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Abstract— Unmanned Aerial Vehicles (UAVs) are increasingly
being used in numerous applications, such as remote sensing,
environmental monitoring, ecology and search and rescue mis-
sions. Effective use of UAVs depends on the ability of the
system to navigate in the mission scenario, especially if the UAV
is required to navigate autonomously. There are particular
scenarios in which UAV navigation faces challenges and risks.
This creates the need for robust motion planning capable of
overcoming different sources of uncertainty. One example is a
UAV flying to search, track and follow a mobile ground target
in GPS-denied space, such as below canopy or in between build-
ings, while avoiding obstacles. A UAV navigating under these
conditions can be affected by uncertainties in its localisation
and motion due to occlusion of GPS signals and the use of low
cost sensors. Additionally, the presence of strong winds in the
airspace can disturb the motion of the UAV. In this paper, we
describe and flight test a novel formulation of a UAV mission
for searching, tracking and following a mobile ground target.
This mission is formulated as a Partially Observable Markov
Decision Process (POMDP) and implemented in real flight using
a modular framework. We modelled the UAV dynamic system,
the uncertainties in motion and localisation of both the UAV
and the target, and the wind disturbances. The framework
computes a motion plan online for executing motion commands
instead of flying to way-points to accomplish the mission. The
system enables the UAV to plan its motion allowing it to ex-
ecute information gathering actions to reduce uncertainty by
detecting landmarks in the scenario, while making predictions
of the mobile target trajectory and the wind speed based on
observations. Results indicate that the system overcomes un-
certainties in localisation of both the aircraft and the target,
and avoids collisions into obstacles despite the presence of wind.
This research has the potential of use particularly for remote
monitoring in the fields of biodiversity and ecology.
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1. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are popular platforms
being used in diverse civilian applications. Examples of
such applications include search and rescue operations, en-
vironmental monitoring, ecology, mapping, remote sensing,
surveying and crop inspection [1],[2],[3],[4],[5]. In most
of these applications the UAV is operated either remotely
by a pilot, or its path is planned using GPS waypoints
programmed through a ground control station. The UAV
relies on an accurate estimation of its location by using a
Global Positioning System (GPS) on-board sensor in order
to successfully accomplish these missions. However, there
are particular scenarios in which the GPS signal could be
occluded, affecting the positioning system and generating a
high degree of uncertainty to the UAV location. Flying au-
tonomously in GPS-denied environments becomes dangerous
and the UAV needs alternative methods to overcome the large
uncertainty in its localisation [6],[7].



An additional challenging further situation is presented when
the UAV has the objective of finding a target whose loca-
tion is unknown. This constitutes a multi-objective prob-
lem [8],[9],[10],[11]. Moreover, the mission increases in
difficulty if this target is moving on the ground and the
scenario is cluttered with obstacles that must be avoided by
the UAV. This scenario can be even more intricate if the UAV
has to navigate under windy conditions. In [12], an MDP
approach was used to take advantage of the wind energy
but only for UAV navigation, no multiple objectives were
considered in the mission.

A solution to the UAV navigation problem in GPS-denied
scenarios is to use on-board cameras for visual odometry and
landmark detection [13] and a probabilistic motion planning
approach that enables the UAV to overcome different sources
of uncertainty to navigate safely without colliding into objects
in the airspace.

Most of the research presented on target finding and tracking
is based on simulated scenarios [14], [15], [16], [17], [18],
which might oversimplify the real conditions of natural envi-
ronments. In [19], the authors present a system that models
the target’s pose uncertainty using multi-modal Gaussian
belief-states. They assume the uncertainty can be modelled
using Gaussian probability distributions but also that there is
no uncertainty in the UAV localisation. Other works focus on
detecting targets in real scenarios but discretise the state space
and rely on accurate GPS systems for UAV localisation [20].

In this paper, we present the formulation of the UAV Target
Tracking mission as a sequential decision problem under
multiple sources of uncertainty. We build upon the existing
work presented in [13], [21] and increase the complexity of
the UAV mission by including wind disturbances to the UAV
in a Partially Observable Markov Decision Process (POMDP)
formulation. We use on-board wind estimation to update
the belief-state based on the wind speeds and orientation
observations. The POMDP formulation updates the motion
policy based on the estimated prevailing wind conditions.
Furthermore, this paper presents a study in which different
reward functions are proposed and tested in order to consider
the multiple objectives of the mission and to take advantage
of the wind conditions present in the flying airspace.

The framework uses a low cost quad-copter platform incor-
porated into a modular system running the Robotic Operating
System (ROS).

The main contributions of this paper are:

1. A novel approach for planning the motion of the UAV in a
target tracking mission under multiple sources of uncertainty,
such as UAV and target localisation; UAV and target motion
and wind disturbances affecting the UAV motion. This whole
mission is formulated as a POMDP in continuous state space
which includes a model of the wind conditions in the scenario
that are updated based on onboard observations of the wind
speed and direction.

2. A study of different reward functions for the UAV Target
Tracking POMDP formulation.

3. An implementation of the POMDP formulation in real
cluttered and GPS-denied scenarios under windy conditions.

This research has the potential to be used as a method for
collecting data in challenging environments and for remote
sensing and monitoring in the fields of biodiversity and
ecology (including the tracking of moving animals).

This paper is organised as follows: Section 2 covers a descrip-
tion of POMDP and an online solver. Section 3 describes
the system architecture. Section 4 describes the method
used for calculating the update frequency of the POMDP
solver. Section 5 describes the Navigation and Target Finding
problem formulation as a POMDP. Results are discussed in
Section 6, and Section 7 provides conclusions and future
areas of research.

2. BACKGROUND

In real world scenarios, the UAV perception system is limited
by the type of sensors and the environment in which it
navigates and consequently there is uncertainty and error
in the estimation of its localisation and orientation. Fur-
thermore, depending on the mission scenario, there could
be situations in which variables that compose the mission
state space are not observable or can only be observed under
certain conditions, such as the target location, speed and
heading. This limitation in the sensory systems of a UAV and
the inability to obtain perfect knowledge of the vehicle and
mission state is also known as partial observability [22], [23],
[24]. A method to model robotic and UAV sequential decision
problems under uncertainty are Markov Decision Processes
(MDP) and POMDP.

MDPs are used for robotic missions to generate a policy that
allows the robot to decide what sequence of actions should be
taken in order to maximise a return or cost function, taking
into account the uncertainties in motion [25]. Plain MDPs
assume that the states are completely observable which is
not the case for a robot that has limitations in perception.
POMDP, on the other hand, incorporates the uncertainties
in sensing and the partial observability of the agent in the
environment [26], [27].

POMDP

A POMDRP is a tuple consisting of the following elements
(S,A,0,T,Z, R,v) where S is the set of states in the
environment, A is the set of actions the agent, in this case
the UAV, can execute, O is the set of observations, 7T is the
transition function between states after executing an action,
Z 1is the distribution function describing the probability of
observing o from state s after taking action a, R is the set of
rewards for every state and -y is the discount factor. A feature
of POMDPs is that the state of the process is not represented
by a single value but by a probability distribution over all the
possible states in its state-space representation at a particular
time, this is known as a belief-state and is denoted by belief
b.

In a POMDP the state of the agent cannot be observed exactly
or completely, instead the agent receives observations o € O.
The perception of these observations could be represented by
the probability distribution Z. The solution of a POMDP is
a policy 7 : B — A that maps actions a to belief-states
b € B, which is the set of possible belief-states. These
belief-states are updated after receiving an observation based
on the Bayes’ theorem. Given the current belief-state b,
the objective of a POMDP algorithm is to find an optimal
policy 7* that maximizes a value function when following
a sequence of actions and observations. The accumulated
discounted return is the sum of the discounted rewards after
executing every action in the sequence from time ¢ onwards
R, = Z,;“;t fyk_trk, where r; is the immediate reward
received at particular time step ¢ for taking action a;. The
Value function is the expected return from belief-state b when



following policy 7, V™(b) = E [Y oo, v* tri|b,7]. An
optimal policy for the POMDP is the one that maximizes the
value function 7*(b) = arg max, V7 (b).

The Adaptive Belief Tree

In order to test the target finding and tracking problem formu-
lated as a POMDP, we implemented in hardware and software
one of the fastest on-line POMDP algorithms to the authors
knowledge, ABT [28]. This algorithm has been tested previ-
ously in simulations and onboard a UAV for navigation [13]
and target finding [21] but not for a more challenging UAV
mission such as Target Tracking in the presence of wind.

The Adaptive Belief Tree (ABT) is an online POMDP solver
that uses Monte Carlo Simulations and a set of state particles
to represent the belief-state. It generates a search tree to
store the policy. The root of this tree is a node containing
the state particles representing the initial belief-state of the
environment.

In ABT, the policy is updated after receiving an observa-
tion. ABT does not clear the policy tree after receiving
and matching an observation but instead improves the policy
based on the observation received. Moreover, ABT provides
a mechanism for accepting changes in the environment and
adapts its policy accordingly. This algorithm was selected
for the implementation of the Target Finding and Tracking
mission based on its capacity to handle a large number of
possible observations that result from a larger uncertainty in
the target’s location. ABT can model the observations using a
dynamic approach in which the number of observations does
not have to be fixed as a constant value for the whole episode.
Thanks to this feature of ABT, the observations do not have
to be discretised but instead a programmable function defines
whether two observations are equal based on the value of their
variables. The implementation of this function for the Target
Finding and Tracking problem is explained in Section 4

3. SYSTEM ARCHITECTURE

The system is divided into four modules, shown in Fig. 1,
one module for running the online POMDP solver, another
module for controlling forward V;., and lateral velocity V.,
yaw W, and altitude z, of the multi-rotor, one module for
calculating the multi-rotor position in the scenario P, =
(zr, Yr, zr, ¥,.) based on the forward and lateral velocity,
heading angle and altitude, estimated from the on-board sen-
sors and the target position P, = (xy, ys, 2¢, V¢ ), estimated
by the target’s pose in an image if detected by a downward
looking camera. A fourth module, which is the Autonomy
Lab driver for ROS [29], receives the commands for actuation
in roll, pitch, and yaw angles as well as the altitude and
sends the sensor readings upon request. All nodes running in
parallel in different threads allow the system to have different
update rates for each module and that permits different levels
of controllers.

Online POMDP Module

The Online POMDP module executes an online POMDP
solver algorithm, ABT in our example. This module imple-
ments the ABT algorithm in which the POMDP elements
described in section IV are programmed using the object
oriented programming interfaces available [30]. In this mod-
ule the POMDP model and solver are initialised according
to input parameters and an initial belief-state by. It first
produces a policy based on by and outputs the action a that

Online POMDP module Motion Control module
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Figure 1. POMDP ROS System Architecture

maximises an expected return. The action is then executed
by the motion control module, while the perception module
calculates independently the robot position and heading angle
and the target pose in case it is detected by the onboard
downward camera. Based on the perception module data,
an observation is created and received after the action is
executed.

The online POMDP module updates the belief-state b, to
match the obtained observation and replenishes particles until
a time-out is reached. Based on the current belief-state b,
the POMDP solver calculates and updates the policy and
outputs the subsequent action based on the updated policy.
The process repeats until a terminal state is reached, i.e. the
target has been detected and followed for at least ten seconds.

Finding the right time-step duration for the implementation of
the target finding and tracking problem as an online POMDP,
depends on the dynamic capabilities of the UAV and on the
complexity of the scenario. We set the online POMDP solver
with a frequency of 1 Hz, since we know how the motion
control system will respond within that time-frame and the
online planner provides good policies within that time.

On one hand, having long time-steps for the policy update
reduces the complexity for calculating a solution since the
length of the planning horizon is reduced compared to a
shorter time-step. On the other hand, having short time-steps
reduces the uncertainty in motion and perception since the
observation updates are more frequent. The POMDP online
planner iteration time selected allows the UAV to perform the
set of actions, while simultaneously it computes and updates
the motion policy online based on perceived observations.

Motion Control Module

The block diagram presented in Fig. 2 shows the developed
framework control structure. In this structure, there is one
inner loop that controls the translational dynamics and which
receives as input the action command vector a from the
motion planner. The action command vector is also called



the reference state vector X = {Zp, Up, Vs, 25} * with the
reference values for forward velocity &7, lateral velocity 3,
heading angle ¥} and altitude z;. The outer loop in the
control structure 1s in charge of the motion planning which
is calculated and updated by the motion planner module.

Online POMDP
solver

Quadcopter

Xy

Estimator

Figure 2. Structure of the Motion Control System.

The Motion Control module was designed to enable the
framework to execute a set of motion commands that are pro-
duced by the motion planner module. This set of commands
or actions emulate those that are given to a quadrotor UAV by
an operator using a remote controller with a joystick. In this
way the quadrotor UAV can move forward and backwards by
controlling its forward velocity, it can move left or right by
controlling its lateral velocity, it can ascend or descend by
controlling its altitude and it can also rotate over the z axis
by controlling its yaw angle. An on-board attitude controller
maintains the UAV in a stable attitude which allows it to hover
in a quasi-stationary position.

The set of commands that are used by the motion planner are
performed by the UAV by actuating in four different states
that are decoupled so that an independent controller can be
designed to control them. The Motion Control module uses
four independent PID controllers to control the following
states of the UAV: forward velocity i, lateral velocity 9,
yaw angle (heading angle) v, and altitude z;. The Motion
Control module receives the references for the UAV states
a = X} = {Zy, Yb, Yv, 2p }* from the motion planner module
and subtracts the actual states X, = {&, §p, Vs, 25 } from the
reference states X ™ to generate error signals that are used by
each of the PID controllers.

The output of the PID controllers is a control vector u =
{0p, v, Vv, Zp }, Where 0y, ¢p are pitch and roll angles, re-

spectively, ¢y, is yaw rate and 2, is rate of climb or descent.
These outputs are sent to the AR Drone Autonomy Lab
driver, which transforms them into control signals for the
UAV onboard attitude controller.

Each of the PID controllers has a feedback loop in which the
UAV on-board navigation system calculates the forward i
and lateral g, velocities using optical flow obtained from the
downward looking camera. The UAV obtains the yaw angle
1y from IMU and magnetometer readings and the altitude z;
from on-board ultrasonic and barometric pressure sensors that
are fused using a proprietary Kalman filter.

Perception Module

The perception module is also implemented in ROS and
executes at 100 Hz. Current forward and lateral velocities
are calculated by fusion of optical flow (using a downward
looking camera) and inertial measurement unit readings, Yaw

angle is calculated based on onboard IMU and altitude is
sensed by combining IMU, ultrasonic sensors and barometric
Sensor.

This module is constantly calculating the current multi-rotor
position based on the sensed forward V., and lateral V,,
velocities and the heading angle V... It converts the forward
and lateral velocities in the multi-rotor’s frame to the world
frame, and calculates x, and y, positions, using Equation (1).
It also reads the altitude or z, position from the on-board
Sensors.

In order to have an accurate source of global localisation the
system uses Augmented Reality tags that can be detected by
the front camera onboard the UAV. These tags are placed on
one face of the obstacles and its position in the world frame
is known to the system so that when detected they provide
an accurate measuring of the UAV pose in the world frame.
These tags can only be detected when the UAV is within 1
m in front of the tag. The perception module updates the
observation once they are detected by the UAV front camera.

{xmﬂ} B [mrt} N [cos(\lln)
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4. TARGET FINDING AND TRACKING

Problem Description and Formulation
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We illustrate the scenario for a target finding and tracking
mission in Figure 3. A multi-rotor UAV flies in a confined
3D space filled with obstacles. The UAV does not have GPS
localisation and there is wind in the scenario. The mission
of the UAV is to search and find a ground moving target, and
follow it for at least 10 s. The target moves on the ground in
any direction at an irregular speed. A map of the environment
with the obstacles locations is known to the system and is
input as a parameter of the algorithm as a text file.

After take off, the UAV hovers for a few seconds to initialise
its orientation with readings from its on-board sensors. There
is some initial drift produced in this initial hovering position.
A normal probability distribution with mean value around the
take off position is used to model this initial uncertainty.

Figure 3. Target Finding and Tracking scenario

The problem is formulated as a POMDP that has the fol-
lowing elements: the state of the aircraft in the environment
(S), the set of actions that the multi-rotor can execute (A),



the transition function describing the state transition after
applying a specific action (T'), the observation model that
represents the sensed state of the aircraft after taking an action
(O), and the reward and cost function (R).

State Variables (S)

The state variables considered in the POMDP formulation are
the quad-rotor position and heading Py, = (T, Yuw, 2w, Y )s
the target planar position and heading Pr = (z7,yr, V1),
target forward velocity Vi and the UAV’s forward velocity
Zp and lateral velocity jj in the body frame. The wind speed
V. and orientation Wy, are all measured in the world frame.

Actions (A)

The UAV actions are designed to be the set-points for the four
PID controllers, thus the UAV actuates in four state variables,
namely, forward 2, and lateral ¥, velocities, heading angle
W, and altitude z.

The set of actions consists of 7 actions. An action to keep
the aircraft hovering, i.e. #p, 4, = 0 m/s; two actions to go
forward and backward, with current heading angle ¥, lateral
velocity 4 = 0 m/s, and forward velocity, 2, = 0.6 m/s
and 2, = —0.6 m/s, respectively. Actions Up and Down,
increase or decrease altitude z,, in 0.3 m, respectively, with
multi-rotor velocity fixed at 0 m/s, and two actions to roll
left and right with current heading angle W¥,, and forward
velocity at 4, = 0 m/s, and lateral velocity at g, = 40.6
m/ s, respectively.

Transition Function (T)

The transition function (7') uses the discretised transient
responses of the four PID controllers in order to predict
the next state of the process. The actions are step inputs
or references to the four states controllers. The transient
responses of the PID controllers to step input commands
are acquired experimentally and are incorporated into the
kinematic model of the aircraft using a decoupled model.

The following UAV model was derived taking into account
the four states in the UAV that are controlled by the Motion
Control module and the different frames that take place in
the UAV mission, which are the world frame, the UAV
frame, the downward looking camera frame, the front looking
camera frame and the image frame. The UAV dynamic model
equations are derived in terms of the UAV state vector and
the Motion Control vector. The UAV state vector X,, =
{Zw, Yw, 2w, Yw } is composed by the UAV position and its
heading and are measured in the world frame, the roll and
pitch angles are not relevant for the localisation of the UAV
since they are not used in the calculation for the prediction of
the next states. The control input vector is composed of the
UAV forward and lateral velocities, the heading angle and the
altitude, all measured in the body frame.

Ay, cos(Vy, +03,)  —sin(¥y, +0o3,) O] [(xb, + Vi, )At
Aywt - Sin(%: + Jbt) Cos(wbt + sz) 0 (ybt + wa)At
Azy, 0 0 1 Az,

2

xwt+1 xwt Axwt
ywt+1 = | Yw, + Aywt (3)
Zwt+1 Zwt Azwt

Where z,,, yw, and z,, are the x, y and z aircraft world
coordinates at time ¢, x;, and ¥, are forward and lateral
velocities in the body frame at time ¢, and 5, and o}, are
heading and heading deviation at time .

A Gaussian distribution is used to model the uncertainty in
motion. The UAV can deviate from a commanded heading
due to external disturbances and error in the heading control
system caused by drift in the magnetometer and heading
angle sensor. Eq. (4) calculates the probability of the
distribution.

1 7(:67/,4,)2/20'2 (4)

P(zx) = 0\/%6

The transient responses for the four controlled states are
discretised and included in the transition function as lookup
tables in order to approximate the dynamics of the quadrotor.

We used a radio controlled toy car moving on the ground
with a marker on top as the target. The target’s motion is
described by equations 5 and 6. The target’s velocity Vr, has
an uncertainty of 0.2 m/s around an average value y = 0.5
m/s. The target motion is model using two modes which
are 1) Loop clockwise around the obstacles in the flying
area which changes the heading of the target ¥, alternating
among north, east, south and west, and 2) Continue with
same heading with a 50% probability and 50% probability
of changing its orientation W, to the opposite direction of
the UAV in order to go away from it.

xr,, = o7, + Vg, cos(¥r,) At (5)
YT, = y1, + Vr, sin(¥r,) At (6)
Observation Model (O)

An observation is composed of the following variables: 1) the
UAV position in the world frame, 2) the target’s position and
orientation if it is detected by the downward looking camera,
and 3) boolean variables indicating whether the target has
been detected and whether or not an AR tag is detected by
the front camera. The system receives an odometry reading
from the perception module with an uncertainty that is caused
by the accumulating error and drift in the yaw angle reading.
This uncertainty is represented by adding noise to the UAV
position using a gaussian distribution as in equation (4), with
mean value g around the perceived position and standard
deviation o = 0.5 m.

This uncertainty can be reduced, i.e. o = 0.05m if the UAV
flies in front of an obstacle where it can detect an AR tag
and can reset the error inherent to the odometry and onboard
Sensors.

If the target is detected by the onboard downward looking
camera, the detection system provides the target position
within the image. This position is transformed into a position
in the world frame. A model of the downward camera field of



view is also included in order to extract the target pose in the
world frame from the target’s position and orientation in the
image.

In order to verify if two observations are equal, the euclidean
distance between the UAV position of both observations
should be less than a threshold value that represents the
error in the odometry system and the boolean variable that
indicates whether a target has been found should have the
same value for both observations.

Obs1 = Obsy if || Pr,, — Proy., || <€ 7
and TOObsl = TOOb52 (8)
where P, is the quadrotor position in observation 1 and

TOops, is the variable that indicates whether a target has
been found in observation 1.

The UAV generates estimates of the wind speed and orienta-
tion based on the compensation executed in order to maintain
its state. This wind estimation generates an observation
which updates the belief of the prevailing wind in the sce-
nario.

Rewards and Costs Function (R)

Two different reward function structures were tested. In the
first structure R; shown in Eq.9 the multi-rotor receives a
high reward if it detects the target within the downwards
looking camera field of view. Hitting an obstacle or going
out of the scenario incur a penalty and every other movement
will carry a small cost with the purpose of generating shorter
sequences of actions and thus shorter paths. The second
reward function Ry is shown in Eq. 10. It differs from R;
in that a reward for being close to the target is included in
the function. The values of the reward and cost functions
were selected as a result of tuning the system to be able to
accomplish the mission faster.

—10 for every UAV action
R — —70 if UAV out of scenario ©)
"7 ) =70  if UAV collides

500 if target detected

—10 for every UAV action

—70 if UAV out of scenario

—70 if UAV collides 10)
di dg is distance from UAV to target

560 if target detected

Ry

5. RESULTS AND DISCUSSION

We conducted simulation and real flight tests in order to
analyse the performance of the system.

Simulation

The UAV target finding and tracking mission was tested in
simulation for 100 runs for each of the three cases shown in
table 1 to get an average for the discounted return, the number
of steps and the success in accomplishing the mission, with

Table 1. Simulation results for Target Tracking problem

Target Success Flight Reward
motion mode rate time to structure
(%) target (s)
(Number
of steps)
Loop mode 100 41 Ry
Loop mode 100 32 Rs
Loop mode 100 56 Ry
(Wind)
Loop mode 100 45 Ry
(Wind)
Escaping 81 93 Ry
mode
Escaping 87 84 Ry
mode
Escaping 78 93 Ry
mode (Wind)
Escaping 86 84 Ry
mode (Wind)

a maximum of 120 steps which corresponds to 2 min flight
time.

Simulation results indicate that the system is able to find a
target and follow for all trials in the loop target mode. If the
target motion is mostly deterministic, as in the loop mode,
the UAV spends fewer steps to achieve a terminal state and
the return is higher. On the other hand, when the uncertainty
in the target motion increases, such as in the escaping mode,
the system takes more steps to accomplish the mission and its
success ratio decreases.

Moreover, the results also show that the reward structure Ro
performs better than R;. This structure rewards the UAV for
getting close to the believed target position and after the target
has been detected, it ensures that the UAV stays close to the
target in order to track its motion.

We use the graphical tool RVIZ for visualisation (Fig. 4).
Point clouds are used to visualise the distribution of the
belief-state particles representing the target location (red
particles) and UAV location (white particles). The target
starts moving from four possible locations. The UAV is
initially located at coordinates (—2.9,0,0.0) and takes off
and hovers for some seconds which increases the uncertainty
in its position. Fig. 4 shows a trial in which there is no wind
disturbance affecting the UAV motion. In Fig. 5 the UAV
motion gets affected by the wind blowing in the northerly
direction. It can be seen in the figure that the UAV takes a
shorter path towards the upper right corner taking advantage
of the wind influence in order to anticipate the target location.
In Fig. 6 the wind is heading west. The influence of the wind
direction can be seen in the UAV trajectory which avoids
colliding into obstacles while tracking the target.

In the target escaping mode, the system and POMDP solver
guide the multi-rotor towards the corners of the flying space,
see Fig. 7. This happens because the POMDP model predicts
that the target is escaping in the opposite direction of the UAV,
which increases the probability of the target to go towards the
corners.



Figure 4. (a) Belief-state. UAV trajectory (orange) and
target trajectory (black).

Figure 5. (b) Wind blows north. UAV trajectory (orange)
and target trajectory (black).

Real Flight Tests

Real flight tests were conducted indoors to explore the per-
formance of the system. Industrial fans were used to emulate
outdoor windy conditions. The experiments were conducted
using a low cost commercial platform, the Parrot AR Drone,
with four obstacles, Fig. 3.

Real flight tests were conducted 20 times for each of the
target modes. Table 2 shows that the system successfully
completes the mission 100% of the time for the loop mode.
On the other hand, the system has more difficulty finding
a mobile target that is trying to escape and completes the
mission 48% of the time. The difference in success rate
compared to the simulation results is due to the nature of the
target motion. The target motion gets affected by the tiles that
are placed on the ground to generate texture. Moreover, the
wind speed is assumed to be constant throughout the whole
flying scenario. This creates a larger stochastic component
on the target motion and the wind that are difficult to model.
Furthermore, the target is a toy car that is driven remotely by a

Figure 6. (c) Wind blows east. UAV trajectory (orange)
and target trajectory (black).

{

Figure 7. (d) Target escaping, wind to south. UAV
trajectory (orange) and target trajectory (black).

person which also contributes to generating an unpredictable
component to its motion.

An example of the paths followed by the UAV and target for
the loop mode is shown in Fig. 8. In this case the UAV flies
first near an obstacle to reduce the uncertainty in its position
and then it ascends to have a wider FOV and hovers above the
obstacle waiting to detect the target that will eventually pass
under the camera. Afterwards, the UAV follows the target
until it is detected 10 times and finishes the mission.

Once the system has found the target it is also able to re-
capture it if the target goes out of the field of view of the
camera. The POMDP formulation allows the system to
predict the target’s next possible location and to navigate
towards it to detect it. This situation is shown in Fig. 8. It
can be seen that the UAV was able to find, detect and track
the target in a real flight scenario.



Table 2. Real tests results for Target Tracking problem

Target Success | Flight time Reward
motion rate to target (s) | structure
mode (%) (Number of
steps)
Loop mode 100 54 Ry
Loop mode 100 43 Ro
Loop mode 87 71 Ry
(Wind)
Loop mode 92 69 Rs
(Wind)
Escaping 48 112 Ry
mode
Escaping 58 98 Ry
mode
Escaping 42 121 Ry
mode (Wind)
Escaping 45 106 Ry
mode (Wind)

UAV start — Target path

— UAV path

Figure 8. Real flight UAV trajectory (black) and Target
trajectory (orange)

6. CONCLUSIONS

A system for target finding and tracking with a UAV using
POMDP in GPS-Denied and cluttered environments was
presented and demonstrated in simulation and flight test. This
system is able to find, detect and track a target with a UAV
flying within a confined space using an onboard downwards
looking camera and in the presence of obstacles and wind.

The system presented uses a state-of-the-art POMDP on-line
algorithm that outputs actions instead of waypoints, and only
relies on on-board sensors for the localisation of both the
UAV and the target. This allows modelling the system’s
dynamics using the motion controller responses for each
decoupled state, in this case forward and lateral velocities,
altitude and yaw angle.

The system is also able to find, track and follow a target
in a real scenario when the target’s motion model is mostly
deterministic. The system is capable of following a target
when it is pursued by an UAV for cases where the target
motion is mostly deterministic. In cases where the target is

lost, the UAV can predict the target motion and reacquire the
target’s position.

A new reward structure was presented as a function of the
distance from the UAV to the target, assigning a positive
reward to the UAV for staying close to the target. This new
reward structure outperforms a former reward structure that
only assigns a positive reward for detecting the target under
the onboard camera FOV.

Current work focuses on testing the system in dynamic envi-
ronments where there is uncertainty in the obstacles locations.

Future work will concentrate on the use of this enabling tech-
nology to enhance the use of a UAV to navigate in challenging
and remote scenarios for data collection, remote sensing
and monitoring of biodiversity and ecology at the Sanford
Ecological Research Facility (SERF), QLD, Australia.
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