Aalst. A configurable reference
modelling language. Information Systems, 32(1):1–23, 2007.

[64] Florian Gottschalk, Wil MP Van Der Aalst, Monique H Jansen-Vullers,
and Marcello La Rosa. Configurable workflow models. International
Journal of Cooperative Information Systems, 17(02):177–221, 2008.

[65] Marcello La Rosa, Marlon Dumas, Arthur HM Ter Hofstede, and Jan
Mendling. Configurable multi-perspective business process models. In-
formation Systems, 36(2):313–340, 2011.

[66] Alena Hallerbach, Thomas Bauer, and Manfred Reichert. Capturing
variability in business process models: the Provop approach. Journal of
Software Maintenance and Evolution: Research and Practice, 22(6-7):
519–546, 2010.

[67] Jörg Becker, Patrick Delfmann, and Ralf Knackstedt. Adaptive refer-
ence modeling: integrating configurative and generic adaptation tech-
niques for information models. In Reference Modeling, pages 27–58.
Springer, 2007.

[68] Krzysztof Czarnecki and Micha l Antkiewicz. Mapping features to mod-
els: A template approach based on superimposed variants. In Generative
Programming and Component Engineering, pages 422–437. Springer,
2005.

[69] Iris Reinhartz-Berger, Pnina Soffer, and Arnon Sturm. Organisational
reference models: Supporting an adequate design of local business pro-
cesses. International Journal of Business Process Integration and Man-
agement, 4(2):134–149, 2009.

[70] Emilian Pascalau, Ahmed Awad, Sherif Sakr, and Mathias Weske. On
maintaining consistency of process model variants. In Business Process
Management Workshops, pages 289–300. Springer, 2010.

[71] Florian Gottschalk, Wil MP van der Aalst, and Monique H Jansen-
Vullers. Merging event-driven process chains. In On the Move to Mean-
ingful Internet Systems: OTM 2008, pages 418–426. Springer, 2008.

220 References

[72] Marcello La Rosa, Marlon Dumas, Reina Uba, and Remco Dijkman.
Merging business process models. In On the Move to Meaningful Inter-
net Systems: OTM 2010, pages 96–113. Springer, 2010.

[73] Jan Mendling and Carlo Simon. Business process design by view in-
tegration. In Business process management workshops, pages 55–64.
Springer, 2006.

[74] Chen Li, Manfred Reichert, and Andreas Wombacher. The MinAdept
clustering approach for discovering reference process models out of pro-
cess variants. International Journal of Cooperative Information Sys-
tems, 19(03n04):159–203, 2010.

[75] Hajo A Reijers, RS Mans, and Robert A van der Toorn. Improved
model management with aggregated business process models. Data &
Knowledge Engineering, 68(2):221–243, 2009.

[76] Jantima Polpinij, Aditya K Ghose, and Hoa Khanh Dam. Business rules
discovery from process design repositories. In Services (SERVICES-1),
2010 6th World Congress on, pages 614–620. IEEE, 2010.

[77] Joos CAM Buijs, Boudewijn F van Dongen, and Wil MP van der Aalst.
Towards cross-organizational process mining in collections of process
models and their executions. In Business Process Management Work-
shops, pages 2–13. Springer, 2011.

[78] Reina Uba, Marlon Dumas, Luciano Garćıa-Bañuelos, and Marcello
La Rosa. Clone detection in repositories of business process models.
In Business Process Management, pages 248–264. Springer, 2011.

[79] Remco Dijkman, Beat Gfeller, Jochen Küster, and Hagen Völzer. Iden-
tifying refactoring opportunities in process model repositories. Infor-
mation and Software Technology, 53(9):937–948, 2011.

[80] Barbara Weber and Manfred Reichert. Refactoring process models in
large process repositories. In Advanced Information Systems Engineer-
ing, pages 124–139. Springer, 2008.

[81] Thomas W Malone, Kevin Crowston, and George Arthur Herman. Or-
ganizing business knowledge: the MIT process handbook. MIT press,
2003.

[82] Shang Gao and John Krogstie. A repository architecture for business
process characterizing models. In The Practice of Enterprise Modeling,
pages 162–176. Springer, 2010.

[83] August-Wilhelm Scheer and Markus Nüttgens. ARIS architecture and
reference models for business process management. Springer, 2000.

[84] Markus Hipp, Bela Mutschler, and Manfred Reichert. Navigating in
process model collections: A new approach inspired by google earth. In
Business Process Management Workshops, pages 87–98. Springer, 2011.

[85] Thomas W Malone, Kevin Crowston, Jintae Lee, Brian Pentland,
Chrysanthos Dellarocas, George Wyner, John Quimby, Charles S Os-
born, Abraham Bernstein, George Herman, et al. Tools for inventing
organizations: Toward a handbook of organizational processes. Man-
agement Science, 45(3):425–443, 1999.

References 221

[86] Tri A Kurniawan, Aditya K Ghose, Lam-Son Le, and Hoa Khanh Dam.
On formalizing inter-process relationships. In Business Process Man-
agement Workshops, pages 75–86. Springer, 2011.

[87] IEEE Recommended Practice for Architectural Description of Software-
Intensive Systems. IEEE Std 1471-2000, pages i–23, 2000. doi:
10.1109/IEEESTD.2000.91944.

[88] Marc Lankhorst. Enterprise architecture at work. modelling, communi-
cation. Analysis, 2013.

[89] Jean-Philip Pritchard and Colin Armistead. Business process
management–lessons from european business. Business Process Man-
agement Journal, 5(1):10–35, 1999.

[90] Colin Armistead. Principles of business process management. Managing
Service Quality, 6(6):48–52, 1996.

[91] Boudewijn F Van Dongen, Jan Mendling, and Wil MP van der Aalst.
Structural patterns for soundness of business process models. In Enter-
prise Distributed Object Computing Conference, 2006. EDOC’06. 10th
IEEE International, pages 116–128. IEEE, 2006.

[92] Artem Polyvyanyy, Luciano Garćıa-Bañuelos, and Marlon Dumas.
Structuring acyclic process models. In Richard Hull, Jan Mendling,
and Stefan Tai, editors, Proceedings of the 8th international conference
on Business process management, volume 6336 of LNCS, pages 276–293.
Springer Berlin / Heidelberg, 2010.

[93] Henrik Leopold, Sergey Smirnov, and Jan Mendling. On the refactoring
of activity labels in business process models. Information Systems, 37
(5):443–459, 2012.

[94] Gordon Stewart. Supply-chain operations reference model (scor): the
first cross-industry framework for integrated supply-chain management.
Logistics information management, 10(2):62–67, 1997.

[95] Jörg Becker, Holger Hansmann, and T Rieke. Architekturen von in-
formationssystemen. Informationswirtschaft: Ein Sektor mit Zukunft,
2008.

[96] Michael B Kelly. Report: The telemanagement forum’s enhanced tele-
com operations map (etom). Journal of Network and Systems Manage-
ment, 11(1):109–119, 2003.

[97] Department of Defense Architecture Framework Working Group et al.
Dod architecture framework, version 1.5. Department of Defense, USA,
2007.

[98] Paul Harmon. Business process change: a guide for business managers
and BPM and six sigma professionals. Morgan Kaufmann, 2010.

[99] Stewart Green and Martyn A Ould. The primacy of process architecture.
In CAiSE Workshops (2), pages 154–159. Citeseer, 2004.

[100] Anupindi Ravi. Managing Business Process Flows: Principles Of Oper-
ations Management, 2/E. Pearson Education India, 2008.

[101] Max Eckert. Die Kartenwissenschaft: forschungen und Grundlagen zu
einer Kartographie als Wissenschaft, volume 1. W. de Gruyter, 1921.

222 References

[102] Bernd Heinrich, Matthias Henneberger, Susanne Leist, and Gregor Zell-
ner. The process map as an instrument to standardize processes: design
and application at a financial service provider. Information systems and
e-business management, 7(1):81–102, 2009.

[103] H Schmelzer and W Sesselmann. Practical Use of Business Process
Management, 2006.

[104] Michael E Porter. Competitive advantage: Creating and sustaining su-
perior performance. SimonandSchuster. com, 2008.

[105] Michael E Porter and Victor E Millar. How information gives you com-
petitive advantage, 1985.

[106] George Eckes. The Six Sigma revolution: How General Electric and
others turned process into profits. Wiley. com, 2002.

[107] Guido Fischermanns. Praxishandbuch Prozessmanagement. Schmidt,
2006.

[108] Artie Mahal. How Work Gets Done: Business Process Management,
Basics and Beyond. Technics Publications, LLC, 2010.

[109] Jöorg Becker, Martin Kugeler, and Michael Rosemann. Process man-
agement: a guide for the design of business processes: with 83 figures
and 34 tables. Springer Verlag, 2003.

[110] Peter Franz and Mathias Kirchmer. Value-driven Business Process
Management: The Value-switch for Lasting Competitive Advantage.
McGraw-Hill, 2012.

[111] Ned Kock, Jacques Verville, Azim Danesh-Pajou, and Dorrie DeLuca.
Communication flow orientation in business process modeling and its
effect on redesign success: Results from a field study. Decision Support
Systems, 46(2):562–575, 2009.

[112] Remco Dijkman, Irene Vanderfeesten, and Hajo A Reijers. Business
process architectures: overview, comparison and framework. Enterprise
Information Systems, 10(2):129–158, 2016.

[113] Michael Zur Muehlen, Dennis Wisnosky, and James Kindrick. Prim-
itives: design guidelines and architecture for bpmn models. In 2010
Australasian Conference on Information Systems (ACIS 2010), Aus-
tralasian Computer Society, 2010.

[114] Harry Maddern, Philip Andrew Smart, Roger S Maull, and Stephen
Childe. End-to-end process management: implications for theory and
practice. Production Planning & Control, (ahead-of-print):1–19, 2013.

[115] Douglas W Frye and Thomas R Gulledge. End-to-end business pro-
cess scenarios. Industrial Management & Data Systems, 107(6):749–761,
2007.

[116] David A Garvin. The processes of organization and management. Sloan
management review, 39, 2012.

[117] Jacques Bertin. Semiology of graphics: diagrams, networks, maps. 1983.
[118] Google image search, 2016. URL https://images.google.com/.

References 223

[119] J. Mendling, H. A. Reijers, and W. M. P. van der Aalst. Seven Process
Modeling Guidelines (7PMG). Information and Software Technology,
52(2):127–136, 2010.

[120] Jörg Becker, Michael Rosemann, and Christoph von Uthmann. Guide-
lines of business process modeling. In Business Process Management,
pages 30–49. Springer, 2000.

[121] Vladimir Frolov, David Mengel, Wasana Bandara, Yong Sun, and Lin
Ma. Building an ontology and process architecture for engineering asset
management. In Engineering Asset Lifecycle Management, pages 86–97.
Springer, 2010.

[122] Colin Armistead and Simon Machin. Implications of business process
management for operations management. International Journal of Op-
erations & Production Management, 17(9):886–898, 1997.

[123] Jeffrey O Grady. System Management: Planning, Enterprise Identity,
and Deployment. CRC Press/Taylor & Francis, 2010.

[124] Stewart Green and Martyn Ould. A framework for classifying and eval-
uating process architecture methods. Software Process: Improvement
and Practice, 10(4):415–425, 2005.

[125] Corina Raduescu, Hui Min Tan, Malini Jayaganesh, Wasana Bandara,
Michael zur Muehlen, and Sonia Lippe. A framework of issues in large
process modeling projects. In ECIS, pages 1594–1605, 2006.

[126] Wasana Bandara, Guy G Gable, and Michael Rosemann. Factors and
measures of business process modelling: model building through a mul-
tiple case study. European Journal of Information Systems, 14(4):347–
360, 2005.

[127] Wasana Sedera, Guy G Gable, Michael Rosemann, and Robert W
Smyth. A success model for business process modeling: findings from a
multiple case study. 2004.

[128] Michael Rosemann. Potential Pitfalls of Process Modeling: Part A.
Business Process Management Journal, 12(2):249–254, 2006.

[129] Michael Rosemann. Potential pitfalls of process modeling: part b. Busi-
ness Process Management Journal, 12(3):377–384, 2006.

[130] Kathrin Figl, Jan Mendling, and Mark Strembeck. The influence of
notational deficiencies on process model comprehension. Journal of the
Association for Information Systems, 2012.

[131] Eva-Maria Kern. Prozessmanagement individuell umgesetzt: Erfolgs-
beispiele aus 15 privatwirtschaftlichen und öffentlichen Organisationen.
Springer, 2012.

[132] Iris Vessey. Cognitive fit: A theory-based analysis of the graphs versus
tables literature*. Decision Sciences, 22(2):219–240, 1991.

[133] Marcello La Rosa, Arthur HM ter Hofstede, Petia Wohed, Hajo A Rei-
jers, Jan Mendling, and Wil MP van der Aalst. Managing process model
complexity via concrete syntax modifications. Industrial Informatics,
IEEE Transactions on, 7(2):255–265, 2011.

224 References

[134] Yair Wand and Ron Weber. Research commentary: Information sys-
tems and conceptual modeling–a research agenda. Information Systems
Research, 13(4):363–376, 2002.

[135] Kim Marriott, Bernd Meyer, and Kent B Wittenburg. A survey of visual
language specification and recognition. In Visual language theory, pages
5–85. Springer, 1998.

[136] Richard F. Paige, Jonathan S. Ostroff, and Phillip J Brooke. Principles
for modeling language design. Information and Software Technology, 42
(10):665–675, 2000.

[137] John Krogstie, Guttorm Sindre, and H̊avard Jørgensen. Process models
representing knowledge for action: a revised quality framework. Euro-
pean Journal of Information Systems, 15(1):91–102, 2006.

[138] Andrew Gemino and Yair Wand. A framework for empirical evaluation
of conceptual modeling techniques. Requirements Engineering, 9(4):
248–260, 2004.

[139] Herbert A Simon. On the forms of mental representation. Perception
and cognition: Issues in the foundations of psychology, 9:3–18, 1978.

[140] Keng Siau. Informational and computational equivalence in comparing
information modeling methods. Journal of Database Management, 15
(1):73, 2004.

[141] Carol Britton and Sara Jones. The untrained eye: how languages for soft-
ware specification support understanding in untrained users. Human–
Computer Interaction, 14(1-2):191–244, 1999.

[142] T.R.G Green. Programming as a cognitive activity. Human interaction
with computers, pages 271–320, 1980.

[143] Giancarlo Guizzardi. Ontological foundations for structural conceptual
models. CTIT, Centre for Telematics and Information Technology, 2005.

[144] Odd Ivar Lindland, Guttorm Sindre, and Arne Solvberg. Understanding
quality in conceptual modeling. Software, IEEE, 11(2):42–49, 1994.

[145] Daniel L Moody. Metrics for evaluating the quality of entity relationship
models. In Conceptual Modeling–ER98, pages 211–225. Springer, 1998.

[146] Andrew Burton-Jones, Yair Wand, and Ron Weber. Guidelines for em-
pirical evaluations of conceptual modeling grammars*. Journal of the
Association for Information Systems, 10(6):495, 2009.

[147] Jeffrey V Nickerson and Michael zur Muehlen. The ecology of standards
processes: insights from internet standard making. Mis Quarterly, pages
467–488, 2006.

[148] Merriam-webster, 2015. URL http://www.merriam-webster.com.
[149] Reinhard Schuette and Thomas Rotthowe. The guidelines of modeling–

an approach to enhance the quality in information models. In Concep-
tual Modeling–ER98, pages 240–254. Springer, 1998.

[150] Keng Siau and Xin Tan. Improving the quality of conceptual modeling
using cognitive mapping techniques. Data & Knowledge Engineering,
55(3):343–365, 2005.

References 225

[151] Chen Ding and Prabhaker Mateti. A framework for the automated
drawing of data structure diagrams. Software Engineering, IEEE Trans-
actions on, 16(5):543–557, 1990.

[152] Pearl Brereton, Barbara A Kitchenham, David Budgen, Mark Turner,
and Mohamed Khalil. Lessons from applying the systematic literature
review process within the software engineering domain. Journal of sys-
tems and software, 80(4):571–583, 2007.

[153] James D Kiper, Elizabeth Howard, and Chuck Ames. Criteria for eval-
uation of visual programming languages. Journal of Visual Languages
& Computing, 8(2):175–192, 1997.

[154] Alan F Blackwell, Kirsten N Whitley, Judith Good, and Marian Petre.
Cognitive factors in programming with diagrams. Artificial Intelligence
Review, 15(1-2):95–114, 2001.

[155] Sebastian Guenther. Development of internal domain-specific languages:
design principles and design patterns. In Proceedings of the 18th Con-
ference on Pattern Languages of Programs, page 1. ACM, 2011.

[156] Loukas Tsironis, Kiriakos Anastasiou, and Vassilis Moustakis. A frame-
work for bpml assessment and improvement: a case study using idef0
and eepc. Business Process Management Journal, 15(3):430–461, 2009.

[157] Thomas R. G. Green and Marian Petre. Usability analysis of visual
programming environments: a cognitive dimensions framework. Journal
of Visual Languages & Computing, 7(2):131–174, 1996.

[158] Holger Eichelberger and Klaus Schmid. Guidelines on the aesthetic
quality of uml class diagrams. Information and Software Technology, 51
(12):1686–1698, 2009.

[159] Karl Brett Lloyd and David John Jankowski. A cognitive information
processing and information theory approach to diagram clarity: A syn-
thesis and experimental investigation. Journal of Systems and Software,
45(3):203–214, 1999.

[160] Carol Britton, Sara Jones, Maria Kutar, Martin Loomes, and Brian
Robinson. Evaluating the intelligibility of diagrammatic languages used
in the specification of software. In Theory and Application of Diagrams,
pages 376–391. Springer, 2000.

[161] Shih-Miao Huang, Kong-King Shieh, and Chai-Fen Chi. Factors affect-
ing the design of computer icons. International Journal of Industrial
Ergonomics, 29(4):211–218, 2002.

[162] Siné JP McDougall, Oscar de Bruijn, and Martin B Curry. Exploring
the effects of icon characteristics on user performance: the role of icon
concreteness, complexity, and distinctiveness. Journal of Experimental
Psychology: Applied, 6(4):291, 2000.

[163] Gabor Karsai, Holger Krahn, Claas Pinkernell, Bernhard Rumpe, Mar-
tin Schindler, and Steven Völkel. Design guidelines for domain specific
languages. arXiv preprint arXiv:1409.2378, 2014.

[164] Siné JP Mcdougall, Martin B Curry, and Oscar de Bruijn. Measuring
symbol and icon characteristics: Norms for concreteness, complexity,

226 References

meaningfulness, familiarity, and semantic distance for 239 symbols. Be-
havior Research Methods, Instruments, & Computers, 31(3):487–519,
1999.

[165] William Winn. An account of how readers search for information in
diagrams. Contemporary Educational Psychology, 18(2):162–185, 1993.

[166] Someswar Kesh. Evaluating the quality of entity relationship models.
Information and Software Technology, 37(12):681–689, 1995.

[167] Laura SáNchez-GonzáLez, FéLix GarćıA, Francisco Ruiz, and Mario Pi-
attini. Toward a quality framework for business process models. Inter-
national Journal of Cooperative Information Systems, 22(01):1350003,
2013.

[168] Oleg Sindiy, Krystof Litomisky, Scott Davidoff, and Frank Dekens. In-
troduction to information visualization (infovis) techniques for model-
based systems engineering. Procedia Computer Science, 16:49–58, 2013.

[169] Graeme Simsion and Graham Witt. Data modeling essentials. Morgan
Kaufmann, 2004.

[170] Geoff R Dromey. A model for software product quality. Software Engi-
neering, IEEE Transactions on, 21(2):146–162, 1995.

[171] Alan Davis, Scott Overmyer, Kathleen Jordan, Joseph Caruso, Fatma
Dandashi, Anhtum Dinh, Gary Kincaid, Glen Ledeboer, Patricia
Reynolds, Pradip Sitaram, et al. Identifying and measuring quality in
a software requirements specification. In Software Metrics Symposium,
1993. Proceedings., First International, pages 141–152. IEEE, 1993.

[172] Helen C Purchase, David Carrington, and Jo-Anne Allder. Empirical
evaluation of aesthetics-based graph layout. Empirical Software Engi-
neering, 7(3):233–255, 2002.

[173] Helen C Purchase, Jo-Anne Allder, and David Carrington. User prefer-
ence of graph layout aesthetics: A uml study. In Graph Drawing, pages
5–18. Springer, 2000.

[174] Isel Moreno-Montes de Oca, Monique Snoeck, and Gladys Casas-
Cardoso. A look into business process modeling guidelines through the
lens of the technology acceptance model. In The Practice of Enterprise
Modeling, pages 73–86. Springer, 2014.

[175] Helen C Purchase, Jo-Anne Allder, and David A Carrington. Graph
layout aesthetics in uml diagrams: user preferences. J. Graph Algorithms
Appl., 6(3):255–279, 2002.

[176] John Krogstie, Odd Ivar Lindland, and Guttorm Sindre. Towards a
deeper understanding of quality in requirements engineering. In Ad-
vanced Information Systems Engineering, pages 82–95. Springer, 1995.

[177] John Krogstie. Integrating the understanding of quality in requirements
specification and conceptual modeling. ACM SIGSOFT Software Engi-
neering Notes, 23(1):86–91, 1998.

[178] John Krogstie. Evaluating uml using a generic quality framework. UML
and the Unified Process, 1, 2003.

References 227

[179] John Krogstie and Arne Sølvberg. Information systems engineering:
Conceptual modeling in a quality perspective. Kompendiumforlaget,
Trondheim, Norway, 2003.

[180] H James Nelson, Geert Poels, Marcela Genero, and Mario Piattini. A
conceptual modeling quality framework. Software Quality Journal, 20
(1):201–228, 2012.

[181] Sven Overhage, Dominik Q Birkmeier, and Sebastian Schlauderer. Qual-
ity marks, metrics, and measurement procedures for business process
models. Business & Information Systems Engineering, 4(5):229–246,
2012.

[182] John Krogstie, Odd Ivar Lindland, and Guttorm Sindre. Defining qual-
ity aspects for conceptual models. In Proceedings of the international
working conference on Information system concepts: Towards a consol-
idation of views, pages 216–231. Chapman & Hall, Ltd., 1995.

[183] Ann Maes and Geert Poels. Evaluating quality of conceptual modelling
scripts based on user perceptions. Data & Knowledge Engineering, 63
(3):701–724, 2007.

[184] Surya Yadav, Ralph Bravoco, Akemi Chatfield, TM Rajkumar, et al.
Comparison of analysis techniques for information requirement deter-
mination. Communications of the ACM, 31(9):1090–1097, 1988.

[185] Andrew Burton-Jones, Yair Wand, and Ron Weber. Guidelines for em-
pirical evaluations of conceptual modeling grammars. Journal of the
Association for Information Systems, 10(6), 2009.

[186] Reda Bendraou, Jean-Marc Jézéquel, Marie-Pierre Gervais, and Xavier
Blanc. A comparison of six uml-based languages for software process
modeling. Software Engineering, IEEE Transactions on, 36(5):662–675,
2010.

[187] Daniel L Moody, Graeme G Shanks, and Peta Darke. Improving the
quality of entity relationship modelsexperience in research and practice.
In Conceptual Modeling–ER98, pages 255–276. Springer, 1998.

[188] Daniel L Moody and Graeme G Shanks. What makes a good data model?
Evaluating the quality of entity relationship models. Springer, 1994.

[189] Daniel L Moody and Graeme G Shanks. Improving the quality of data
models: empirical validation of a quality management framework. In-
formation systems, 28(6):619–650, 2003.

[190] Samira Si-Said Cherfi, Jacky Akoka, and Isabelle Comyn-Wattiau. Con-
ceptual modeling quality-from eer to uml schemas evaluation. In Con-
ceptual ModelingER 2002, pages 414–428. Springer, 2002.

[191] Anany Levitin and Thomas Redman. Quality dimensions of a concep-
tual view. Information Processing & Management, 31(1):81–88, 1995.

[192] Yair Wand and Richard Y Wang. Anchoring data quality dimensions
in ontological foundations. Communications of the ACM, 39(11):86–95,
1996.

[193] Peter Bielkowicz and Thein T Tun. A comparison and evaluation of data
requirement specification techniques in ssadm and the unified process.

228 References

In Advanced Information Systems Engineering, pages 46–59. Springer,
2001.

[194] Graeme Shanks, Elizabeth Tansley, and Ron Weber. Using ontology
to validate conceptual models. Communications of the ACM, 46(10):
85–89, 2003.

[195] Jeffrey Parsons and Yair Wand. Using cognitive principles to guide
classification in information systems modeling. MIS quarterly, pages
839–868, 2008.

[196] Jeffrey Parsons. An information model based on classification theory.
Management Science, 42(10):1437–1453, 1996.

[197] Jeffrey Parsons and Yair Wand. Choosing classes in conceptual model-
ing. Communications of the ACM, 40(6):63–69, 1997.

[198] Gem Stapleton and Aidan Delaney. Evaluating and generalizing con-
straint diagrams. Journal of Visual Languages & Computing, 19(4):
499–521, 2008.

[199] Yair Wand and Ron Weber. An ontological model of an information sys-
tem. Software Engineering, IEEE Transactions on, 16(11):1282–1292,
1990.

[200] Andrew Burton-Jones and Peter N Meso. Conceptualizing systems for
understanding: an empirical test of decomposition principles in object-
oriented analysis. Information Systems Research, 17(1):38–60, 2006.

[201] Andrew Burton-Jones and Peter N Meso. The effects of decomposition
quality and multiple forms of information on novices’ understanding
of a domain from a conceptual model. Journal of the Association for
Information Systems, 9(12):748, 2008.

[202] Pasquale Armenise, Sergio Bandinelli, Carlo Ghezzi, and Angelo
Morzenti. A survey and assessment of software process representation
formalisms. International Journal of Software Engineering and Knowl-
edge Engineering, 3(03):401–426, 1993.

[203] Bill Curtis, Marc I Kellner, and Jim Over. Process modeling. Commu-
nications of the ACM, 35(9):75–90, 1992.

[204] Dimitrios S Kolovos, Richard F Paige, Tim Kelly, and Fiona AC Po-
lack. Requirements for domain-specific languages. In Proc. of ECOOP
Workshop on Domain-Specific Program Development (DSPD), volume
2006, 2006.

[205] Kathrin Figl, Michael Derntl, Manuel Caeiro Rodriguez, and Luca Bot-
turi. Cognitive effectiveness of visual instructional design languages.
Journal of Visual Languages & Computing, 21(6):359–373, 2010.

[206] Simon McGinnes and Evangelos Kapros. Conceptual independence: A
design principle for the construction of adaptive information systems.
Information Systems, 47:33–50, 2015.

[207] Patrick Heymans, P-Y Schobbens, J-C Trigaux, Yves Bontemps,
Raimundas Matulevicius, and Andreas Classen. Evaluating formal prop-
erties of feature diagram languages. Software, IET, 2(3):281–302, 2008.

References 229

[208] Samira Si-said Cherfi, Jacky Akoka, and Isabelle Comyn-Wattiau. Per-
ceived vs. measured quality of conceptual schemas: An experimental
comparison. In Tutorials, posters, panels and industrial contributions
at the 26th international conference on Conceptual modeling-Volume
83, pages 185–190. Australian Computer Society, Inc., 2007.

[209] Jan Recker. Evaluations of process modeling grammars: Ontological,
qualitative and quantitative analyses using the example of BPMN, vol-
ume 71. Springer, 2011.

[210] Mitra Heravizadeh, Jan Mendling, and Michael Rosemann. Dimensions
of business processes quality (qobp). In Business Process Management
Workshops, pages 80–91. Springer, 2008.

[211] Jan Recker, Michael Rosemann, and John Krogstie. Ontology-versus
pattern-based evaluation of process modeling languages: a comparison.
Communications of the Association for Information Systems, 20(1):48,
2007.

[212] Jeffrey Parsons and Yair Wand. Extending classification principles from
information modeling to other disciplines. Journal of the Association
for Information Systems, 14(5):245, 2013.

[213] Farideh Heidari and Pericles Loucopoulos. Quality evaluation frame-
work (qef): Modeling and evaluating quality of business processes. In-
ternational Journal of Accounting Information Systems, 15(3):193–223,
2014.

[214] Carrie Williams. Research methods. Journal of Business & Economics
Research (JBER), 5(3), 2011.

[215] Anselm Strauss and Juliet Corbin. Basics of qualitative research: Pro-
cedures and techniques for developing grounded theory, 1998.

[216] Michael zur Muehlen and Jan Recker. How Much Language Is Enough?
Theoretical and Practical Use of the Business Process Modeling Nota-
tion. In Proceedings of the 20th international conference on Advanced
Information Systems Engineering, CAiSE ’08, pages 465–479, Berlin,
Heidelberg, 2008. Springer-Verlag.

[217] Stefan Bergsmann. End-To-End-Geschäftsprozessmanagement:
Organisationselement-Integrationsinstrument-Managementansatz.
Springer DE, 2011.

[218] Ayelt Komus. BPM Best Practice. Springer DE, 2011.
[219] Dirk Slama and Ralph Nelius. Enterprise BPM: Erfolgsrezepte für un-

ternehmensweites Prozessmanagement. dpunkt. verlag, 2011.
[220] Inge Hanschke. Enterprise architecture management–einfach und effek-

tiv.
[221] Jim Hagemann Snabe, Ann Rosenberg, Charles Mller, and Mark Scav-

illo. Business process management: the sap roadmap. Sap Press, 2008.
[222] Sebastian Kummer, Oskar Grün, and Werner Jammernegg. Grundzüge

der Beschaffung, Produktion und Logistik, volume 1. Pearson Deutsch-
land GmbH, 2009.

230 References

[223] FU berlin. http://www.fu-berlin.de/sites/qm/impressum/index.html.
Accessed: 2016-05-10.

[224] Michele Chinosi and Alberto Trombetta. Bpmn: An introduction to the
standard. Computer Standards & Interfaces, 34(1):124–134, 2012.

[225] Remco M. Dijkman, Marlon Dumas, and Chun Ouyang. Semantics and
analysis of business process models in bpmn. Information and Software
Technology, 50(12):1281–1294, 2008.

[226] Jan Recker. Explaining usage of process modeling grammars: Compar-
ing three theoretical models in the study of two grammars. Information
& management, 47(5):316–324, 2010.

[227] Jan C Recker, Michael zur Muehlen, Keng Siau, John Erickson, and
Marta Indulska. Measuring method complexity: Uml versus bpmn. As-
sociation for Information Systems, 2009.

[228] Erhard Rahm and Philip A Bernstein. A survey of approaches to auto-
matic schema matching. the VLDB Journal, 10(4):334–350, 2001.

[229] Matteo Magnani, Nikos Rizopoulos, Peter Mc Brien, and Danilo Mon-
tesi. Schema integration based on uncertain semantic mappings. In
Conceptual Modeling–ER 2005, pages 31–46. Springer, 2005.

[230] Yair Wand and Ron Weber. On the deep structure of information sys-
tems. Information Systems Journal, 5(3):203–223, 1995.

[231] Jeffrey Parsons and Linda Cole. What do the pictures mean? guidelines
for experimental evaluation of representation fidelity in diagrammatical
conceptual modeling techniques. Data & Knowledge Engineering, 55(3):
327–342, 2005.

[232] Jan Recker. Empirical investigation of the usefulness of gateway con-
structs in process models. European Journal of Information Systems,
22(6):673–689, 2013.

[233] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn
Regnell, and Anders Wesslén. Experimentation in software engineering.
Springer Science & Business Media, 2012.

[234] Jan Recker, Marta Indulska, Michael Rosemann, and Peter Green. The
ontological deficiencies of process modeling in practice. European Jour-
nal of Information Systems, 19(5):501–525, 2010.

[235] Monika Malinova, Remco Dijkman, and Jan Mendling. Automatic ex-
traction of process categories from process model collections. In Busi-
ness Process Management Workshops, pages 430–441. Springer, 2014.

A

Interview Guideline

General questions regarding business processes and process related resources, data

and actors

1. Process category

a. In how many categories can the processes of your company be clustered?

i. Can your company’s processes be categorized? What are the process categories?

b. What are your main (core) processes?

c. Why are these processes core for your company?

d. What roles do the core, management and support processes play for your company?

e. Can you tell me something about the processes from the process categories?

f. How do these processes work together?

2. Process relation (trigger (decomposition, specialization, sequence), dataFlow, manage, support)

a. How are the processes related to each other?

i. Between category relations

ii. Within category relations

b. Sequence

i. Are some of the processes done sequentially?

ii. What is the output of one core process, and is this the input of the next core process?

c. Decomposition

i. Can the (core) processes be decomposed into subprocesses?

ii. What are the main process steps of the processes?

d. Specialization

i. If such, name the variants of the (core) processes?

ii. Criteria for process variants? (e.g. reginal, types, etc.)

e. DataFlow

i. Are the core processes data-dependent?

ii. Is data necessary for a core process to start executing?

iii. Does data trigger a process?

iv. Do the processes communicate through data exchange? (e.g. portfolio, sales material, etc.)

f. Manage/Support

i. What role do the management and support processes play in your company?

ii. During the performance of the core processes, is a particular management or support process

needed for the core processes to finish?

iii. Can the flow of execution of the core processes change due to some data received from the

other process categories?

3. Input / Output

a. What triggers the (process categories) core processes to start?

b. What are the main outputs of the (process categories) core processes?

c. Do you differentiate between external and internal process inputs/outputs?

d. Does data from one core process trigger another core process? Or is the data there only to inform?

Process map-specific questions

1. What is the purpose of the process map for your company? What role does it play in the company?

2. Who has access to the process map, and how is it used?

a. Employees with and/or without modeling experience?

3. How do you envision for the process map to be used? What should be its purpose?

4. What are the concepts (elements) that you would like to be seen on your process map?

a. Process owners, process objects, process inputs/outputs, process categories, process phases,

process services, process resources

b. Please name any other concept you consider important as part of a process map.

5. Is it enough to have one process map for the entire company, or are more process maps necessary to

show how the company operates as a whole, or simply to be able to represent all you wish to

represent?

a. A separate process map for: each process shown on the process map, each department, each

country, etc.

6. What modeling language do you use to model your business processes?

a. Should the process map comply with the rest of your process models?

7. How are the processes from the level below the process map connected to the processes shown on the

process map?

8. What color, size, etc. would fit best to your process map?

B

Experiment Material

Experiment introduction

Dear participant
This is an experiment on process maps, which are abstract representations of the whole set of
processes of a company and the relations between them. They serve to provide an overview of how
a company operates as a whole without going into process details. The aim of this experiment is to
evaluate a visual language for designing process maps. In particular we aim to investigate the extent
to which users can answer questions on basis of a process map designed using different visual
representations.

The experiment has been designed for both people with and without experience in process
modeling. Therefore, if you are new in process modeling and have never seen a process map prior to
this experiment, do not worry about it.

Confidentiality
We pay very high attention to treating all data, comments and responses from this experiment
confidentially and strictly anonymous. If you would like to obtain additional information you may
contact us at monika.malinova@wu.ac.at.

Please consider the following points while answering the questions:
- Answer all questions to the best of your knowledge.
- Do not use any other material than the one presented for a question.
- Do not guess if the material does not provide the answer.
- Work from the start of the experiment to the end.
- After finishing each part please note the exact time in the designated area.

Experiment structure

Part 1: Demographic questions, questions about your experience in process modeling,
questions about your knowledge about process maps, questions about your experience
about the experiment’s domain.

Part 2: Practical part – short description about the elements that comprise a process map.

Part 3: Case 1
- Get yourself familiar with the given process map.
- Answer all questions with correct, false or I don’t know based on the process map for Case 1.
- Rate the difficulty level of each question.

Part 4: Case 2
- Get yourself familiar with the given process map.
- Answer all questions with correct, false or I don’t know based on the process map for Case 2.
- Rate the difficulty level of each question.

Please make a note now of the exact start time: It is _______h_______ min_______ sec

Part 1

(Please answer each of the questions by either checking the box of your chosen answer, or writing
down a number).

Demographics
1. Age (in years): _______

2. Gender:

□ Female

□ Male

3. Level of study:

□ Undergraduate

□ Graduate

□ Other _________________

Process modeling experience
1. Have you ever taken a business process modeling course at university?

□ No

□ Yes

2. Do you have professional experience in process modeling? If yes, how many work days? (one

work day equals to 8 hours of work)

□ No

□ Yes, approx. ______ work days in the last 12 months

3. How many years ago did you start process modeling?

Answer: _____________ years

4. How many process models have you analyzed or read within the last 12 months?

Answer: ______________ process models

5. How many process models have you created or edited within the last 12 months?

Answer: ______________ process models

6. How many work days of formal training on process modeling have you received within the

last 12 months? (one work day equals to 8 hours of work)

Answer: ______________ days

7. How many work days of self-education on process modeling have you made within the last

12 months?

Answer: ______________ days

8. How many months ago did you start using BPMN?

Answer: ______________ months

(Please rate each following question on a scale from 1 to 7. The meaning of each scale can be seen on

the left and right side of the given choices).

9. Overall, I am very familiar with BPMN.

Not at

all

familiar

1 2 3 4 5 6 7
Very

familiar ○ ○ ○ ○ ○ ○ ○

10. I feel very confident in understanding process models created with BPMN.

Not at all

confident

1 2 3 4 5 6 7 Very

confident ○ ○ ○ ○ ○ ○ ○

11. I feel very competent in using BPMN for process modeling.

Not at all

competent

1 2 3 4 5 6 7 Very

competent ○ ○ ○ ○ ○ ○ ○

12. How would you rate your familiarity with the following processes?

 Not at

all

familiar

Very

familiar

1 2 3 4 5 6 7

Software development ○ ○ ○ ○ ○ ○ ○

Electronics production ○ ○ ○ ○ ○ ○ ○

Manufacturing products ○ ○ ○ ○ ○ ○ ○

Value-chain process ○ ○ ○ ○ ○ ○ ○

Please make a note now of the exact time: It is _____h_____ min_____ sec

Process map experience

1. How familiar are you with the term process map (sometimes also referred to as process

landscape or process architecture)?

Not at

all

familiar

1 2 3 4 5 6 7
Very

familiar ○ ○ ○ ○ ○ ○ ○

2. Have you learned about process maps during a BPM (Business Process Management)

course?

□ No

□ Yes

3. Have you used process maps for professional purposes?

□ No

□ Yes

4. Have you ever been involved in the creation of a process map?

□ No

□ Yes (if yes, please answer question 5)

5. What modeling language or software package did you use to create the process map?

□ BPMN

□ EPC

□ UML

□ YAWL

□ Visio

□ PowerPoint

□ Microsoft Word

□ Other (please write which) ___________________________

Please make a note now of the exact time: It is _______h_______ min_______ sec

Part 2: Practical part - Process Map element description

(Please familiarize yourself with the main elements of a process map before continuing to the next part)

Please make a note now of the exact time: It is _______h_______ min_______ sec

Part 3
Case 1: Electronics Producer Company

(Please get yourself familiar with the following process map using the visual process map and the

additional description below the process map)

In the following there are 18 questions for the process map of the Electronics Producer Company
from Case 1. Below the first 16 questions there are three choices you can select as an answer for
the respective question. The answer for each of the questions can be correct, false or I don’t know.

Please also rate the difficulty level for each of the 18 questions. This can be found on the right side
of each question.

Please answer all 18 questions only based on the process map with the additional description
below for the Electronics Producer Company (Case 1). After answering all questions for this case,
please note the exact time in the designated area.

Please make a note now of the exact time: It is _______h_______ min_______ sec

How difficult was to answer this
question?

Very
easy

1 2 3 4 5 6

Very
difficult

7

1. The “Production” process can start executing before the
“Product introduction” process has finished.

○ Correct ○ False ○ I don’t know
○ ○ ○ ○ ○ ○ ○

 How difficult was to answer this

 question?
Very
easy

1 2 3 4 5 6

Very
difficult

7

2. The “Plan production” process must have been executed
before the “Define product” process can start.

 ○ Correct ○ False ○ I don’t know
○ ○ ○ ○ ○ ○ ○

3. The “Production” process can start executing without
product requirements.

○ Correct ○ False ○ I don’t know
○ ○ ○ ○ ○ ○ ○

4. The support process “Finance” prepares invoices for all
customer orders and sends these to the “Deliver” process.

○ Correct ○ False ○ I don’t know
○ ○ ○ ○ ○ ○ ○

5. Each time the “Concept creation” process finishes it sends
order data to the “Product introduction” process.
 ○ Correct ○ False ○ I don’t know

○ ○ ○ ○ ○ ○ ○

6. The core processes are done sequentially.
○ Correct ○ False ○ I don’t know

○ ○ ○ ○ ○ ○ ○

7. When a customer orders the core processes start
executing.

○ Correct ○ False ○ I don’t know
○ ○ ○ ○ ○ ○ ○

8. The “Production” process starts immediately after a
customer orders.

○ Correct ○ False ○ I don’t know
○ ○ ○ ○ ○ ○ ○

9. The processes “Handle orders” and “Order material” must
have been executed for the “Concept creation” process to
finish.

○ Correct ○ False ○ I don’t know

○ ○ ○ ○ ○ ○ ○

10. The “Strategic management” process assures that all steps
done during the execution of the core processes is
according to the company’s strategy.

○ Correct ○ False ○ I don’t know

○ ○ ○ ○ ○ ○ ○

11. The “Concept creation” process cannot finish without a list
of the suppliers sent by the “Sourcing” process.

○ Correct ○ False ○ I don’t know
○ ○ ○ ○ ○ ○ ○

12. Products are delivered to customers.
○ Correct ○ False ○ I don’t know

○ ○ ○ ○ ○ ○ ○

13. The “Production” process can start even without the list of
suppliers sent by the “Sourcing” process.

○ Correct ○ False ○ I don’t know
○ ○ ○ ○ ○ ○ ○

14. The “Product introduction” process cannot start without
the order data.

○ Correct ○ False ○ I don’t know
○ ○ ○ ○ ○ ○ ○

15. Electronics, energy technology and wind power are types of
products produced according to the same “Production”
process.

○ Correct ○ False ○ I don’t know

○ ○ ○ ○ ○ ○ ○

16. The same “Concept creation” process is used no matter if
customers order electronics, energy technology or wind
power products.

○ Correct ○ False ○ I don’t know

○ ○ ○ ○ ○ ○ ○

Please make a note now of the exact time: It is _______h_______ min_______ sec

(Questions about the perceived ease of use and usefulness for the Case 1 process map)

 Very
easy

1 2 3 4 5 6

Very
difficult

7

17. How difficult or easy was it for you to understand the
Electronics Producer Company process map as a whole?

○ ○ ○ ○ ○ ○ ○

18. How difficult or easy was it for you to answer the
questions on basis of the Electronics Producer Company
process map?

○ ○ ○ ○ ○ ○ ○

This is the end of Part 3. Please proceed to Part 4.

Part 4
Case 2: Software Development Company

(Please get yourself familiar with the following process map)

In the following there are 18 questions for the process map of the Software Development
Company from Case 2. Below the first 16 questions there are three choices you can select as an
answer for the respective question. The answer for each of the questions can be correct, false or I
don’t know.

Please also rate the difficulty level for each of the 18 questions. This can be found on the right side
of each question.

Please answer all questions only based on the Process Map for the Software Development
Company (Case 2). After answering all questions for this case, please note the exact time in the
designated area.

Please make a note now of the exact time: It is _______h_______ min_______ sec

How difficult was to answer this
question?

Very
easy

1 2 3 4 5 6

Very
difficult

7

1. The “Define, operationalize & track strategy” process
assures that all steps done during the execution of the core
processes is according to the company’s strategy.

○ Correct ○ False ○ I don’t know
○ ○ ○ ○ ○ ○ ○

2. The “Innovate” process must have been executed before the
“Development” process can finish.

○ Correct ○ False ○ I don’t know
○ ○ ○ ○ ○ ○ ○

How difficult was to answer this
question?

Very
easy

1 2 3 4 5 6

Very
difficult

7

3. The “Sales” process can start executing only when the sales
material has been received.

 ○ Correct ○ False ○ I don’t know
○ ○ ○ ○ ○ ○ ○

4. The “Quality Check” process must not have been executed
before the “Development” process can finish.

○ Correct ○ False ○ I don’t know
○ ○ ○ ○ ○ ○ ○

5. The “Sales” process can start even if the “Development”
process has never been executed before.

○ Correct ○ False ○ I don’t know
○ ○ ○ ○ ○ ○ ○

6. The “Support & Maintenance” process can start executing
before the sales contracts have been sent.
 ○ Correct ○ False ○ I don’t know

○ ○ ○ ○ ○ ○ ○

7. The core processes are done sequentially.
○ Correct ○ False ○ I don’t know

○ ○ ○ ○ ○ ○ ○

8. The core processes can start executing only when a
customer orders.

○ Correct ○ False ○ I don’t know
○ ○ ○ ○ ○ ○ ○

9. The “Support & Maintenance” process starts each time a
customer requests support or maintenance for Product B.

○ Correct ○ False ○ I don’t know
○ ○ ○ ○ ○ ○ ○

10. The support process “Attract, develop & retain workforce”
hires new employees each time the “Support &
Maintenance” team requires additional people to better
support customers.

○ Correct ○ False ○ I don’t know

○ ○ ○ ○ ○ ○ ○

11. Products A and B are developed according to the same
“Development” process.

○ Correct ○ False ○ I don’t know
○ ○ ○ ○ ○ ○ ○

12. Products and services are sold according to a different
“Sales” process.

○ Correct ○ False ○ I don’t know
○ ○ ○ ○ ○ ○ ○

13. Products are developed according to the requirements
found in the decision portfolio prepared by the “Define,
Operationalize & Track Strategy” process.

○ Correct ○ False ○ I don’t know

○ ○ ○ ○ ○ ○ ○

14. All three core processes are successfully executed if
customers are satisfied.

○ Correct ○ False ○ I don’t know
○ ○ ○ ○ ○ ○ ○

15. A possible outcome of the core processes is a problem
solution.

○ Correct ○ False ○ I don’t know
○ ○ ○ ○ ○ ○ ○

16. New products are developed in order to keep up with the
emergent market.

○ Correct ○ False ○ I don’t know
○ ○ ○ ○ ○ ○ ○

Please make a note now of the exact time: It is _______h_______ min_______ sec

(Questions about the perceived ease of use and usefulness for the Case 2 process map)

 Very
easy

1 2 3 4 5 6

Very
difficult

7

17. How difficult or easy was it for you to understand the
Software Development Company process map as a whole?

○ ○ ○ ○ ○ ○ ○

18. How difficult or easy was it for you to answer the
questions on basis of the Software Development Company
process map?

○ ○ ○ ○ ○ ○ ○

This is the end of the experiment. Thank you for your participation!

