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Summary 

Smoking is well-known to impair pharmacokinetics, through inducing expression of drug 

metabolizing enzymes. In the present study, we demonstrated that cigarette smoke condensate 

(CSC) also alters activity and expression of hepatic drug transporters, which are now recognized 

as major actors of hepatobiliary elimination of drugs. CSC thus directly inhibited activities of 

sinusoidal transporters such as OATP1B1, OATP1B3, OCT1 and NTCP as well as those of 

canalicular transporters like P-glycoprotein, MRP2, BCRP and MATE1, in hepatic 

transporters-overexpressing cells. CSC similarly counteracted constitutive OATP, NTCP and 

OCT1 activities in human highly-differentiated hepatic HepaRG cells. In parallel, CSC induced 

expression of BCRP at both mRNA and protein level in HepaRG cells, whereas it 

concomitantly repressed mRNA expression of various transporters, including OATP1B1, 

OATP2B1, OAT2, NTCP, OCT1 and BSEP, and enhanced that of MRP4. Such changes in 

transporter gene expression were found to be highly correlated to those caused by 2,3,7,8-
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tetrachlorodibenzo-p-dioxin, a reference activator of the aryl hydrocarbon receptor (AhR) 

pathway, and were counteracted, for some of them, by siRNA-mediated AhR silencing. This 

suggests that CSC alters hepatic drug transporter levels via activation of the AhR cascade. 

Importantly, drug transporter expression regulations as well as some transporter activity 

inhibitions occurred for a range of CSC concentrations similar to those required for inducing 

drug metabolizing enzymes and may therefore be hypothesized to be relevant for smokers. 

Taken together, these data established human hepatic transporters as targets of cigarette smoke, 

which could contribute to known alteration of pharmacokinetics and some liver adverse effects 

caused by smoking. 

 

Abbreviations: ABC, ATP-binding cassette; AhR, aryl hydrocarbon receptor; ALDH3A1, 

aldehyde deshydrogenase 3A1; BCRP, breast cancer resistance protein; BSEP, bile salt export 

pump; BSP, bromosulfophtalein; CCK8, cholecystokinin octapeptide sulphated; CF, carboxy-

2.7-dichlorofluorescein; CSC, cigarette smoke condensate; CYP, cytochrome P-450; DMEM, 

Dulbecco’s modified Eagle medium; DMSO, dimethyl sulfoxide; E3S, estrone-3-sulfate; EC50, 

half maximal effective concentration; IC50, half maximal inhibitory concentration; MATE, 

multidrug and toxin extrusion protein; MRP, multidrug resistance-associated protein; NNK, 4-

(methylnitrosamino)-1-(3-pyridyl)-1-butanone; NTCP, sodium-taurocholate co-transporting 

polypeptide; OAT, organic anion transporter; OATP, organic anion transporting polypeptide; 

OCT, organic cation transporter; PAH, polycyclic aromatic hydrocarbon; P-gp, P-glycoprotein; 

PBS, phosphate-buffered saline; RT-qPCR; reverse transcription-quantitative polymerase chain 

reaction; SLC, solute carrier; TCDD, 2, 3, 7 ,8-tetrachlorodibenzo-p-dioxin; TEA, tetra-

ethylammonium. 
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1. Introduction 

 Cigarette smoking is well-known to cause many diseases, including lung cancer, heart 

disease and stroke (Ezzati et al. 2005; Sasco et al. 2004). By this way, tobacco smoke is 

recognized as one leading preventable cause of death (Jha 2009). In addition, smoking cause 

alterations of pharmacokinetics and drug interactions (Kroon 2007; Li and Shi 2015; Smith 

2009). This has been primarily related to induction of liver detoxifying enzymes, including 

cytochrome P-450 (CYP) 1A1, CYP1B1, CYP1A2, CYP2B6 and glutathione S-transferases, 

by cigarette smoke chemicals (Chang et al. 2003; Eke and Iscan 2002; Schrenk et al. 1998; 

Washio et al. 2011). This results in increased metabolism of drugs like imipramine, 

meprobamate, oestrogens, pentazocine, phenylbutazone, theophylline and warfarin (Miller 

1989). Higher doses of theophylline and some antipsychotics are consequently required to reach 

an optimal plasma concentration in smokers (Sohn et al. 2015). 

Besides drug metabolizing enzymes, drug transporters, belonging to the solute carrier 

(SLC) or to the ATP-binding cassette (ABC) transporter families, constitute key-actors of the 

various steps of hepatic elimination of drugs (Giacomini et al. 2010; Kullak-Ublick et al. 2000). 

SLC transporters located at the sinusoidal pole of hepatocytes, such as organic anion 

transporting polypeptide (OATP/SLCO) 1B1 (SLCO1B1), OATP1B3 (SLCO1B3), OATP2B1 

(SLCO2B1), organic anion transporter (OAT) 2 (SLC22A7), sodium-taurocholate co-

transporting polypeptide (NTCP/SLC10A1) and organic cation transporter (OCT) 1 (SLC22A1), 

are thus implicated in uptake of drugs from blood, i.e., the so-called phase 0 of the hepatic drug 

detoxification system (van Montfoort et al. 2003). Transporters expressed at the canalicular 
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pole of hepatocytes, such as P-glycoprotein (P-gp), encoded by multidrug resistance gene 1 

(MDR1/ABCB1), bile salt export pump (BSEP/ABCB11), multidrug resistance-associated 

protein (MRP/ABCC) 2 (MRP2/ABCC2), breast cancer resistance protein (BCRP/ABCG2) and 

multidrug and toxin extrusion protein (MATE) 1 (SLC47A1), are involved in secretion of drugs 

or drug metabolites into the bile, i.e., the so-called phase 3a of liver detoxification (Funk 2008). 

Additionally, some sinusoidal ABC transporters like MRP3 (ABCC3) and MRP4 (ABCC4) can 

mediate back transport of drug metabolites into the blood for a secondary renal elimination, i.e., 

the so-called phase 3b of the hepatic drug processing (Pfeifer et al. 2014). 

 Activity and/or expression of hepatic transporters have been shown to be regulated by a 

wide range of xenobiotics (Fardel et al. 2001), leading thus to drug-drug interactions, alterations 

of pharmacokinetics and liver toxicity (Li et al. 2014; Terada and Hira 2015). Interestingly, 

some chemicals highly present in cigarette smoke such as polycyclic aromatic hydrocarbons 

(PAHs) regulate expression of some hepatic transporters like BCRP (Ebert et al. 2005), MRP4 

(Xu et al. 2010) and P-gp (Fardel et al. 1996; Mathieu et al. 2001). P-gp function is also targeted 

by tobacco smoke extracts in oral epidermal cells (Pan et al. 2009). Cigarette smoke extract 

additionally inhibits activity of the ABC transporter MRP1 (ABCC1) in lung epithelial cells 

(van der Deen et al. 2007). It is true that MRP1 is not, or only very faintly, present in hepatocytes 

(Payen et al. 2000), but this transporter shares many substrates and inhibitors with hepatic 

MRP2 (Keppler 2011). Taken together, these data suggest that cigarette smoke, that contains 

thousands of chemicals (Borgerding and Klus 2005), may interact with hepatic drug 

transporters in a notable way, as recently demonstrated for other air pollutants like diesel 

exhaust particles (Le Vee et al. 2015b). The present study was therefore designed to analyze 

regulation of hepatic drug transporter activity and expression in response to cigarette smoke 

condensate (CSC). Our data demonstrate that CSC can suppress activity of various SLC and 
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ABC transporters and also impairs expression of some of them. Such changes may participate 

to cigarette smoke-induced alteration of pharmacokinetics.  

 

2. Materials and methods 

2.1. Chemicals and reagents 

CSC, supplied by Murty Pharmaceuticals (Lexington, KY), was prepared by smoking 

University of Kentucky’s 3R4F standard research cigarettes on a Federal Trade Commission 

smoke machine (Nagaraj et al. 2006). Smoke particulates were collected on a glass fiber filter. 

The amount obtained was determined by weight increase of the filter and corresponded to a 

mean of 9.5 mg total particular matter/cigarette (Eldridge et al. 2015); nicotine represented 0.73 

mg/cigarette, i.e., 7.68 % (weight/weight) of total particular matter (Eldridge et al. 2015). CSC 

was finally prepared by dissolving the collected smoke particulates in dimethyl sulfoxide 

(DMSO) to yield a 40 mg/mL solution. Verapamil, cyclosporine A, fumitremorgin C, 

probenecid, bromosulfophtalein (BSP), rifamycin SV, phenanthrene, nicotine, 4-

aminobiphenyl, benzo(a)pyrene and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) 

were provided by Sigma-Aldrich (Saint-Quentin Fallavier, France), whereas carboxy-2.7-

dichlorofluorescein (CF) diacetate and Hoechst 33342 were from Life Technologies (Villebon 

sur Yvette, France) and 2, 3, 7 ,8-tetrachlorodibenzo-p-dioxin (TCDD) from Cambridge Isotope 

Laboratories (Cambridge, MA). [3H(G)] taurocholic acid (sp. act. 5.0 Ci/mmol), [6,7-3H(N)] 

estrone-3-sulfate (E3S) (sp. act. 54.0 Ci/mmol), [1-14C] tetra-ethylammonium (TEA) (sp. act. 

3.5 mCi/mmol) and [propionyl-3H(N)] cholecystokinin octapeptide sulphated (CCK8) (sp. act. 

101.5 Ci/mmol) were from Perkin-Elmer (Boston, MA). Mouse monoclonal antibodies against 

P-gp (clone C219), MRP2 (clone M2III-6), MRP4 (clone M4I-10) and BCRP (clone BXP21) 

were from Enzo Life Sciences (Villeurbanne, France), whereas mouse monoclonal antibody 

against heat shock cognate protein (HSC) 70 (clone B-6) was from Santa Cruz Biotechnology 
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(Dallas, TX). Mouse monoclonal antibody against aryl hydrocarbon receptor (AhR) (clone 

RPT1) was supplied by Abcam (Cambridge, United Kingdom), whereas rabbit polyclonal 

antibody raised against OATP2B1 has been previously described (Huber et al. 2007). All other 

chemicals and reagents were commercial products of the highest purity available. 

 

2.2. Cell culture 

Human highly-differentiated hepatoma HepaRG cells, which express most of hepatic drug 

transporters (Kotani et al. 2012; Le Vee et al. 2013) and are therefore well-recognized as 

surrogates of human hepatocytes in drug transporter studies (Bachour-El Azzi et al. 2015), were 

routinely cultured in Williams' E medium (Life Technologies) supplemented with 10% 

(vol/vol) fetal calf serum, 10 IU/mL penicillin, 10 μg/mL streptomycin, 5 μg/mL insulin, 2 mM 

glutamine, and 5 x 10−5 M hydrocortisone hemisuccinate. Additional culture for two weeks in 

the same medium supplemented with 2% (vol/vol) DMSO was performed in order to get a full 

hepatocytic differentiation of the cells (Gripon et al. 2002).  

P-gp overexpressing mammary MCF7R cells (Jouan et al. 2016) and MRP2-expressing 

human hepatoma HuH-7 cells (Olsavsky et al. 2007), were cultured in Dulbecco’s modified 

Eagle medium (DMEM) (Life Technologies), supplemented with 10 % (vol/vol) fetal calf 

serum, 10 IU/mL penicillin and 10 µg/mL streptomycin. BCRP-transfected cells HEK 293 

(HEK-BCRP cells) (Tournier et al. 2010), kindly donated by Dr X. Decleves (Faculty of 

Pharmacy, University Paris-Descartes, Paris, France), were cultured in DMEM supplemented 

with 10% (vol/vol) fetal calf serum, 100 IU/mL amoxicillin, 100 µg/mL erythromycin and 2 

mg/mL G418.  

HEK 293 cells overexpressing OATP1B1 (NM_006446) (HEK-OATP1B1 cells), 

OATP1B3 (NM_019844) (HEK-OATP1B3 cells), OATP2B1 (NM_007256) (HEK-OATP2B1 

cells), NTCP (NM_003049) (HEK-NTCP cells), OCT1 (NM_003057) (HEK-OCT1 cells) or 



8 
 

MATE1 (NM_018242) (HEK-MATE1 cells) were prepared by transduction of HEK 293 cells 

by a lentiviral pLV-EF1-hOATP1B1-hPGK-GFP,  pLV-EF1-hOATP1B3-hPGK-GFP, pLV-

EF1-hOATP2B1-hPGK-GFP, pLV-EF1-hNTCP-hPGK-GFP, pLV-EF1-hOCT1-hPGK-GFP 

or pLV-EF1-hMATE1-hPGK-GFP, as previously described (Mayati et al. 2015). These 

transporter-transfected cells were cultured in DMEM supplemented with 10% (vol/vol) fetal 

calf serum, 10 IU/mL penicillin, 10 µg/mL streptomycin, 1% nonessential amino acids, and 1 

µg/mL insulin. 

 

2.3. Cytotoxicity assays 

Cellular apoptosis or necrosis were investigated through cell staining with 10 μg/mL 

Hoechst 33342 and 1 μg/mL propidium iodide for 15 min at 37 °C, as previously described (Le 

Vee et al. 2014). Apoptotic cells, i.e., cells with condensed blue chromatin or fragmented blue 

nuclei, and necrotic cells, i.e., cells with red nuclei, were next counted in comparison with total 

cell population using fluorescence microscopy. 

 

2.4. SLC transporter activity 

 SLC transporter activities were analyzed through determining intracellular 

accumulation of reference radiolabeled substrates of these SLC transporters at 37°c for 5 min 

(transporter-transfected HEK 293 cells) or 10 min (HepaRG cells), in the absence or presence 

of reference inhibitors or CSC, as previously described (Le Vee et al. 2015b; Mayati et al. 

2015). The reference substrates were 40 nM taurocholate (for NTCP), 3.7 nM E3S (for 

OATP1B1 and OATP2B1), 2 nM CCK8 (for OATP1B3) and 28.6 µM TEA (for OCT1 and 

MATE1). The reference inhibitors were 100 µM BSP (for OATP1B1 and OATP2B1), 10 µM 

rifamycin SV (for OATP1B3) and verapamil (50 µM for OCT1 and 100 µM for MATE1); 

reference inhibition of NTCP was achieved through withdrawal of sodium (Le Vee et al. 
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2015a). Incubations with substrates were performed in a well-defined medium at pH adjusted 

to 7.4 (Le Vee et al. 2013), except for MATE1 for which the pH was set at 8.4 (Mayati et al. 

2015). After washing with phosphate-buffered saline (PBS), cells were finally lysed and 

intracellular accumulation of substrates was determined by scintillation counting and 

normalized to total protein content, determined by the Bradford method (Bradford 1976). Data 

were expressed as % of substrate accumulation in control cells not exposed to inhibitor or CSC. 

Data were also alternatively expressed as % of transporter activity found in control cells, 

arbitrarily set at 100%, according to the following equations: 

For OATP1B1, OATP1B3, OCT1 and MATE1: 

% SLC transporter activity =
(Accumulation+CSC - Accumulation+reference inhibitor) x 100

AccumulationControl - Accumulation+reference inhibitor 
 

with Accumulation+CSC = substrate accumulation in the presence of CSC, Accumulationcontrol = 

substrate accumulation in control cells and Accumulation+refrence inhibitor = substrate accumulation 

in the presence of a reference transporter inhibitor. 

For NTCP: 

% NTCP activity =
(Accumulation+CSC - AccumulationControl/-Na

+) x 100

AccumulationControl/+Na
+

 - AccumulationControl/-Na
+  

with Accumulation+CSC = taurocholate accumulation in the presence of CSC and sodium, 

Accumulationcontrol/+Na
+

 = taurocholate accumulation in control cells in the presence of sodium 

and Accumulationcontrol/-Na
+

 = taurocholate accumulation in control cells in the absence of 

sodium. 

 

2.5. ABC transporter activity 

 ABC transporter activities were analyzed through measuring intracellular accumulation 

or retention of fluorescent substrates of P-gp, MRP2 or BCRP, in the absence or presence of 

reference inhibitors or CSC, as previously described (Fardel et al. 2015; Le Vee et al. 2015b).  
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Briefly, for P-gp and MRP2 activities, P-gp-expressing MCF7R cells and MRP2-

expressing HuH-7 cells were incubated with 5.25 µM rhodamine 123 (P-gp substrate) or 3 µM 

diacetate ester of CF (MRP2 substrate)  for 30 min at 37°C , in the presence or absence of 100 

µM cyclosporine A (P-gp inhibitor), 2 mM probenecid (MRP2 inhibitor) or CSC. After washing 

with PBS, cells were lysed and intracellular accumulation of fluorescent dyes was determined 

by spectrofluorimetry (excitation and emission wavelengths were 485 and 535 nm, 

respectively) using a SpectraMax Gemini SX spectrofluorometer (Molecular Devices, 

Sunnyvale, CA). Data were normalized to total protein content and were expressed as % of dye 

accumulation in control cells not exposed to reference inhibitor or CSC. Data were also 

alternatively expressed as % of transporter activity found in control cells, arbitrarily set at 

100%, according to the following equation: 

% P-gp or MRP2 activity =
(Accumulation+reference inhibitor - Accumulation+CSC) x 100

Accumulation+reference inhibitor - AccumulationControl 
 

with Accumulation+CSC = substrate accumulation in the presence of CSC, Accumulationcontrol = 

substrate accumulation in control cells and Accumulation+reference inhibitor = substrate 

accumulation in the presence of a reference transporter inhibitor. 

For BCRP activity, HEK-BCRP cells were first loaded at 37°C with 16.2 µM Hoechst 

33342 (BCRP substrate) for 30 min. After washing in PBS, cells were re-incubated in Hoechst 

33342-free medium at 37°C for 90 min in the absence or presence of 10 µM fumitremorgin C 

(BCRP inhibitor) or CSC. After washing in PBS, cells were lysed and intracellular retention of 

Hoechst 33342 was next determined by spectrofluorimetry (excitation and emission 

wavelengths were 355 and 460 nm, respectively). Data were normalized to total protein content 

and were expressed as % of dye retention in control cells not exposed to fumitremorgin C or 

CSC. Data were also alternatively expressed as % of transporter activity found in control cells, 

arbitrarily set at 100%, according to the following equation: 
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% BCRP activity =
(Retention+Fumitremorgin C - Retention+CSC) x 100

Retention+Fumitremorgin C - RetentionControl 
 

with Retention+CSC = Hoechst 33342 retention in the presence of CSC, Retentioncontrol = Hoechst 

33342 retention in control cells and Retention+Fumitrtemorgin C = Hoechst 33342 retention in the 

presence of fumitremorgin C. 

 

2.6. RNA isolation and analysis 

Total RNAs were extracted using the TRI reagent (Sigma-Aldrich). RNA was then 

subjected to reverse transcription-quantitative polymerase chain reaction (RT-qPCR), using the 

RT kit from Applied Biosystems (Foster City, CA), the fluorescent dye SYBR Green 

methodology and a CFX384 real-time PCR system (Bio-Rad, Hercules, CA), as previously 

described (Le Vee et al. 2013). Gene-specific primers for drug transporters, CYP1A1, CYP1B1, 

aldehyde deshydrogenase 3A1 (ALDH3A1) and 18 S rRNA were exactly as previously reported 

(Le Vee et al. 2010; Le Vee et al. 2013). The specificity of each gene amplification was verified 

at the end of qPCR reactions through analysis of dissociation curves of the PCR products. 

Amplification curves were next analysed with CFX Manager software (Bio-Rad), using the 

comparative cycle threshold method. Relative quantification of the steady-state target mRNA 

levels was calculated after normalization of the total amount of cDNA tested to the 18S rRNA 

endogenous reference using the 2(-ΔCt) method. Data were finally expressed as fold of values 

found in untreated control cells, arbitrarily set at the value of 1 unit.   

 

2.7. RNA interference experiments 

Control non-targeting siRNAs (siNT) or siRNAs targeting AhR (siAhR), provided by 

Sigma-Aldrich and initially prepared in Opti-MEM medium (ThermoFischer Scientific, 

Waltham, MA) at a final 0.4 µM concentration, were diluted into the transfection reagent 

DharmaFECT 1 (Dharmacon, Lafayette, CO) and next incubated overnight at 37°c with 
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HepaRG cells plated in 24 wells plates (approximately 450000 cells/well). Transfected 

HepaRG cells were then maintained with Williams’ E medium, supplemented with 2% (vol/vol) 

DMSO, 10% (vol/vol) fetal calf serum, 5 µg/ml insulin, 10 IU/ml penicillin, 10 µg/ml 

streptomycin, 2 mM glutamine, and 5×10-5 M hydrocortisone hemisuccinate for 24 h before 

CSC treatment. 

 

2.8. Western blot analysis 

Total protein extracts were prepared from HepaRG cells as previously reported (van 

Grevenynghe et al. 2004). Proteins were then separated on polyacrylamide gels and 

electrophoretically transferred to nitrocellulose membranes. After blocking in Tris-buffered 

saline containing 4% bovine serum albumin, membranes were incubated overnight at 4°C with 

primary antibodies directed against transporters or AhR or against HSC70, used here as a 

loading control. Peroxidase-conjugated antibodies were thereafter used as secondary 

antibodies. After washing, immunolabeled proteins were visualized by chemiluminescence. 

Intensities of antibody-stained bands were finally measured by densitometry using ImageJ 

1.40g software (National Institute of Health, Besthesda, MA), allowing to normalize anti-

transporter or anti-AhR antibodies-related staining to anti-HCS70 antibody-labeling. 

 

2.8. Statistical analysis 

 Quantitative data were usually expressed as means ± SEM. Data were statistically 

analyzed using Student's t test, analysis of variance (ANOVA) followed by Dunnett’s or 

Newman-Keuls post-hoc test or the nonparametric Spearman's rank correlation method. The 

criterion of significance was p < 0.05. Half maximal inhibitory concentration (IC50) and half 

maximal effective concentration (EC50) values were determined using GraphPad Prism 
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software (GraphPad Software, La Jolla, CA), through nonlinear regression based on the four 

parameter logistic function. 

 

3. Results 

3.1. Effects of CSC on SLC transporters activities. 

The effects of 320 µg/mL CSC, a concentration close to those previously retained in in 

vitro studies (Allam et al. 2013; Cohen et al. 2009), on SLC transporter activities was first 

analyzed in various HEK 293 clones overexpressing hepatic SLC transporters. As shown in 

Fig. 1A, 320 µg/mL CSC markedly inhibited cellular uptake of reference substrates for 

OATP1B1 (E3S), OATP1B3 (CCK8), NTCP (taurocholate), OCT1 (TEA) and MATE1 (TEA). 

These inhibitions of SLC transporter activities triggered by CSC were similar to those caused 

by reference inhibitors (BSP for OATP1B1, rifamycin SV for OATP1B3 and verapamil for 

OCT1 and MATE1) or to withdrawal of sodium (for NTCP, whose activity is driven by sodium 

gradient) (Fig. 1A). CSC used at 320 µg/mL also inhibited OATP2B1-mediated uptake of E3S, 

but only in a minor way when compared to the reference inhibitor BSP (Fig. 1A), thus ruling 

out the hypothesis that the marked inhibitory effect of CSC towards other SLC transporters 

described above may be due to a non-specific toxicity of 320 µg/mL CSC towards HEK 293 

cells.  

To assess CSC IC50 towards SLC transporters that were markedly inhibited, i.e., 

OATP1B1, OATP1B3, NTCP, OCT1 or MATE1, dose-responses of CSC effects towards their 

activities were next characterized. As indicated in Fig. 1B, OATP1B1, OATP1B3, OCT1 and 

MATE1 were sensitive to relatively low concentrations of CSC, around 10 µg/mL, with IC50 

values ranging from 6.1 µg/mL (for MATE1) to 12.5 µg/mL (for OCT1). By contrast, much 

higher concentrations of CSC were needed to inhibit NTCP activity, with an IC50 value of 140.0 

µg/mL (Fig. 1B).  
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Effects of CSC on constitutive NTCP, OATP and OCT1 activities exhibited by HepaRG 

cells, that are well-differentiated hepatoma cells displaying functional expression of main 

uptake SLC transporters in a hepatic configuration (Le Vee et al. 2013), were further analyzed. 

CSC, used at 320 µg/mL, was found to markedly inhibit cellular uptake of the OATP substrate 

E3S, of the NTCP substrate taurocholate, and of the OCT1 substrate TEA (Fig. 2). These 

inhibitory effects of CSC in HepaRG cells were found to be similar to those caused by blocking 

the transporters through the use of reference inhibitors (BSP for OATPs and verapamil for 

OCT1) or the withdrawal of sodium (for NTCP) (Fig. 2). 

The effects of some major reference components of CSC, i.e., nicotine, NNK, 

benzo(a)pyrene, phenanthrene and 4-aminobiphenyl (van Leeuwen et al. 2005), on activities of 

OATP1B1 and OCT1, selected here as prototypical organic anion or cation transporters targeted 

by CSC, were finally characterized. As shown in Fig. 3, the PAHs benzo(a)pyrene and 

phenanthrene, used either at 10 or 100 µM, failed to impair uptake of E3S and TEA in HEK-

OATP1B1 and HEK-OCT1 cells, respectively. Similarly, NNK did not inhibit accumulation of 

TEA; this compound however enhanced uptake of E3S in HEK-OATP1B1 cells when used at 

100 µM, thus suggesting that this NNK concentration may cis-stimulate OATP1B1 activity. 

Nicotine used at 100 µM was found to decrease uptake of TEA in HEK-OCT1 cells (Fig. 3); 

by contrast, this compound, used either at 10 or 100 µM, failed to alter E3S accumulation in 

HEK-OATP1B1 cells. The chemical 4-aminobiphenyl, used at 100 µM, decreased 

accumulation of E3S and OCT1 in HEK-OATP1B1 and HEK-OCT1 cells, respectively; when 

used at a lower concentration (10 µM), 4-aminobiphenyl however did not impair accumulation 

of E3S and TEA (Fig. 3).   

 

3.2. Effects of CSC on ABC transporters activities. 
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CSC, used at 320 µg/mL, enhanced accumulation of the P-gp substrate rhodamine 123 

in P-gp-overexpressing MCF7R cells and of the MRP substrate CF in MRP2-expressing HuH-

7 cells (Fig. 4A), thus indicating that CSC most likely inhibits the efflux of dyes mediated by 

P-gp or MRP2. Accumulation levels of the fluorescent substrates were also increased by 

reference inhibitors of ABC transporters, i.e., cyclosporine A for P-gp and probenecid for 

MRP2 (Fig. 4A). 320 µg/mL CSC, like the BCRP reference inhibitor fumitremorgin C, 

additionally enhanced intracellular retention of the BCRP substrate Hoechst 33342 in HEK-

BCRP cells (Fig. 4A), thus supporting the conclusion that CSC blocks BCRP efflux activity. 

Inhibitory effects of CSC towards P-gp, MRP2 and BCRP were shown to be dose-dependent, 

with IC50 values ranging from 37.4 µg/mL (for BCRP), to 197.4 µg/mL (for MRP2) and 224.3 

µg/mL (for P-gp) (Fig. 4B). 

 

3.3. Regulation of hepatic drug transporters genes expression by CSC. 

 To analyze the potential effects of CSC on hepatic drug transporter expression, human 

hepatic HepaRG cells were exposed to 40 µg/mL CSC for 48 h. This CSC concentration was 

not cytotoxic to HepaRG cells as demonstrated by the analysis of apoptotic/necrotic cells using 

Hoechst 33342/propidium iodide assay (data not shown) and is in the range of CSC 

concentrations known to affect gene expression in various types of cultured cells, including 

human hepatic cells (Fields et al. 2005; Nagaraj et al. 2006; Xiao et al. 2015). Exposure of 

HepaRG cells to this CSC concentration markedly enhanced mRNA expression of CYP1A1, 

CYP1B1 and ALDH3A1 (Fig. 5A), that are well-known to respond to cigarette smoke (Spira 

et al. 2004), thus indicating that CSC was fully active in our experimental exposure conditions.  

CSC was found to significantly repress mRNA expression of various hepatic 

transporters like the SLC transporters OATP1B1, OATP2B1, OAT2, NTCP, OCT1 and 

MATE1 and the ABC transporter BSEP (Fig. 5B). By contrast, it increased mRNA levels of 
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MRP4 and BCRP, whereas mRNA expression of other transporters such as OATP1B3, MDR1, 

MRP2 and MRP3 remained unchanged (Fig. 5B). The effects of CSC towards mRNA 

repression of some transporters were demonstrated to be dose-dependent, with IC50 values 

around 15-20 µg/mL for most of repressed transporters such as OAT2, NTCP, OCT1 and BSEP 

and around 40 µg/mL for OATP2B1 (Fig. 6). Induction of BCRP mRNA by CSC was also 

dose-dependent, with an EC50 value of 25.2 µg/mL, in the range of those found for CYP1A1 

(EC50=14.3 µg/mL) and CYP1B1 (EC50=43.0 µg/mL) mRNA induction in CSC-treated 

HepaRG cells (Fig. 6). Besides mRNA level, protein expression of some transporters was also 

impaired by CSC. CSC thus markedly repressed OATP2B1 protein level and induced that of 

BCRP in HepaRG cells (Fig. 7). CSC however failed to significantly alter expression of P-gp, 

MRP2 and MRP4 at the protein level (Fig. 7). 

 

3.4. Contribution of AhR to CSC-mediated regulation of hepatic drug transporters expression  

  AhR is a ligand-activated transcription factor, well-known to be implicated in gene 

regulation by cigarette smoke (Gebremichael et al. 1996; Kitamura and Kasai 2007). To analyze 

its potential role in CSC-mediated regulation of hepatic drug transporters, we first compared 

the effects of CSC toward transporter mRNA levels to those caused by TCDD, a reference 

agonist for AhR (Sorg 2014). As indicated in Fig. 8A, exposure to 10 nM TCDD for 48 h 

decreased mRNA expressions of OATP1B1, OATP2B1, OAT2, NTCP, OCT1, BSEP and 

MATE1, whereas it significantly enhanced those of MRP3, MRP4 and BCRP. Transporters 

were next ranked from the most induced to the most repressed according to their mRNA 

expression level in TCDD- or CSC-treated HepaRG cells; potential correlation between the 

transporter regulation profiles was then analyzed using the Spearman's rank correlation. As 

shown in Fig. 8B, the global effect of CSC exposure on drug transporter expression in HepaRG 
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cells was found to be highly correlated to that of TCDD, suggesting that CSC and TCDD may 

share the same signaling way for regulating transporter levels, i.e., the AhR signaling pathway. 

 The consequences of AhR expression extinction on drug transporter regulation by CSC 

were next determined. In agreement with previous data (Le Vee et al. 2010), HepaRG cells 

transfected with siRNAs against AhR exhibited a marked down-regulation of AhR protein 

expression in HepaRG cells (Fig. 9A); they concomitantly displayed a huge reduction of 

CYP1A1 and CYP1B1 mRNA induction in response to CSC (Fig. 9B), thus demonstrating that 

siRNA-mediated AhR knock-down resulted in efficient suppression of the AhR signaling 

pathway in hepatic HepaRG cells. With respect to transporters, AhR silencing significantly 

counteracted the repressing effects of CSC towards OAT2 and OCT1 mRNA levels (Fig 9B). 

Repression of OATP2B1 mRNA expression by CSC was also attenuated by AhR knock-down, 

knowing that the level of statistical significance was however not reached (Fig. 9B). 

Transfection of siRNAs against AhR concomitantly and significantly abrogated CSC-mediated 

induction of MRP4 and BCRP mRNA expression, whereas CSC-triggered down-regulation of 

NTCP and BSEP were not impacted (Fig. 9B).  

 

4. Discussion 

 Previous studies have demonstrated that cigarette smoke can regulate detoxifying 

enzymes in hepatic and extra-hepatic tissues, thus causing alteration of pharmacokinetics and 

drug interactions (Kroon 2007; Li and Shi 2015). The data reported in the present work 

demonstrate that CSC can alter activity and/or expression of hepatic drug transporters (See 

Table 1 for a summary of the effects of CSC towards transporter activity and expression), thus 

fully highlighting that drug transporters also constitute molecular targets for cigarette smoke 

chemicals. 



18 
 

 Activities of sinusoidal uptake transporters such as OATP1B1, OATP1B3, NTCP and 

OCT1 as well as those of the canalicular transporters P-gp, MRP2, BCRP and MATE1 were 

thus inhibited by CSC. IC50 values however differ according to transporters, allowing to 

discriminate two groups of transporters: one, comprising OATP1B1, OATP1B3, OCT1, 

MATE1 and BCRP, corresponds to transporters strongly inhibited by CSC, with IC50 values in 

6-37 µg/mL range, and the other, comprising NTCP, P-gp and MRP2, to hepatic transporters 

more moderately inhibited by CSC, with IC50 values in 140-224 µg/mL range (Table 1). This 

difference in sensitivity of transporters to CSC, associated to the fact that at least activity of one 

hepatic transporter, i.e., OATP2B1, was only marginally impacted by CSC, discards the 

hypothesis of a general and non-discriminating inhibitory effect of CSC towards membrane 

transporter activities. Inhibitory effects of CSC towards hepatic drug transporter can rather be 

considered as specific, most likely reflecting direct and transporter-dependent interactions of 

CSC chemicals with substrate and/or regulatory binding sites on drug transporters, as classically 

thought for drug transporter inhibitors (Montanari and Ecker 2015). The exact nature of CSC 

chemicals responsible for transporter inhibition remains to be determined, knowing that it may 

differ according to transporters. Hydrophilic and/or hydrophobic nonvolatile components of 

cigarette smoke particles are likely to be involved, because CSC, that represents total particulate 

matter of smoke (Johnson et al. 2009), contains such chemicals, whereas cigarette smoke extract 

generated by bubbling cigarette smoke through culture media corresponds to only water-soluble 

smoke chemicals (Muller and Gebel 1998). With respect to inhibition of OATP1B1 and OCT1, 

a major role for PAHs, that constitute major toxic components of cigarette smoke (Rodgman et 

al. 2000), can likely be excluded owing to the fact that both benzo(a)pyrene and phenanthrene 

failed to alter E3S and TEA uptake in HEK-OATP1B1 and HEK-OCT1 cells, respectively. An 

implication of CSC-contained PAHs in MRP2 activity inhibition can similarly be discarded 

because various PAHs, including benzo(a)pyrene, phenanthrene, benzo[b]fluoranthene and 
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chrysene as well as the nitro-PAH 1-nitropyrene, failed to alter MRP2 activity (Le Vee et al. 

2015b). A role for NNK in inhibition of OATP1B1 and OCT1 seems also at first view unlikely 

because this chemical failed to decrease E3S and TEA uptake mediated by these SLC 

transporters. The fact that NNK cis-stimulated E3S uptake in HEK-OATP1B1 cells however 

indicates that this compound can interact with OATP1B1 activity. Cis-stimulation of OATP 

transporters has already been reported for other chemicals (De Bruyn et al. 2013); the molecular 

features that determine such a cis-stimulatory effect remain however very poorly characterized. 

Nicotine, which contributes in a major way to the addictive properties of tobacco smoking 

(Zaniewska et al. 2009), was found to inhibit OCT1 activity, in agreement with previous data 

(Urakami et al. 1998); by contrast, this organic cation failed to alter OATP1B1 activity. A 

participation of nicotine to inhibitory effect of CSC towards OCT1 activity may therefore be 

considered. In this context, it is noteworthy that nicotine effects on OCT1 activity were dose-

dependent and the 10 µM nicotine concentration, which is much higher than blood nicotine 

concentrations in individual smokers, that varied from 25 to 444 nM (Russell et al. 1980), was 

inactive on OCT1 activity. In vivo concentrations of nicotine in smokers are therefore very 

unlikely to contribute alone to inhibition of OCT1 activity. The same conclusion may be drawn 

for the carcinogenic aromatic amine 4-aminobiphenyl, that blocked OCT1 activity, and also 

that of OATP1B1, but only when used at a high 100 µM concentration. It should however be 

kept in mind that CSC contains probably thousands of chemicals (Borgerding and Klus 2005) 

and additive or synergic effects of some of these chemicals, including nicotine and 4-

aminobiphenyl, may be involved in inhibition of transporter activity by CSC. Moreover, the 

role of putative metabolites formed from CSC chemicals may have also to be considered. 

 Besides directly inhibiting drug transporter activity, CSC also modulated expression of 

hepatic drug transporters. Some of them were up-regulated, especially the canalicular ABC 

efflux BCRP, induced by CSC at both mRNA and protein level in HepaRG cells (Table 1). The 
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sinusoidal ABC efflux pump MRP4 was also up-regulated at the mRNA level, but not at the 

protein level (Table 1); such a discrepancy may be due to the relative weak mRNA induction 

of this transporter by CSC or, alternatively, to a divergent regulation between transcriptional 

and post-transcriptional level, as already described for cytokine- or diesel exhaust particle 

extract-mediated regulation of hepatic transporter expression (Le Vee et al. 2015b; Le Vee et 

al. 2009). CSC repressed mRNA expression of other transporters, such as the SLC transporters 

OATP1B1, OATP2B1, OAT2, NTCP and MATE1 and the canalicular ABC transporter BSEP; 

OATP2B1 protein expression was in parallel markedly decreased by CSC. By contrast, 

expression of the canalicular ABC efflux pumps P-gp and MRP2 were not altered by CSC 

treatment, both at the mRNA and protein levels; mRNA level of the sinusoidal ABC pump 

MRP3 was similarly not impacted. Overall, these CSC-induced changes in hepatic transporter 

expression correspond to a repression of most of sinusoidal SLC uptake transporters and a 

preservation or an induction of main ABC efflux pumps. They may consequently be interpreted 

as a protective mechanism of hepatic cells exposed to CSC-containing chemicals, possibly 

leading to decreased intracellular accumulation of potential toxic CSC chemicals through 

reduction of their uptake and enhancement of their efflux. BCRP induction by CSC likely 

argues in favor of this hypothesis because BCRP up-regulation may result in enhanced efflux 

of toxic PAH metabolites handled by this efflux pump (Ebert et al. 2005). 

 AhR, a well-recognized xenobiotic-sensing receptor activated by CSC-contained 

chemicals such as PAHs (Gebremichael et al. 1996; Kitamura and Kasai 2007), most likely 

plays a major role in CSC-mediated regulation of transporter expression. Indeed, the AhR 

signaling pathway was activated in CSC-exposed HepaRG cells, as demonstrated by up-

regulation of the reference AhR target genes CYP1A1, CYP1B1 and ALDH3A1. This AhR-

related induction of CYP1A1 and CYP1B1 genes occurred for CSC concentrations in the 14-

43 µg/mL range, similar to the range of CSC concentrations (14-39 µg/mL) acting on 
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transporter expression. This suggests a common signaling pathway, i.e., the AhR cascade, for 

CYP1A1/1B1 and transporter regulation by CSC. This hypothesis is reinforced by the fact that 

the profile of transporters expression changes in CSC-exposed HepaRG cells is highly 

correlated to that resulting from treatment by the reference AhR agonist TCDD. Moreover, 

siRNA-mediated knock-down of AhR expression fully supported a major implication of AhR 

in CSC-mediated mRNA regulation of several hepatic transporters, notably OAT2, OCT1, 

BCRP and MRP4, knowing that BCRP and MRP4 are already known to be targeted by the AhR 

cascade (Ebert et al. 2005; Tompkins et al. 2010; Xu et al. 2010). AhR-unrelated signaling ways 

may however additionally participate to transporter regulation by CSC, notably for CSC-

mediated-repressions of the bile acid transporters NTCP and BSEP, which were not 

counteracted by AhR knock-down.  

 The relevance of our in vitro findings to in vivo exposure to cigarette smoke chemicals 

constitutes probably a key-point that has to be clarified. It is unfortunately rather difficult to 

relate an in vitro exposure of cultured cells to CSC to a dose delivered in vivo to smokers. On 

the one hand, CSC concentrations (around 10-40 µg/mL) regulating drug transporter expression 

(Fig. 6) and inhibiting some transporters like OATP1B1, OATP1B3, OCT1 and MATE1 (Fig. 

1B) are similar to those used in previous studies with cultured cells, including human hepatic 

cells (Fields et al. 2005; Nagaraj et al. 2006; Xiao et al. 2015); they also up-regulated the drug 

metabolizing enzymes CYP1A1 and CYP1B1, that, together with other AhR targets such as 

CYP1A2, constitute key targets induced by smoking in humans (Chang et al. 2003; Dobrinas 

et al. 2011; Thum et al. 2006) and are in the range of CSC concentrations (20 to 120 µg/mL) 

previously hypothesized to be relevant for human smokers (Gao et al. 2005). On the other hand, 

10-40 µg/mL CSC corresponds to 0.768-3.072 µg/mL (4.73-18.92 µM) nicotine, when 

considering that CSC contains 7.68 % (weight/weight) nicotine (Eldridge et al. 2015), and such 

nicotine concentrations are much higher than those (25 to 444 nM) commonly described in 
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smoker blood (Russell et al. 1980). This may indirectly favor the hypothesis that 10-40 µg/mL 

CSC acting on transporters may not be reached in smokers, even if toxicokinetics features of 

nicotine and those of yet unidentified cigarette smoke chemicals targeting transporters may 

differ in a major way, bringing caution towards any extrapolation based on nicotine disposition. 

Otherwise, it should be kept in mind that cell culture models often do not exhibit all the 

differentiated and functional characteristics of the corresponding native epithelium or the entire 

organ, notably with respect to expression of antioxidant enzymes and glutathione level; in vitro 

treatment with CSC may therefore not exactly replicate in vivo responses to smoke (Xiao et al. 

2015). Additional studies should be consequently required to precisely determine whether our 

in vitro CSC concentrations are relevant for in vivo liver exposure to cigarette smoke chemicals.  

Another key point that remains to be determined corresponds to the potential deleterious 

consequences of smoking-related modulation of hepatic transporter activity or expression. 

Inhibition of OATP1B1 and OATP1B3 activity associated to repression of OATP2B1 

expression by cigarette smoke chemicals may impair hepatic uptake of drug substrates for 

OATP transporters such as statins. Alteration of statin pharmacokinetics by smoking has 

however yet not been reported, according to the best of our knowledge, even if smoking 

diminishes the beneficial effect of statins (Milionis et al. 2001). Hepatobiliary elimination of 

hormones substrates for OATPs, such as steroid and thyroid hormones, may also be 

hypothesized to be impaired by putative OATP inhibition in smokers, which may contribute to 

endocrine disruption caused by smoking (Windham et al. 2005). Finally, repression of the bile 

acid transporter BSEP by cigarette smoke components may be suspected to alter bile secretion 

and such a cholestatic effect may participate to the well-established liver toxicity of smoking 

(Corpechot et al. 2012; Zein 2010).   

In summary, CSC was shown to act as a bifunctional modulator of hepatic drug 

transporters, i.e., it inhibits their activity and alters expression of some of them. Such effects of 
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cigarette smoke chemicals may contribute to alterations of pharmacokinetics or some adverse 

effects caused by smoking. 

 

Acknowledgments 

KS was supported by a grant from AZM Association-UL (Tripoli, Lebanon).  

 

 

 

References 

Allam, E., Delacruz, K., Ghoneima, A., Sun, J. and Windsor, L.J. 2013. Effects of tobacco on 

cytokine expression from human endothelial cells. Oral Dis 19, 660-665. 

Bachour-El Azzi, P., Sharanek, A., Burban, A., Li, R., Guevel, R.L., Abdel-Razzak, Z., Stieger, 

B., Guguen-Guillouzo, C. and Guillouzo, A. 2015. Comparative Localization and 

Functional Activity of the Main Hepatobiliary Transporters in HepaRG Cells and Primary 

Human Hepatocytes. Toxicol Sci 145, 157-168. 

Borgerding, M. and Klus, H. 2005. Analysis of complex mixtures--cigarette smoke. Exp 

Toxicol Pathol 57 Suppl 1, 43-73. 

Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram 

quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248-

254. 

Chang, T.K., Chen, J., Pillay, V., Ho, J.Y. and Bandiera, S.M. 2003. Real-time polymerase 

chain reaction analysis of CYP1B1 gene expression in human liver. Toxicol Sci 71, 11-19. 

Cohen, N.A., Zhang, S., Sharp, D.B., Tamashiro, E., Chen, B., Sorscher, E.J. and Woodworth, 

B.A. 2009. Cigarette smoke condensate inhibits transepithelial chloride transport and 

ciliary beat frequency. Laryngoscope 119, 2269-2274. 



24 
 

Corpechot, C., Gaouar, F., Chretien, Y., Johanet, C., Chazouilleres, O. and Poupon, R. 2012. 

Smoking as an independent risk factor of liver fibrosis in primary biliary cirrhosis. J 

Hepatol 56, 218-224. 

De Bruyn, T., van Westen, G.J., Ijzerman, A.P., Stieger, B., de Witte, P., Augustijns, P.F. and 

Annaert, P.P. 2013. Structure-based identification of OATP1B1/3 inhibitors. Mol 

Pharmacol 83, 1257-1267. 

Dobrinas, M., Cornuz, J., Oneda, B., Kohler Serra, M., Puhl, M. and Eap, C.B. 2011. Impact of 

smoking, smoking cessation, and genetic polymorphisms on CYP1A2 activity and 

inducibility. Clin Pharmacol Ther 90, 117-125. 

Ebert, B., Seidel, A. and Lampen, A. 2005. Identification of BCRP as transporter of 

benzo[a]pyrene conjugates metabolically formed in Caco-2 cells and its induction by Ah-

receptor agonists. Carcinogenesis 26, 1754-1763. 

Eke, B.C. and Iscan, M. 2002. Effects of cigarette smoke with different tar contents on hepatic 

and pulmonary xenobiotic metabolizing enzymes in rats. Hum Exp Toxicol 21, 17-23. 

Eldridge, A., Betson, T.R., Gama, M.V. and McAdam, K. 2015. Variation in tobacco and 

mainstream smoke toxicant yields from selected commercial cigarette products. Regul 

Toxicol Pharmacol 71, 409-427. 

Ezzati, M., Henley, S.J., Thun, M.J. and Lopez, A.D. 2005. Role of smoking in global and 

regional cardiovascular mortality. Circulation 112, 489-497. 

Fardel, O., Le Vee, M., Jouan, E., Denizot, C. and Parmentier, Y. 2015. Nature and uses of 

fluorescent dyes for drug transporter studies. Expert Opin Drug Metab Toxicol 11, 1233-

1251. 

Fardel, O., Lecureur, V., Corlu, A. and Guillouzo, A. 1996. P-glycoprotein induction in rat liver 

epithelial cells in response to acute 3-methylcholanthrene treatment. Biochem Pharmacol 

51, 1427-1436. 



25 
 

Fardel, O., Payen, L., Courtois, A., Vernhet, L. and Lecureur, V. 2001. Regulation of biliary 

drug efflux pump expression by hormones and xenobiotics. Toxicology 167, 37-46. 

Fields, W.R., Leonard, R.M., Odom, P.S., Nordskog, B.K., Ogden, M.W. and Doolittle, D.J. 

2005. Gene expression in normal human bronchial epithelial (NHBE) cells following in 

vitro exposure to cigarette smoke condensate. Toxicol Sci 86, 84-91. 

Funk, C. 2008. The role of hepatic transporters in drug elimination. Expert Opin Drug Metab 

Toxicol 4, 363-379. 

Gao, S., Chen, K., Zhao, Y., Rich, C.B., Chen, L., Li, S.J., Toselli, P., Stone, P. and Li, W. 

2005. Transcriptional and posttranscriptional inhibition of lysyl oxidase expression by 

cigarette smoke condensate in cultured rat fetal lung fibroblasts. Toxicol Sci 87, 197-203. 

Gebremichael, A., Tullis, K., Denison, M.S., Cheek, J.M. and Pinkerton, K.E. 1996. Ah-

receptor-dependent modulation of gene expression by aged and diluted sidestream cigarette 

smoke. Toxicol Appl Pharmacol 141, 76-83. 

Giacomini, K.M., Huang, S.M., Tweedie, D.J., Benet, L.Z., Brouwer, K.L., Chu, X., Dahlin, 

A., Evers, R., Fischer, V., Hillgren, K.M., Hoffmaster, K.A., Ishikawa, T., Keppler, D., 

Kim, R.B., Lee, C.A., Niemi, M., Polli, J.W., Sugiyama, Y., Swaan, P.W., Ware, J.A., 

Wright, S.H., Yee, S.W., Zamek-Gliszczynski, M.J. and Zhang, L. 2010. Membrane 

transporters in drug development. Nat Rev Drug Discov 9, 215-236. 

Gripon, P., Rumin, S., Urban, S., Le Seyec, J., Glaise, D., Cannie, I., Guyomard, C., Lucas, J., 

Trepo, C. and Guguen-Guillouzo, C. 2002. Infection of a human hepatoma cell line by 

hepatitis B virus. Proc Natl Acad Sci U S A 99, 15655-15660. 

Huber, R.D., Gao, B., Sidler Pfandler, M.A., Zhang-Fu, W., Leuthold, S., Hagenbuch, B., 

Folkers, G., Meier, P.J. and Stieger, B. 2007. Characterization of two splice variants of 

human organic anion transporting polypeptide 3A1 isolated from human brain. Am J 

Physiol Cell Physiol 292, C795-806. 



26 
 

Jha, P. 2009. Avoidable global cancer deaths and total deaths from smoking. Nat Rev Cancer 

9, 655-664. 

Johnson, M.D., Schilz, J., Djordjevic, M.V., Rice, J.R. and Shields, P.G. 2009. Evaluation of 

in vitro assays for assessing the toxicity of cigarette smoke and smokeless tobacco. Cancer 

Epidemiol Biomarkers Prev 18, 3263-3304. 

Jouan, E., Le Vee, M., Mayati, A., Denizot, C., Parmentier, Y. and Fardel, O. 2016. Evaluation 

of P-glycoprotein inhibitory potential using a rhodamine 123 accumulation assay. 

Pharmaceutics 8, 12. 

Keppler, D. 2011. Multidrug resistance proteins (MRPs, ABCCs): importance for 

pathophysiology and drug therapy. Handb Exp Pharmacol, 299-323. 

Kitamura, M. and Kasai, A. 2007. Cigarette smoke as a trigger for the dioxin receptor-mediated 

signaling pathway. Cancer Lett 252, 184-194. 

Kotani, N., Maeda, K., Debori, Y., Camus, S., Li, R., Chesne, C. and Sugiyama, Y. 2012. 

Expression and transport function of drug uptake transporters in differentiated HepaRG 

cells. Mol Pharm 9, 3434-3441. 

Kroon, L.A. 2007. Drug interactions with smoking. Am J Health Syst Pharm 64, 1917-1921. 

Kullak-Ublick, G.A., Beuers, U. and Paumgartner, G. 2000. Hepatobiliary transport. J Hepatol 

32, 3-18. 

Le Vee, M., Jouan, E., Denizot, C., Parmentier, Y. and Fardel, O. 2015a. Analysis of Sinusoidal 

Drug Uptake Transporter Activities in Primary Human Hepatocytes. Methods Mol Biol 

1250, 287-302. 

Le Vee, M., Jouan, E. and Fardel, O. 2010. Involvement of aryl hydrocarbon receptor in basal 

and 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced expression of target genes in primary 

human hepatocytes. Toxicol In Vitro 24, 1775-1781. 



27 
 

Le Vee, M., Jouan, E., Stieger, B., Lecureur, V. and Fardel, O. 2015b. Regulation of human 

hepatic drug transporter activity and expression by diesel exhaust particle extract. PLoS 

One 10, e0121232. 

Le Vee, M., Kolasa, E., Jouan, E., Collet, N. and Fardel, O. 2014. Differentiation of human 

placental BeWo cells by the environmental contaminant benzo(a)pyrene. Chem Biol 

Interact 210, 1-11. 

Le Vee, M., Lecureur, V., Stieger, B. and Fardel, O. 2009. Regulation of drug transporter 

expression in human hepatocytes exposed to the proinflammatory cytokines tumor necrosis 

factor-alpha or interleukin-6. Drug Metab Dispos 37, 685-693. 

Le Vee, M., Noel, G., Jouan, E., Stieger, B. and Fardel, O. 2013. Polarized expression of drug 

transporters in differentiated human hepatoma HepaRG cells. Toxicol In Vitro 27, 1979-

1986. 

Li, H. and Shi, Q. 2015. Drugs and Diseases Interacting with Cigarette Smoking in US 

Prescription Drug Labelling. Clin Pharmacokinet 54, 493-501. 

Li, R., Barton, H.A. and Varma, M.V. 2014. Prediction of pharmacokinetics and drug-drug 

interactions when hepatic transporters are involved. Clin Pharmacokinet 53, 659-678. 

Mathieu, M.C., Lapierre, I., Brault, K. and Raymond, M. 2001. Aromatic hydrocarbon receptor 

(AhR).AhR nuclear translocator- and p53-mediated induction of the murine multidrug 

resistance mdr1 gene by 3-methylcholanthrene and benzo(a)pyrene in hepatoma cells. J 

Biol Chem 276, 4819-4827. 

Mayati, A., Bruyere, A., Moreau, A., Jouan, E., Denizot, C., Parmentier, Y. and Fardel, O. 

2015. Protein Kinase C-Independent Inhibition of Organic Cation Transporter 1 Activity 

by the Bisindolylmaleimide Ro 31-8220. PLoS One 10, e0144667. 

Milionis, H.J., Rizos, E. and Mikhailidis, D.P. 2001. Smoking diminishes the beneficial effect 

of statins: observations from the landmark trials. Angiology 52, 575-587. 



28 
 

Miller, L.G. 1989. Recent developments in the study of the effects of cigarette smoking on 

clinical pharmacokinetics and clinical pharmacodynamics. Clin Pharmacokinet 17, 90-108. 

Montanari, F. and Ecker, G.F. 2015. Prediction of drug-ABC-transporter interaction--Recent 

advances and future challenges. Adv Drug Deliv Rev 86, 17-26. 

Muller, T. and Gebel, S. 1998. The cellular stress response induced by aqueous extracts of 

cigarette smoke is critically dependent on the intracellular glutathione concentration. 

Carcinogenesis 19, 797-801. 

Nagaraj, N.S., Beckers, S., Mensah, J.K., Waigel, S., Vigneswaran, N. and Zacharias, W. 2006. 

Cigarette smoke condensate induces cytochromes P450 and aldo-keto reductases in oral 

cancer cells. Toxicol Lett 165, 182-194. 

Olsavsky, K.M., Page, J.L., Johnson, M.C., Zarbl, H., Strom, S.C. and Omiecinski, C.J. 2007. 

Gene expression profiling and differentiation assessment in primary human hepatocyte 

cultures, established hepatoma cell lines, and human liver tissues. Toxicol Appl Pharmacol 

222, 42-56. 

Pan, W.C., Chen, R.M., Shen, Y.C., Chen, C.C. and Ueng, Y.F. 2009. Suppressive effect of 

tobacco smoke extracts on oral P-glycoprotein function and its impact in smoke-induced 

insult to oral epidermal cells. Toxicol Lett 185, 116-123. 

Payen, L., Courtois, A., Campion, J.P., Guillouzo, A. and Fardel, O. 2000. Characterization and 

inhibition by a wide range of xenobiotics of organic anion excretion by primary human 

hepatocytes. Biochem Pharmacol 60, 1967-1975. 

Pfeifer, N.D., Hardwick, R.N. and Brouwer, K.L. 2014. Role of hepatic efflux transporters in 

regulating systemic and hepatocyte exposure to xenobiotics. Annu Rev Pharmacol Toxicol 

54, 509-535. 

Rodgman, A., Smith, C.J. and Perfetti, T.A. 2000. The composition of cigarette smoke: a 

retrospective, with emphasis on polycyclic components. Hum Exp Toxicol 19, 573-595. 



29 
 

Russell, M.A., Jarvis, M., Iyer, R. and Feyerabend, C. 1980. Relation of nicotine yield of 

cigarettes to blood nicotine concentrations in smokers. Br Med J 280, 972-976. 

Sasco, A.J., Secretan, M.B. and Straif, K. 2004. Tobacco smoking and cancer: a brief review 

of recent epidemiological evidence. Lung Cancer 45 Suppl 2, S3-9. 

Schrenk, D., Brockmeier, D., Morike, K., Bock, K.W. and Eichelbaum, M. 1998. A distribution 

study of CYP1A2 phenotypes among smokers and non-smokers in a cohort of healthy 

Caucasian volunteers. Eur J Clin Pharmacol 53, 361-367. 

Smith, R.G. 2009. An appraisal of potential drug interactions in cigarette smokers and alcohol 

drinkers. J Am Podiatr Med Assoc 99, 81-88. 

Sohn, H.S., Kim, H., Song, I.S., Lim, E., Kwon, M., Ha, J.H. and Kwon, J.W. 2015. Evidence 

supporting the need for considering the effects of smoking on drug disposition and 

effectiveness in medication practices: a systematic narrative review. Int J Clin Pharmacol 

Ther 53, 621-634. 

Sorg, O. 2014. AhR signalling and dioxin toxicity. Toxicol Lett 230, 225-233. 

Spira, A., Beane, J., Shah, V., Liu, G., Schembri, F., Yang, X., Palma, J. and Brody, J.S. 2004. 

Effects of cigarette smoke on the human airway epithelial cell transcriptome. Proc Natl 

Acad Sci U S A 101, 10143-10148. 

Terada, T. and Hira, D. 2015. Intestinal and hepatic drug transporters: pharmacokinetic, 

pathophysiological, and pharmacogenetic roles. J Gastroenterol 50, 508-519. 

Thum, T., Erpenbeck, V.J., Moeller, J., Hohlfeld, J.M., Krug, N. and Borlak, J. 2006. 

Expression of xenobiotic metabolizing enzymes in different lung compartments of smokers 

and nonsmokers. Environ Health Perspect 114, 1655-1661. 

Tompkins, L.M., Li, H., Li, L., Lynch, C., Xie, Y., Nakanishi, T., Ross, D.D. and Wang, H. 

2010. A novel xenobiotic responsive element regulated by aryl hydrocarbon receptor is 



30 
 

involved in the induction of BCRP/ABCG2 in LS174T cells. Biochem Pharmacol 80, 

1754-1761. 

Tournier, N., Chevillard, L., Megarbane, B., Pirnay, S., Scherrmann, J.M. and Decleves, X. 

2010. Interaction of drugs of abuse and maintenance treatments with human P-glycoprotein 

(ABCB1) and breast cancer resistance protein (ABCG2). Int J Neuropsychopharmacol 13, 

905-915. 

Urakami, Y., Okuda, M., Masuda, S., Saito, H. and Inui, K.I. 1998. Functional characteristics 

and membrane localization of rat multispecific organic cation transporters, OCT1 and 

OCT2, mediating tubular secretion of cationic drugs. J Pharmacol Exp Ther 287, 800-805. 

van der Deen, M., de Vries, E.G., Visserman, H., Zandbergen, W., Postma, D.S., Timens, W. 

and Timmer-Bosscha, H. 2007. Cigarette smoke extract affects functional activity of MRP1 

in bronchial epithelial cells. J Biochem Mol Toxicol 21, 243-251. 

van Grevenynghe, J., Sparfel, L., Le Vee, M., Gilot, D., Drenou, B., Fauchet, R. and Fardel, O. 

2004. Cytochrome P450-dependent toxicity of environmental polycyclic aromatic 

hydrocarbons towards human macrophages. Biochem Biophys Res Commun 317, 708-

716. 

van Leeuwen, D.M., Gottschalk, R.W., van Herwijnen, M.H., Moonen, E.J., Kleinjans, J.C. and 

van Delft, J.H. 2005. Differential gene expression in human peripheral blood mononuclear 

cells induced by cigarette smoke and its constituents. Toxicol Sci 86, 200-210. 

van Montfoort, J.E., Hagenbuch, B., Groothuis, G.M., Koepsell, H., Meier, P.J. and Meijer, 

D.K. 2003. Drug uptake systems in liver and kidney. Curr Drug Metab 4, 185-211. 

Washio, I., Maeda, M., Sugiura, C., Shiga, R., Yoshida, M., Nonen, S., Fujio, Y. and Azuma, 

J. 2011. Cigarette smoke extract induces CYP2B6 through constitutive androstane receptor 

in hepatocytes. Drug Metab Dispos 39, 1-3. 



31 
 

Windham, G.C., Mitchell, P., Anderson, M. and Lasley, B.L. 2005. Cigarette smoking and 

effects on hormone function in premenopausal women. Environ Health Perspect 113, 1285-

1290. 

Xiao, Y., Word, B., Lyn-Cook, L., Jr., Lyn-Cook, B. and Hammons, G. 2015. Cigarette smoke 

condensate and individual constituents modulate DNA methyltransferase expression in 

human liver cells. SAGE Open Med 3, 2050312115578317. 

Xu, S., Weerachayaphorn, J., Cai, S.Y., Soroka, C.J. and Boyer, J.L. 2010. Aryl hydrocarbon 

receptor and NF-E2-related factor 2 are key regulators of human MRP4 expression. Am J 

Physiol Gastrointest Liver Physiol 299, G126-135. 

Zaniewska, M., Przegalinski, E. and Filip, M. 2009. Nicotine dependence - human and animal 

studies, current pharmacotherapies and future perspectives. Pharmacol Rep 61, 957-965. 

Zein, C.O. 2010. Clearing the smoke in chronic liver diseases. Hepatology 51, 1487-1490. 

 

  



32 
 

Legends to figures 

 

Fig. 1. Effects of CSC on hepatic SLC transporter activities.  

(A) SLC transporter-overexpressing HEK 293 cells were incubated for 5 min with reference 

radiolabeled substrates (E3S for OATP1B1 and OATP2B1, CCK8 for OATP1B3, taurocholate 

(TC) for NTCP and TEA for OCT1 and MATE1) in the absence (control/CTR) or the presence 

of 320 µg/mL CSC; reference inhibitions of transporter activities were obtained in parallel 

through addition of 100 µM BSP (for OATP1B1 and OATP2B1), 10 µM rifamycin SV 

(RIFSV) (for OATP1B3), 50 µM verapamil (VRP) (for OCT1) or 100 µM verapamil (MATE1) 

or withdrawal of sodium (NTCP). Intracellular accumulations of substrates were then 

determined by scintillation counting. Data are expressed as percentage of substrate uptake in 

control cells and are the means + SEM of at least three independent assays. *, p<0.05 when 

compared to control cells. (B) SLC transporter-overexpressing cells were incubated with 

radiolabeled substrates in the absence or presence of various CSC concentrations; reference 

inhibitions of transporter activities were done in parallel as described above. SLC transporter 

activities were then calculated as described in Materials and Methods and are expressed as 

percentage of those found in control cells not exposed to CSC, arbitrarily set at 100%. Data are 

the means + SEM of at least three independent assays. CSC IC50 values are indicated on the top 

of each graph. 

 

Fig. 2. Effect of CSC on OATP, NTCP and OCT1 activities in human hepatoma HepaRG cells.  

HepaRG cells were incubated for 10 min with reference radiolabeled substrates (E3S for 

OATPs, taurocholate (TC) for NTCP and TEA for OCT1) in the absence (control/CTR) or the 

presence of 320 µg/mL CSC; reference inhibitions of transporter activities were obtained in 

parallel through addition of 100 µM BSP (OATPs) or 50 µM verapamil (VRP) (OCT1) or 



33 
 

withdrawal of sodium (NTCP). Intracellular accumulations of substrates were then determined 

by scintillation counting. Data are expressed as percentage of substrate uptake in control cells 

and are the means + SEM of at least three independent assays. *, p<0.05 when compared to 

control cells. 

 

Fig. 3. Effects of some cigarette smoke chemical components on OATP1B1 and OCT1 

activities. 

HEK-OATP1B1 and HEK-OCT1 cells were incubated for 5 min with reference radiolabeled 

substrates (E3S for OATP1B1 and TEA for OCT1) in the absence (control/CTR) or the 

presence of chemical components of cigarette smoke (nicotine, NNK, benzo(a)pyrene, 

phenanthrene and 4-aminobiphenyl), used at 10 and 100 µM, or of reference inhibitors (100 

µM BSP for OATP1B1 and 50 µM verapamil (VRP) for OCT1). Intracellular accumulations 

of substrates were next determined by scintillation counting. Data are expressed as percentage 

of substrate uptake in control cells and are the means + SEM of at least three independent 

assays. *, p<0.05 when compared to control cells. 

 

Fig. 4. Effects of CSC on hepatic ABC transporter activities. 

(A) P-gp, MRP2 and BCRP activities were determined through measurement of rhodamine 123 

accumulation, CF accumulation and Hoechst 33342 retention in ABC transporter-expressing 

cell lines, i.e., MCF7R (for P-gp activity), HuH-7 (for MRP2 activity) and HEK-BCRP (for 

BCRP activity), in the absence (control/CTR) or presence of 320 μg/mL CSC, as reported in 

the Material and Methods. Reference inhibitions of transporter activities were obtained in 

parallel through addition of 100 μM cyclosporine A (CSA) (P-gp inhibition), 2 mM probenecid 

(PBN) (MRP2 inhibition) or 10 μM fumitremorgin C (FTC) (BCRP inhibition). Data are 

expressed as percentage of dye accumulation (P-gp and MRP2 activities) or dye retention 
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(BCRP activity) found in control untreated cells; they are the means ± SEM of at least three 

independent experiments. *, p<0.05 when compared to control cells. (B) P-gp, MRP2 and 

BCRP activities were determined in ABC transporter-expressing cells as described above, in 

the absence or presence of various concentrations of CSC or of reference inhibitors. ABC 

transporter activities were next calculated as described in Materials and Methods and are 

expressed as percentage of those found in control cells not exposed to CSC, arbitrarily set at 

100%. Data are the means + SEM of at least three independent assays. CSC IC50 values are 

indicated on the top of each graph. 

 

Fig. 5. Regulation of hepatic drug transporter mRNA expression by CSC.  

Human highly-differentiated hepatoma HepaRG cells were either untreated or exposed to 40 

µg/mL CSC for 48 h. (A) CYP1A1, CYP1B1 and ALDH3A1 and (B) drug transporter mRNA 

expression was next analyzed by RTqPCR. Data are expressed as fold factor of mRNA 

expression found in untreated cells, indicated by a dotted line, and are the means ± SEM of four 

independent assays. *, p<0.05 when compared to control untreated cells.   

 

Fig. 6. Concentration-dependent effects of CSC on drug transporter mRNA expression.  

Differentiated HepaRG cells were either untreated or exposed to various concentrations of CSC 

(from 0.1 to 160 µg/mL) for 48 h. (A) CYP1A1, CYP1B1 and drug transporter mRNA 

expression was next analyzed by RTqPCR. Data are expressed as fold factor of mRNA 

expression found in untreated cells and are the means ± SEM of four independent assays. *, 

p<0.05 when compared to control untreated cells.   

 

Fig. 7. Regulation of hepatic drug transporter protein expression by CSC. 



35 
 

HepaRG cells were either untreated or exposed to 40 µg/mL CSC for 48 h. Transporter protein 

levels were then determined by Western-blot analysis. (A) A representative blot is shown for 

each transporter. (B) For each transporter, data were quantified by densitometric analysis, 

normalized to HSC70 staining and expressed relative to transporter expression found in 

untreated cells, arbitrarily set at the value of 100% and indicated by a dotted line; they are the 

means ± SEM of values from three independent assays. *, p<0.05 when compared to untreated 

cells. 

 

Fig. 8. Correlation of CSC- and TCDD-induced changes of drug transporter mRNA levels. 

(A) HepaRG cells were either untreated or exposed to 10 nM TCDD for 48 h. Drug transporter 

mRNA expression was next evaluated by RT-qPCR. Data are expressed as percentage of 

transporter expression found in control untreated cells, arbitrarily set at the value of 100% and 

indicated by a dotted line; they are the means ± SEM of three independent assays. *, p<0.05 

when compared to untreated control cells. (B) Drug transporters were ranked according to 

regulation of their mRNA expression in response to a 48-h treatment by 40 μg/mL CSC or 10 

nM TCDD. For this purpose, transporters were ranked for each treatment from the most induced 

transporter to the most repressed, from data from Fig. 5B and Fig. 8A. Correlation was analyzed 

using the Spearman's rank correlation method. Spearman's rank coefficients (ρ) and p values 

are provided on the top of the correlation graph. 

 

Fig. 9. Effects of AhR silencing on CSC-mediated regulation of drug transporter mRNA 

expression. 

HepaRG cells were transfected with siRNAs against AhR (siAhR) or with non-targeting siRNA 

(siNT). (A) AhR expression was then determined by Western-blot analysis. Left panel, a 

representative blot is shown. Right panel, AhR expression was quantified by densitometric 
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analysis, normalized to HCS70 staining and expressed relative to AhR expression found in 

siNT-transfected cells, arbitrarily set at the value of 100%; the results are the means ± SEM of 

values from three independent assays. *, p<0.05 when compared to untreated cells. (B) siAhR- 

and siNT-transfected HepaRG cells were either untreated (control/CTR) or treated by 40 µg/mL 

CSC for 48 h. CYP1A1, CYP1B1 and drug transporter mRNA expression was then determined 

by RT-qPCR. Data are expressed as fold factor comparatively to mRNA levels found in control 

untreated siNT-transfected cells and are the means ± SEM of at least three independent assays. 

*, p < 0.05. 
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Table 1: Summary of CSC effects on hepatic drug transporter activity and expression 

astrong inhibition: IC50 values in the 6-37 µg/mL range for CSC; moderate inhibition:  IC50 values in the 

140-224 µg/mL range for CSC; marginal inhibition: inhibition by less than 50% for 320 µg/mL CSC. 
bND: not determined. 

 

Transporter Activitya Expression 
            mRNA                               Protein 

OATP1B1 Strong inhibition Repression  NDb 

OATP1B3 Strong inhibition No change ND 

OATP2B1 Marginal inhibition Repression Repression 

OAT2 ND Repression ND 

NTCP Moderate inhibition Repression ND 

OCT1 Strong inhibition Repression ND 

MATE1 Strong inhibition Repression ND 

MDR1/P-gp Moderate inhibition No change No change 

BSEP ND Repression ND 

MRP2 Moderate inhibition No change No change 

MRP3 ND No change ND 

MRP4 ND Induction No change 

BCRP Strong inhibition Induction Induction 


