
This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Rahman, Anisur, Xu, Yue, Radke, Kenneth, & Foo, Ernest
(2016)
Finding anomalies in SCADA logs using rare sequential pattern mining. In
10th International Conference on Network and System Security (NSS
2016), 28-30 September 2016, Taipei, Taiwan.

This file was downloaded from: https://eprints.qut.edu.au/103458/

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

https://doi.org/10.1007/978-3-319-46298-1_32

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/78106469?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://eprints.qut.edu.au/view/person/Rahman,_Anisur.html
https://eprints.qut.edu.au/view/person/Xu,_Yue.html
https://eprints.qut.edu.au/view/person/Radke,_Kenneth.html
https://eprints.qut.edu.au/view/person/Foo,_Ernest.html
https://eprints.qut.edu.au/103458/
https://doi.org/10.1007/978-3-319-46298-1_32


Finding Anomalies in SCADA Logs Using Rare
Sequential Pattern Mining

Anisur Rahman1, Yue Xu2, Kenneth Radke2, and Ernest Foo2

Queensland University of Technology, Brisbane, Australia
1{anisur.rahman}@hdr.qut.edu.au

2{yue.xu,k.radke,e.foo}@qut.edu.au

Abstract. Pattern mining is a branch of data mining used to discover
hidden patterns or correlations among data. We use rare sequential pat-
tern mining to find anomalies in critical infrastructure control networks
such as supervisory control and data acquisition (SCADA) networks. As
anomalous events occur rarely in a system and SCADA systems’ topol-
ogy and actions do not change often, we argue that some anomalies can
be detected using rare sequential pattern mining. This anomaly detec-
tion would be useful for intrusion detection or erroneous behaviour of a
system. Although research into rare itemsets mining previously exists,
neither research into rare sequential pattern mining nor its applicability
to SCADA system anomaly detection has previously been completed.
Moreover, since there is no consideration to events order, the applicabil-
ity to intrusion detection in SCADA is minimal. By ensuring the events’
order is maintained, in this paper, we propose a novel Rare Sequential
Pattern Mining (RSPM) technique which is a useful anomaly detection
system for SCADA. We compared our algorithm with a rare itemset
mining algorithm and found some anomalous events in SCADA logs.

Keywords: frequent pattern, rare pattern, SCADA, generator pattern.

1 Introduction

Anomaly detection is one step of several safeguarding measures applied in crit-
ical infrastructure (CI) control networks, such as supervisory control and data
acquisition (SCADA). The SCADA system is used to monitor and control the
CIs from a remote location. SCADA systems are interlinked with each other,
so attacks on SCADA can cause devastating impacts to other dependent infras-
tructures, environments and even to human lives [1]. Many SCADA systems use
conventional IT technology as a backbone to communicate with field devices,
so they are prone to be attacked using standared IT network vulnerabilities.
Anomaly detection for SCADA systems is important and challenging because
of the constant changes in attack patterns. Therefore, it is almost impossible to
keep the system protected from increasingly diversified attacks [2].

SCADA are distinguished from traditional IT networks because the normal or
regular behaviour of SCADA system can be predicted using frequent sequential



pattern or regular system behaviour. However, rare pattern or irregular behavior
of this system which deviates from normal behaviour could be considered as
anomalous events. Therefore, we argue that rare or infrequent sequence of actions
can be considered as an anomalous event, and if analyzed we can find the cause
could be either cyber-attacks, system failures, or later inclusion of a benign or
novel event. In this paper, we propose a novel Rare Sequential Pattern Mining
(RSPM) method for anomaly detection from SCADA logs.

2 Related Work

There has been several research in finding anomalies in SCADA systems from
diverse perspectives. Some works are at the communication protocol level [3];
however, only a single work uses SCADA logs where Hadžiosmanovič et al. [4]
used itemset mining for threat identification. Manganaris et al. [5] show that
the absence of frequent events or set of events can be considered as an anomaly.
Clifton et al. [6] applied data mining technique to identify the normal behavior
of a system based on frequent occurrence of an alarm event and later filtered
them out from suspicious events lists. Barbara et al. [7] defined users normal
behavior using data mining association rules from network traffic data to train
a model. Later, in their model they looked for any deviation in association rules
and considered as abnormal or anomalous behavior of the system and users.

So, there have been some works in finding rare or infrequent itemset mining.
However, these works can not be used to find anomalies in SCADA systems
as they do not preserve itemsets’ order [8, 4]. To the best of our knowledge,
until now there has been no work in rare sequential pattern mining for anomaly
detection.We are motivated by the work of Szathmary et al. [8] where the authors
used minimal frequent itemset generators to find rare patterns. However, their
method cannot find correlation among the events. We apply almost similar idea,
but instead of itemset we use sequence which preserves the events’ order of
occurence that results in correlation among the events. Therefore, in this paper,
we use rare sequential pattern minig (RSPM) which is a branch of sequential
pattern mining first introduced by Agrawal and Srikant [9].

3 Proposed Method

To define our problem, we introduce some related theories from [10] which are
applied in our RSPM algorithm, and in other sections of this paper.

Definition 1 (Sequence): Let I = {i1, i2, ..., il} be a set of all items. An itemset
Ix = {i1, i2, ..., im} ⊆ I is a nonempty and unordered set of distinct items. A
sequence s is an ordered list of itemsets or events denoted as 〈I1, I2, I3, ..., In〉
such that Ik ⊆ I (1 ≤ k ≤ n).

Definition 2 (Sequential Database SDB): A sequential database SDB is a set
of sequences, i.e., SDB = {s1, s2, s3, ..., sp}, where sj is a sequence, 1≤j≤p.

2



For example, Table 1 shown below is an example of a sequential database SDB
containing four sequences. The first sequence SID1 is composed of 5 itemsets.
The first itemset is {1} which is followed by itemset {1, 2, 3}. For application
domains, the items in one itemset are often considered occur at the same time.

Definition 3 (Sequence containment): A sequence Sa = 〈A1, A2, ..., An〉 is said
to be contained in a sequence Sb = 〈B1, B2, ..., Bm〉 if and only if there exist
integers 1 ≤ i1 ≤ i2 ≤ ... ≤ in ≤ m, such that, A1 ⊆ Bi1 , A2 ⊆ Bi2 , ...,
An ⊆ Bin and this is denoted as Sa v Sb . In this case Sa is considered as a
sub-pattern of Sb and Sb is also said to be super-pattern of Sa.
For example, in Table 1 sequence 〈{5}, {1, 6}, {2}〉 is contained in sequence
SID4.

Definition 4 (Support): The support of a sequential pattern Sa in a sequential
database SDB is determined by the number of sequences S ∈ SDB, such that, Sa

v S and it is denoted by supSDB(Sa).For example, the pattern 〈{1, 2}, {6}〉 is
found in 2 sequences in Table 1 and hence the support is 2.

Definition 5 (Frequent Sequential Pattern): Let minsup be a user-defined thresh-
old and SDB is a sequential database. A sequence S (also called a sequential
pattern) is considered frequent if and only if supSDB (S) ≥ minsup.

Definition 6 (Sequential Generator): A sequential pattern Sa is said to be a gen-
erator if there is no other sequential pattern Sb such that Sb v Sa and their
supports are equal. For example, in the sequence database SDB given in Table 1
both 〈{5}, {2}〉 and 〈{6}, {3}〉 are Generator Sequential Patterns.

Table 1. A sequential database SDB

Sequence ID Sequences

SID1 〈{1}, {1, 2, 3}, {1, 3}, {4}, {3, 6}〉
SID2 〈{1, 4}, {3}, {2, 3}, {1, 5}〉
SID3 〈{5, 6}, {1, 2}, {4, 6}, {3}, {2}〉
SID4 〈{5}, {7}, {1 6}, {3}, {2}, {3}〉

3.1 Description of RSPM Algorithm

In rare sequential pattern mining, the sequences that fail to meet the minsup are
known as rare sequences. For example, if the user defined minsup is 2 then the
sequential patterns 〈{7}, {1}〉 and 〈{1}, {5}〉 are found to be rare since they fall
below the minsup. The basic idea is to form a new sequential pattern by combin-
ing two minimal generators and the infrequent combinations are considered rare
patterns. We are motivated by the work presented in [8] that finds rare itemsets

3



based on minimal generators. However, we propose to find rare sequential pat-
terns based on sequential generators because they are the smallest or minimal
patterns of an equivalent class. Usually, shorter patterns are frequent, while by
nature, longer patterns are likely to be infrequent or rare and their combination
can be even more infrequent. Therefore, it is likely that a combination of two
minimal generators would be rare or infrequent, and this rare sequential pattern
can be considered interesting and deserves further investigation. Given two se-
quential patterns, there could exist different ways to combine them to form a
new sequential pattern. For example, for the two frequent sequential patterns s1
= 〈{4}, {3}, {2}〉 and s2 = 〈{1, 2}, {6}〉 generated from the dataset in Table 1,
at the sequence level, we can combine them in two different orders 〈s1, s2〉 and
〈s2, s1〉. For example, 〈{4}, {3}, {2}, {1, 2}, {6}〉 and 〈{1, 2}, {6}, {4}, {3},
{2}〉. In this case, in the resulting sequence, each of the two original sequences is
intact. The order of itemsets from one original sequence is preserved. However,
if we only want to preserve the original order of itemsets and do not require the
integrity of the original sequences, we could have sequences like 〈{4}, {1, 2},
{3}, {2}, {6}〉, 〈{1, 2}, {4}, {3}, {6}, {2}〉, and much more. So, we preserved
both the integrity and itemset order of the original sequence.

The inputs of this algorithm (shown below) are a sequence database SDB
and a user defined threshold value as minsup. This algorithm will produce a
list of minimal rare sequential patterns. At the beginning, minimal sequential
generator patterns (mSGP) and frequent sequential patterns are generated from
the sequence database SDB in steps 3 and 4. Then for each pair of generators’
combinations are checked against the frequent sequential patterns (FSP) as de-
scribed in step 6 to step 12.

Algorithm 1: Rare Sequential Pattern Mining Algorithm

1: Input: SDB, minsup // A sequential database and minimum support
2: Output: RSP // A set of rare sequential patterns
3: G := 〈g1, g2, ...〉 // a list of minimal sequential generators
4: FSP := 〈s1, s2, ...〉 // a set of frequent sequenial patterns
5: RSP := { }
6: for gi in G do
7: for gj in G do
8: if 〈gi, gj〉 /∈ FSP and ∃s ∈ SDB and 〈gi, gj〉 v s then
9: RSP := RSP ∪ {〈gi, gj〉}

10: else
11: if 〈gj , gi〉 /∈ FSP and ∃s ∈ SDB and 〈gj , gi〉 v s then
12: RSP := RSP ∪ {〈gj , gi〉}
13: end if
14: end if
15: end for
16: Return RSP
17: end for

4



4 Experimental Setup

We assume that attackers cannot alter or delete the SCADA logs that we use
as our datasets. We use four real SCADA logs Datasets. First dataset (Dataset-
1; shown in Figure 1) was collected from the logs on an Intelligent Electronic
Device that controls an electrical substation while the second, third, and fourth
dataset (Dataset-2, Dataset-3, and Dataset-4 respectively) were collected from
our three different SCADA laboratory setup. In case of Dataset-1, Log data
includes recorded events on that substation which were recorded only when there
occurred any system errors.

Fig. 1. A partial view of Dataset-1

On the contrary, The Dataset-2 comes from a water tank system in our
laboratory, which consists of two water tanks and a pump that moves water
from a lower tank into the upper tank. Gravity allows water in the upper tank
to move back into the lower tank. Dataset-3 collected from a compressed air
pipeline or reactor system. An air compressor pumps air into the pipe system
and increases the air pressure. At a given value the air pressure is released.
Once the air is released, the compressor starts up again building pressure in the
pipe system. Finally, Dataset-4 is a conveyer system that moves objects along a
conveyer belt. Dark and light objects are separated into Left and Right directions
before returning to the beginning of the system. It is possible to sort objects in
opposite directions.

In a particular day, there was a training session in our SCADA lab from
9.30am to 4.00pm. Three system devices (Tank, Reactor, and Conveyer) were
switched on and started functioning smoothly. However, the system was com-
promised in the later half of the day, and all events were recorded.

4.1 Data preprocessing

In data preprocessing steps, the raw logs from all datasets (Dataset-1 to Dataset-
4) have been cleaned and the necessary informative features were selected. It is to
be noted that in the log entries of the electrical substation (from where Dataset-1
created), it has been observed that during two minutes time duration the system
performs a series of sequential events to bring the system to normal state from
erroneous state. Therefore, these sequence of events have been identified as a
single sequence which build the sequential database SDB-1 (shown in Figure 2).

Here, the numbers represent individual events or itemsets of raw logs (Dataset-1)
while “-1 ”indicates ending of events or itemsets and consecutive “-1 -2 ”signals

5



Fig. 2. A partial view of SDB-1

the end of a sequence. However, as in Dataset-2 through Dataset-4, events are
recorded in every second, these events are considered as a single item in the
sequence which build the databases SDB-2 through SDB-4 respectively.

4.2 Experiment and Results

We performed our experiment with python programming and SPMF [11] tool,
which is an open source framework for sequential pattern mining. At first, we
generate frequent sequential patterns (FSP) and minimal sequential generator
patterns (mSGP). Later, the combination of mSGP are compared with FSP to
prune frequent patterns. The remaining rare patterns are once again compared
with the sequence database SDB. These patterns are once again found rare and
considered anomalous events. However, the rare patterns which are not found in
SDB are considered as non-present patterns.

Table 2. A partial view of results for Dataset-3.

Patterns by RSPM Patterns by Rare Itemset

〈{19}, {57}〉 {19, 57}
〈{58}, {19}〉 {19, 58}
〈{100}, {74}〉 {74, 100}

We also applied Szathmary et al.'s rare itemset mining algorithm with the
same datasets (Dataset-1 through Dataset-4) used in our RSPM algorithm for
comparison. For example, their algorithm has identified rare itemset pattern {19,
58} against our RSPM algorithm’s rare sequential pattern 〈{58}, {19}〉 (shown
in Table 2); However, we checked with the original log sequence events and found
that the events occurrence order is 58 followed by 19 and not in events’ reverse
order. We argue that a particular sequential events’ order can lead to a particular
result and it is very important and significant in our experiment. For example,
the following sequential ordered events are a regular system profile for filling a
tank reservoir:

1. Turn on pump.
2. Wait for water level to reach 40%.
3. Turn off pump.

If the system runs with the above events mentioned in the order, then the tank
pump turns off after the water level reaches to the 40% of its capacity label.

6



However, if the above events are performed in a different order as mentioned
below:

1. Turn off pump.
2. Wait for water level to reach 40%.
3. Turn on pump.

then the system floods; therefore, we can say that only the rare patterns cannot
be effective in identifying intrusion rather we need rare patterns with ordered
events for effective intrusion detection into a system.

5 Discussion

The experimental results for all datasets (Dataset-1 to Dataset-4) show that
our RSPM algorithm found not only the rare patterns as identified by Sza-
thmary et al.'s algorithm but also keeps the events occurrence order, which
their algorithm did not consider. For example, rare pattern 〈{14}, {7}, {10}〉
from Dataset-4 has been identified by our algorithm; however, Szathmary et
al.'s algorithm identified this pattern as {7, 10, 14} even though these are
two different patterns considered in sequential pattern domain. Here, the num-
bers in the pattern 〈{14}, {7}, {10}〉 represents SCADA log sequence events
〈{Conv Read Conv HMI Direction(5) 0}, {Conv Read Conv Present PE(5) 0},
{Conv Run Status(5) 0}〉 in Dataset-4. We traced this rare pattern in the orig-
inal log dataset. However, we did not find pattern {7, 10, 14} identified by their
algorithm in the original log sequence as they did not preserve the sequence order.
Different ordered sequential events’ can produce different end results. Therefore,
our rare sequential pattern can be effective in finding the correlation between
consequences and actions.

Moreover, we found the original sequence as a frequent sequence which ends
with the event “Conv Run Status(5) -1”; however, in the rare sequence pattern
the sequence ends with “Conv Run Status(5) 0”which is a deviation from the
regular profile of the system. Later, we traced back this deviation in the log
file and found that during the events’ time period the converyer belt direction
was reversed although it was supposed to be moving in other direction. This
abnormal incident occured in the second part of the training day when the
system was compromised. Therefore, we came to the conclusion that this rare
sequence was an anomalous event which happened due to system compromise.

Similarly, we traced back rare sequential patterns 〈{19}, {57}〉, 〈{58}, {19}〉,
and 〈{100}, {74}〉 from Dataset-3 and 〈{29}, {50}〉 from Dataset-2. In all cases,
we found that these rare sequences should not happen in the logs during the
specified time period. Therefore, we also believe that these are anomalous events.
However, as we do not have a complete labeled test dataset from log files, we
cannot find the ratio of false positive and negative. But, to find whether our
algorithm can detect anomalous events, we have manually rearranged the order
of some sequences with Dataset-1, and our algorithm detects these changes as
rare sequences.

7



6 Conclusion and Future Work

In this paper we have presented RSPM, a novel approach for anomaly detec-
tion from SCADA logs using rare sequential pattern mining. However, it may
be possible for the adversaries provided that they repeat the malicious events
multiple times to evade this technique. In future, we will extend this work to
generate all (from minimal to maximal) rare sequential patterns to test which
patterns become more effective in detecting intrusion. We will also validate and
find computational performances of our methodology with large volume of pub-
licly available labeled SCADA logs. Moreover, we will compare our algorithm
with other works as to anomaly detection using non sequential pattern outside
SCADA or CIs.

References

1. P. Pederson, D. Dudenhoeffer, S. Hartley, and M. Permann, “Critical infrastruc-
ture interdependency modeling: a survey of US and international research,” Idaho
National Laboratory, vol. 25, p. 27, 2006.

2. M. Cheminod, L. Durante, and A. Valenzano, “Review of Security Issues in Indus-
trial Networks,” IEEE Trans. on Ind. Informat, vol. 9, no. 1, pp. 277–293, 2013.

3. S. Cheung, B. Dutertre, M. Fong, U. Lindqvist, K. Skinner, and A. Valdes, “Using
model-based intrusion detection for SCADA networks,” in Proc. of the SCADA
Security Scientific Symp., vol. 46, 2007, pp. 1–12.

4. Hadžiosmanovič, Dina and Bolzoni, Damiano and Hartel, Pieter H, “A log mining
approach for process monitoring in SCADA,” Int. J. of Inform. Security, vol. 11,
no. 4, pp. 231–251, 2012.

5. S. Manganaris, M. Christensen, D. Zerkle, and K. Hermiz, “A data mining analysis
of RTID alarms,” Computer Networks, vol. 34, no. 4, pp. 571–577, 2000.

6. C. Clifton and G. Gengo, “Developing custom intrusion detection filters using data
mining,” in IEEE Proc. 21st Century Military Commun., vol. 1, 2000, pp. 440–443.

7. D. Barbara, N. Wu, and S. Jajodia, “Detecting Novel Network Intrusions Using
Bayes Estimators,” in 1st SIAM Conf. on Data Mining, 2001, pp. 1–17.

8. L. Szathmary, A. Napoli, and P. Valtchev, “Towards rare itemset mining,” in 19th
IEEE Int. Conf. on Tools with Artificial Intell.(ICTAI 2007), vol. 1, 2007, pp.
305–312.

9. R. Agrawal and R. Srikant, “Mining sequential patterns,” in Proc. of the 11th Int.
Conf. on Data Engineering. IEEE, 1995, pp. 3–14.

10. P. Fournier-Viger, A. Gomariz, M. Šebek, and M. Hlosta, VGEN: Fast Vertical
Mining of Sequential Generator Patterns. Springer, 2014, pp. 476–488.

11. P. Fournier-Viger, A. Gomariz, T. Gueniche, A. Soltani, C. Wu., and V. S. Tseng,
“SPMF: a Java Open-Source Pattern Mining Library,” Journal of Machine Learn-
ing Research (JMLR), vol. 15, pp. 3389–3393, 2014.

8


