
Zurich Open Repository and
Archive
University of Zurich
Main Library
Strickhofstrasse 39
CH-8057 Zurich
www.zora.uzh.ch

Year: 2016

A Transcriptionally Inactive ATF2 Variant Drives Melanomagenesis

Claps, Giuseppina; Cheli, Yann; Zhang, Tongwu; Scortegagna, Marzia; Lau, Eric; Kim, Hyungsoo; Qi,
Jianfei; Li, Jian-Liang; James, Brian; Dzung, Andreas; Levesque, Mitchell P; Dummer, Reinhard;

Hayward, Nicholas K; Bosenberg, Marcus; Brown, Kevin M; Ronai, Ze’ev A

Abstract: Melanoma is one of the most lethal cutaneous malignancies, characterized by chemoresistance
and a striking propensity to metastasize. The transcription factor ATF2 elicits oncogenic activities
in melanoma, and its inhibition attenuates melanoma development. Here, we show that expression of
a transcriptionally inactive form of Atf2 (Atf2(Δ8,9)) promotes development of melanoma in mouse
models. Atf2(Δ8,9)-driven tumors show enhanced pigmentation, immune infiltration, and metastatic
propensity. Similar to mouse Atf2(Δ8,9), we have identified a transcriptionally inactive human ATF2
splice variant 5 (ATF2(SV5)) that enhances the growth and migration capacity of cultured melanoma cells
and immortalized melanocytes. ATF2(SV5) expression is elevated in human melanoma specimens and
is associated with poor prognosis. These findings point to an oncogenic function for ATF2 in melanoma
development that appears to be independent of its transcriptional activity.

DOI: https://doi.org/10.1016/j.celrep.2016.04.072

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-124902
Published Version

 

 

Originally published at:
Claps, Giuseppina; Cheli, Yann; Zhang, Tongwu; Scortegagna, Marzia; Lau, Eric; Kim, Hyungsoo;
Qi, Jianfei; Li, Jian-Liang; James, Brian; Dzung, Andreas; Levesque, Mitchell P; Dummer, Reinhard;
Hayward, Nicholas K; Bosenberg, Marcus; Brown, Kevin M; Ronai, Ze’ev A (2016). A Transcriptionally
Inactive ATF2 Variant Drives Melanomagenesis. Cell Reports, 15(9):1884-1892.
DOI: https://doi.org/10.1016/j.celrep.2016.04.072

https://doi.org/10.1016/j.celrep.2016.04.072
https://doi.org/10.5167/uzh-124902
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.celrep.2016.04.072


Report

A Transcriptionally Inactive ATF2 Variant Drives
Melanomagenesis

Graphical Abstract

Highlights

d Transcriptionally inactive ATF2 (Atf2D8,9) induces

pigmentation

d Atf2D8,9 induces melanoma in BrafV600E mice

d Genes implicated in immune cell recruitment and metastasis

are induced by Atf2D8,9

d Human ATF2 splice variant 5 phenocopies Atf2D8,9 and

coincides with poor prognosis

Authors

Giuseppina Claps, Yann Cheli, Tongwu

Zhang, ..., Marcus Bosenberg, Kevin M.

Brown, Ze’ev A. Ronai

Correspondence
zeev@ronailab.net

In Brief

Claps et al. demonstrate that a

transcriptionally inactive isoform of ATF2

lacking exons 8 and 9 is sufficient to

promote melanoma in mouse models.

They also identify a transcriptionally

inactive human splice variant of ATF2,

which resembles the mouse isoform, that

is expressed inmelanoma specimens and

is associated with poor prognosis.

Accession Numbers

GSE79917

GSE81014

Claps et al., 2016, Cell Reports 15, 1884–1892
May 31, 2016 ª 2016 The Author(s).
http://dx.doi.org/10.1016/j.celrep.2016.04.072

mailto:zeev@ronailab.net
http://dx.doi.org/10.1016/j.celrep.2016.04.072
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2016.04.072&domain=pdf


Cell Reports

Report

A Transcriptionally Inactive ATF2 Variant
Drives Melanomagenesis
Giuseppina Claps,1 Yann Cheli,1 Tongwu Zhang,2 Marzia Scortegagna,1 Eric Lau,1 Hyungsoo Kim,1 Jianfei Qi,1

Jian-Liang Li,1 Brian James,1 Andreas Dzung,3 Mitchell P. Levesque,3 Reinhard Dummer,3 Nicholas K. Hayward,4

Marcus Bosenberg,5 Kevin M. Brown,2 and Ze’ev A. Ronai1,*
1Tumor Initiation and Maintenance Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
2Division of Cancer Epidemiology and Genetics, Laboratory of Translational Genomics, National Cancer Institute, Bethesda, MD 20892, USA
3Department of Dermatology, University of Z€urich, University of Z€urich Hospital, Z€urich 8091, Switzerland
4Oncogenomics Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
5Departments of Dermatology and Pathology, Yale University School of Medicine, New Haven, CT 06520, USA

*Correspondence: zeev@ronailab.net
http://dx.doi.org/10.1016/j.celrep.2016.04.072

SUMMARY

Melanoma is one of the most lethal cutaneous malig-
nancies, characterized by chemoresistance and a
striking propensity to metastasize. The transcription
factor ATF2 elicits oncogenic activities in melanoma,
and its inhibition attenuatesmelanomadevelopment.
Here, we show that expression of a transcriptionally
inactive form of Atf2 (Atf2D8,9) promotes develop-
ment of melanoma in mouse models. Atf2D8,9-driven
tumors show enhanced pigmentation, immune infil-
tration, and metastatic propensity. Similar to mouse
Atf2D8,9, we have identified a transcriptionally inac-
tive human ATF2 splice variant 5 (ATF2SV5) that
enhances the growth and migration capacity of
cultured melanoma cells and immortalized melano-
cytes. ATF2SV5 expression is elevated in human
melanoma specimens and is associated with poor
prognosis. These findings point to an oncogenic
function for ATF2 in melanoma development that ap-
pears to be independent of its transcriptional activity.

INTRODUCTION

Melanoma is one of the most lethal cutaneous malignancies due

to its metastatic propensity and resistance to therapy (Lo and

Fisher, 2014). Rewired signal transduction pathways, which

underlie melanoma lethality, are driven by networks of protein

kinases and related transcription factors. Activating Transcrip-

tion Factor 2 (ATF2) is a member of the ATF/CREB bZIP family

of transcription factors, which heterodimerizes with members

of the JUN and FOS transcription factor families (Lau and Ronai,

2012; Lopez-Bergami et al., 2010).

Inmelanoma, nuclear ATF2 expression is associatedwith poor

prognosis andmetastatic burden, whereas cytoplasmic localiza-

tion correlates with sensitization of melanoma to genotoxic

stress (Lau et al., 2012; Lau and Ronai, 2012) and better clinical

outcome (Berger et al., 2003). Consistent with this, inhibition of

ATF2 reducesmelanoma growth in BRAF andNRASmutantmel-

anoma cell lines in culture and in xenografts (Bhoumik et al.,

2002, 2004a, 2004b). Also in agreement, NrasQ61K;Ink4a�/�

mice selectively expressing the transcriptionally inactive form

of Atf2 (Atf2D8,9), which lacks the DNA-binding domain and

part of the leucine zipper domain (Breitwieser et al., 2007),

show attenuated melanoma development (Shah et al., 2010).

In contrast, mice without melanoma susceptibility genes,

but harboring Atf2D8,9 selectively expressed in keratinocytes,

display increased papilloma development when subjected to a

two-stage skin carcinogenesis protocol (Bhoumik et al., 2008).

Similarly, mouse embryonic fibroblasts expressing Atf2D8,9, but

lacking its homolog ATF7, show increased proliferation and for-

mation of tumors exhibiting a JNK-ATF2-dependent gene signa-

ture in orthotopic liver cancer models (Gozdecka et al., 2014).

Likewise, mutant p53 mice with deletions in the Atf2 DNA-bind-

ing domain (amino acids 327–395) develop mammary tumors

(Maekawa et al., 2008).

These observations suggest that ATF2 oncogenic or tumor

suppressor function varies among tumor and tissue types de-

pending on the landscape of genetic factors. Here, we assessed

the role of ATF2 in a well-characterized genetic mouse model of

Braf/Pten mutant melanoma (Dankort et al., 2009). Surprisingly,

we found that transcriptionally inactive Atf2D8,9 has a tumor-pro-

moting effect in Braf mutant melanocytes, which is enhanced in

Braf/Pten mutant animals.

RESULTS

Atf2D8,9 Accelerates Melanoma Development and
Metastasis Formation in BrafV600E/V600E;Pten�/� Mice
To assess ATF2 function in BRAFmutantmelanoma, we crossed

mice expressing a transcriptionally inactive form of Atf2

(Atf2D8,9) (Shah et al., 2010) with BrafWT/V600E;Pten�/� mice. The

Tyr::CreER;Atf2lox/lox;BrafCA/CA;Ptenlox/lox mice show melano-

cyte-specific expression of Atf2D8,9/D8,9;BrafV600E/V600E;Pten�/�

following administration of 4-hydroxytamoxifen (4-HT). Cre-

dependent deletion of Atf2 exons 8 and 9 results in a protein

lacking the DNA-binding domain and a portion of the leucine

zipper (bZip) (Figures 1A and 1B) (Breitwieser et al., 2007). We
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detected low levels of full-length ATF2, which may originate from

non-tumor cells or degree of ATF2 deletion (<100% of cells; Fig-

ure 1C) in this model. Of note, the presence of full-length ATF2

in the Atf2D8,9/D8,9 mice accurately reflects the co-expression of

full-length and splice variant forms of ATF2 in human melanoma

(see below). Further, co-expression of full-length ATF2 did not

compromise the dominant activity of the ATF2D8,9 mutant.

Atf2D8,9 experimental animals were monitored for expression

of ATF2 variants using antibodies that recognize the ATF2 N-ter-

minal domain or the region deleted in ATF2D8,9 (Figures 1C–

1E). Sequencing of cDNA from Atf2D8,9-driven mouse tumors

confirmed an in-frame transcript encoding 368 amino acids and

lacking the DNA-binding domain and predicted bZip region

(data not shown). This form of ATF2 retains the zinc finger and

transactivation domains as well as the phosphoacceptor sites

required for transcription in theN-and theDNAdamage response

at the C termini.

To determine the role of Atf2D8,9 in melanoma develop-

ment, 4-HT was administered systemically to Atf2WT/WT;

BrafV600E/V600E;Pten�/� (n = 30) and Atf2D8,9/D8,9;BrafV600E/V600E;

Pten�/� (n = 28) or Atf2WT/D8,9;BrafV600E/V600E;Pten�/� (n = 18)

mice (Figure S1A, upper). 4-HT-treated Atf2D8,9/D8,9 mice

were more heavily pigmented than Atf2WT/WT animals (Fig-

ure 2A). Increased pigmentation was seen throughout the

dermis and subcutis of Atf2D8,9/D8,9 mice (n = 6) compared

with Atf2WT/WT controls (n = 6), with spreading into the

epidermis (Figure 2B). Despite these changes, the median sur-

vival time of the Atf2WT/WT, Atf2D8,9/D8,9, and Atf2WT/D8,9 mice

did not differ (18–19 days), possibly due to the rapid melanoma

development in this model (Figure S1B).

To monitor tumor growth over a prolonged period, we admin-

istered 4-HT locally on the dorsal skin of 3-week-old Atf2WT/WT;

BrafV600E/V600E;Pten�/� (n = 19) and Atf2D8,9/D8,9;BrafV600E/V600E;

Pten�/� (n = 12) mice (Figure S1A, lower). Atf2D8,9/D8,9 animals
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Figure 1. Generation of the Atf2D8,9 Mouse Model

(A) Strategy applied to delete exons 8 and 9 of ATF2 (zinc finger: Zn; basic motif: BM; and leucine zipper: LZ). Shown is the Atf2WT gene with the targeting exons

flanked by loxP sequences.

(B) PCR analysis of DNA from Atf2lox/lox and Atf2WT/WT tail samples (left) and of cDNA obtained from Atf2D8,9/D8,9 and Atf2WT/WT tumor samples (right).

(C) Immunohistochemistry (IHC) of tumor sections fromAtf2D8,9/D8,9 and Atf2WT/WT and animals performedwith an antibody against the region deleted in ATF2D8,9

(upper) or with an antibody to the ATF2 N-terminal region (lower). The scale bars represent 100 mm.

(D and E) Immunoblot analysis of tumor extracts frommice of the indicated genotypes using an antibody against the region deleted in ATF2D8,9 (D) or an antibody

to the ATF2 N-terminal region (E) (ATF2WT = 65 kDa and ATF2D8,9 = 55 kDa).
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developed larger tumors (Figure 2C) that appeared earlier in con-

trol mice (Figure 2D). The median survival time of BrafV600E/V600E;

Pten�/� mice was decreased from 64 to 47 days by Atf2D8,9/D8,9

expression (Figure 2E). The Atf2D8,9/D8,9 mice had a larger num-

ber of highly pigmented cells, whichwere confirmed to be ofmel-

anocytic origin based on S100 immunostaining (Figure 2F).

These data suggest that expression of Atf2D8,9 in BrafV600E/V600E;

Pten�/� mice promotes melanoma development.

S100 staining revealed an increased number of metastatic

melanoma cells in the lymph nodes of ATF2D8,9 mice subjected

to local 4-HT treatment compared with similarly treated ATF2WT

mice (Figures 2G and 2J, left). To determine whether these

lesions represent metastatic melanoma, we collected lymph

nodes from Atf2D8,9/D8,9 and control Atf2WT/WT mice bearing tu-

mors, whichwere (either thewhole lymph nodes or following par-

tial digestion; Figure S1C) transplanted into nude mice. Under

both approaches, the recipient mice developed tumors, confirm-

ing that the clusters of subcapsular S100-positive cells in the

lymph nodes of Atf2D8,9/D8,9;BrafV600E/V600E;Pten�/� mice are

metastatic melanoma cells. S100 staining of tumors emerging

after transplantation confirmed the presence of non-pigmented

melanoma cells, as seen in the non-pigmented lymph node

source (Figures 2H and S1D). In addition, the number of le-

sions in the lungs was higher in BrafV600E/V600E;Pten�/� mice

harboringAtf2D8,9/D8,9 versusAtf2WT/WT (Figures 2I and 2J, right).

These observations point to the higher metastatic propensity of

ATF2D8,9 expressing melanocytes.

Atf2D8,9 Exerts Oncogenic Activity in BrafV600E/V600E;

Pten�/� Melanoma
As the finding that a transcriptionally inactive form acceler-

ates melanoma development and promotes metastasis in the

BrafV600E/V600E;Pten�/� murine melanoma model was unantici-

pated, we set to further characterize the activities of ATF2D8,9

in BRAF mutant melanoma.

Using the congenic YUMM1.3 melanoma cell line, which was

derived from a C57BL/6 BrafWT/V600E;Pten�/�;Cdkn2a�/� mela-

noma, we compared the effects of ATF2D8,9 expression versus

small hairpin (sh)RNA-mediated knockdown (KD) of endogenous

ATF2. ATF2 shRNA-expressing cells formed fewer colonies than

control YUMM1.3 cells (Figures 3A and S2A–S2C), consistent

with earlier studies. In contrast, ATF2D8,9 overexpression (OE)

conferred a growth advantage on YUMM1.3 cells compared

with ATF2WT OE (Figures 3A and S2C). Similarly, ATF2 KD atten-

uated and ATF2D8,9 OE increased migration of YUMM1.3

compared with their respective controls (Figures 3B and S2C).

These observations are consistent with observations made in

the ATF2D8,9 mouse model.

Gene expression profiles of tumor samples from Atf2D8,9/D8,9;

BrafV600E/V600E;Pten�/� and Atf2WT/WT;BrafV600E/V600E;Pten�/�

mice identified 579 genes (655 probes) that were signifi-

cantly differentially expressed (Table S1). Of these, 305 genes

(337 probes) were upregulated and 274 gene (318 probes)

were downregulated in Atf2D8,9/D8,9 tumors compared with

Atf2WT/WT tumors. Genes with significant FDR-adjusted p values

were subjected to Ingenuity Pathway Analysis (IPA), which re-

vealed immune receptor and response signaling, angiogenesis,

and ROS/NOS signaling components to be among those most

significantly altered in the ATF2D8,9 tumors (Figure 3C; Table

S2A). The respective functional networks predicted to be acti-

vated in Atf2D8,9/D8,9-expressing tumors included pigmentation,

inflammation, cell motility, and invasion (Table S2B). Represen-

tative genes, including S100A8, implicated in macrophage

recruitment; Mmp3, Mmp9, and Ccr7, implicated in tumor cell

invasion and metastasis; Cxcl9 and Ctla4; and Mitf and related

pigmentation genes were confirmed for their increased expres-

sion in Atf2D8,9/D8,9 tumors (Figure S2D). Atf2D8,9-driven mela-

noma indeed exhibits greater pigmentation (Figure 2F), mark-

edly increased immune cell infiltration (CD45+ and F4/80+;

Figures S2E and S2F), and an enhanced propensity to metasta-

size (Figures 2G–2I), compared to Atf2WT melanoma.

Mouse Atf2D8,9 Structurally Resembles an ATF2 Splice
Variant Expressed in Human Melanoma
To determine whether human tumors express an analogous form

of ATF2, we interrogated RNA-sequencing (seq) expression data

obtained from >70 melanoma lines and three melanocyte lines

(Dutton-Regester et al., 2012). Of the four reported human

ATF2 isoforms (http://www.ncbi.nlm.nih.gov/gene/1386), we

confirmed the expression of three in the human melanoma set

Figure 2. Systemic or Local Induction of Atf2D8,9 Expression in Melanocytes Accelerates Melanoma Development and Metastasis in

BrafV600E/V600E;Pten�/� Mice

(A) Representative images of Atf2WT/WT and Atf2D8,9/D8,9 animals 18 days following perinatal 4-HT administration.

(B) H&E staining analysis of skin fromAtf2WT/WT andAtf2D8,9/D8,9 animals 18 days following perinatal 4-HT administration (left) and quantification of the percentage

of migrating melanoma cells in the skin (right). The data are the mean ± SEM of skin samples from n = 6 mice per genotype. The scale bars represent 500 mm.

(C) Representative picture of Atf2WT/WT, Atf2D8,9/D8,9, and Atf2WT/D8,9 animals 40 days following local 4-HT administration.

(D) Growth curves for tumors from Atf2WT/WT (n = 19) and Atf2D8,9/D8,9 (n = 12) mice from six different litters following local administration of 4-HT. The data are the

mean ± SEM (p value was calculated by two-tailed unpaired t test).

(E) Kaplan-Meier survival curves for Atf2WT/WT (n = 19) and Atf2D8,9/D8,9 (n = 12) mice following local administration of 4-HT. Themice from six different litters were

analyzed (p < 0.0001 by log rank [Mantel-Cox] test).

(F) H&E analysis (left) and S100 immunostaining (right) of tumors from Atf2WT/WT and Atf2D8,9/D8,9 mice following local 4-HT administration. The scale bars

represent 400 mm (H&E) and 100 mm (immunofluorescence [IF]).

(G) H&E analysis (left) and S100 immunostaining (right) of lymph nodes from Atf2WT/WT and Atf2D8,9/D8,9 mice following local 4-HT administration. The scale bars

represent 500 mm (H&E) and 600 mm (IF).

(H) (Upper) Representative images of nude mice transplanted with whole lymph nodes from Atf2D8,9/8,9 or Atf2WT/WT (control) animals. S100 immunostaining of

Atf2D8,9/8,9 tumors from lymph node-transplanted nude mice is shown (lower). The scale bar represents 100 mm.

(I) H&E analysis of lungs from Atf2D8,9/8,9 and Atf2WT/WT mice following local 4-HT administration. The scale bars represent 3 mm.

(J) Quantification of metastasis in lymph nodes (left) and lungs (right) in ATF2WT/WT (Atf2WT/WT;BrafV600E/V600E;Pten�/�) and ATF2D8,9/D8,9 (Atf2D8,9/D8,9;

BrafV600E/V600E;Pten�/�) mice. The data are the mean ± SEM of n = 4 mice (p < 0.0001 and p = 0.002 by two-tailed unpaired t test). See also Figure S1.
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using a mixture of isoforms (MISO) analysis (Figure S3A) (Katz

et al., 2010; Wang et al., 2008) and in a smaller panel of 23 mel-

anoma cell lines by quantitative (q)PCR (Figure S3B). These

analyses verified the expression of full-length ATF2 (isoform 1;

ATF2WT); isoform 3, a splice variant (SV3) that lacks the N-termi-

nal region (ATF2SV3); and isoform 5, a splice variant (SV5) that

lacks the DNA-binding and the leucine zipper domains (ATF2SV5)

and thus partially resembles mouse Atf2D8,9 (Figure 3D). ATF2WT

andATF2SV3 are expressed at varying levels in colon, breast, and

prostate tumor cells, whereas ATF2SV5 exhibited a more selec-

tive expression (breast cancer and melanoma cells; Figure S3C).

Human ATF2SV5 Phenocopies Mouse Atf2D8,9 Function
To determine whether ATF2SV5 elicits oncogenic activities similar

tomouse ATF2D8,9, we examined humanUACC1113 cells, which

express high levels of ATF2SV5 in addition to ATF2WT and

ATF2SV3 (Figure S3B). Silencing of ATF2SV5 in UACC1113 cells

reduced their migration compared to cells in which both ATF2SV3

and ATF2WT were silenced (Figures 3E and S4A). Furthermore,

although colony formation by the UACC91 melanoma cell line

(which does not express ATF2SV5; Figure S3B) was reduced by

silencing of endogenous ATF2 (Figures S4B and S4C), it was

rescued to a greater extent by reconstitution with ATF2SV5 than

by reconstitution with either ATF2WT or ATF2SV3 (Figures 3F

and S4D). Likewise, ectopic expression of ATF2SV5 in human

Mel501 cells (which do not express ATF2SV5; Figures S3B and

S4E), without silencing endogenous ATF2, also increased colony

formation compared with ATF2WT and ATF2SV3 (Figures 3F, S4E,

and S4F). In these cells, the expression level of ectopic ATF2SV5

was comparable to that of ectopic ATF2WT, and both proteins

were expressed at �3-fold higher levels than the endogenous

proteins (data not shown). These observations suggest that

human ATF2SV5 phenocopies mouse ATF2D8,9.

Atf2D8,9 Induces Nevus Formation and Promotes
Melanoma in BrafWT/V600E Mice
The finding that ATF2D8,9 augments melanoma development

when combined with Pten deletion and Braf mutation prompted

us to assess its possible role in melanomagenesis in the absence

of Pten inactivation. Strikingly, Atf2D8,9/D8,9;BrafWT/WT;PtenWT/WT

mice developed more and larger nevi than Atf2WT/WT;BrafWT/WT;

PtenWT/WT mice (Figures 4A and S4G). Similarly, Atf2D8,9/D8,9

mice had an increased number of pigmented hair follicles than

Atf2WT/WT mice (Figures S4H and S4I).

When crossed with BrafWT/V600E animals, Atf2D8,9/D8,9 mice

developed melanoma within 250 days (Figures 4B–4D and

S4J). Tumor penetrance was 50% for the Atf2D8,9/D8,9 genotype,

compared with 28% and 0% for the Atf2WT/D8,9 and Atf2WT/WT

genotype, respectively (Figure 4B). On their own, Atf2D8,9 mice

did not develop tumors, even when maintained for 250 days.

Within the first 50 days, the Atf2D8,9 mutation did not affect

the pigmentation level in BrafWT/WT;Pten�/� animals (data not

shown). These findings identify Atf2D8,9 as a driver of melanocyte

biogenesis, highlighted by the degree of pigmentation, and

demonstrate that when combined with mutant BrafV600E, it is

sufficient to induce melanoma development. The slow rate of

melanoma development and progression seen in the Atf2D8,9

animals recapitulates the time course of human melanoma

(Balch et al., 2009).

To compare the activities elicited by ATF2D8,9 and ATF2SV5, we

silenced endogenous ATF2WT and ATF2SV3 in non-transformed

human melanocytes (Hermes 3A [H3A]) and ectopically ex-

pressed either ATF2D8,9 or ATF2SV5 (Figure S4K). While silencing

of ATF2 in these cells reduced colony formation (Figure S4L),

consistent with earlier studies, expression of either ATF2SV5 or

ATF2D8,9 increased H3A proliferation and migration compared

with ATF2WT expression (Figures 4E and 4F). Moreover, H3A

cells expressing ATF2SV5 or ATF2D8,9 and either constitutively

active BRAFV600E or NRASQ61K (Figures S4M and S4N) showed

enhanced colony formation compared with cells reconstituted

with ATF2WT (Figures 4G and 4H). Finally, migration of H3A cells

was decreased to a greater degree by silencing of ATF2SV5

compared with silencing of ATF2WT/SV3 (Figures 4I and S4O).

RNA-seq analysis of H3A cultures identified 434 genes that

were upregulated and 580 genes that were downregulated

after treatment with siATF2SV5 comparedwith control small inter-

fering (si)RNA, but that were not significantly altered following

siATF2WT treatment (Table S3). IPA analysis identified a num-

ber of pathways deregulated by ATF2SV5 KD (Figure 4J). To

validate genes that may be commonly deregulated by ATF2SV5

and ATF2D8,9 expression, siRNA-mediated KD of ATF2SV5 and

ATF2WT/SV3 in the human melanoma cell lines LU1205 and

C054 (Figure S4P) allowed us to assess the changes in the

expression of genes identified in our expression studies (Table

S3) and IPA analysis (Figure 4J). Among the genes confirmed

to be altered by both ATF2 variants were CCL4, CCR7,

S100A8 (implicated in metastasis), TIM3 (immune checkpoint),

and MITF (Figure 4J).

IPAanalyses to identifypotential commonmechanismsofonco-

genic activities for bothmouseAtf2D8,9 and humanATF2SV5, iden-

tified signaling and networks associated with immune cell infiltra-

tion and cell motility in both melanocytes that were subjected to

ATF2SV5 KD in H3A cells and in tumors from Atf2D8,9/D8,9;

BrafV600E/V600E;Pten�/� mice (Tables S2B, S4A, and S4B).

Figure 3. Human ATF2SV5 Phenocopies Mouse ATF2D8,9

(A and B) Colony forming assay (A) and Transwell migration assay (B) of YUMM1.3 cells stably transduced with control vector (Scr) or vectors expressing ATF2

shRNA (shATF2), ATF2WT, or ATF2D8,9. The data are the mean ± SEM (p value was calculated by two-tailed unpaired t test).

(C) Heatmap showing gene expression in ATF2WT/WT or ATF2D8,9 tumors. The pathways indicated on the right are deregulated by ATF2D8,9.

(D) Schematic of three ATF2 isoforms (WT, SV3, and SV5) identified in human melanoma cell lines by MISO analysis. The mouse ATF2D8,9 isoform is shown at the

bottom.

(E) Migration assay of human melanoma UACC1113 cells transduced with control (Scr) or with a vector expressing shATF2 (targeting ATF2WT and ATF2SV3, but

not ATF2SV5) and transfected with control siRNA or siRNA targeting ATF2SV5. The data are the mean ± SD (p value was calculated by two-tailed unpaired t test).

(F) (Upper row) Colony forming UACC91 human melanoma cells transduced with control (Scr) or with vectors expressing shATF2 plus ATF2WT, ATF2SV5, or

ATF2D8,9. Mel501 humanmelanoma cells stably transduced with pLX304 (empty vector, EV) or vectors expressing ATF2WT, ATF2SV5, or ATF2SV3 (lower row). The

data are the mean ± SEM (p value was calculated by two-tailed unpaired t test). See also Figures S2 and S3 and Tables S1 and S2.
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Figure 4. Atf2D8,9 Expression in Melanocytes Accelerates Nevus Formation in BrafWT/WT Mice and Melanoma Development in

BrafWT/V600E Mice

(A) Quantification of nevi per mouse (left) and nevi size (right) in Atf2WT/WT (n = 9) and Atf2D8,9/D8,9 mice (n = 8) on a BrafWT/WT background, 250 days following

perinatal 4-HT administration. The data are the mean ± SEM (p value was calculated by two-tailed unpaired t test).

(legend continued on next page)
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Importantly, we also assessed the possible importance of

ATF2SV5 expression in human melanoma tumors. The relative

expression of ATF2SV5 and ATF2WT / ATF2SV3 were measured in

33 melanoma tumor specimens that were obtained from 21 con-

senting metastatic melanoma patients at the time of tumor resec-

tion or upon autopsy. A total of 18 (54.5%) of the biopsies came

from autopsy samples. Notably, a higher level of ATF2SV5

(>3-fold) was found to coincide with poorer prognosis (Figure 4K).

Of the top 11 highest ATF2SV5 expressing tumors (quantification

cycle (cq) < 33.5), seven (63.6%) were from tumor biopsies ob-

tained shortly after death and four (36.4%) were from patients

who were double BRAF/NRAS wild-type. These observations

substantiate the findings made in the genetic mouse model as in

the cultured melanoma and melanocytes, where transcriptionally

inactive ATF2 variants elicit a gain of function oncogenic activity.

DISCUSSION

We identified an unexpected role for transcriptionally inactive

ATF2 in melanocyte homeostasis and melanoma development.

Atf2D8,9 alone is able to drive the formation of nevi within

2–3 months and induction of the melanomagenesis. When com-

bined with the Braf mutant genotype, Atf2D8,9 was able to drive

the development of melanoma over 250 days. These animals

also exhibit upregulation of select gene networks, including

pigmentation-related genes, chemokines/cytokines implicated in

the recruitment of immune cells to the tumor sites, and genes

related to the enhanced propensity for metastasis. Further,

Atf2D8,9 accelerated the formation of melanomas and increased

their propensity tometastasize inBraf/Ptenmutant animals. These

dataestablish the ability of a transcriptionally inactive formofATF2

to promote BrafV600E melanoma development and progression.

Although Atf2D8,9 enhanced the pigmentation program in both

Nras and Braf mutant melanocytes, it attenuated melanoma

development inNrasmutant mice and enhanced it inBrafmutant

mice. These differences may be attributed to an effect of Atf2D8,9

on specific signaling pathways that cooperate with Braf, but

not Nras, and/or to its effect on tumor microenvironment (i.e.,

immune editing; tumor stroma).

While full-length transcriptionally active ATF2 is largely

oncogenic in melanoma, its transcriptionally inactive splice var-

iants, represented by human ATF2SV5 and modeled by mouse

ATF2D8,9, exhibit a super-oncogenic function. Genes that were

commonly deregulated by expression of both human andmouse

variants (ATF2SV5 and ATF2D8,9, respectively) were primarily

implicated in metastasis (CCL4, CCR7, S100A8, and MITF), im-

mune cell infiltration (CCL4, CCR7, and TIM3), and melanoma

progression / drug resistance (MITF).

Expression of ATF2SV5 in a series of 33 melanoma biopsies

coincides with poor prognosis, consistent with our findings in

ATF2D8,9 mouse melanoma models. Notably, although the activ-

ity of ATF2SV5 is expected to supersede that of other ATF2 forms,

it is co-expressed with other ATF2 forms (full-length and other

splice variants).

Collectively, our studies provide a genetic support for the

involvement of a gain-of-function ATF2 isoform in melanoma.

Our data demonstrate that the transcriptionally inactive variant

is able to drive melanomagenesis and, in cooperation with

mutant Braf, induce melanoma development at the slow rate

often seen in humanmelanoma. Our findings highlight the impor-

tance of ATF2 function also as a transcriptionally inactive form.

EXPERIMENTAL PROCEDURES

For additional experimental procedures, see Supplemental Experimental

Procedures.

Animal Studies and In Vivo Experiments

All animal studies were approved by the Institutional Animal Care and Use

Committee of the Sanford Burnham Prebys Medical Discovery Institute.

Atf2D8,9/D8,9 mice, described in earlier studies (Shah et al., 2010), were

crossed with BrafV600E/V600E;Pten�/� mice (Dankort et al., 2009). Atf2D8,9/D8,9

and Atf2D8,9/D8,9;BrafWT/V600E are C57BL/6 and Atf2D8,9/D8,9;BrafV600E/V600E;

Pten�/� are C57BL/6 3 129.

Activation of the Tyr::CreERT2 Transgene

Topical administration of 4-HT (Sigma-Aldrich) was performed by application

of 10 ml of a 50 mg/ml solution in DMSO with a paintbrush onto the dorsal

skin of pups on days 1, 3, and 5 after birth. Local administration of 4-HT was

performed by application of 1.5 ml of a 7.8 mg/ml solution in ethanol onto the

shaved dorsal skin of 3-week-old mice (Scortegagna et al., 2014).

Cell Lines

The YUMM1.3 cell line was generated from a BrafWT/V600E;Pten�/�;Cdkn2a�/�

melanoma in C57BL/6 mice (Scortegagna et al., 2015). The human UACC91,

(B) Tumor weights of Atf2D8,9/WT (n = 14), Atf2WT/WT (n = 16), and Atf2D8,9/D8,9 (n = 18) mice on a BrafWT/V600E background, 250 days following systemic 4-HT

administration. The proportion of Atf2D8,9/WT,Atf2D8,9/D8,9, and Atf2WT/WTmice developing tumors was 28%, 50%, and 0%, respectively. The data are the mean ±

SEM (p value was calculated by two-tailed unpaired t test).

(C and D) H&E analysis of skin (C) and S100 immunostaining of tumors (D) from Atf2WT/WT and Atf2D8,9/D8,9 mice on a BrafWT/V600E background. Samples were

analyzed at the time of collection. The scale bars represent 300 mm.

(E and F) Colony forming assay (E) andmigration assay (F) of human H3Amelanocytes transduced with control (Scr) or with vectors expressing shATF2 (targeting

ATF2WT and ATF2SV3, but not ATF2SV5) ATF2WT, ATF2SV3, ATF2SV5, or ATF2D8,9. The data are the mean ± SEM (p value was calculated by two-tailed unpaired

t test).

(G andH) Colony forming assays of H3A cells generated as described for (E) and (F) and additionally transducedwith BRAFV600E (G) or NRASQ61K (H). The data are

the mean ± SEM (p value was calculated by two-tailed unpaired t test).

(I) Migration of H3A cells transfected with control siRNA or siRNA targeting ATF2WT and ATF2SV3 or targeting ATF2SV5 alone. The data are the mean ± SEM

(p value was calculated by two-tailed unpaired t test).

(J) qPCR analysis of human melanoma C054 and LU1205 cell lines subjected to KD of ATF2WT and ATF2SV3 (ATF2WT/SV3) or ATF2SV5. The genes analyzed were

upregulated inAtf2D8,9/D8,9;BrafV600E/V600E;Pten�/�mice (see also Figure S2D). Lu1205 do not express SILVER andMELAN-A. qPCR values are normalized to the

expression levels in cells transfected with a control siRNA. The data are the mean ± SEM.

(K) qPCR analysis of relative transcript levels of ATF2WT and ATF2SV3 or ATF2SV5 in 33 melanoma specimens from 21 patients. See also Figure S4 and Tables S3

and S4. The data are the mean ± SEM.
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UACC2427, and UACC1113 cell lines were kindly provided by Drs. Brown

and Lin. H3A immortalized melanocyte cells were provided by Dr. Bennet

(Gray-Schopfer et al., 2006). All cell lines except H3A were maintained in

DMEM supplemented with 10% fetal bovine serum (FBS) and 1% penicillin

and streptomycin. H3A cell lines were propagated in 254 media (Gibco) and

transferred to DMEM medium prior to initiating the experiments.

Statistical Analysis

Data are presented as means ± SEM or SD and the statistical significance

(p value) was determined by two-tailed unpaired t test. Kaplan-Meyer survival

curves were compiled using Prism statistical analysis software and sig-

nificance was assessed using the log rank (Mantel-Cox) test. A p value

of < 0.05 was considered significant.
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