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Many birds fly non-stop for days or longer, but do they sleep in flight and if so, how? It is

commonly assumed that flying birds maintain environmental awareness and aerodynamic

control by sleeping with only one eye closed and one cerebral hemisphere at a time. However,

sleep has never been demonstrated in flying birds. Here, using electroencephalogram

recordings of great frigatebirds (Fregata minor) flying over the ocean for up to 10 days, we

show that they can sleep with either one hemisphere at a time or both hemispheres

simultaneously. Also unexpectedly, frigatebirds sleep for only 0.69 h d� 1 (7.4% of the time

spent sleeping on land), indicating that ecological demands for attention usually exceed the

attention afforded by sleeping unihemispherically. In addition to establishing that birds can

sleep in flight, our results challenge the view that they sustain prolonged flights by obtaining

normal amounts of sleep on the wing.
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A
diverse array of birds, including swifts1–4, sandpipers5,6,

songbirds7–10 and seabirds11–13, engage in non-stop
flights lasting several days, weeks, or longer. Given the

adverse effects of sleep loss experienced by most animals14 it is
commonly assumed that birds fulfil their daily need for sleep on
the wing15. However, the recent discovery that some birds can
perform adaptively for several weeks despite greatly reducing the
time spent sleeping16 raised the possibility that birds forgo sleep
altogether during long flights. Consequently, evidence of
prolonged flights is not by default evidence of sleep in flight—
neurophysiological recordings of the changes in brain activity that
characterize sleep are required to answer this question.
Furthermore, such recordings are needed to establish the
amount, intensity, and types of sleep, and the potential
implications that flight-related sleep adaptations have for
understanding the functions of sleep. Due to the absence of
recordings of brain activity during long flights, it is unknown
whether birds sleep on the wing15.

On land, birds can switch from sleeping with both hemispheres
simultaneously to sleeping with one hemisphere at a time in
response to changing ecological demands17,18. During such
unihemispheric slow wave sleep (USWS) birds keep the eye
connected to the awake hemisphere open and directed toward
potential threats. Dolphins also use USWS to monitor their
environment and can swim during this state19. Consequently,
flying birds might rely on USWS to maintain environmental
awareness and aerodynamic control of the wings, while obtaining
the sleep needed to sustain attention during wakefulness. We
tested this hypothesis in great frigatebirds (Fregata minor).

As Darwin observed during his voyage to the Galápagos
Islands20, frigatebirds are not known to rest on the water despite
spending weeks to months flying over the ocean12,13,21. Their
long wings, poorly webbed feet and reduced feather
waterproofing make taking off difficult following more than
momentary contact with the water. To catch food, great
frigatebirds rely on large predatory fish and cetaceans to drive
prey, such as flying-fish and -squid, to and above the surface12.
Although previous studies detected potential feeding episodes
(that is, slow flight near the surface) primarily during the day12,21,
under favourable conditions feeding also may occur at night22,
as frigatebirds follow ocean eddies predictive of foraging
opportunities during the day and night23. Consequently,
frigatebirds face ecological demands for wakefulness 24/7 while
over the ocean.

By recording the brain activity of frigatebirds flying over the
ocean, we demonstrate that they can sleep in flight with one
hemisphere at a time or both together. Although frigatebirds
engage in both types of sleep on the wing, sleep is more
asymmetric in flight than when on land. Frigatebirds sleep mostly
while circling in rising air currents and keep the eye connected to
the awake hemisphere facing the direction of flight, suggesting
that they use unihemispheric sleep to watch where they are going.
Despite being able to sleep on the wing, when compared with
sleep on land flying frigatebirds sleep very little, in shorter bouts,
and less deeply, suggesting that frigatebirds face ecological
demands for attention that usually cannot be met through
sleeping unihemispherically. The ability to sustain cognitive
performance on limited sleep challenges the dominant view that
large daily amounts of sleep are required to maintain adaptive
performance.

Results
Flight behaviour of frigatebirds. We used a data logging
device (Neurologger 2A) designed for recording the electro-
encephalogram (EEG) of flying homing pigeons24 combined with
a three-dimensional (3D) accelerometer25 to record brain activity

and head movements in breeding female great frigatebirds
(Fig. 1a) flying over the Pacific Ocean (N¼ 14) and after
returning to their nest on Genovesa Island (Galápagos, N¼ 9).
For each hemisphere, the EEG was recorded from the
hyperpallium, a primary visual area (Fig. 1b). In addition, the
birds’ movements and altitude were recorded with GPS data
loggers. All birds engaged in one or two trips over the
ocean (1.21±0.12, s.e.m.) lasting up to 10 days (5.76±0.67 d,
s.e.m.; range, 0.26–10.02 d; see Supplementary Figs 1–8) and
spanning up to 3,000 km (1988.45±186.33 km, s.e.m.; range,
128.75–3001.42 km). Most birds completed a roughly clockwise
loop over the ocean north-east of the Galápagos Islands (Fig. 1c).
The birds spent less time flapping at night (7.31±0.59%, s.e.m.)
than during the day (13.49±0.53%; P¼ 6.0� 10� 7; paired
two-tailed Student’s t-test; Supplementary Fig. 9a,c). The
frigatebirds’ altitude peaked in the hour before sunset and
decreased across the night (Supplementary Fig. 9b). On average,
the birds’ altitude did not differ between the day (137.9±4.7 m,
s.e.m.) and night (136.5±3.8 m; Po0.78). Periods of potential
foraging (flight below 20 m) occurred primarily during the day
(Supplementary Fig. 9c). During the day and night the birds
occasionally ascended (1.45±0.15 ascents per day, s.e.m.) to
markedly higher altitudes (905.9±25.4 m for ascents 4600 m;
maximum range 1013.6–1459.7 m; Supplementary Figs 9b
and 10; see also Supplementary Discussion). As previously
reported13,21,26, the typical flight pattern of frigatebirds consists
of circular rising on thermals (soaring) followed by straight
gliding down (Fig. 1d, Supplementary Movie 1). These flight
modes are reflected in the accelerometry recordings by centripetal
acceleration (Fig. 1e; Methods). Circling and straight flight,
as determined from a head-mounted accelerometer in great
frigatebirds, were associated with slower and faster airspeeds,
respectively (5.40±0.23 versus 8.59±0.21 m s� 1, s.e.m.,
P¼ 2.6� 10� 8, paired two-tailed Student’s t-test). Time spent
circling increased across the day and decreased across the night
(P¼ 2.4� 10� 6 and P¼ 1.8� 10� 7 for the respective linear
trends, Supplementary Fig. 9c), likely reflecting diel variation in
the availability of thermals. The birds circled to the left and to the
right in equal amounts (Supplementary Fig. 11) and with equal
centripetal acceleration (P¼ 0.27, paired two-tailed Student’s
t-test).

Sleep in flight. The EEG patterns in flight were similar to those
observed on land and in other birds. When gliding during the
day, the EEG showed low-amplitude and high-frequency activity
typical of alert wakefulness. In addition, frequent high-amplitude
signals occurred in conjunction with rapid head movements,
likely reflecting visual processing in the hyperpallium27 during
active searching for foraging opportunities. The rapid head
movements and associated potentials in the EEG gradually
disappeared and reappeared within the first hour after sunset and
the hour before sunrise, respectively. During flapping flight at
night, the EEG showed a pattern indicative of wakefulness in both
hemispheres occasionally punctuated by isolated high-amplitude,
slow waves (Fig. 2a). During flight without flapping, the
wakefulness pattern usually persisted, but was occasionally
replaced by continuous high-amplitude, slow waves (Fig. 2a).
These slow waves were not correlated with fine head movements
detected by the accelerometer, and were absent during
much larger movements associated with flapping (Fig. 2a).
Consequently, this EEG activity reflects slow wave sleep (SWS)
rather than movement artifacts. During circling flight, the angle
of the bill relative to the horizon increased slightly in SWS
when compared with wakefulness (Po0.004, paired two-tailed
Student’s t-test), perhaps as a result of the birds drawing their
heads up and into the body during sleep, as observed on land
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(Supplementary Fig. 12). On rare occasions, bouts of SWS were
interrupted by brief episodes of apparent rapid eye movement
(REM) sleep characterized by EEG activity in both hemispheres
similar to alert wakefulness, dropping of the head, and twitching
like that frequently observed during REM sleep on land (Fig. 2a,
Supplementary Fig. 13; see also Supplementary Discussion).
The birds typically ascended during SWS (rate of climb,
0.154±0.022 m s� 1, s.e.m.) and descended during wakefulness
(rate of climb, � 0.0046±0.0011 m s� 1; P¼ 9.1� 10� 6,
paired two-tailed Student’s t-test), with SWS occurring at
higher altitudes than wakefulness (159.4±5.8 m, s.e.m.,
and 135.3±4.0 m, respectively; P¼ 0.0017, paired two-tailed
Student’s t-test; Supplementary Movies 2 and 3).

Asymmetric sleep linked to circling flight. The interhemispheric
asymmetry in EEG slow wave activity (SWA; 0.75–4.5 Hz power)
varied during SWS in flight. To quantify the frigatebirds’

utilization of USWS, we used an asymmetry index [AI¼ (left
hemisphere SWA–right hemisphere SWA)/(left hemisphere
SWAþ right hemisphere SWA)] to categorized SWS as
bihemispheric (BSWS; � 0.3oAIo0.3) or asymmetric (ASWS;
� 0.3ZAIZ0.3), with an absolute AIZ0.6 indicating USWS28.
All types of SWS occurred in flight (Fig. 2a,b). The percentage of
SWS consisting of ASWS was higher in flight (71.57±3.96%,
s.e.m.) than on land (47.64±2.38%; Po0.002, paired two-tailed
Student’s t-test), as was the percentage of ASWS consisting of
USWS (flight, 47.27±5.30%; land, 24.96±2.26%; Po0.003,
paired two-tailed Student’s t-test). Even though SWS was more
asymmetric in flight, the presence of BSWS on the wing indicates
that ASWS is not required to maintain the aerodynamic control
of soaring or gliding flight and therefore likely serves other
functions.

Due to the nearly complete crossing of input from the eyes, the
eye opposite the more awake hemisphere is usually open during
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Figure 1 | Measuring the brain state and flight mode of flying frigatebirds. (a) Great frigatebird with a head-mounted data logger for recording the

electroencephalogram (EEG) from both cerebral hemispheres and head acceleration in three dimensions. A back-mounted GPS logger recorded position

and altitude. Photo: B.V. (b) Overhead view of a great frigatebird skull showing (1) the position of the cranial bulge (shaded grey) overlying the hyperpallium

of each hemisphere, (2) the position of the epidural electrodes (red dots, EEG; green dot, ground) and (3) the data logger (black rectangle) just posterior to

the naso-frontal hinge (arrow). Scale bar is 10 mm. (c) All GPS tracks for individual birds coded with different colours. The Galapagos Islands are outlined

with black lines and the study site (Genovesa) is marked by a star. Ocean depth (m) is coded with grey scale. (d) High temporal resolution (1 Hz) 10 min

flight trajectory recorded with GPS from a frigatebird (see Supplementary Movie 1 for 3D visualization) showing the circling (soaring) and straight (gliding)

flight modes typical of Fregatidae13 (Methods). (e) Altitude, ground speed and airspeed (computed from the GPS data in (d)), tangential and centripetal

(radial) low-pass filtered acceleration, and the absolute value of total acceleration (measured by an accelerometer) for the flight in (d).
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ASWS18, allowing birds to simultaneously sleep and watch for
threats17. In frigatebirds, the accelerometer recordings suggest
that ASWS serves a similar function in flight. During wakefulness
and SWS on land, frigatebirds kept their head straight most of the
time (85.91±3.19%, s.e.m., and 89.67±2.18%, respectively,
P¼ 0.056, paired two-tailed Student’s t-test; Fig. 3a), as
indicated by the distribution of sway axis values with a cluster
around zero; head position was classified as straight when
acceleration along the sway axis fell between the dashed vertical
lines in Fig. 3a (� 0.175g0 and 0.175g0; standard acceleration of
free fall g0¼ 9.80665 m s� 2). In flight, acceleration along the
sway axis also showed a unimodal peak around zero during
wakefulness (75.42±2.05%, s.e.m.). However, in contrast to SWS
on land, the distribution of sway axis values was tri-modal during
SWS in flight, with one peak around zero and two additional
peaks reflecting acceleration to the left and right (Fig. 3a).
Acceleration to the left and right was primarily due to radial

acceleration of the birds as they turned in either direction (wing
angle, 18.75±0.48�, s.e.m.; P¼ 6.4� 10� 15, paired two-tailed
Student’s t-test; Fig. 3b), likely reflecting soaring on rising air
currents13,21,26. Interestingly, during ASWS the birds were more
likely to circle toward the side with greater SWA (ASWS-L, to left,
65.31±5.07%, s.e.m., to right, 8.76±1.46%, P¼ 1.1� 10� 7;
ASWS-R, to left, 9.31±1.81%, to right, 66.59±6.47%,
P¼ 1.2� 10� 6, paired two-tailed Student’s t-test), whereas
during BSWS there was no bias for circling toward one
particular side (to left, 35.22±4.31%, to right, 35.35±4.83%,
P¼ 0.73, paired two-tailed Student’s t-test; Fig. 3c,d). In addition
to asymmetries in SWA, during SWS we also detected smaller
asymmetries in gamma activity (30–80 Hz power), a frequency
implicated in visual attention29. Opposite to SWA, during SWS
with asymmetric gamma (� 0.14AI40.1) the birds accelerated
toward the side with lower gamma (left gamma4right gamma, to
left, 11.71±2.02%, s.e.m., to right, 65.76±6.21%, P¼ 6.5� 10� 6,

Wakefulness Slow-wave sleep 8 min

*

*

Sway
Surge
Heave

L EEG

R EEG

25 s 25 s

25 s 25 s

BSWS USWS 18 min

Sway
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b

a

Figure 2 | Unihemispheric and bihemispheric sleep in flight. (a) Recording of head acceleration in three dimensions (sway, surge and heave) and

electroencephalogram (EEG) activity from the left (L) and right (R) hemispheres showing the transition from wakefulness to SWS following the cessation of

flapping (red bars). Brief episodes of dropping (green bars) occur after this episode of sleep. Expanded views (bottom) show wakefulness characterized by

low-amplitude, high-frequency EEG activity in both hemispheres, infrequently punctuated by isolated high-amplitude, slow waves (*), and SWS

characterized by continuous high-amplitude, slow waves, in this case, primarily in the left hemisphere. The red arrow (top) marks an episode of apparent

REM sleep (expanded in Supplementary Fig. 13). (b) Recording from the same bird showing an episode of bihemispheric SWS (BSWS) and unihemispheric

SWS (USWS), including expanded views of both states. The mean duration of episodes of sleep was shorter than these long episodes used to demonstrate

USWS and BSWS in flight. These recordings are from frigatebird 13 (Supplementary Fig. 7).
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paired two-tailed Student’s t-test; left gammaoright gamma,
to left, 62.47±6.46%, to right, 8.58±1.44%, P¼ 1.2� 10� 6,
paired two-tailed Student’s t-test) whereas during SWS with
symmetric gamma there was no bias for acceleration toward one
particular side (to left, 37.50±3.74%, to right, 31.77±4.20%,
P¼ 0.96, paired two-tailed Student’s t-test; Fig. 3e). The more
awake EEG activity (that is, lower SWA and higher gamma)
in the hemisphere opposite the direction of the turn indicates
that the frigatebirds had the eye toward the direction of the
turn open (Fig. 3b), presumably to watch where they were
going.

Sleep loss in flight. The amount, timing, continuity and depth of
sleep on the wing also suggest that frigatebirds face ecological
demands for wakefulness throughout the day and night. In flight,
frigatebirds slept for only 2.89±0.58% (s.e.m.) of the time,
whereas on land 53.28±4.82% of the time was spent sleeping
(P¼ 1.1� 10� 5, paired two-tailed Student’s t-test; Fig. 4a; see
Supplementary Fig. 14a for N¼ 14 in flight). Sleep occurred
almost exclusively at night in flight (day, 0.36±0.16%, s.e.m.;
night, 5.44±1.03%; P¼ 2.4� 10� 5, paired two-tailed Student’s
t-test), but throughout the day and night on land (day,
47.90±4.95%; night, 53.76±6.72%; P¼ 0.45, paired two-tailed
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show the general direction of visual flow while circling to the left.
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Student’s t-test; Supplementary Fig. 9d–f). Even while gliding and
soaring at night (that is, no wing flaps or drops), when sleep was
possible, wakefulness encompassed 79.71±1.34% (s.e.m.) of the
9.66±0.16 h (s.e.m.; N¼ 14) spent in these flight modes. Episodes
of SWS were also longer on land (28.25±1.75 s, s.e.m.) than in
flight (10.89±0.81 s; P¼ 2.24� 10� 5, paired two-tailed Student’s
t-test), as was the maximum duration of SWS episodes (land,
272.89±44.47 s, s.e.m., and flight, 134.22±21.72 s, P¼ 0.023,
paired two-tailed Student’s t-test; maximum range: land,
128–572 s and flight, 48–216 s). With REM sleep included,
episodes of sleep (SWSþREM sleep) were even longer on land
(52.22±4.91 s, maximum range, 204–1,212 s) than in flight
(11.64±1.00 s, P¼ 4.1� 10� 5, paired two-tailed Student’s t-test;
maximum range, 52–216 s); the longest episode of continuous
sleep in flight (348 s) occurred in one of the five birds only
recorded in flight. Episodes of SWS were longer during circling
flight (12.55±0.80 s, s.e.m.) than straight flight (6.69±0.28 s,
P¼ 1.2� 10� 4, paired two-tailed Student’s t-test). The mean
duration of REM sleep episodes in flight (4.92±0.15 s, s.e.m.) was
shorter than on land (5.92±0.33 s; P¼ 0.014, paired two-tailed
Student’s t-test), and REM sleep as a percentage of total
sleep time was lower in flight (3.52±0.92%) than on land
(8.15±1.44%; P¼ 0.0084, paired two-tailed Student’s t-test).

Finally, the intensity of SWS, based on EEG SWA, was lower in
flight than on land during BSWS (P¼ 0.02, paired two-tailed
Student’s t-test) and for both hemispheres during ASWS
(hemisphere with greater SWA, Po0.02; hemisphere with lower
SWA, P¼ 0.008, paired two-tailed Student’s t-test; Fig. 4b; see
Supplementary Fig. 14b for N¼ 14 in flight). Even on the last day
of flight, when sleep pressure should have been the greatest,
SWA was lower than on land and unchanged from earlier in the
flight (Supplementary Fig. 15a,b). Collectively, the sleep patterns
observed in flight indicate that in addition to the attention
required for foraging during the day, frigatebirds face ecological
demands for attention at night, as well as limits on the depth
of sleep.

The higher amount of wakefulness, lower intensity of sleep and
absence of an increase in sleep intensity across the flight question
whether the homeostatic process that normally regulates sleep
duration and intensity30 in other birds is absent in frigatebirds or
just suppressed during flight. On land, SWS-related SWA (both
hemispheres combined) declined as a function of time since
landing (� 3.91±0.74% per hour, s.e.m.; P¼ 0.003, two-tailed
Student’s t-test; Fig. 4c), as did the time spent in BSWS and
ASWS (P¼ 0.01 and P¼ 0.01). Because the time course of both
states did not differ (P¼ 0.54), the decline in total SWA reflects a
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change in sleep intensity, rather than a change in the ratio of
ASWS to BSWS across this period. The decline in sleep intensity
after returning to land suggests that the homeostatic mechanisms
present in other birds are also present in frigatebirds.
Interestingly, this also indicates that frigatebirds are able to
forestall these mechanisms when sleeping in flight. Finally,
although frigatebirds recover lost sleep once back on land,
recordings spanning the cycle between flights and time on land
are needed to fully characterize the homeostatic process and
determine whether frigatebirds on land compensate entirely for
sleep lost in flight.

Discussion
Several ecological factors may account for the characteristics of
sleep in flight. Even though the frigatebirds rarely came near the
surface at night12,13,21, the low amount of sleep may be related to
foraging. As during the day, great frigatebirds follow ocean eddies
at night23 to position themselves near potential foraging sites at
daybreak and, perhaps, under favourable conditions, to forage
at night22. Although it is unknown whether frigatebirds pay
attention to atmospheric, olfactory, or visual cues to monitor the
ocean at night23,31, the low amount of sleep suggests that this task
requires full attention exceeding that possible during USWS.
Even during the little sleep that did occur in flight, frigatebirds
sacrificed sleep for vigilance, as indicated by the greater degree of
SWS asymmetry and the preference for keeping the eye
connected to the awake hemisphere facing the direction of
flight. Although the risk of falling in the water is reduced by their
preference for sleeping in rising air currents and at higher
altitudes, frigatebirds may still need to watch where they are going
to avoid collisions with other birds. In this regard, even though
flying frigatebirds have no predators, their utilization of ASWS is
similar to that in ducks (Anas platyrhynchos) sleeping on land
which direct the open eye toward a predatory threat17.

Despite marked ecological and environmental differences, the
ability to greatly reduce the time spent sleeping in flight is similar
to that recently described in polygynous male pectoral sandpipers
(Calidris melanotos)16. While breeding under the constant light of
the Arctic summer, some males sleep very little during a 3-week
period of male–male competition for mates. Interestingly, the
males who sleep the least sire the most offspring, suggesting
that resistance to the adverse effects of sleeplessness is under
sexual selection. Our findings in frigatebirds demonstrate
that other ecological pressures can also favour an ability to
sustain wakefulness32,33 even in animals living under equatorial
photoperiods.

In contrast to frigatebirds, in humans14 and other animals34,
including some birds30,35, the adverse effects of sleep loss (for
example, sleepiness and reduced attention) manifest rapidly and
accumulate across days of sleep restriction. In addition to
selection for resistance to the adverse effects of sleep loss, these
divergent results might be explained by differences in motivation
and associated brain neurochemistry36. The small amounts of
sleep in flying frigatebirds may also serve as restorative ‘power
naps’ that help them forestall the recovery of sleep until they
return to land. Determining how flying frigatebirds sustain
performance on little sleep may provide new perspectives on our
understanding of the adverse effects of sleep loss experienced in
humans.

Methods
Animals and instrumentation. The Galápagos National Park Service approved of
and granted the research permits for this work. During August, 2014, adult females
(N¼ 15) caring for chicks on the coast of Darwin Bay, Genovesa Island, Galápagos,
Ecuador (0�19’5.57"N, 89�57’1.23"W) were caught by hand on their nest at night.
The chick was covered to keep it warm and safe while its mother was instrumented.

Using isoflurane anaesthesia and aseptic methods16, for each cerebral hemisphere,
EEG sensors were placed on the dura overlying the anterior (A) and posterior (P)
hyperpallium, a structure that forms a pronounced bulge in the cranium of
frigatebirds (Fig. 1b; for a CT scan of a similar skull see, www.digimorph.org/
specimens/Fregata_magnificens/); the sensors were 8 mm apart along the AP axis,
spanning the most pronounced portion of the cranial bulge, and 4 mm from the
midline (Fig. 1b). A fifth sensor was placed laterally on the left hemisphere for the
electrical ground. The gold-plated, round-tipped (0.5 mm diameter) sensors were
secured with a small amount of dental acrylic cured with an ultraviolet light
(Clearfil SE Bond, Kuraray Noritake Dental, Japan and Tetric EvoFlow, Ivoclar
Vivadent AG, Schaan, Liechtenstein) and connected to a flexible, insulated spring
wire (no. 276-0146-001; DSI, St. Paul, MN). The wires were soldered to a data
logger (Neurologger 2A; www.evolocus.com, see also www.vyssotski.ch/
neurologger2) which included a 3.6 V lithium battery (Saft LS-14250;
www.saftbatteries.com) and a three-axis accelerometer (LIS302DLH; STMicro-
electronics). The logger was glued (Hystoacryl, Aesculap AG, Germany and Pattex,
Repair Gel, Henkel AG & Co. KGaA, Germany) to the skin and feathers just
posterior to the naso-frontal hinge (Fig. 1b). The logger was configured to record
bipolar EEGs from the left and right hemispheres, and acceleration in the three
cardinal directions continuously at 200 Hz for up to 10 days. A GPS data logger (i-
gotU, GT-600; www.i-gotu.com) configured to record position every 5 min was
attached to the back feathers with gaffer tape (tesa, no. 4671; www.tesatape.com).
The total weight (55 g) of the equipment was 4.0% of the birds’ weight
(1366.79±24.09 g, s.e.m.). Fourteen of the 15 birds were recaptured 7.79±0.49 d
(s.e.m.; range, 5.37–10.45 d) later, after returning from at least one foraging trip. In
nine of the birds, we obtained recordings (16.40±3.33 h, s.e.m., in duration;
Supplementary Fig. 9g) after they returned to the nest to evaluate sleep on land. At
the end of the study, the equipment was removed under anaesthesia and the birds
were released. On release, the birds resumed nesting behaviour indistinguishable
from that observed in undisturbed birds. Finally, to validate our analysis of the
flight trajectories in great frigatebirds, we used data recorded from two magnificent
frigatebirds (Fregata magnificens) in a pilot study conducted in the French Guiana
using a GPS data logger (GiPSy-2, www.technosmart.eu) with a 1 Hz sampling rate
combined with a 3D acceleration logger (25 Hz rate; AXY-1, www.technosmart.eu;
Fig. 1d,e).

Sleep scoring and EEG analysis. During flight, all days with stable EEGs were
scored for time spent awake, and in SWS and REM sleep using 4 s epochs and
REMLogic software (Natus Medical, Pleasanton, California)16. All recordings after
returning to land were also scored, including the short landings between two flights
observed in birds 1 and 5 (Supplementary Figs 1 and 3). A bout of a given state was
defined as one or more epochs of that state uninterrupted by a single epoch of
another state. The bout durations for wake, SWS, REM sleep and the overall amount
of time spent in each state were based on all scored days. The spectral analysis of the
EEG focused on a night with comparatively large amounts of sleep and high signal
quality (see Supplementary Figs 1–8). For each state, all 4 s artifact free epochs were
analysed with the fast Fourier transform (0.25 Hz bins) applied to Hamming-
windowed data. SWA and gamma power were estimated from Fourier coefficients
taken for ranges 0.75–4.5 and 30–80 Hz, respectively. Medians of SWA and gamma
power were used for statistical comparisons. Quartiles for group medians shown in
Fig. 4b and Supplementary Figs 14b and 15b are estimated by bootstrap.
Interhemispheric asymmetries in SWA and gamma, and their relationship with the
mode of flight (Fig. 3d,e), were based on the night with large amounts of sleep. In
addition, SWS-related SWA was calculated for the last night of flight to detect
potential changes in sleep intensity across the flight (Supplementary Fig. 15b).

Accelerometry analysis. The accelerometer recordings revealed two predominant
patterns during flight (Fig. 2a). Flapping flight was characterized by large sinusoidal
oscillations (E2.5 Hz) in the heave and surge axes corresponding to individual
wing beats. In contrast, during gliding and soaring flight, the three axes were largely
flat or showed slow oscillations likely reflecting a combination of fine manoeuvres
and respiratory movements (see expanded view for SWS in Fig. 2a). When gliding
and soaring during the day, small, frequent and rapid horizontal movements of
the head were superimposed on these slow oscillations. Flight was occasionally
interrupted by a rapid decrease in acceleration along the heave axis, corresponding
to the bird dropping, presumably due to momentary folding of the wings
(Supplementary Movie 4). Finally, bouts of high-frequency activity occurred
infrequently in all axes simultaneously, likely reflecting preening, as observed in
birds flying over the colony and while on the nest.

Previous studies12,13,26 and our own observations (Fig. 1d), show that
frigatebirds exhibit two major flight trajectories; rising in circles (soaring) and
straight gliding down. In addition to identifying flapping flight, the accelerometer
was useful for discriminating circular from straight flight (Fig. 1e). During both
types of flight the absolute air-referenced flight speed averaged over significant time
intervals (44 s) is constant (Fig. 1e). Thus, the tangential (co-directed with the
speed vector) acceleration is zero in both flight modes. When the animal flies
straight the total acceleration felt by the accelerometer is produced only by the
gravity vector g (standard gravity, 1g0¼ 9.80665 m s� 2). However, during circular
flight additional centripetal (radial) acceleration, ar¼V2/R (V, speed; R, radius of
the trajectory) is added to the acceleration of gravity:~atot ¼~gþ~ar . As rotation lies

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12468 ARTICLE

NATURE COMMUNICATIONS | 7:12468 | DOI: 10.1038/ncomms12468 | www.nature.com/naturecommunications 7

www.digimorph.org/specimens/Fregata_magnificens/
www.digimorph.org/specimens/Fregata_magnificens/
www.evolocus.com
www.vyssotski.ch/neurologger2
www.vyssotski.ch/neurologger2
www.saftbatteries.com
www.i-gotu.com
www.tesatape.com
www.technosmart.eu
www.technosmart.eu
http://www.nature.com/naturecommunications


approximately in the horizontal plane, the two acceleration vectors are orthogonal
to each other and total acceleration, atot ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ a2

r

p
. Thus, to determine whether

the trajectory is straight or not, it is sufficient to measure total acceleration,
low-pass filter it to remove the influence of wing flapping and compute radial
acceleration from this equation. Radial acceleration above 0.175g0 corresponded to
circling flight (Fig. 3, Supplementary Fig. 16). Total acceleration in circling flight
was 1.057±0.003g0 and radial acceleration was � 0.340±0.009g0 (s.e.m.; see
Supplementary Table 1 for values for individual birds). The bank (wing) angle
during soaring was measured as arccos(g/atot) and was 18.75±0.48� (s.e.m.).
However, for our EEG analysis it was also important to know whether the bird was
rotating to the right or to the left. This information was obtained by measuring
radial acceleration with the accelerometer mounted on the bird’s head with one
axis (that is, sway) directed laterally. Because frigatebirds keep their heads straight
during both flight modes, we were able to determine radial acceleration directly
from the accelerometer without additional transformations. However, to confirm
this claim and to increase the accuracy of the radial acceleration measurements we
also performed computations without this assumption. The accelerometer was
attached to the bird’s head in a way such that one axis was orthogonal to the
tangential plain of the bird skull and another was directed laterally. Projection of
total acceleration on to the tangential plain of the bird skull clearly shows three
clusters corresponding to straight and circling flight, with turning to the left and
right (see data from one example bird in Supplementary Fig. 16a). To simplify this
analysis, we rotated the axes of the head-fixed coordinate system to have one axis
directed to the ground during straight flight; however, in the recording examples
shown in Figs 2 and 3, Supplementary Fig. 13, acceleration is shown in the original
axes of the accelerometer. The following analysis shows that the skull surface
tangential plane deviated by 29.86±0.68� (s.e.m.) from the horizon (see
Supplementary Table 1; see also Fig. 1a). As a first step we down-sampled the
acceleration data to 25 Hz (from original 200 Hz) to decrease computation time.
We then filtered out high frequencies by applying a low-pass finite impulse
response filter (0.1 Hz; span 40 s). The input data were processed both in the
forward and reverse directions and the resulting sequence had precisely zero-phase
distortion and doubled filter order. Then, we computed principle components
(PCs) in 3D space without mean subtraction. The first PC pointed in the direction
of the gravity vector, the second—in the lateral (radial) direction, and the third—in
the direction of the speed vector. Because we found that accuracy of the PCs
determination can be affected by outliers, mainly due to episodes when the bird
drops down with acceleration in the direction of the first PC o0.95g0, we excluded
such points and recomputed the PCs again. In the horizontal plain of the second
and the third PCs (Supplementary Fig. 16b), clusters corresponding to rotation to
the left and right were aligned relative to the coordinate axes. The best separation
was observed along the second PC corresponding to sway acceleration. The vertical
lines drawn at sway accelerations ±0.175g0 reliably separate the three clusters in
all birds. Because we wanted to compute rotations of the head relative to straight
flight, we repeated the PC analysis, but for points representing straight flight only.
Coordinates of the first PC gave the direction to the ground during straight flight.
The angle between this direction and skull surface normal is the skull angle shown
in Supplementary Table 1. We rotated the coordinate system a second time to have
one axis in the direction of the first PC (Supplementary Fig. 17). In this head-fixed
coordinate system, during circling flight, the absolute value of lateral (sway)
acceleration was 0.321±0.008g0 (s.e.m.), acceleration in the direction of the flight
(surge) was 0.028±0.005g0 and vertical (heave) acceleration was 1.006±0.001g0

(see Supplementary Table 1). Assuming zero tangential acceleration as before, we
computed the angle of the head turn in circling flight (2.137±0.184�, s.e.m.)
relative to straight flight and the direction of the axes over which the turn was
performed (right–left: 0.626±0.096�, beak–tail: 0.521±0.111�, down–up:
� 0.209±0.033�, signs are valid for the case when the animal turns left, but
absolute values represent averaged quantities for left and right turns taken together,
see Supplementary Table 1). To simplify interpretation of the head turn we
computed angular deviations of the head-fixed vector pointing upwards in the
lateral (right–left) and anterior–posterior (beak–tail) directions. These deviations
were 1.033±0.252� and 1.444±0.233� (signs correspond to the left turn as before).
As shown in the table, bank angle (wings-to-horizon) was computed with the
assumption that total acceleration was orthogonal to the plane of the wings. This
assumption was verified by placing accelerometers on the backs of two magnificent
frigatebirds together with the GPS logger in a pilot study (Supplementary Fig. 18).
In these two birds, total acceleration during circling flight was 1.053 and 1.067g0.
Standard deviations of sway acceleration were 0.013 and 0.016g0, and standard
deviations of surge acceleration were 0.033 and 0.036g0, respectively. Thus, the
standard deviation of the total acceleration vector in the lateral direction was 0.71�
and 0.85� and in the anterior–posterior direction it was 1.80� and 1.38�. Taking the
95% confident border as a more conservative estimate, we obtained 1.45� and 1.67�
for sway and 3.60� and 2.81� for surge. These angles are much smaller than the
angle of the wing plane to the horizon (18.32� and 20.41�). Thus, our assumption
about orthogonality of the plane of the wings to total acceleration is correct.

Detection of wing flaps and drops. Wing flaps and drops were detected by
analysing the absolute values of the acceleration vectors recorded by the
accelerometer. As a first step, acceleration was down-sampled to 50 Hz to decrease
computation time. Then the signal was band-pass filtered 0.25–5 Hz. The finite

impulse response filter with an 8 s span was applied in forward and reverse
directions to ensure a zero time shift. Deviations in acceleration below � 0.4g0

were selected as potential flaps and drops. Flaps and drops were separated from
noise and sorted by the shape of acceleration signal around these events (±0.64 s).
The 64-point fragments of the record centred around the detected acceleration
minima were sorted using wavelets and a superparamagnetic clustering algorithm37

(WaveClus 2.0 package for Matlab) in birds 1 and 2. After validating the
classification algorithm and cluster matching in two birds, the recorded fragments
from the remaining birds were sorted using a faster and simpler nearest neighbour
algorithm (computing and comparing distances from non-classified elements to
the members of the clusters already classified in bird 1). The average shapes of
acceleration around flaps, drops and noise are shown in Supplementary Fig. 19a.
Flaps produce pseudo-periodical deviations in total acceleration with negative and
positive deviations of approximately similar magnitude. These almost sinusoidal
deviations are produced by regular up–down wing movements. Contrary to flaps,
drops are characterized by a strong negative deviation followed by a slow positive
compensation. They are produced by momentary folding of one or both of the
wings (see Supplementary Movie 4). Noise is characterized by smaller deviations
around the zero time point and on average has a symmetrical shape (relative to the
zero time point). The distribution densities of the maximal deviation of
acceleration (at zero time) shown in Supplementary Fig. 19b demonstrate that flaps
can be readily separated from noise by simply selecting a threshold around 0.6g0.
However, separation of drops from flaps and noise required information about the
signal shape. To estimate the duration of flapping flight we summed the ±0.35 s
interval around flap detection points.

Wind speed analysis. Wind information (absolute value and direction at the
birds’ location) was obtained from the Movebank database (www.movebank.org).
The database provides wind speeds for altitudes 4100 m. For lower altitudes
between 10 and 100 m, wind speed was computed from the wind data at 10 m using
the equation W¼W10(h/h10)a, where W is the wind speed at the desired altitude h;
W10 the known wind speed at altitude h10¼ 10 m over mean sea level; and a the
Hellmann exponent. In this study, the Hellmann exponent (a¼ 0.03958) was
estimated from the average ratio of wind speed at altitudes 100–150 m (given by the
database) to W10. Because the altitudes given by GPS are not precise enough to be
used for calculating wind speed at altitudes o10 m, the value W10 was taken as an
estimate of wind speed.

Statistical analysis. For comparisons between flight and land N¼ 9, whereas for
in-flight comparisons N¼ 14. Unless stated otherwise, reported values are the
mean±s.e.m. Paired Student’s t-tests (two-tailed) were used in most cases.
Quantities expressed as a per cent were first normalized using a Fisher transfor-
mation. For the time course of SWA and the different types of SWS on land, the
analysis was restricted to birds with at least 10 h of recording time (N¼ 7), and
only the first 10–12 h were used for this analysis. For the analysis of the relationship
between sway acceleration and EEG asymmetry (Fig. 3), the mean of the sway
values 40.175g0 (to left) and o� 0.175g0 (to right) for individual birds were used.

Data availability. The authors declare that the data supporting the findings of this
study are available within the article and its Supplementary Information Files,
or from the corresponding authors upon request.
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