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Abstract

Human subjects typically deviate systematically from randomness when attempting to 

produce a sequence of random numbers. Despite an increasing number of behavioral and 

functional neuroimaging studies on random number generation (RNG), its structural 

correlates have never been investigated. We set out to fill this gap in 44 patients with multiple 

sclerosis (MS), a disease whose impact on RNG has never been studied. The RNG task 

required the paced (1 Hz) generation of the numbers from 1 to 6 in a sequence as random as 

possible. The same task was administered in 39 matched healthy controls. To assess 

neuroanatomical correlates such as cortical thickness, lesion load and third ventricle width, all 

subjects underwent high-resolution structural MRI. Compared to controls, MS patients 

exhibited an enhanced tendency to arrange consecutive numbers in an ascending order 

(“forward counting”). Furthermore, patients showed a higher susceptibility to rule breaks 

(producing out-of-category digits like 7) and to skip beats of the metronome. Clinico-

anatomical correlation analyses revealed two main findings: First, increased counting in MS 

patients was associated with higher cortical lesion load. Second, increased number of skipped 

beats was related to widespread cortical thinning. In conclusion, our test results illustrate a 

loss of behavioral complexity in the course of multiple sclerosis, while the imaging results 

suggest an association between this loss and cortical pathology.
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1. Introduction

As smart human brains are in spotting patterns and following rules, as miserably they fail in 

attempting to be unpredictable. A case in point is our inability to generate random sequences 

of responses. Instructions of a random number generation (RNG) task require subjects to 

arrange numbers in a sequence “as random as possible”, implicitly asking to avoid any 

algorithm and to disobey any rule. Under a huge range of conditions (Brugger, 1997) healthy 

volunteers were found unable to follow these instructions, and so were patients with various 

neuropsychiatric diseases (Brown, Soliveri, & Jahanshahi, 1998; Brugger, Monsch, Salmon, 

& Butters, 1996; Ho, Sahakian, Robbins, & Barker, 2004; Salamé & Danion, 2007; Spatt & 

Goldenberg, 1993). A limited capacity of working memory and executive functions have been 

implied in the failure to produce unpredictable, or random sequences of response alternatives 

(Baddeley, 1966, 1998; Joppich et al., 2004; Maes, Eling, Reelick, & Kessels, 2011; Miyake 

et al., 2000). Neuroimaging studies have largely supported the assumed implication of the 

(pre)frontal lobes for RNG (Artiges et al., 2000; Itagaki, Niwa, Itoh, & Momose, 1995) and 

non-invasive intervention methods have suggested their causal involvement (Jahanshahi et al., 

1998; Knoch, Brugger, & Regard, 2005).

Facing the large and rapidly growing number of behavioral and functional neuroimaging 

studies on RNG, one is left wondering why the neuroanatomical correlates of RNG have 

never been examined in a structural imaging approach. The present study was aimed at filling 

this gap in patients with multiple sclerosis (MS), a disease whose impact on RNG has, to the 

best of our knowledge, never been studied. MS, the most common autoimmune disorder 

affecting the central nervous system, is historically considered a white matter (WM) disease, 

with focal demyelinating lesions in the WM being the pathological hallmark. However, 

several recent neuropathological studies disclosed a relevant involvement of gray matter areas 

including the cerebral cortex (Calabrese et al., 2015; Geisseler et al., 2016). Brain integrity, 

captured by various imaging techniques, has been shown to correlate with cognitive 



impairment (for review see Rocca et al., 2015), which is recognized as an important feature of 

MS, prevalent in 43-70% of MS patients (Chiaravalloti & DeLuca, 2008; Pflugshaupt, 

Geisseler, Nyffeler, & Linnebank, 2016). Although processing speed (DeLuca, Chelune, 

Tulsky, Lengenfelder, & Chiaravalloti, 2004; Roth, Denney, & Lynch, 2015) and episodic 

memory (e.g. Rogers & Panegyres, 2007) seem to be the most prominent cognitive feature of 

MS, these patients often exhibit significant deficits in executive functions (Geisseler et al., 

2016; Henry & Beatty, 2006). Against this background, it appears tempting to assume that 

MS patients exhibit impaired performance in generating random sequences of numbers.  

The aim of the present study is two-fold. On the one hand, we planned to examine the impact 

of MS on randomization performance; on the other hand, we wanted to explore, for the first 

time, structural brain correlates of RNG. Specifically, we predicted an impaired 

randomization performance by the patients with MS relative to a carefully matched healthy 

control group.  As a first step in uncovering the neuroanatomical correlates of RNG, we 

planned to analyze associations between brain structure and RNG performance in healthy 

participants and, in the patient group, between cortical and subcortical damage and RNG 

performance.  

2. Material and methods 

2.1 Participants 

Forty-four patients with a definite diagnosis of relapsing-remitting multiple sclerosis (RRMS) 

according to the 2010 McDonald criteria (Polman et al., 2011) and 39 age-, gender-, 

handedness- and education-matched healthy controls participated in this study. Inclusion 

criteria for the patient group were no relapse or steroid-treatment during the last two months, 

no current or past neurological disorder in addition to multiple sclerosis, and no psychiatric 

disorders apart from MS-related depressive mood state. The local ethics committee approved 



the study, and all subjects gave written informed consent before participation. Control 

participants received financial compensation. 

2.2 RNG task, performance measures and hypotheses 

The Mental Dice Task (MDT) was administered in its standardized form (Brugger et al., 

1996). Subjects were instructed to imagine repeatedly throwing a die and to orally report the 

number that would show up, i.e., they had to generate numbers from 1 to 6 in a random 

fashion. Subjects were instructed to synchronize their response with a pacing auditory 

stimulus, which was a beeping sound presented at 1 Hz. A total of 66 valid responses were 

recorded.

While there are many different measures of (non)randomness, we focused on three variables, 

which were calculated by means of a freely available computer program 

(http://www.lancs.uk/staff/towse/rgcpage.html). First, we determined the distribution of first-

order differences (FODs), reflecting the arithmetic difference between each response and the 

preceding one. Thus, FODs may vary between -5 (6 followed by 1) and +5 (1 followed by 6). 

The elegance of FODs is that their graphical depiction clearly illustrates the frequencies of all 

named combinations of the digits to be randomized in one curve (see Figure 1). For the 

present purpose, it thus displays those pairs of consecutive numbers for which group 

differences were predicted alongside those for which no such differences were predicted. 

Specifically, FOD values of +1 reflect a counting strategy, which we predicted to be 

pronounced in patients with MS, under the assumption of an impaired executive control of 

automatized responding (i.e., counting). Some authors have reported an excess of counting in 

steps of 2 (FOD = +2), in addition to counting in the narrow sense (i.e. in steps of 1; 

Jahanshahi et al., 1998) and the display would allow us to check for the frequency of +2 

pairings as well. FOD values of 0 represent the number of direct repetitions of any of the 6 

digits to be randomized. We predicted a comparable degrees of repetition avoidance for both 



groups, as repetition (alternation) behavior may be under hippocampal, rather than prefrontal 

control (Lalonde, 2002). A second measure, the turning point index (TPI) captures the 

frequency of shifts between ascending and descending sequences. TPI is reported as a 

percentage score, meaning that values greater than 100 indicate too many turning points - 

relative to a theoretical distribution of random responses - whereas values less than 100 

indicate fewer turning points than expected. We predicted that patients would show a lower 

TPI than control participants because of more pronounced perseverative tendencies leading to 

longer ascending and descending sequences. Finally, as a global measure of randomness, 

Evans’ random number generation index (Evans, 1978; RNG index) was calculated. As a 

general redundancy measure, this index is among the most frequently used measures of non-

randomness in the literature on RNG. It varies between 0 to 1, with higher indices 

representing less randomness, which was predicted for the patient group on grounds of their 

hypothetically enhanced response stereotypy.  Further information and mathematical details 

of these calculations are described elsewhere (Towse & Neil, 1998). Conceptually, both our 

counting measure (FOD=1) and the TPI primarily rely on frontal executive functions; we did 

not use a measure tapping more into the working memory components of RNG. 

Additionally, and besides these measures of sequential non-randomness, two non-sequential 

variables of the MDT were considered, i.e., the number of rule breaks (i.e., producing out-of-

category digits such as 7) and the total number of skipped beats of the metronome. Both rule 

breaks and a measures of time stress have proved useful in monitoring executive function 

demands in RNG (e.g. Gottselig et al., 2006). 

2.3 MRI data acquisition, post-processing and hypotheses 

The MRI scan was performed within one month of the neuropsychological examination. All 

images were acquired using a 1.5-T scanner (Siemens Magnetom AvantoTM) equipped with 

a SQ-engine gradient (45m/T/m @ 200 T/m/s) using a dedicated 32-channel head coil. No 



hardware upgrades of the scanner occurred during the study period. The following sequences 

were obtained from all subjects: (1) Double Inversion Recovery sequence (DIR) (voxel size 

=1.5 x 1.5 x 1.5 mm, slice thickness = 1.5 mm, repetition time = 7500ms, echo time = 

308ms); (2) T1-weighted MPRAGE (voxel size = 1 x 1 x 1 mm, slice thickness = 1 mm, 

repetition time = 2420 ms, echo time = 4.18 ms) and (3) a T2-weighted FLAIR (voxel size = 

0.9 x 0.9 x 2.0 mm, slice thickness = 2 mm, repetition time = 5000 ms, echo time = 342 ms).  

Cortical lesions were defined according to the consensus recommendations of Geurts and 

colleagues (Geurts et al., 2011). Consequently, cortical lesions are those lesions appearing 

hyperintense on DIR images compared to surrounding normal-appearing grey matter, entirely 

or partly located in the cortical grey matter and occupying at least three voxels. DIR-

hyperintense lesions were identified and manually delineated with MRIcron 

(http://sph.sc.edu/comd/rorden/mricron), which was further used to measure total lesion 

volume. The same procedure was applied to FLAIR images to identify and segment T2-

hyperintense lesions. An experienced rater assessed all images, supervised by a 

neuroradiologist. A non-parametric mapping software (Rorden, Karnath, & Bonilha, 2007) 

was used to analyze possible associations of behavioral performance with the spatial 

distribution of lesions, i.e. voxel-based lesion symptom mapping (VLSM). Central brain 

atrophy was examined by measuring the width of the third ventricle, implemented according 

to the procedure defined by Benedict and colleagues (Benedict et al., 2006). Similar to many 

other studies on cognition in MS (e.g. Benedict et al., 2006), we expect a wider third ventricle 

to be associated with poorer behavioral performance. Cortical thickness evaluation was 

performed by means of Freesurfer image analysis suite, which is documented and freely 

available online (http://surfer.nmr.mgh.harvard.edu). Further information and technical details 

of these procedures are described in prior publications (Dale, Fischl, & Sereno, 1999; Fischl, 

Sereno, & Dale, 1999). To detect possible misclassifications of white and grey matter due to 

multiple sclerosis lesions, all images were visually inspected after the segmentation of grey 



and white matter. In one patient, a semi-automated correction of topological defects was 

required by manually adding control points. Global cortical thickness as well as cortical 

thickness estimates for the regions resulting from automated parcellations (Desikan et al., 

2006) were extracted from the Freesurfer software for further analyses. In line with the 

hypothesis that RNG performance rely on frontal functions, we mainly focused on frontal 

regions of interest (ROI), whereas temporal and parieto-occipital ROI were used as control 

regions.

2.4 Statistical analyses 

Statistical analyses of the demographical and cognitive data, including group comparisons, 

were performed with SPSS (IBM, Chicago, USA, Version, 21.0, http://spss.com). Unless 

otherwise stated, a p-level below 5% was considered statistically significant. Assumptions for 

normality were tested for all continuous data with Kolmogorov-Smirnov tests. In case of 

normally distributed variables, group comparisons and correlational analyses were based on 

parametric tests (independent t-tests, Pearson correlation). When variables were not normally 

distributed, non-parametric tests (Mann-Whitney U test, Spearman correlation) were applied. 

Concerning all group comparisons, correlational analyses and ROI analyses, Bonferroni 

correction was used to prevent alpha error inflation. For the VLSM we performed Brunner-

Munzel tests (Brunner & Munzel, 2000) at a threshold of 5% FDR to identify lesioned voxels 

associated with RNG performance. Only voxels affected in at least two patients were 

considered for analysis.  

3. Results 

3.1 RNG findings 

Demographic characteristics and MDT test results are reported in Table 1. The distribution of 

FODs is shown in Figure 1, and an overview of the RNG parameters is given in Table 1. 



Patients displayed significantly (T(67.9) = 3.010; p = 0.004) more forward counting steps 

(Mean = 15.91; SD = 8.335) than healthy controls (Mean = 11.54; SD = 4.541). Furthermore, 

the latter showed more backward counting steps of two than the patients (FOD = -2; T(81) = -

2.490; p = 0.015). No differences between groups were observed in the number of repetitions 

(FOD = 0). Patients (Mean = 77.02; SD = 18.17) had a smaller TPI than controls (Mean = 

89.8, SD = 13.33), i.e. they showed less changes from ascending to descending sequences and 

vice versa (T(81) = -3.624, p < 0.001). RNG indices did not differ significantly between 

groups (Z = -1.437; p = 0.151). Regarding non-sequential measures, MS patients showed a 

higher susceptibility to rule breaks (Z = -2.431; p = 0.014) as well as to skip beats of the 

metronome (Z = -4.983, p < 0.001) than the control group. 

Correlational analyses within the patient group yielded no relationship between RNG 

parameters and age, education, disease severity (EDSS), fatigue or depressive mood (all p > 

0.050).

3.2 MRI findings 

Relative to controls, patients showed significant cortical thinning and widening of the third 

ventricle (both p < 0.010). Results of the univariate correlation analyses between the global 

atrophy and the RNG parameters as well as between the lesion and the RNG parameters 

within the patient group are summarized in Table 2.  

Within the patient group, mean global cortical thickness showed a significant negative 

correlation with skipped beats in the MDT (rs = -0.411, p = 0.006), i.e. a thinner cortex was 

associated with more skipped beats. In contrast, global cortical thickness was not associated 

with TPI, counting tendency, or the number of rule breaks (all p > 0.050).  The width of the 

third ventricle did not correlated with any of the RNG parameters. Regarding lesion 

parameters, DIR-hyperintense lesion volume correlated with the counting tendency (r = 

0.402; p < 0.007; Figure 2). However, both DIR-hyperintense cortex-involving (r = 0.306; p =



0.045) as well as FLAIR-hyperintense lesion volumes (r = 0.345; p = 0.022) were 

uncorrelated with the TPI and the non-sequential parameters. None of the global MRI 

variables correlated with TPI or the number of rule breaks. 

On a regional level, ROI analyses revealed no significant correlation between counting 

tendency and the cortical thickness in frontal regions of interest when applying strict 

Bonferroni correction. Supplementary Table 1 displays r-values and uncorrected p-values 

(which ranged between r = -0.359, p < 0.009 and r = 0.018, p < 0.454) showing an association 

between counting tendency (measured by FOD 1) and cortical thickness in the left pars 

orbitalis as well as with bilateral cortical thickness in the pars triangularis of the inferior 

frontal gyrus. No significant correlation was observed between the temporal and parietal 

control ROIs with any sequential parameters. Regarding non-sequential parameters, the ROI-

based correlational analyses did also not survive Bonferroni correction; Supplementary Table 

2 displays uncorrected p-values showing associations with cortical thickness in several 

regions of interests in frontal, temporal and parieto-occipital areas. Concerning the 

topological relation of lesions (cortical and T2-hyperintense lesion) with RNG parameters, 

VLSM revealed no significant clusters.  

Within the control group, the only significant correlation between global cortical thickness 

and the RNG parameters was that with skipped beats (rs = -0.342, p < 0.033). No significant 

correlations were observed between the width of the third ventricle or global cortical 

thickness and any of the RNG parameters, and the regional ROI analyses were also 

uncorrelated with both sequential and non-sequential measures of the MDT (see 

Supplementary Table 3 for uncorrected correlation values, again showing associations of 

nonsequential parameters with several widespread areas).

4. Discussion 



The current study examined the behavioral performance and neuroanatomical underpinnings 

of RNG in a cohort of MS patients, compared with a group of matched healthy controls. As 

predicted, random number sequences generated by MS patients were more stereotyped than 

those of healthy controls. More precisely, MS patients showed more ascending counting 

behavior than control subjects. This corresponds well with previous reports of a deterioration 

of randomization performance in the presence of a neurological disorder (Brown et al., 1998; 

Brugger et al., 1996; Ho et al., 2004) and with the observation of executive dysfunction in MS 

(Drew, Tippett, Starkey, & Isler, 2008; Geisseler et al., 2016). Patients did not differ from 

controls in the global measure of randomness (RNG index; 0.47 and 0.43, respectively), 

perhaps due to a “floor effect”; both groups scored far from the value obtained in 100 

simulations of 66 dice throws, i.e. 0.36; see (Brugger et al., 1996).  Relative to healthy 

controls, patients also exhibited problems in non-sequential parameters. They showed 

pronounce difficulties in keeping pace (1Hz) and in avoiding invalid numbers (e.g. 7). The 

former problem is consistent with reports that the primary cognitive deficit in MS patients 

may be generalized slowing of information processing speed (DeLuca et al., 2004). Using 

sleep deprivation, Gottselig et al., (2006) induced such slowing in healthy research 

participants, who had to generate random numbers. However, an excess of skipped beats may 

also reflect enhanced task difficulty. Consequently, the non-sequential variable of skipped 

beats in RNG may be a useful parameter for a brief and valid assessment of information 

processing speed and/or experienced task difficulty.  

Cognitive impairment in MS patients has been related to a number of structural abnormalities 

in the past. Demyelinated T2 lesions in the white matter – the pathological hallmark of MS – 

are only modestly correlated with cognitive impairment (Lazeron et al., 2005; Rao, Leo, 

Haughton, St Aubin-Faubert, & Bernardin, 1989). Higher correlations are observed between 

cognitive performance and third ventricle width, which is traditionally considered the best 

single MRI predictor for MS-related cognitive impairment (Benedict et al., 2004, 2006). More 



recent research highlights cortical pathology as one of the major substrates of cognitive 

decline in MS (for a review see Messina & Patti, 2014). Our clinico-anatomical correlation 

analyses revealed two main findings that survived Bonferroni correction:  First, increased 

counting in MS patients was associated with higher cortical lesion load. Second, increased 

number of skipped beats were related to widespread cortical thinning. Moreover, uncorrected 

findings showed an association between counting tendency and the cortical thickness in the 

left pars orbitalis and bilateral in the pars triangularis of the inferior frontal gyrus. These 

findings are unexpected on the basis of previous functional imaging or TMS studies showing 

an association between counting bias and primarily the dorsolateral prefrontal cortex 

(DLPFC) (Jahanshahi et al., 1998; Knoch et al., 2005). No structural correlates could be 

found for the number of rule breaks and the TPI-measure of sequential randomness. FLAIR-

hyperintense lesion load did not correlate significantly with any of the behavioral parameters. 

The association between a widespread thinner cortex and an increased number of skipped 

beats is in line with previous studies emphasizing the relationship between volume/thickness 

of the neocortex and mental processing efficiency in MS (Amato et al., 2007; Benedict et al., 

2006). We propose that the number of skipped beats reflect speed and attention (and arguably 

experienced task difficulty), both in MS patients and healthy controls.

To the best of our knowledge, this is the first study evaluating the RNG performance by 

means of structural MRI. Our results suggest an association between cortical pathology and 

RNG performance. On a behavioral level, it can be concluded that even when compensating 

for difficulties by slowing the rate at which they produced numbers, MS patients commit rule 

breaks and cannot sufficiently suppress a counting algorithm. RNG may be a useful tool in the 

clinical monitoring of MS. As the task is highly resistant to practice effects (Brugger, 1997; 

Jahanshahi, Saleem, Ho, Dirnberger, & Fuller, 2006), it may prove particularly suitable for 

monitoring cognitive capacity over time.  



Future studies could employ lesion-symptom mapping analyses in patients with focal lesions 

to establish connections between brain circuitry and selected measures of sequential non-

randomness. Structural connectivity analyses will also be needed to better understand 

neurostructural underpinnings of randomization performance in health and disease. 
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Table 1: Demographic characteristics and measures of performance on the MDT of MS 

patients and healthy controls 

Abbreviations: EDSS = Expended disability status scale, RNG = Random number generation, 

FOD = First order difference, TPI = Turning point index 

MS patients Controls p-value

Number 44 39 -

Gender [m/f] 10/34 6/33 0.397

Age [years], mean (SD) 39.02 (9.4) 38.53 0.813

Education [years], mean (SD) 14.6 (3.1) 14.3(2.4) 0.690

EDSS, mean 2.6 - -

Disease duration [months], mean 79.5 - -

RNG, mean 0.47 0.43 0.151

Counting [FOD 1], mean 15.91 11.54 0.004**

Repetitions [FOD 0], mean 3.11 3.51 0.699

TPI, mean 77.02 89.84 < 0.001*** 

Skipped beats, mean 6.52 0.18 < 0.001*** 

Rule breaks, mean 0.37 0.10 0.014*
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Figures 

Figure 1: Distribution of first-order differences (FODs).  

Caption:

Avoidance of repetitions is demonstrated at point 0 on the x-axis, forward counting at point 1, 

backward counting at point -1. 

Figure 2: Correlation between cortical lesion volume (cm3) and the counting tendency 

(frequency of FOD 1). 

Caption:

Only patients with a minimum of one cortical lesion are included.  

Supplementary material caption:

r- and uncorrected p-values of the sequential parameters within the 

patient group

r- and uncorrected p-values of the non-sequential parameters within 

the patient group

r- and uncorrected p-values of the RNG parameters within the 

control group 

Print version: 

Color print is required 


