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UAV Based Target Finding and Tracking in GPS-Denied and Cluttered
Environments

Fernando Vanegas1, Duncan Campbell2, Markus Eich3, Felipe Gonzalez4

Abstract— In this paper we describe and flight test a novel
system architecture for low cost muti-rotor unmanned aerial
vehicles (UAVs) for searching, tracking and following a ground
target. The UAV uses only on-board sensors for localisation
within a GPS-denied space with obstacles. This mission is
formulated as a Partially Observable Markov Decision Process
(POMDP) and uses a modular framework that runs on the
Robotic Operating System (ROS). This system computes a
policy for executing actions instead of way-points to navigate
and avoid obstacles. Results indicate that the system is robust
to overcome uncertainties in localisation of both, the aircraft
and the target and avoids collisions with the obstacles.

I. INTRODUCTION
In recent years there has been an interest in using UAVs

for performing a variety of civilian applications that covers
environmental monitoring, topography, crop surveys, surveil-
lance, aerial photography and filming. There are certain sce-
narios in which there is no GPS or there are structures and/or
objects in the airspace that must be avoided and the UAV has
to rely in its on-board sensors to localise itself. Examples
for such scenarios are urban search and rescue missions or
marine vessel inspections, where UAVs can provide visual
information about defects and corrosions [7]. This type of
scenarios present a challenge due to the uncertainties that
are inherent to the perception and motion systems used by
the UAV. An additional challenge is presented when a target
must be found and followed due to the uncertainty in the
target’s motion.

POMDPs have been proposed for UAV navigation. In [1]
and [2] a system for detecting multiple targets using online
POMDPs is presented. This work uses a fixed wing aircraft
with full GPS-Waypoint navigation capacity and presents a
POMDP formulation in which the state is discrete and is
comprised of zones, height levels and car models (as targets).

There are also several works that propose a system to track
targets but assume perfect sensing and localisation of the
UAV and with no obstacles to avoid [3], [4], [5]. Other works
propose alternatives to the target tracking problem, showing
results in simulation [6], [8]. Real flight tests for these type
of scenarios is still an area that needs further exploration.
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A target tracking system using a simulated two-
dimensional maze in which a ground robot moves in order
to search and follow a target is presented in [10] and
[11]. The scenario is discrete, and assumes that there is no
uncertainty in robot control and sensing. A target tracking
system using UAVs is described in [12] and [13] where
the UAV has to fly above a target that has to be pursued
and is moving on the ground. There is no uncertainty in
motion or in the localisation and orientation of the UAV
since a VICON system with 20 cameras is used. On the
other hand, our system addresses a more challenging scenario
with a UAV flying in a three-dimensional GPS-denied space
with obstacles and uncertainty in both, the motion and the
perception systems, due to the characteristics of its low cost
sensors. This presents the challenge the system having to
cope with multiple source of uncertainty, a larger number of
state variables and a continuous state space and observation
space in the POMDP formulation.

Our POMDP formulation presents a continuous state rep-
resentation for the position in 3D space and orientation of
the quad-copter and a planar position and orientation for the
target moving on the ground.

The system uses a POMDP solver algorithm for cal-
culating a policy of actions that has to be updated after
every iteration in order to account for uncertainties in UAV
motion and sensing in an indoor environment with obstacles.
Calculations to account for a large number of possible
sequences of actions and states of the vehicle in the scenario
is needed but they must be conducted within a limited step
time which is highly dependant on the system dynamics.

The modular system is developed using the Robotic Op-
erating System (ROS). The system consists of four modules;
a node that is running the online POMDP solver, another
ROS node in charge of controlling the motion of the aircraft
through four decoupled PID controllers, one in each degree
of freedom. A third node that is calculating the perception of
the environment and an existing ROS Driver for the Parrot
AR Drone Quadrotor [9]. We illustrate the framework using
an online POMDP solver Adaptive belief-state Tree (ABT)
[14] for calculating and updating the policy on-line.

The main contributions of this paper are:
1) A system that models a Target Finding and Tracking

mission as a POMDP, using an on-line algorithm that
outputs actions instead of waypoints, and only relies on
on-board sensors for localisation of both, the UAV and
the Target. The state space is continuous, and there is
uncertainty in motion and perception systems as well
as in the location and the target’s motion.



2) A framework for implementation and testing of a target
tracking mission with a UAV in real flight using a
online POMDP algorithm

This paper is organised as follows; section II covers a
description of POMDP and an online solver: ABT. Section
III describes the system architecture, section IV describes the
scenario and the problem formulation. Section V describes
the results and section VI provides conclusions and future
areas of research.

II. BACKGROUND

A. POMDP

In real world aerial, ground and underwater scenarios, the
robot perception is limited by the type of sensors and the
environment in which the robot is moving. The perception of
the robot is not completely accurate and consequently there
is uncertainty and errors in the estimation and localisation
of the robot. This limitation in the sensory systems of robots
is also known as partial observability [15], [16], [17]. One
possible way of dealing with this uncertainty are Markov
Decision Processes (MDPs) and Partially Observable Markov
Decision Processes (POMDPs).

MDPs can be used to model the sequential decision
problem under uncertainties [18]. MDPs are used for robotic
missions to generate a policy that allows the robot to de-
cide what sequence of actions should be taken in order to
maximise a return or cost function, taking into account the
uncertainties in motion. Plain MDPs assume that the states
are completely observable which is not the case for a robot
that has limitations in perception.

Partially Observable Markov Decision Processes
(POMDPs), on the other hand, incorporate the uncertainties
in sensing and the partial observability of the agent in the
environment [19], [20].

Formally a Partially Observable Markov Decision Pro-
cess is a tuple that consists of the following elements
(S,A,O, T, Z,R, γ) where S represents the set of states
in the environment, A stands for set of possible action the
agent can execute, O is the set of observations, T is the
transition function for the state after taking an action, Z is the
distribution function describing the probability of observing
o from state s after taking action a, R is the set of rewards
for every state and γ is the discount factor. POMDPs rely on
the concept of belief-state which is a probability distribution
of the system over all the possible states in its state-space
representation at a particular time. It is denoted by belief-
state b.

In a POMDP the state of the agent can not be observed
exactly, instead, the agent receives an observation o ∈ O
determined by the probability distribution Z. A policy π :
B → A allocates an action a to each belief-state b ∈ B,
which is the set of possible belief-states. Given the current
belief-state b, the objective of a POMDP algorithm is to find
an optimal policy that maximizes the accumulated return
when following a sequence of actions suggested by the
policy π. The accumulated discounted return is the sum

of the discounted rewards after executing every action in
the sequence from time t onwards Rt =

∑∞
k=t γ

k−trk,
where rk is the immediate reward received at particular
time step t for taking action at. The Value function is the
expected return from belief-state b when following policy
π, V π(b) = E[

∑∞
t=0 γ

trt|b, π]. An optimal policy for
the POMDP is the one that maximizes the value function
π∗(b) = arg maxπ V

π(b).

B. ABT

In order to test the target finding and tracking problem
formulated as a POMDP we implemented in hardware and
software one of the fastest on-line POMDP algorithms to
the authors knowledge, ABT [14]. This algorithm has been
tested previously in simulations but not on-board a UAV.

ABT is an online POMDP solver that uses Monte Carlo
Simulations and a set of state particles to represent the belief-
state. It generates a search tree to store the policy. The root
of tree is a node containing the state particles representing
the initial belief-state of the environment.

In ABT the policy is updated after receiving an obser-
vation. ABT does not clear the policy tree after receiving
and matching an observation but instead improves the policy
based on the observation received. Moreover, ABT provides
a mechanism for accepting changes in the environment and
adapts its policy accordingly. This algorithm was selected
for the implementation of the Target Finding and Tracking
mission based on its capacity to handle a large number of
possible observations that result from a larger uncertainty in
the target’s location. ABT can model the observations using a
dynamic approach in which the number of observations does
not have to be fixed as a constant value for the whole episode
as opposed to POMCP [21]. ABT allows to model the
observations as objects containing different variables. This
approach allows to program a function that decide which
observations are equal based on the values of the variables
that compose the observation. Thanks to this feature of ABT,
the observations do not have to be discretised but instead
a function should be implemented defining whether two
observations are equal based on the value of their variables.
The implementation of this function for the Target Finding
and Tracking problem is explained in section IV-E

III. SYSTEM ARCHITECTURE

The system is divided into four modules, shown in Fig. 1,
one module for running the online POMDP solver, another
module for controlling forward Vrf and lateral velocity Vrl ,
yaw Ψr and altitude zr of the multi-rotor, one module for
calculating the multi-rotor position in the scenario Pr =
(xr, yr, zr,Ψr) based on the forward and lateral velocity,
heading angle and altitude, estimated from the on-board sen-
sors and the target position Pt = (xt, yt, zt,Ψt), estimated
by the target’s pose in image if it detected by a downward
looking camera. A fourth module which is the Autonomy
Lab driver for ROS [6], receives the commands for actuation
in roll, pitch, and yaw angles as well as the altitude and
sends the sensor readings upon request. All nodes running



in parallel in different threads allows the system to have
different update rates for each module and that permits to
have different levels of controllers.

A. Online POMDP Module

The Online POMDP module executes an online POMDP
solver algorithm, ABT in our example. This module imple-
ments the ABT algorithm in which the POMDP elements
described in section IV are programmed using the object
oriented programming interfaces that are available [22]. In
this module the POMDP model and solver are initialised
according to input parameters and an initial belief-state b0.
It first produces a policy based on the initial belief-state b0
and outputs the action a that maximises and expected return.
The action is then executed by the motion control module,
while the perception module calculates independently the
robot position and heading angle and the target pose in case
it is detected by the onboard downward camera. Based on
the perception module data an observation is created and
received after the action is executed.

The online POMDP module updates the belief-state b, to
match the obtained observation and replenishes particles until
a time-out is reached. Based on the current belief-state b
the POMDP solver calculates and updates the policy and
outputs the subsequent action based on the updated policy.
The process repeats itself until a terminal state is reached
i.e. the target has been detected and followed for at least ten
seconds.

Finding the right time-step duration for the implementation
of the target finding and tracking problem as an online
POMDP, depends on the dynamic capabilities of the UAV
used and on the complexity of the scenario. We set the online
POMDP solver with a frequency of 1 Hz, since we know
how the motion control system will respond within that time-
frame and the online planner provides good policies within
that time.

On one hand, having long time-steps for the policy update
reduces the complexity for calculating a solution since the
length of the planning horizon is reduced compared to a
shorter time-step. On the other hand, having short time-steps
reduces the uncertainty in motion and perception since the
observation updates are more frequent. The POMDP online
planner iteration time chosen balances between having an
appropriate horizon and obtaining a good policy for the
POMDP formulation.

B. Motion Control Module

This module is implemented as a ROS node that executes
at a rate of 100 Hz, it has four PID controllers, one for
each of the following states: Forward velocity Vrf , lateral
velocity Vrl , Yaw angle Ψr and altitude zr. The actions in
the formulated POMDP are commands that set the reference
values for each of the controllers. Each PID controller is
tuned to obtain a fast response according to the required
reference that is set by the action (see table I).

The output of the PID controllers (Table I) are pitch
θ̇, roll φ̇, yaw ψ̇ and ż rates, that are sent to the AR
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Fig. 1. POMDP ROS System Architecture

Drone Autonomy lab driver, which transforms them into
control signals that are sent to the quad-rotor. The motion
control module executes in a continuous loop and updates
the references for each degree of freedom every time the
online POMDP module outputs a new action.
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Fig. 2. PID time responses to a unit step input for –Vf and Vl, ...Ψ , and
- - z. All PID controllers reach steady state within 1s.

C. Perception Module

The perception module is also implemented in ROS and
executes at 100 Hz. Current forward and lateral velocity
are calculated by fusion of optical flow (using a downward
looking camera) and inertial measurement unit readings, yaw
angle is calculated based on onboard IMU and altitude is
sensed by combining IMU, ultrasonic sensors and barometric
sensor.



This module is constantly calculating the current multi-
rotor position based on the sensed forward Vrf and lateral
Vrl velocities and the heading angle Ψr. It converts the
forward and lateral velocities in the multi-rotor’s frame to
the fix world frame, and calculates xr and yr positions, using
Equation (1). It also reads the altitude or zr position from
the on-board sensors.

In order to have an accurate source of global localisation
the system uses Augmented Reality tags that can be detected
by the front camera onboard the UAV. This tags are placed on
one face of the obstacles and its position in the world frame
is known to the system so that when detected they provide
an accurate measuring of the UAV pose in the world frame.
These tags can only be detected when the UAV is within 1
m in front of the tag. The perception module uses this tags
to reset any drift in the odometry once they are detected by
the UAV front camera.

[
xrt+1

yrt+1

]
=

[
xrt

yrt

]
+

[
cos(Ψrt) − sin(Ψrt)

sin(Ψrt) cos(Ψrt)

][
Vrft

Vrlt

]
∆t

(1)

IV. TARGET FINDING AND TRACKING

A. Problem Description and Formulation

We illustrate the use of the system for a target finding and
tracking scenario in which a multi-rotor UAV flying in a 3D
space without access to external GPS localisation and in the
presence of obstacles must search and find a ground moving
target, and follow it for at least 10 s. Figure 3 shows the
flying environment, the target, the obstacles and the UAV.
The target and moves on the ground in any direction at an
irregular speed. A map of the environment with the obstacles
location is known to the system and is input as a parameter
of the algorithm as a text file.

After take off, the UAV hovers for a few seconds to
initialise its orientation with readings from its on-board
sensors. There is some initial drift produced in this initial
hovering position and a normal probability distribution with
mean value around the take off position is used to model this
initial uncertainty.

  

UAV

Obstacles
Target

Fig. 3. Target Finding and Tracking scenario

TABLE I
SUMMARY OF QUAD-ROTOR ACTIONS IN TARGET FINDING AND

TRACKING MISSION

Action a Forward
velocity
Vrf

m
s

Lateral
velocity
Vrl

m
s

Heading
change
∆Ψa

◦

Altitude
change
∆zr m

Hover 0 0 0 0
Forward 0.6 0 0 0

Backward −0.6 0 0 0
Up 0 0 0 0.3

Down 0 0 0 −0.3
Roll left 0 0.6 0 0

Roll right 0 −0.6 0 0

The problem is formulated as a POMDP that has the fol-
lowing elements: the state of the aircraft in the environment
(S), the set of actions that the multi-rotor can execute (A),
the transition function describing the state transition after
applying a specific action (T ), the observation model that
represents the sensed state of the aircraft after taking an
action (O), and the reward and cost function (R).

B. State Variables (S)

The state variables considered in the POMDP formu-
lation are the quad-rotor position and heading Pr =
(xr, yr, zr,Ψr), the target planar position and heading Pt =
(xt, yt,Ψt), target forward velocity Vt and the UAV’s veloc-
ity Vr, all measured in the world frame. The aircraft velocity
can be decomposed into two components in the UAV’s frame,
forward velocity Vrf and lateral velocity Vrl .

C. Actions (A)

The multi-copter actions are designed to take advantage
of the four PID controllers, thus the UAV can actuate in
four state variables: forward Vrf and lateral Vrl velocities,
heading angle Ψr and altitude zr.

The set of actions consists of 7 actions as shown in Fig. I.
An action to keep the aircraft hovering, i.e. Vr = 0 m

s ; two
actions to go forward and backward, with current heading
angle Ψr, lateral velocity Vrl = 0 m

s , and forward velocity,
Vrf = 0.6 m

s and Vrf = −0.6 m
s , respectively. Actions

Up and Down, increase or decrease altitude zr in 0.3 m,
respectively, with multi-rotor velocity fixed at 0 m

s , and two
actions to roll left and right with current heading angle Ψr

and forward velocity at Vrf = 0 m
s , and lateral velocity at

Vrl = ±0.6 m
s , respectively.

D. Transition Function (T)

The transition function (T ) is based on the set of ac-
tions described in Table I. These actions are step inputs
or references to the four states controllers. This allows to
incorporate step responses, that are acquired experimentally,
into the kinematic model of the aircraft using a decoupled
model.

The kinematic model is described by Equation (2) and
(3). The next multi-rotor position is calculated by obtaining
the change in position taking into account the system step
responses, the initial and requested values for state variables



and the action execution step time. A transformation from
the aircraft’s frame to the world frame is also calculated in
these equations.

The orientation of the aircraft is determined by its heading
angle Ψr. The uncertainty in motion is included in the system
by adding a small deviation to the heading angle σr using
a normal probability distribution with mean value equal to
the desired heading and within the range −2.0◦ < σa <
2.0◦, which represents the uncertainty in the yaw angle when
executed by the control system.

∆xrt

∆yrt

∆zrt

 =

cos(Ψrt + σrt) − sin(Ψrt + σrt) 0

sin(Ψrt + σrt) cos(Ψrt + σrt) 0

0 0 1


Vrft ∆t

Vrlt ∆t

∆zr


(2)xrt+1

yrt+1

zrt+1

 =

xrtyrt

zrt

 +

∆xrt

∆yrt

∆zrt

 (3)

Where xrt , yrt and zrt are the x, y and z aircraft
coordinates at time t, Vrft and Vrlt are forward and lateral
velocities in the quad-rotor’s frame at time t, and Ψrt and
σrt are heading and heading deviation at time t.

The transient responses for the four controlled states that
are described by Fig. 2 are discretised and included in the
transition function as lookup tables in order to approximate
the dynamics of the quadrotor.

We used an RC toy car moving on the ground with a
marker on top as the target. The target’s motion is described
by equations 4 and 5. The target’s velocity VTt

has an
uncertainty of 0.2ms around an average value µ = 0.5ms .
The target behaviour has three modes which are 1)Loop
clockwise around the whole flying area which changes the
heading of the target ΨTt , alternating among north, east,
south and west, 2) Same loop as in 1) but around half of
the flying area and 3)Continue with same heading with a
50% probability and 50% chance of changing its orientation
ΨTt to the opposite direction of the UAV in order to go away
from it.

xTt+1
= xTt

+ VTt
cos(ΨTt

)∆t (4)

yTt+1 = yTt + VTt sin(ΨTt)∆t (5)

E. Observation Model (O)

An observation is composed of the UAV position in the
world frame, the target’s position if it is detected by the
downward looking camera and boolean variables indicating
whether the target has been detected and whether or not an
AR tag is detected by the front camera. The system receives
an odometry reading from the perception module with an
uncertainty that is caused by the accumulating error and drift
in the yaw angle reading. This uncertainty is represented by
adding noise UAV position using a gaussian distribution as
in equation (6), with mean value µ around the perceived
position and standard deviation σ = 0.5m .

TABLE II
SUMMARY OF THE REWARD AND COST FUNCTION FOR THE TARGET

FINDING AND TRACKING MISSION.

Reward/Cost Value
Detecting the target 500
Hitting an obstacle −70

Out of region −70
Movement −10

P (x) =
1

σ
√

2π
e−(x−µ)

2/2σ2

(6)

This uncertainty can be reduced, i.e. σ = 0.05m if the
UAV flies in front of an obstacle where it can detect an
AR tag an can reset the error inherent to the odometry and
onboard sensors.

If the target is detected by the onboard downward looking
camera, the detection system provides the target position
within the image. This position is transformed into a position
in the world frame. A model of the downward camera field
of view is also included in order to extract the target pose
in the world frame from the target’s position and orientation
in the image.

In order for ABT to verify if two observations are equal,
a function is included in the code. For two observations to
be equal the euclidean distance between the UAV position of
both observations should be less than a threshold value that
represent the error in the odometry system and the boolean
variable that indicates whether a target has been found should
have the same value on both observations.

Obs1 = Obs2 if ‖PrObs1
− PrObs2

‖ ≤ ε (7)

and TOObs1 = TOObs2 (8)

where PrObs1
is the quadrotor position in observation 1

and TOObs1 is the variable that indicates whether a target
has been found in observation 1.

F. Rewards and Costs Function (R)

The multi-rotor receives a high reward if it detects the
target within the downwards looking camera field of view.
Hitting an obstacle or going out of the scenario incur a
penalty and every other movement will carry a small cost
with the purpose of generating shorter sequences of actions
and thus shorter paths. A summary of the reward and cost
function is shown in Table II. The values of the reward and
cost functions were selected as a result of tuning the system
to be able to accomplish the mission faster.

V. RESULTS AND DISCUSSION

We conducted simulation and real flight test in order to
analyse the performance of the system.



TABLE III
Simulation results for Target finding problem

Target’s mode
(x, y, z)

Success
rate (%)

Flight time to
target (s)

(Number of
steps)

Discounted
return

Small loop 100 27 1840

Big loop 100 43 1023

Target escaping 100 93 103

A. Simulation

The target finding and tracking with UAV mission was
tested in simulation for 100 runs for each of the three cases
shown in table III to get an average for the discounted
return, the number of steps and the success to accomplish the
mission with a maximum of 120 steps which corresponds to
2 min flight time.

Simulation results indicate that the system is able to find a
target and follow it in all three cases. If the target behaviour
is mostly deterministic as in the two first cases, small loop
and big loop the return is higher and the number of steps to
accomplish the mission is lower. On the other hand, when
the uncertainty in the target’s behaviour increases, the system
takes more steps to accomplish the mission.

We use the graphical tool RVIZ for visualisation (Fig.
4). Point clouds are used to visualise the distribution of the
belief-state particles representing the target and UAV loca-
tions. The target starts moving from four possible locations.
The UAV is initially located at coordinates (−2.9, 0, 0.0) and
takes off and hovers for some seconds which increases the
uncertainty in its position, seen as white particles in Fig.
4(a). In Fig. 4(b) the UAV detects an AR tag on an obstacle
with its front camera and as a result its position uncertainty
is reduced (see white particles). In Fig. Fig. 4(d) the UAV
detects the target with its downward looking camera, which
reduces the uncertainty in the target position seen as red
particles.

In the target escaping mode, the system and POMDP
solver guide the multi-rotor towards the corners of the flying
space and spends some time exploring these regions, see
Fig. 4(c). After exploring a corner the algorithm moves the
quad-rotor away from the boundaries of the space towards the
centre and then to the other corners, trying to avoid exiting
the flying space.

B. Real Flight Tests

Real flight test were conducted to explore the performance
of the system under real conditions. The experiments were
conducted using a low cost commercial platform, the Parrot
AR Drone, with four obstacles, Fig. 3.

Real flight tests were conducted 20 times for each of the
target modes. Table IV shows that the system successfully
completes the mission 90% of the times for the small loop
and 80% for the bigger loop. On the other hand, the system
has more difficulty finding a mobile target that is trying
to escape and completes the mission 55% of the times.
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Fig. 4. Example of UAV trajectories (orange) for four different Target
(black) starting locations.

TABLE IV
Real flight results for Target finding problem

Target’s mode
(x, y, z)

Success
rate (%)

Flight time to
target (s)

(Number of
steps)

Discounted
return

Small loop 90 48 893

Big loop 85 57 486

Target escaping 55 107 54

The difference in success rate compared to the simulation
results is due to the nature of the target motion, which in
the real scenario gets affected by the tiles that are placed
on the ground to generate texture. This creates a larger
stochastic component on the target motion that is difficult
to model. Furthermore, the target is a toy car that is driven
remotely by a person which also contributes to generating
an unpredictable component to its motion.

An example of the paths followed by the UAV and target
is shown in Fig. 5, in this case the UAV flies first near
an obstacle to reduce the uncertainty in its position and
then it ascends to have a wider FOV and detects the target.
Afterwards, the UAV follows the target until it is detected
for 10 times and finishes the mission.

The system is also able to re-capture the target if the target
goes out of the field of view of the camera. The POMDP
formulation makes the system robust to predict the target’s
next possible location to navigate towards it to detect it. This
situation is shown in Fig. 5. It can be seen that the UAV
was able to find, detect and track the target in a real flight
scenario.
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Fig. 5. Real flight UAV trajectory (black) and Target trajectory (orange)

VI. CONCLUSIONS

A system for target finding and tracking with UAVs using
POMDP in GPS-Denied and cluttered environments was
presented and demonstrated in simulation and flight test, this
system is able to find, detect and track a target with a UAV
flying within a confined space using an onboard downwards
looking camera and in the presence of obstacles.

The system presented uses a state-of-the-art POMDP on-
line algorithm that outputs actions instead of waypoints, and
only relies on on-board sensors for localisation of both, the
UAV and the Target. This allows modelling the system’s
dynamics using the motion controller responses for each
decoupled state, in this case forward and lateral velocities,
altitude and yaw angle.

The system is also able to find, to track and to follow a
target in a real scenario when the target’s motion model is
mostly deterministic. The system is capable of following a
target when it is pursued by an UAV in some cases, even
if the target is lost the UAV can search and reacquire the
targets position in some cases.

Current ongoing work focuses on outdoor testing and on
exploration of the response of the system in an environment
with windy conditions and on the exploration of different
reward functions.
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