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       Abstract— A new method for segmenting white blood cells 
nuclei in microscopic images is presented. Challenges to accurate 

segmentation include intra-class variation of the nuclei cell 

boundaries, non-uniform illumination, and changes in the cell 

topology due to its orientation and stage of maturity. In this 

research, level set methods and geometric active contours are used 

to segment the nucleus of white blood cells from the cytoplasm and 

the cell wall. Level set methods use morphological operations to 

estimate an initial cell boundary and are fully automated. 

Geometric active contours are less computationally complex and 

adapt better to the curve topology of the cell boundary than 

parametric active contours, which have been previously used for 

white blood cell segmentation. Segmentation performance is 

compared with other segmentation methods using the Berkeley 

benchmark database and the proposed method is shown to be 

superior using various indices. 

     Keywords—geometric active contours; parametric active 

contours; level set methods; white blood cell segmentation. 

I. INTRODUCTION  

White blood cell (WBC) segmentation is an important 

technology in medical imaging. In the field of cancer 

diagnosis, automatic segmentation of WBCs is an important 

step in the process of counting, locating, and identifying 

different types of cells. There are three types of WBC: 

Granulocytes, Monocytes and Lymphocytes. They are further 

classified into seven sub-types. Granulocytes can be Band 

neutrophils, Basophils or Eosinophils. Monocytes can be 

Macrophages or Dendritic cells, and Lymphocytes can be B-

lymphocytes or T-lymphocytes. Each WBC structure contains 

a cell wall, a nucleus and cytoplasm ‎[1] as shown in Fig.1.  
 

                   
Fig. 1. Diagram of WBC (Eosinophil cell). 

 

The input images of WBCs used in this work are taken from 

peripheral blood smear samples on microscope slides ‎[2]‎[3]. 

These images are obtained by placing the slides under a 

compound or optical microscope with certain light and 

magnification and recording them with a digital camera. 

Microscopic images of the cells are obtained after a staining 

process which results in different coloration of the cells nuclei 

and cytoplasm and the blood image background (plasma). 

There are many types of stains (e.g. Giemsa stain, Wright 

stain, Wright-Giemsa stain and Leishman stain), but most of 

them dye the nucleus dark purple or pink ‎[4]. The stains may 

also show up the granules present in the cytoplasm of some 

WBCs. While each cell has a darkly stained nucleus, the 

cytoplasm may not be consistently prominent in all cells. The 

staining process yields sufficient contrast for segmentation 

and classification of individual cells. The accuracy of the 

procedure depends on the algorithms used and their ability to 

extract useful information while being robust to variations.  

The most useful shape information for cell classification 

comes from the nuclei of the cells. Nuclei have different 

shapes and sizes and might present one or more lobes. 

Accurate segmentation of the nuclei is therefore a critical step 

in the segmentation process. Granulocytes have large 

elongated or lobed nuclei. Neutrophils have multi-lobed nuclei 

(3-4 lobes normally). Basophils show large and very numerous 

granules which often mask the nucleus ‎[5]. Eosinophils often 

have two-lobed  nuclei connected by a band of nuclear 

material. Monocytes contain just one nucleus which is rarely 

or barely lobed. The nucleus in monocytes is often bend-

shaped (horseshoe) or reniform (kidney-shaped). Macrophages 

have a large-size single nucleus that is often kidney-

shaped ‎[6]. Dendritic cells have a small and round-shaped 

nucleus, which, as the cell matures, turns into a large nucleus 

with an irregular star shape and cytoplasmic protrusions 

(dendrites) ‎[7]. Lymphocytes can have a small or large nucleus 

depending on the maturation stage, and the nucleus is usually 

round or slightly oval. More specifically, B-cells have oval 

nuclei, while T-cells have circular nuclei. Fig. 2 shows an 

original WBC image that contains six WBC sub-types. The 

shape of the nucleus can be clearly seen in each case.  
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Fig. 2. Colour image of WBCs (24 bits per pixel and size 331×504). 

 

Changes in the shape, area, eccentricity, compactness, 

colour or position of WBC nuclei can indicate that the human 

body may be affected by a disease such as leukaemia, some 

immunological disorders, and certain types of cancer ‎[1]. 

Therefore, WBC analysis is a useful diagnostic tool. 

Automated and reliable WBC segmentation and classification 

can reduce the cost of this process and make it faster ‎[5]. 

II. RELATED WORK 

Many methods have been proposed in the literature to 

segment WBCs. One of the earliest works on WBC 

segmentation was presented by Norgren et al. ‎[8], who 

proposed an automatic method to analyse normal and 

abnormal WBCs in a blood smear. They used whole-field 

histogram and thresholding, together with a series of clean-up 

operations to perform segmentation. In ‎[9], a method was 

proposed to separate WBCs from other components in blood 

images, such as the background, red blood cells and 

cytoplasm, by merging the Teager/Kaiser filter with 

morphological operations. Ellipse matching and B-spline 

snakes were used for segmentation of WBCs in ‎[10]. 

Sarrafzadeh and Dehnavi ‎[11] used region growing, edge 

detection, filtering, and mathematical morphology to 

determine the boundaries of blood cells, extract features, and 

separate red blood cells, WBCs and platelets. They used K-

means clustering and region growing to segment the nucleus 

and cytoplasm regions of WBCs. This method is not able to 

segment the nuclei well when there is cell division and there 

are two or more convex portions in the boundary or weak 

concavities.  

Nucleus segmentation is required for feature extraction 

and classification of cells. The additional challenges in 

segmenting the nucleus boundary compared to the cell 

boundary can be addressed to some extent with the proposed 

method. Despite previous work in this field, automatic WBC 

segmentation is still challenging, particularly in the presence 

of non-uniform illumination and cell distortion. Level set with 

Geometric Active Contours (GACs) can be useful for the 

WBC nuclei segmentation problem. 

A. Level Set Methods via PACs and GACs 

Level set methods were proposed by Osher and 

Sethian ‎[12]. By using a Partial Differential Equation (PDE), 

they can describe propagating fronts, and can robustly adapt to 

a change in the topology of an interface. Several techniques 

have been used with level set methods to detect the boundary 

of an object, such as snake and region-based methods, and the 

watershed algorithm ‎[12]. Recently, level set methods have 

been used in many fields, such as image processing, computer 

graphics, optimization, computational fluid dynamics, and 

computational geometry ‎[12].  

Parametric active contours (PACs) have been extensively 

utilised in computer vision and computer graphics for 

segmenting, visualizing, tracking, and quantifying different 

anatomic structures such as the face, retinal arteries, kidney, 

heart, brain tumours and even cellular structures such as 

neurons and chromosomes ‎[13]. Different modifications have 

been implemented to solve estimation problems of the 

different shapes.  

Level set methods via PACs, including (i) edge-based and 

(ii) region-based, are represented explicitly as parameterised  

boundaries in a Lagrangian formulation ‎[14]. They are used to 

solve problems of shape estimation by reducing energy 

functions that take a minimum value when contours are 

smooth and reside on the boundaries of an object ‎[15]. Level 

set methods via PACs convert the problem of boundary 

detection into a process of minimising an energy function 

subject to specific constraints by using a dynamic equation 

which has internal and external forces. During deformation, 

the internal force  keeps the contour smooth and continuous, 

while the external force drives the contour towards an object 

boundary ‎[16]. On the other hand, GACs solve the problem of 

changes in curve topology by using curve evolution ‎[17]. 

GACs are represented implicitly as level sets of a 2-D distance 

function evolving according to an Eulerian formulation. They 

are based on level set techniques implemented via the theory 

of curve evolution and they do not use control points to 

determine the boundaries ‎[14]‎[18], as shown in Fig.3. GACs 

have been used for edge detection and segmentation of 

different types of medical images, such as magnetic resonance 

imaging (MRI), ultrasound, and computed tomography (CT).  
  

 
                       (a) 

 
                 (b) 

Fig. 3. PACs vs. GACs. a) PACs:  P1, P2, etc. are control points and F is the 

force ‎[19]. b) GACs: C is a curve and C(0) (marked in red) is the zero level 
set or initial contour (arc length), N(P) is the normal vector and T(P) is the 

tangent  ‎[20]. 

B. Application to WBC Segmentation 

A few researchers have proposed techniques to segment 

WBCs using level set methods and active contours. Based on 

the concept of topological dependence, the advantages of level 

set methods and watershed approaches were combined in ‎[21], 

where the merging of nucleus and cell segments was 



prevented by dynamically evolving the watershed lines at each 

time step. This solved the over-segmentation problem of the 

watershed method, but there were still overlapped nuclei and 

cells in some cases. In ‎[22], level set methods and the Canny 

edge detector were used to resolve ambiguous boundaries of 

WBCs. Initial boundaries of WBCs were first obtained using 

level set methods, and Canny edge detection was later used to 

detect the boundary of the cells. After that, the level set 

method was used again to segment the nucleus of the WBCs. 

PACs were used to obtain the edges and contours of the cells. 

This technique segmented simple boundaries of WBCs well, 

but complex and overlapped boundaries of WBCs still 

required improvement. The level set method via PACs was 

also used in ‎[23] to detect and find cancer affected WBCs. The 

modified level set method and a piecewise smooth function 

were used to obtain the contour of the WBC cell. The energy 

function of this contour was represented as internal energy 

defined within the contour itself to maintain its smoothness. 

While the method worked for some cells, it was difficult to 

detect the nuclei, and small cells were not segmented. 

 

C. Motivation and Contribution 

WBCs segmentation is still prone to error because of 

several challenges. Firstly, illumination is non-uniform 

because of the different colour distribution in the images. 

Secondly, the variation of complex cells and nuclei boundaries 

makes it difficult to obtain the edge information and locate the 

cells accurately. Also, the different background sizes, shapes, 

and positions of cells under the microscope make it difficult to 

separate the nucleus from the cytoplasm and adjacent 

erythrocytes. In these situations, it is a problem to segment the 

nucleus and the cytoplasm using an edge detection algorithm. 

Existing techniques that use level set methods to segment 

WBCs are based on PACs. When level set techniques are 

implemented via PACs, they may have to be reparameterised 

if control points are added or removed ‎[24]. This is useful to 

handle changes in the topology of the cell, which can grow or 

shrink. In ‎[25], the problem of segmenting WBCs using level 

set methods via PACs is reduced to finding the curve(s) 

surrounding the nuclei of the cells. Control points are used to 

detect the curves directly despite issues involved in updating 

the control points, including potentially splitting or merging 

contours when control points separate or merge. Level set 

methods implemented via GACs have advantages over PACs, 

including their simpler computation and the ability to better 

adapt to changes in curve topology or distortions ‎[26]. This 

results in improved segmentation of WBCs. Level set methods 

via GACs have not been used in WBCs segmentation to date. 

The main contribution of this paper is the application, for 

the first time, of level set methods via GACs to segment the 

WBC nucleus from the cell wall and cytoplasm. The 

advantage of using level set methods via GACs lies in the 

combination of the theory of curve evolution and geometric 

flows ‎[27]. This model allows automatic topological changes 

when preformed using level set methods based on a numerical 

algorithm. Using level set methods with GACs allows us to 

calculate an implicit surface based on an externally generated 

velocity field, in which we determine the curvature of an 

interface, direction, and distance to the nearest point on the 

surface. Surface motion can also be determined on GACs to 

track the interface and the shape of nuclei of WBCs as shown 

in Fig.7(c).   

III. PROPOSED METHOD FOR WBC SEGMENTATION 

In this paper, morphological operations, such as opening 

and closing morphological reconstruction, are used to initiate 

the reconstruction of WBCs ‎[28]‎[30]. Next, the level set 

method via GACs is implemented. This method has the 

advantage that it can perform numerical computations that  

involve curves, shapes and surfaces based on a fixed Cartesian 

grid without having to parameterise them (Eulerian 

approach) ‎[24]. It evolves an initial curve known as the zero 

level set to the boundaries of objects based on the image 

pixels f(x, y). The zero level set is where the level set function 

has the value zero and is considered as the initial contour.  

In the level set method, an interface C is represented as a 

level set of a higher dimensional level set function . The level 

set function is initialised as the signed distance function from 

C to the rest of the pixels of the image at position (x, y), 

according to the following equation ‎[27]: 

)),,((),( Cyxdyx   (1) 

where d((x, y) is the signed distance from the pixel position    

(x, y) to the interface C. The distance is indicated as positive if 

the pixel is inside C, and negative if the pixel is outside C. 

Interface C is considered as the zero level set and is written as:   

}0),(|),{(  yxyxC   (2) 

The evolution of the surface in time is caused by forces or 

flow normal to the surface with a known speed F, and can be 

calculated according to equation (3) ‎[27]. The speed F of a 

point on the surface normal to the surface is used to pull or 

push the contour. 
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The level set function is evolved using a 3
rd

 order accurate 

essentially non-oscillatory scheme (ENO3) ‎[12]. The 

calculation of the derivatives using the ENO3 scheme is based 

on the input data. This is done by first extrapolating the 

beginning and end points of the data, and then generating the 

divided difference tables. Before the calculation, the input 

image f (x, y) and speed term F need to be extended over a 

window by 3 pixels. Derivatives calculation (both + and ‒) is 

based on forward Euler time discretization of a Hamilton-

Jacobi equation which can be written as ‎[27]‎[12]: 
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yyxxnH  is a numerical approximation of H(ϕx, ϕy), 

where  H  is called the numerical Hamiltonian and is defined as   

  FH )( . Δt is the Euler time step, which can be 

calculated according to the following equation ‎[12]:  
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where x and y are the resolutions of the grid in the x and y 

dimensions, and H1 and H2 are, respectively, the partial 

derivatives of H that relate to ϕx and ϕy.  

A level set method via GACs based on motion by mean 

curvature is used in this paper. It is calculated from the 

following evolution equation ‎[27]:  

           ),,())),,(((
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where ν‎is a constant value which is selected so that the value 

of (α  (ϕ (x, y, t)) + ν) is always positive. This constant behaves 

as a force that pushes the curve toward the cell boundary when 

the curvature becomes negative. Choosing ν as a positive 

value increases the propagation speed. Here,  indicates the 

mean curvature of the level set function, aimed at controlling 

the regularity of the contour as the internal force, and is given 

by equation (7). The value of α is between 0 and 1, so that the 

balance between the robustness and regularity of the contour 

evolution can be controlled.   

)()),,((   divtyx  (7) 

An additional term called stopping function can be added 

to the speed function in the GAC model ‎[27]. The resulting 

equation is: 
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where g(f (x, y)) is the stopping function, which is a positive  

and decreasing level set function from the gradient of an 

image f (x, y). This function is written as follows ‎[27]:  
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According to equation (8), the contours move in the 

normal direction with a speed F = g (f (x, y))(α (ϕ (x, y, t)) + ν) 

and stop on the boundary, where g disappears.  

IV. EXPERIMENTS AND RESULTS 

A. Database  

Experiments to evaluate WBC segmentation results are 

carried out using three publicly available databases: 

-    Acute Lymphoblastic Leukemia Image Database for Image      

Processing (ALL-IDB) ‎[2]:  

This database was collected by the Department of 

Information Technology - Università degli Studi di Milano. 

 

 

 

 

It contains 265 microscope images which have single cells 

or individually separated multiple cells in each image. The 

magnification ranges from 300 to 500. Images were 

captured using an optical laboratory microscope coupled 

with a Canon PowerShot G5 camera of 2592×1944 pixels 

resolution. Images are divided into three sets, depending 

on the characteristics of the cells they contain: 

L1: Cells are small and homogeneous. Nuclei are round 

shaped and regular.  

L2: Cells are large and heterogeneous. Nuclei are irregular 

and have one or more lobes.   

L3: Cells are moderately large in size and homogeneous. 

They have one or more nuclei. Nuclei are regular and 

round-oval in shape. 

-  Wadsworth Centre ‎[3]:  

This database contains 150 images of normal blood slides 

with different features. High resolution and higher 

magnification ranging from 500 to 1000 was used to get 

single cell images that have one or more nuclei, and lower 

magnification was used to get multiple cells in an image.  

The contrast between the cell and the background depends 

on the thickness and lightness of the smear, the 

illumination, and the staining process used to stain the 

nucleus (Giemsa stain, Wright stain or Wright-Giemsa 

stain). 

- Berkeley Segmentation Database ‎[31]:  

This database is used to measure and benchmark the 

performance of segmentation methods and consists of 300 

images of single WBCs that have one or more nuclei. 

Ground truths of nuclei of WBCs are available for each 

single cell image that was manually segmented by a 

number of human subjects.  

B. Proposed Approach 

The proposed method of segmentation using level set 

methods via GACs was implemented using Matlab 2016a. It 

was tested using 300 digital blood smear images of different 

WBCs types (150 single and multiple cell images from ALL-

IDB and 150 single cell images from the Wadsworth Centre 

database). It was also tested and benchmarked using the 300 

images of the Berkeley Segmentation Database.  

The steps of the proposed approach are shown Fig.4. The 

result of the segmentation process is shown in Figures 5, 6 and 

7. Fig.5 shows an original WBC image, including six of the 

WBC types and the steps of segmentation using level set 

methods via GACs. Segmented cells nuclei are shown in 

Fig.6. Fig.7 shows a comparison using level set method via 

GACs and PACs.   
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Fig. 4. Flowchart of the proposed method to segment WBCs. 

 

   
(a) (b) (c) 

  
                                    (d) (e) 

Fig. 5.  WBC segmentation using level set methods via GACs. a) WBC image, 

b) opening–closing reconstruction, c) level set method with normal direction 
and colour map, d) level set method via GAC using image gradient, and e) 

segmented nuclei of WBC. 

 

 

Fig. 6.   Cells nuclei from segmented image. Pixel intensity values of 1 (white) 

and 0 (black) are used for the foreground and background, respectively.       

   
(a) (b) (c) 

Fig. 7.   Band neutrophil segmentation example. a) Band neutrophil cell 

image, b) cell nucleus segmented using level set method via PACs ‎[32], and 

c) cell nucleus segmented using level set method via GACs (proposed 
method). 

C. Results and Benchmark 

Different segmentation methods are evaluated and 

compared in this section using five indices: Boundary 

Displacement Error (BDE), Global Consistency Error (GCE), 

Variation of Information (VOI), Jaccard Distance error (JD), 

and Rand Index (RI) ‎[28]‎[29]. These indices provide a 

measure of how similar a segmented image is to a ground 

truth that is segmented manually. BDE computes the average 

displacement between the boundaries resulting of two 

segmentations; it ranges between [0,∞)‎in‎pixel units, where a 

lower value is better. GCE measures the extent to which one 

segmentation is a refinement of the other; it ranges between 

[0, 1], where lower is better. VOI computes the amount of one 

result not contained in the other; it ranges‎ between‎ [0,∞),‎

where higher is better. JD calculates the accuracy of the 

segmentation; JD = 0 is best. RI measures the likelihood of a 

pair of pixels being grouped consistently in two segmentations, 

and ranges between [0, 1], where higher is better ‎[30].  

Table I lists the values of these performance indices for the 

proposed segmentation algorithm where each value is an 

average computed over the performance of 300 WBC images 

(150 single and multiple cell images from ALL-IDB and 150 

single cell images from the Wadsworth Centre database).  

Table II is a comparison of the performance indices for the 

proposed segmentation method with other methods. Average 

values were computed for the proposed segmentation method 

using the 300 images in the Berkeley Segmentation Database, 

and compared with average values provided in the Berkeley 

Segmentation Database for other methods. To quantify the 

segmentation results, we use four indices from the Berkeley 

database ‎[31]: RI, VOI, GCE, and BDE, and in addition we 

compute JD. The  performance of the proposed technique is 

benchmarked against 10 other algorithms: Normalized cut 

(Ncut), Mean Shift ‎[33], J-image segmentation (JSEG), Multi-

scale Ncut (MNcut), Normalized Tree Partitioning (NTP), 

Texture and Boundary Encoding-based Segmentation 

(TBES) ‎‎[34], Ultrametric Contour Maps (UCM), Superpixels 

and Multilayer Spectral Segmentation (MLSS), Segmentation 

by Aggregating (SAS), RB-Wavelet, and SOM ‎[35]‎. As can 

be seen in the table, the proposed segmentation method results 

in better performance than all other techniques for all indices 

except BDE, where the SAS and MLSS algorithms are 

marginally better.  

 

 

          



TABLE I.     AVERAGE PERFORMANCE EVALUATION OF PROPOSED 

SEGMENTATION METHOD FOR EACH WBC TYPE USING 150 SINGLE AND 

MULTIPLE CELL IMAGES FROM ALL-IDB ‎[2] AND 150 SINGLE CELL IMAGES 

FROM THE WADSWORTH CENTRE DATABASE ‎[3]. NOTE THAT LOWER VALUES 

ARE DESIRABLE FOR THE FIRST THREE COLUMNS, WHEREAS HIGHER VALUES 

ARE DESIRABLE FOR THE LAST TWO COLUMNS. 

TABLE II.  COMPARISON OF DIFFERENT WBC SEGMENTATION METHODS.  
PERFORMANCE INDICES FOR THE PROPOSED METHOD ARE COMPARED WITH 

THOSE PROVIDED IN THE BERKELEY SEGMENTATION DATABASE ‎[31]. THE 

BEST RESULT OF EACH COLUMN IS HIGHLIGHTED IN BLUE, AND THOSE CASES 

IN WHICH THESE RESULTS ARE OUTPERFORMED BY THE PROPOSED METHOD 

ARE HIGHLIGHTED IN GREEN. NOTE THAT LOWER VALUES ARE DESIRABLE FOR 

THE FIRST THREE COLUMNS, WHEREAS HIGHER VALUES ARE DESIRABLE FOR 

THE LAST TWO COLUMNS. 

Methods JD BDE GCE VOI RI 

Ncut 0.385 17.15 0.223 2.906 0.724 

Mean Shift ‎[33] 0.407 14.41 0.189 1.973 0.796 

JSEG 0.039 14.4 0.199 2.322 0.776 

MNcut 0.390 15.1 0.192 3.395 0.756 

NTP 0.392 16.3 0.237 2.495 0.752 

TBES ‎[34] 0.392 N/A N/A 1.76 0.8 

UCM 0.394 N/A N/A 1.68 0.81 

MLSS 0.039 12.21 0.018 3.055 0.814 

SAS 0.393 11.29 0.178 1.685 0.832 

RB-Wavelet and 

SOM 
0.391 14.19 2.112 0.211 0.796 

Proposed 

Method‎‘‎GACs’ 
0.003 12.5 0.0031 4.218 0.931 

 

It was also found that the segmentation of WBCs nuclei 

using level set methods via GACs is better than other 

techniques in a number of ways, apart from the better 

performance indices. Unlike the proposed technique, those 

listed in Table II worked with simple boundaries, small 

regions and non-overlapping cells. They also retained more 

unimportant detail, and those based on PACs did not track the 

changing topology of cells or nuclei. They did not segment the 

nuclei of WBCs accurately as shown in Fig.8 and Fig.9. 

Furthermore, the proposed method gives better ability to 

discriminate between WBC sub-types. Fig.8(b) shows that the 

segmentation using the mean shift method ‎[33] produces four 

cells, where two of them are not WBCs, and nuclei are not 

properly segmented. Fig.8(c) shows that the proposed method 

produces two nuclei which have 2 and 3 lobes, which allows 

to identify the cells as WBC sub-types. Fig.9(b) shows that the 

segmentation using the texture and boundary encoding-based 

method ‎[34] produces two nuclei. This leads to consider the 

WBC as a lymphocyte, when, in fact, it is a neutrophil cell as 

shown in Fig.9(c). 

  

 

(a) (b) (c) 

Fig.8. Mature eosinophil segmentation example. a) WBC image, b) cells 

nuclei segmented using mean shift ‎[33], and c) cells nuclei segmented using 

the proposed level set method via GACs. 

   
(a) (b) (c) 

Fig.9.  Neutrophil segmentation example. a) Neutrophil cell image, b) cell 

nuclei segmented using texture and boundary encoding-based 

segmentation ‎[34], and c) cell nuclei segmented using the proposed level set 
method via GACs. 

The changes in curve topology and boundary gaps of 

WBCs that MNcut, MLSS, Ncut, mean shift and TBES cannot 

solve (as shown in Fig.8 and Fig.9), are correctly solved by 

level set methods via GACs because they preserve the 

perceptual edge property of active contours. Fig.7 shows an 

example in which level set method via GACs was applied to 

an image containing a WBC that has both concavities and 

boundary gaps. The final result shows the ability of the level 

set method via GAC to get better boundaries reliably in spite 

of both gaps and nucleus boundary concavities by contrast 

with other methods. 

The proposed level set method via GACs was tested using 

a processor Intel(R) Core(TM) i7-4600U CPU 2.70 GHz and 

MATLAB 2016a. It takes 0.64 seconds to segment one cell 

and 1.71 seconds to segment one image. Other methods 

provided in Berkeley Segmentation are as follows: SAS ‎[35] 

takes 6.44 seconds to segment an image of size 481×321, 

JSEG takes 4.11 seconds, and mean shift takes 10.4 

seconds ‎[33]. By contrast, MNcut, MLSS, Ncut, and 

TBES ‎[34] take more than 30, 40, 150, and 500 seconds, 

respectively. All experiments were implemented using 

MATLAB. According to these results, the level set method via 

GACs is significantly faster than other methods which use 

larger time steps to speed up the curve evolution while GACs 

maintain the stable evolution of the level set function.  

V. CONCLUSION 

In this paper, the combination of level set methods and 

geometrical active contours instead of parametric active 

contours has been proposed for segmentation of WBCs nuclei. 

The proposed method has been demonstrated to be very  

versatile. Since contours can follow intricate details, complex 

Cell type JD BDE GCE VOI RI 

Granulocyte 0.00334 15.01 0.0025 4.89 0.9945 

Neutrophil 0.0009 16.86 0.0005 4.16 0.9994 

Basephil 0.00018 10.44 0.0001 4.22 0.9996 

Eosinophil 0.0014 9.25 0.0032 3.66 0.9976 

Monocyte 0.00027 11.25 0.0001 5.69 0.9892 

Macrophage 0.00016 11.32 0.0032 4.27 0.9762 

Dendritic 0.0022 12.48 0.0029 4.32 0.9996 

Lymphocyte 0.0044 12.77 0.0042 3.84 0.9809 

B-Lymphocyte 0.00177 14.92 0.001 4.77 0.9605 

T-Lymphocyte 0.0003 10.01 0.005 3.22 0.9901 



shapes can be properly extracted. The algorithm has been 

tested with nuclei images at different stages of maturity and 

with varying illumination and orientation, without any 

knowledge of the target shape. The results obtained are 

satisfactory despite such variations. The performance of the 

proposed algorithm has been measured and compared with 

that of other methods using the indices RI, GCE, VOI, JD and 

BDE. The proposed algorithm yields better segmentation 

results according to these metrics in all cases, except for 

boundary displacement error cases where the SAS and MLSS 

algorithms are marginally better. Further investigation will 

include feature extraction from the segments and classification 

of WBCs. 
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